压铸产品失效库
- 格式:xlsx
- 大小:21.34 KB
- 文档页数:7
铝合金压铸模具失效分析及寿命提高措施摘要:各类工业技术的高速发展带动着压铸技术得到了相对广泛的应用,其中最具有代表性的便是铝合金压铸模具。
而从具体工作展开与推进上来看,铝合金压铸模具会受到材料、压铸方式以及外界因素的综合影响,出现压铸失效的情况造成材料的过度浪费。
由此,要对铝合金压铸模具失效的情况进行分析,寻找提高使用寿命的各类方式。
关键词:铝合金;压铸技术;模具;使用寿命引言压铸技术自诞生以来,常常被用在高强度、公差小且精准度高的各类合金生产当中,其中又以铝合金压铸最具代表性,在汽车制造行业有着较广的应用范围。
在近几年间,社会对铝合金压铸模具的整体需求量呈现出逐步上涨的趋势,对铝合金压铸成效的要求也相对较高,需要相关工作者明确生产当中可能会出现模具失效各类情况,延长模具本身的使用寿命,带动国内铝合金压铸技术的全面发展。
一、铝合金压铸模具的常见失效形式(一)热裂在对金属类材料展开现代化的加工时,往往需要对金属材料采取高温加工的方式,提高金属材料可塑性的同时,优化后期压铸成效。
在高温加工当中,热裂属于一类相对常见的问题,也是压铸模具技术在应用当中出现概率最高的失效情况。
从各项数据上来看,超过八成的压铸模具失效,都是受到模具钢在应用当中出现热疲劳抗力下降以及高温环境下稳定能力较弱而诱发的。
金属类材料基本都存在有疲劳度极限,而模具钢在应用过程中会长时间处在高温环境下,进而在热疲劳上会出现逐步下降的情况,持续高温软化与冷却工作,会是的金属材料在这一过程中慢慢丧失优质的变形抗力,此时金属材料的应变力会持续上升到金属疲劳度的峰值。
铝合金压铸模具在生产当中所受到的热应力会呈现出周期性的变化,而材料表面此时也会因外力作用而出现塑性压应变以及弹性拉应变,随着变形次数的增加,材料表面的氧化膜会出现破损问题,以此来释放剩余的应力。
如果所释放的剩余应力已经超过材料本身的承受能力,则会在模具材料上出现热裂问题。
需要注意的是,热裂纹在形成方面,往往会集中在模具的型腔位置以及热应力相对集中的位置,在出现热裂现象后,模具所受到的应力会表现出二次分布的情况,使得热裂范围逐步增加。
压铸铝合金零件失效分析摘要:本文结合工厂地压铸模具地实际失效情况,总结分析了压铸模地主要失效形式,系统地提出了分析压铸模具失效地方法和手段.从工程实用地角度提出了避免早期失效、提高模具寿命地方法.压铸是一种节能、低价、高效地金属成形方式.压铸件具有尺寸精度高,表面光洁,强度和硬度高地特点,一般不需要机械加工或稍经加工便可使用,适合批量生产.但是在使用过程中,由于各种原因压铸模容易失效.关键字:压铸模具失效提高寿命1 压铸模具常见失效形式下面结合工厂实际情况分析了压铸模具地失效形式和失效机理.1.1 热裂热裂是模具最常见地失效形式,如图1所示.热裂纹通常形成于模具型腔表面或内部热应力集中处,当裂纹形成后,应力重新分布,裂纹发展到一定长度时,由于塑性应变而产生应力松弛使裂纹停止扩展.随着循环次数地增加,裂纹尖端附近出现一些小孔洞并逐渐形成微裂纹,与开始形成地主裂纹合并,裂纹继续扩展,最后裂纹间相互连接而导致模具失效.b5E2RGbCAP1.2整体脆断整体脆断是由于偶然地机械过载或热过载导致模具灾难性断裂.材料地塑韧性是与此现象相对应地最重要地力学性能.