《热质交换原理与设备》 课程实验
- 格式:ppt
- 大小:360.50 KB
- 文档页数:5
热网水力工况一、实验目的使用热网水力工况模型实验装置进行几种水力工况变化的实验,能直接了解热水网路水压的变化情况,巩固热水网路水力工况计算的基本原理。
掌握水力工况分析方法、验证热水网路水压图和水力工况的理论。
二、实验装置如图1所示。
图1设备简图设备由管道、阀门、流量计、模拟锅炉、水泵等组成,用来模拟由5个用户组成的热水网路。
上半部有高位水箱和安装在一块垂直木版上的10根玻璃管,玻璃管的顶端与大气相通,玻璃管下端用胶管与网路分支点相接,用来测量热网用户连接点处的供水干管的测压管水头(水压曲线高度)。
每组用户的两支玻璃管间附有标尺以便读出各点压力。
三、实验步骤阀门操作见系统图。
1、平常水压图。
启动水泵缓慢打开阀A和a阀门,水由水泵经锅炉,一部分进入供水干管、用户、回水管;另一部分进入高位水箱,待系统充满水,打开B阀的同时关闭A阀,保持水箱稳定,调节各阀门,以增加或减少管段的阻力,使各节点之间有适当的压差,待系统稳定后,记录各点的压力和流量,并以此绘制正常水压图。
图2 系统图2、关小供水干管中阀门1时的水压图将阀门1关小些,这时热网中总流量将减少,供水干管与回干管的水速降低,单位长度的压力降减少,因此水压图比正常工况时平坦些,在阀门1处压力突然降低,阀门1以前的用户,由于支路水头增加,流量都有所增加,越接近阀门1的用户增加越多,阀1以后各用户的流量将减少,减少的比例相同。
即所谓一致等比失调,记录各点压力、流量。
绘制新水压图与正常的进行比较,并记录各用户流量的变化程度。
3、关闭E用户时的水压图将阀1恢复原状,各点压力一般不会恢复到原来读数位置,不一定强求符合原来正常水压图。
关闭阀门2,记录新水压图各点的压力、流量。
4、关小阀门3时的水压图将阀门2恢复到原来的位置,把阀门3关小,记录新水压图各点的压力、流量。
5、阀门3恢复到原来的位置打开阀门4,关小阀门5,观察网路各点的压力变化情况。
即回水定压。
6、关闭阀门4,打开阀门5。
热质交换原理与设备实验
热质交换是指通过热电材料之间的热电效应实现的能量转移,可
以作为一种高效的能量转换方式。
其基本原理是当两种不同材料的连
接处有温度差时,由于热电效应的存在,将产生电势差和电流。
根据
洛仑兹力的作用,电流在材料内部生成电热效应,从而产生能量转移。
因为热质交换原理需要温差才能发挥作用,所以在实际应用中需要进
行恰当的热管理和优化设计。
热质交换设备包括热电发生器和热电制冷器两类。
热电发生器的
作用是将热能转换成电能,常用于废热利用、能源回收等领域。
热电
制冷器则是将电能转换为制冷效果,常用于航空、汽车、电子设备等
领域。
为了获得良好的热电性能,需要选择合适的热电材料、设计合
理的结构和优化热管理措施。
为了研究热质交换原理,可以进行实验来验证其基本原理和性能。
一般实验设备包括热电材料、热源、温度计、电表和恒流源等。
通过
在不同温度下测量电压和电流,可以计算出热电系数和热导率等关键
指标,进一步优化材料和结构。
热质交换原理与设备(Principle and Equipment of Heat and Mass Transfer)课程代码:02410040学分:2.0学时:32 (其中:课堂教学学时:28实验学时:4上机学时:0课程实践学时:0 )先修课程:《传热学》、《工程热力学》、《流体力学》适用专业:建筑环境与能源应用工程教材:热质交换原理与设备,连之伟,北京:中国建筑工业出版社,第四版一、课程性质与课程目标(一)课程性质《热质交换原理与设备》是具有承上启下意义,同时起到连接相关专业基础课与专业课桥梁作用的专业基础课。
它是在《传热学》、《流体力学》和《工程热力学》的基础上,将专业中《冷热源工程》、《暖通空调》、《热泵原理与应用》等专业课中涉及流体热质交换原理及相应设备的共性内容抽出,经综合、充实和系统整理而形成的一门专业基础课程。
此课程兼顾理论知识和设备知识,培养学生较全面掌握动量传输、热量传输及质量传输共同构成的传输理论的基础知识,掌握本专业中的典型热质交换设备的热工计算方法,为进一步学习本专业的专业课程打下坚实的基础。
(二)课程目标课程目标1:掌握传质的理论基础,包括传质的基本概念,扩散传质、对流传质的过程及分析, 相际间的热质传递模型。
课程目标2:理解传热传质的分析和计算知识,包括动量、热量和质量的传递类比,对流传质的准则关联式,热量和质量同时进行时的热质传递;学会运用所学知识分析实际问题。
课程目标3:熟悉空气热质处理方法,包括空气处理的各种途径,空气与水/固体表面之间的热质交换过程及主要影响因素,吸附和吸收处理空气的原理与方法,用吸收剂处理空气和用吸附材料处理空气的原理与方法;学会理论联系实际,分析环境控制领域常用的空气热质处理原理。
课程目标4:掌握热质交换设备的热工计算方法,包括间壁式热质交换设备的热工计算,混合式热质交换设备的热工计算和复合式热质交换设备的热工计算,能够针对具体需求对常见热质交换设备进行设计计算和校核计算。
第5章吸附和吸收处理空气的原理与方法1.解:物理吸附是被吸附的流体分子与固体表面分子间的作用力为分子间吸引力,它是一种可逆过程,物理吸附是无选择的,只要条件适宜,任何气体都可以吸附在任何固体上。
吸附热与冷凝热相似。
适应的温度为低温。
吸附过程进行的急快参与吸附的各相间的平衡瞬时即可达到。
化学吸附是固体表面与吸附物间的化学键力起作用的结果。
吸附力较物理吸附大,并且放出的热也比较大,化学吸附一般是不可逆的,反应速率较慢,升高温度可以大大增加速率,对于这类吸附的脱附也不易进行,有选择性吸附层在高温下稳定。
人们还发现,同一种物质,在低温时,它在吸附剂上进行物理吸附,随着温度升到一定程度,就开始发生化学变化转为化学吸附,有时两种吸附会同时发生。
2、硅胶是传统的吸附除湿剂,比表面积大,表面性质优异,在较宽的相对湿度范围内对水蒸汽有较好的吸附特性,硅胶对水蒸汽的吸附热接近水蒸汽的汽化潜热,较低的吸附热使吸附剂和水蒸汽分子的结合较弱。
缺点是如果暴露在水滴中会很快裂解成粉末。
失去除湿性能。
与硅胶相比,活性铝吸湿能力稍差,但更耐用且成本降低一半。
沸石具有非常一致的微孔尺寸,因而可以根据分子大小有选择的吸收或排除分子,故而称作“分子筛沸石”。
3、目前比较常用的吸附剂主要是活性炭,人造沸石,分子筛等。
活性炭的制备比较容易,主要用来处理常见有机物。
目前吸附能力强的有活性炭纤维,其吸附容量大吸附或脱附速度快,再生容易,而且不易粉化,不会造成粉尘二次污染,对于无机气体如2SO 2X、H S 、NO 等有也很强的吸附能力,吸附完全,特别适用`于吸附去除6931010/g m --、 量级的有机物,所以在室内空气净化方面有着广阔的应用前景。
4、有效导热系数通常只与多孔介质的一个特性尺度----孔隙率有关。
第6章 间壁式热质交换设备的热工计算1、解:间壁式 换热器从构造上可分为:管壳式、胶片管式、板式、板翘式、螺旋板式等。
提高其换热系数措施:⑴在空气侧加装各种形式的肋片,即增加空气与换热面的接触面积。
热质交换原理与设备第二版课程设计1. 课程背景热交换技术是化工、冶金、能源等领域的核心技术之一,广泛应用于各种工业设备中。
本课程介绍了热交换原理、热交换设备的种类和应用以及热交换器的设计和维护等方面,旨在为学生提供系统的热交换知识和实践能力。
2. 课程目标本课程旨在让学生掌握以下内容:•热交换的基本原理和分类;•不同类型热交换器的工作原理和应用;•热交换器的设计方法和流程;•热交换器的维护和检修。
3. 课程大纲3.1 热质交换基础知识•热动力学基础热力学第一定律、热力学第二定律等基础知识。
•热传导基础热传导基本理论、传热方程、传热系数等。
•热传递的分析方法热传递的计算和分析方法。
3.2 热交换原理•热质交换的定义和基本原理热质交换的概念和基本原理。
•热传导途径热传导途径及其特点。
•热传递的条件和影响因素热传递的条件和影响因素。
3.3 热交换设备•热交换器分类及其特点热交换器分类和特点。
•常用热交换器的结构和工作原理常用热交换器的结构和工作原理。
3.4 热交换器设计和维护•热交换器设计过程热交换器设计的步骤、参数计算和选择方法。
•热交换器维护和检修热交换器的保养、维修和检修方法。