材料中有严重缺陷或操作不当,会引起整体脆断,如图2所示.P^anqFDPw1.3侵蚀或冲刷这是由于机械和化学腐蚀综合作用地结果,熔融铝合金高速射入型腔,造成型腔表面地机械磨蚀.同时,金属铝与模具材料生成脆性地铁铝化合物,成为热裂纹新地萌生源.此外,铝充填到裂纹之中与裂纹壁产生机械作用,并与热应力叠加,加剧裂纹尖端地拉应力,从而加快了裂纹地扩展.提高材料地高温强度和化学稳定性有利于增强材料地抗腐蚀能力.DXDiTa9E3d2压铸模具常见失效分析方法为了延长模具地使用寿命,节约成本,提高生产效率,就必须研究模具地失效形式和导致模具失效地原因以及模具失效地内部机理.由于压铸模具失效地原因比较复杂,要从模具地设计、材料选择、工作状态等很多方面来进行分析.图3为压铸模具常见失效分析图.RTCrpUDGiT图3压铸模具常见失效分析方法2.1裂纹地表面形状及裂纹扩展形貌分析失效模具型腔表面主要是冲蚀坑,大小比较均匀,冒口所对部位有明显地冲蚀坑外,表面明显具有一定方向地划痕,划痕上分布有大小不等地铝合金块状物.由于正对浇口部位直接受金属液地冲刷,该部位具有明显地冲刷犁沟,同时可观察到划痕间有裂纹.裂纹从裂纹源出发,并向西周扩展.裂纹内有大量地夹杂物,裂纹边缘有二次裂纹由于模具使用时间短,一般部位表面主要是冲蚀坑和焊合,而浇口所对部位主要为液态金属冲刷形成地犁沟和热疲劳裂纹.5PCzVD7HxA 由于高温液态金属地冲刷,模具型腔表面首先冲击坑及犁沟,模具地表面变得凸凹不平,造成局部应力远远大于名义应力,产生应力集中地现象,这些部位是裂纹产生地危险部位•另外,分布在模具型腔表面地夹杂物,如氧化物、硫化物等,在热循环过程中与基体脱离,直接成为热疲劳裂纹• 一方面夹杂物同集体地弹性模量不同,当热应力及机械力作用时,在其周围形成应力集中。
压铸模失效分析(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--压铸模失效分析压铸模失效形式主要有:尖角、拐角处开裂、劈裂、热裂纹(龟裂)、磨损、冲蚀等。
造成压铸模失效的主要原因有:模具材料及配件的缺陷;模具加工、使用、维修不当;模具热处理工艺问题。
一、模具材料自身存在的缺陷众所周知,压铸模的使用条件极为恶劣。
以铝压铸模为例,铝的熔点为580-740℃,使用时,铝液温度控制在650-720℃。
在不对模具预热的情况下压铸,型腔表面温度由室温直升至液温,型腔表面承受极大的拉应力。
开模顶件时,型腔表面承受极大的压应力。
数千次的压铸后,模具表面便产生龟裂等缺陷。
压铸使用条件属急热急冷。
模具材料应选用冷热疲劳抗力、断裂韧性、热稳定性高的热作模具钢。
制造压铸模的材料选用,应保证压铸模在其正常的使用条件下达到设计使用寿命。
在优选供应商的基础上,对模具材料在使用前应尽可能进行检查。
常用检查手段:(1)宏观腐蚀检查。
主要检查材料的多孔性、偏析、龟裂、裂纹、非金属夹杂以及表面的锤裂、接缝等。
(2)金相检查。
主要检查材料晶界上碳化物的偏析、分布状态、晶料度以及晶粒间夹杂等。
(3)超声波检查。
主要检查材料内部的缺陷和大小。
二、压铸模的加工、使用、维修和保养压铸模在设计过程中,应注意避免缺陷出现,必要时需跟产品设计工程师讨论产品的合理结构。
模具加工过程中,模板应采用足够厚度。
减低弯曲变形对模具的损害。
在加工冷却水道时,两面加工中应特别注意保证同心度;防止连接处出现拐角,避免开裂。
冷却系统的表面应当光滑,最好不留机加工痕迹。
电火花加工在模具型腔加工中应用越来越广泛,但加工后的型腔表面留有淬硬层,这是由于加工中,模具表面自行渗碳淬火造成的。
淬硬层厚度由加工时电流强度和频率决定,粗加工时较深,精加工时较浅。
无论深浅,模具表面均有极大应力,若不清除淬硬层或消除应力,则在使用过程中,模具表面就会产生龟裂、点蚀和开裂。
压铸件常见缺陷及改善对策(1)压铸件常见缺陷及改善对策压铸件是汽车、电器、机械等行业生产的重要部件,具有成本低、成型形状复杂、尺寸精度高等优点,但在生产过程中,常出现一些缺陷,影响产品的质量和性能。
本文将介绍压铸件常见缺陷及改善对策。
一、缺陷分类(一)表面缺陷1.气孔:表面或内部存在大小不一的圆形或椭圆形小孔。
2.夹渣:表面或内部存在小颗粒或纤维杂质。
3.闪亮:表面出现暗角或光亮,且材料表面的形状失真。
(二)内部缺陷1.开裂:铸件内部存在一定大小、方向和数量的开裂,导致铸件强度下降。
2.气孔:铸件内部存在大小不一、分布不均匀的空隙,导致铸件强度下降。
3.缩松:铸件灌注过程中未完全充实、冷却时出现局部收缩,导致铸件强度下降。
二、改善对策(一)工厂加工环境1.密闭铸造室:确保铸造工艺的真空、氩气气氛、风机循环扇等工作环境的洁净度和稳定性。
2.温度控制:在铸件铸造、冷却、急冷和退火等多个环节,控制温度变化。
3.砂芯制作环境和温度:砂芯质量直接影响铸件内部缺陷情况,制作时要确保环境稳定、温度协调。
(二)工艺改善1.铸造压力:适当增加铸造压力可降低铸造缺陷的比例。
2.浇注速度:适当调整铸造流速,避免在铸造过程中产生气泡。
3.铸造温度:根据铸造材料的特性,调整铸造温度。
4.铸模制作:铸模是决定铸件质量的关键,铸模制作过程需加强工艺控制和质量监管。
结论压铸件是一种重要的制造工艺,其质量直接影响到产品的性能和寿命。
本文简要介绍了压铸件常见缺陷分类及改善对策,提供一定的参考与借鉴。
工厂要加强工艺改进,在生产过程中增加检测措施,提高生产过程中的整体质量控制水平。
压铸模具失效形式以及如何提高寿命压铸模具是压铸生产中最重要的零部件之一,它承担着压铸工艺中的成型和冷却功能,是压铸产品质量和产量的关键因素之一。
然而,由于压铸模具在工作过程中受到高温高压的影响,加之工作频次高,很容易出现失效现象。
本文将探讨常见的压铸模具失效形式以及如何提高其寿命。
一、压铸模具失效形式1. 疲劳失效。
由于模具在压铸生产中的高频使用,反复受力反复工作,易产生疲劳失效。
疲劳失效分为低应力疲劳和高应力疲劳,低应力疲劳主要表现为模具表面开裂、裂纹扩展;高应力疲劳主要表现为模具出现断裂现象。
2. 磨损失效。
在模具定向移动过程中,会磨损模具表面,削减模具尺寸精度,造成松动和失效。
磨损失效分为粘着磨损、磨粒磨损、抛光磨损等。
3. 腐蚀失效。
模具在高温高压下与铝合金反应,会导致腐蚀失效。
大量的铝合金氧化物和废气产生,这些氧化物会在模具表面附着、腐蚀,严重影响模具的使用寿命。
4. 热疲劳失效。
在模具与铝合金摩擦过程中,会产生大量的热量,造成热膨胀和收缩,导致热疲劳失效。
热疲劳失效不可逆,一旦发生,模具寿命会大幅缩短。
二、提高压铸模具寿命的方法1. 优化模具设计。
在模具设计阶段,可以采用耐热合金、表面渗碳处理等技术和材料,以提高模具的耐热性、耐腐蚀性和耐磨损性。
2. 加强模具维护。
定期对模具进行清洁和润滑,对磨损严重的模具进行翻新和更新,是提高压铸模具寿命的必要手段。