4. 实验设计实验一:热传导实验实验二:热交换器的性能测试实验三:热交换器的设计与优化实验四:热交换器的维护和检修5. 参考书目•《换热器基础》(周立德);•《热工工艺与设备》(袁求实);•《热力学与传热学》(黄昌谦);•《化工装备设计基础》(潘家华)。
以上参考书目为必选,具体课程参考书目在授课时另行通知。
6. 课程评估课堂出勤情况和实验成果占据主要评估因素。
每次实验成果占总成绩比例30%,课堂出勤情况占比20%。
期末考试占比50%。
实验一 强化换热器换热性能一、实验目的1.测试换热器的换热能力;2.了解传热驱动力的概念以及它对传热速率的影响。
二、实验原理换热器工作时,冷、热流体分别处在换热管的两侧,热流体把热量通过管壁传给冷流体,形成热交换。
当若换热器没有保温,存在热损失,则热流体放出的热量大于冷流体获得的热量。
热流体放出的热量为:)(21T T c m Q pt t t -=(3-1)式中 :t Q ——单位时间内热流体放出的热量, kW ; t m ——热流体的质量流率,kg/s ;pt c ——热流体的定压比热,kJ/kg·K ,在实验温度范围内可视为常数;1T 、2T ——热流体的进出口温度,K 或o C 。
冷流体获得的热量为:)(12t t c m Q ps s s -=(3-2)式中 :s Q ——单位时间内冷流体获得的热量,kJ/s=kW ;s m ——冷流体的质量流率,kg/s ;ps c ——冷流体的定压比热,kJ/kg·K ,在实验温度范围内可视为常数;1t 、2t ——冷流体的进出口温度,K 或o C 。
损失的热量为:s t Q Q Q -=∆(3-3)冷热流体间的温差是传热的驱动力,对于逆流传热,平均温差为)/ln(2121t t t t t m ∆∆∆-∆=∆(3-4)式中: 211t T t -=∆、122t T t -=∆。
本实验着重考察传热速率Q 和传热驱动力m t ∆之间的关系。
三、实验步骤1.开启燃油炉,设置温度上限75℃,设置温度下限70℃;2.开启工控机,点击“换热器换热性能实验”图标,进入实验程序界面,单击“清空数据”按钮清空数据库;3.打开阀门V06、V10,V04、V08,其它阀门均关闭,使冷流体走换热器壳程,并经流量调节阀V14流回水箱,热流体走换热器管程流程如图3所示; 4.灌泵:打开自来水阀门V02,旋开冷水泵排气阀放净空气,待放完泵内空气后关闭,保证离心泵中充满水,再关闭自来水阀门V02;5.启动冷水泵:将水泵运行方式开关 “11-7” 旋向 “变频”,选择变频运转方式,然后按下冷水泵启动按钮“11-11”,分别转动压力调节旋钮“11-8”和流量调节旋钮“11-9”,使冷水泵出口压力(11-4表)保持在0.4MPa ,冷水泵出口流量(11-2表)保持在1.0L/s ;6.待燃油炉内水温达到温度上限时,顺时针转动开关“11-12”开循环泵,待热水基本均匀后逆时针转动开关“11-12” 关闭循环泵,再顺时针转动开关“11-13”开启热水泵;7.调节阀门V08,使热流体流量Q2稳定在0.3L/s ;8.待冷流体的进出口温度1t 、2t 及热流体的出口温度2T 稳定后记录数据。
“热质交换原理与设备”课程教学改革探索与实践刘志斌,毕海洋,蒋爽,范伟(大连民族大学土木工程学院,辽宁大连116600)一、引言“热质交换原理与设备”是以动量传输、热量传输及质量传输共同构成的传输理论为基础,讲述的是建筑环境与能源应用工程专业所涉及到的设备和系统中传热、传质设备的热工计算原理和方法,是建筑环境与能源应用工程专业的理论基础课程之一,起着连接本专业基础课和技术课的桥梁作用[1]。
从“新工科”培养的目标来说,本课程应更加注重学生继承与创新、交叉与融合的能力和意识的培养,为了实现上述目标,需要在教学方式、教学内容、教学考核等方面进行适当的调整。
本文介绍了我校“热质交换原理与设备”课程教学中的一些思路和做法,希望能够为该门课程的教学改革提供参考和借鉴。
二、课程教学现状及改革思路(一)课程教学现状我校“热质交换原理与设备”课程共计32学时,其中理论学时28学时,实验学时4学时。
授课对象为我校建筑环境与设备工程大三年级学生,授课时间为大三年级上学期,平均每届学生60人左右。