维护模具还可以准确的检测模具工作情况,及时调整和修复模具。
3. 优化压铸工艺。
优化压铸工艺,可以减少模具的应力和疲劳程度。
通过优化压铸工艺可以选择合适的铝合金材料和合理的工艺参数,具有重要的提高模具使用寿命和生产效率的作用。
4. 加强模具管理。
科学的模具管理,可以提高压铸模具的使用效率和寿命。
包括模具存储、模具抽检、模具保养四个方面。
结论:压铸模具是压铸产品质量的关键环节,模具失效会影响生产效率和生产成本,甚至还会产生质量问题。
因此,提高压铸模具的寿命是非常重要的。
压铸模具的失效分析随着铝合金压铸模具技术的日趋成熟,锌、铝、镁合金压铸越来越广泛应用于汽车、摩托车、柴油机、电子设备、家用电器等工业及民用产品配件的生产。
然而,压铸模具的早期失效一直是困扰模具生产和使用者的普遍问题,那么,该如何提高模具的使用寿命呢?一、压铸模具的失效压铸模的使用时急热急冷,条件极为恶劣。
以铝压铸模为例,铝的熔点为580-740℃,使用时,铝液温度控制在650-720℃。
在铝液注射时,型腔表面温度急剧上升,型腔表面承受极大的压应力。
开模顶件、喷涂脱模亮剂时,型腔表面温度急剧下降承受极大的拉应力。
由于交变温度影响模具型面压缩、拉伸的交变应力的反复作用从而使模具金属因热疲劳而产生龟裂缺陷。
开裂是由于模具的短时间的热应力或机械应力过载而引起的模具整体破损。
模具的侵蚀主要分为三种:1、腐蚀:金属熔液与铁互相扩散并形成金间化合物;2、冲蚀:金属熔液在型腔中流动时所产生的热机械磨损;3、粘著:金属熔液附着在模具型腔表面,顶出产品时带走型面表层金属。
而压陷是因为模具强度不足或金属碎屑附着在模具型面,受到锁模力作用使模具产生的塑性变形。
二、影响压铸模具使用寿命的因素1、钢材对模具寿命的影响因压铸模具恶劣的使用环境,所以要求模具钢材必须具有优良的淬透性、良好的抗高温强度、高的耐磨性、好的韧度、好的抗热裂能力和高的耐熔损性能等。
●化学成分压铸模具钢的应用广泛和具有优良的特性主要由钢中的C、Cr、Mo、Si、V 等化学成分决定的。
当然钢中杂质元素必须降低,有资料表明,当Rm在1550MPa 时,材料含硫量由0.03%降到0.003%,会使200℃左右时的冲击韧度提高约1-2倍。
北美压铸学会(NADCA 207-2003)标准就规定:优级(premium)H13钢含硫量小于0.005%,而超级(superior)的应小于0.003%S和0.015%P。
●退火状态均匀的球状珠光体无晶界碳化物●钢材的纯净度杂质是热龟裂发生的起源点杂质无强度,不能抵抗热疲劳、杂质降低钢材的延展性●钢材的均一性钢胚具备近似纵向(锻打延伸方向)、横向机械性质的力学差异各向同性。
铝合金压铸件常见缺陷及改进方案铝合金压铸件是制造工业中常见的一种零部件。
虽然铝合金压铸件具有轻量、强度高、导热性能好等优点,但是在生产过程中常会出现一些缺陷。
这些常见缺陷包括气孔、夹渣、缩松、热裂纹和尺寸不符等问题。
为了提高铝合金压铸件的质量,需要采取相应的改进方案。
首先是气孔问题。
由于铝合金熔融过程中的氧化反应,会产生气体,导致铸件中出现气孔缺陷。
改进的方法是提高熔炼铝合金的纯度,控制熔温和减小由废气带入的氧气含量。
此外,还可以采用真空压铸工艺,将熔融铝合金中的氧气抽出,避免气孔的生成。
其次是夹渣问题。
夹渣是指在压铸过程中,熔融铝合金流动过程中,夹带了一些熔渣。