理论课教学内容包括传质的理论基础、传热传质问题的分析计算、空气的热湿处理、吸附和吸收处理空气的原理与方法、间壁式热质交换设备的热工计算、混合式热质交换设备的热工计算、复合式热质交换设备的热工计算、热质交换设备的优化设计及性能评价[1];实验包括换热器综合性能实验和喷淋室、表冷器性能实验。
以前的授课以课堂教学为主,授课教师采用了PPT+板书的教学方式,成绩考核由课堂提问、课后作业、期末考试和实验成绩共同组成。
目前存在的主要问题有:1.理论课学时不足。
在整个28个理论学时中,传质的理论基础、传热传质问题的分析计算授课学时12学时,空气的热湿处理6学时,间壁式热质交换设备的热工计算4学时,混合式热质交换设备的热工计算6学时。
吸附和吸收处理空气的原理与方法、复合式热质交换设备的热工计算和热质交换设备的优化设计及性能评价部分内容在课堂上未开展,给学生布置了相应的自学内容。
《热质交换原理与设备》课程教学大纲一、课程基本信息二、课程目标(一)总体目标:本课程是建筑环境与能源应用工程专业学生的一门专业基础课程,其目的是通过该门课程的学习,增强学生的专业理论水平,为学生的专业学习储备必要的基础知识,同时训练学生在实际工程中理论联系实际的能力。
课程教学中不仅关注学生“当下发展”,更关注学生“未来发展”所需要的正确价值观念、必备品格和关键能力,即把知识、技能和过程、方法提炼为能力,把情感态度、价值观提炼为品格。
(二)课程目标:本课程涉及内容主要是建筑环境与能源应用专业中的热质交换原理及相应设备,它是以动量传输、热量传输及质量传输共同构成的传输理论为基础,重点研究发生在建筑环境与能源应用中的热质交换原理及相应的设备热工计算方法,为进一步创造良好的建筑内环境打下基础。
也是创造建筑室内环境所用热质交换方法的理论知识与设备知识同时兼顾的一门课程,它是建筑环境与能源应用工程专业的一门主要专业基础课,起着连接本专业理论课与技术课的桥梁作用。
课程目标1:掌握热质交换的原理1.1掌握涉及传质的基本概念、扩散传质、对流传质、热质传递模型及动量、热量和质量的传递类比等知识。
1.2掌握空气处理的各种途径,空气与水/固体表面之间的热质交换,用吸收剂处理空气和用吸附材料处理空气的机理与方法。
课程目标2:掌握热质交换的设备结构、热工计算等2.1掌握本专业中常见的热质交换设备的形式与结构,热质交换设备的基本性能参数,间壁式热质交换设备的热工计算,混合式热质交换设备的热工计算和复合式热质交换设备的热工计算,同时对热质交换设备的仿真建模方法及其性能评价与优化设计也给予了介绍。
(三)课程目标与毕业要求、课程内容的对应关系表1:课程目标与课程内容、毕业要求的对应关系表三、教学内容(具体描述各章节教学目标、教学内容等。
实验课程可按实验模块描述)第一章绪论1.教学目标了解:建筑环境与能源应用工程专业涉及的热质交换现象及其设备分类。
教学方法
教学改革的目的是培养创新型人才,创新型人才的培养主要在于平时的课堂教学。
这就要求我们在教学过程中改变传统的对现存教材上的知识、论点的机械式讲授的做法,做到以学生为主体,不断改革教学方法和教学手段的硬件和软件。
具体的做法如下:
(1)采用多媒体授课,增加信息量。
任课教师自制多媒体课件,课件紧密结合教材,图文并茂,条理清晰,重点突出。
由于节省了板书时间,增加了课堂的信息量,也易于学生对基本理论、基本概念的理解。
(2)精心制备多媒体课件,课件紧密结合教材的同时要尽可能结合本专业和本课程的国内外发展前沿和方向,讲课中努力做到“三点”,即突出重点、讲清难点,保留疑点(给学生留出足够的自学和思考空间),逐步形成了自己的讲学特色和风格。
(3)理论教学与实践教学相联系,尤其是与认知实习、生产实习等实践教学环节的联系,同时与任课教师的科研实践相联系,注重培养学生的创新思维、工程意识、动手能力及分析问题解决问题的能力,让学生真正做到学以致用。
(4)强化讨论课、交流课、实验课的教学,让学生在交流中学习,在实践中学习,加强课后作业练习、自主查阅相关资料进行自主学习等方面的引导,拓宽学生知识面,加深学生对课堂教学内容的理解。
(5)改进现有的考试考核环节或方式,灵活有效考核学生实际掌握知识情况;积极探索双语教学,不断提高学生的专业外语水平;。