这些夹渣会影响铝合金压铸件的密封性和强度。
改进的方法是通过优化铝合金的熔炼工艺和提高铸型的质量,减少熔渣的产生。
此外,可以采用滤网等装置来过滤熔融铝合金中的熔渣,提高铸件的质量。
第三是缩松问题。
缩松是铝合金压铸件中常见的缺陷,即铝合金在凝固过程中产生的收缩引起的空洞。
改进的方法是优化铝合金的成分配比和熔炼工艺,提高铝合金的流动性和凝固性能。
此外,适当增加压铸工艺中的压力和温度,也可以减少产生缩松的可能性。
第四是热裂纹问题。
热裂纹是指压铸过程中,由于温度变化引起的铝合金的裂纹。
改进的方法是优化压铸工艺,控制铸件的冷却速率和冷却温度梯度。
此外,可以采用提前预热模具的方法,使得铝合金在注入模具之前达到与模具相近的温度,减少热裂纹的产生。
最后是尺寸不符问题。
铝合金压铸件的尺寸不符可能是由于模具磨损、材料收缩等原因引起的。
改进的方法是定期检查和维护模具,修复磨损的部分。
此外,可以通过合理的设计和加工工艺,控制铝合金的收缩率,使得铝合金压铸件的尺寸更加符合要求。
综上所述,铝合金压铸件常见的缺陷包括气孔、夹渣、缩松、热裂纹和尺寸不符等问题。
通过优化铝合金的成分和熔炼工艺、改进压铸工艺、提高模具的质量和维护等方法,可以有效地解决这些问题,提高铝合金压铸件的质量。
旺达集团压铸事业部不合格品管理办法1. 目的为了对生产过程中产生的不合格品进行合理处置,确保不合格品得到有效控制,防止不合格品非预期使用,特制定本办法。
2. 范围本办法适用于外协加工,过程产品及最终产品和客户退货的不合格品控制3.职责3.1 技品部负责不合格品的识别.控制和处置后的最终验证;3.2 生产部及车间参与不合格品的评审;及处置意见的实施4.工作要求和内容4.1生产制造过程控制及要求4.1.1 压铸工、清理工(含打磨、抛丸等)负责对生产过程中的不合格品作出初步判断,并自作标识进行隔离。
4.1.2 班长及检验员负责对数量在20件以内的不合格品作出判定(挑选、返工、返修、报废)。
4.1.3 不合格品数量在20件以上的,由检验员填写《不合格品处理单》交品检班长进行处理。
4.1.4 不合格品数量在50件以上的,需作评审处理。
4.1.5压铸工序4.1.5.1 工序内的不合格品,由操作者作出初步判断后整齐地摆放在工作台上并及时上报当班班长和检验员,由当班班长和检验员进行判定(返工、返修、报废),经过返工、返修的产品必须由检验员复检确认后,方可流入下道工序;确认需要报废的不合格品由检验员在废品上打红×标识,将数量和特征如实记录入《废品通知单》,并由班长和当班检验员签名确认。
4.1.6清理(后处理)工序4.1.6.1 清理工序发现的由上道工序遗留下来的或由本工序产生的不合格品,必须及时上报当班班长和检验员进行判定(挑选、返工、返修、报废),经过挑选、返工、返修后的产品必须由检验员复检确认合格后方可流入下道工序;确认需要报废的不合格品,由检验员在废品上打红×标识,将数量和特征如实记录入《废品通知单》,并由班长和当班检验员签名确认。
4.1.7各序确认需要报废的不合格品,必须摆放到指定区域。
4.1.8各工序检验等人员检查当中发现不合格品或不合格批时必须对本批生产的产品进行追踪,直至将不合格品全部追踪出来为止,并对不合格品做好标识和隔离,并通知相关的责任班长,及时填写《不合格品处理单》交责任班长进行处理,处理完成后必须将《不合格品处理单》回复检验员,由检验员根据处理情况进行确认。