湖南阳明山岩体的La_ICP_MS锆石U_Pb定年及成因研究
- 格式:pdf
- 大小:1011.84 KB
- 文档页数:13
湖南七宝山铜多金属矿床石英斑岩时代与成因:锆石U-Pb 定年及Hf同位素与稀土元素证据胡俊良;徐德明;张鲲;刘劲松【摘要】湖南浏阳七宝山铜多金属矿床位于钦杭成矿带西段,是湘东北规模最大的铜多金属矿床.矿床的形成与区内的石英斑岩关系密切.石英斑岩内锆石具有岩浆锆石特征,LA-ICP-MS锆石U-Pb定年结果为155~153Ma,代表其形成年龄,属晚侏罗世岩浆活动产物.岩浆锆石的176Hf/177Hf=-0.282296~0.282603,εHf(t)=-12~-2.7,平均地壳模式年龄tDM2=1377~2056Ma;锆石ΣREE=496~4162 μg/g,(Yb/Nd)N=71.9~3133.8,HREE强烈富集,具有强烈Ce正异常(δCe=1.68~203.13)和强烈至中等Eu负异常(δEu=0.05~0.67),表明石英斑岩的岩浆源区具有明显壳源特征,来自于古元古代至中元古代地壳的部分熔融.结合岩石学研究,七宝山矿区石英斑岩的形成除了中下地壳冷家溪群或更古老的基底物质的部分熔融外,还有幔源组分加入,这一期岩浆与成矿作用与岩石圈拆离和软流圈物质上涌及随后的玄武岩底侵作用有关.%The Qibaoshan Cu-polymetallic deposit in Liuyang belongs to the west section of the Qinzhou-Hangzhou metallogenic belt,and it is the largest Cu-polymetallic deposit in northeastern Hunan province.The mineralization of the Qibaoshan Cu-polymetallic deposit is closely related to the quartz-porphyry.The zircons from quartz-porphyry are typical magmatic zircon,and the LA-ICP-MS U-Pb dating yielded age of 155-153 Ma,indicative of an Early Mesozoic intrusion.The magmatic zircons have 176Hf/177Hf values of 0.282296-0.282603,εHf(t) of-12--2.7,and crustal model ages (tDM2) from 1377 to 2056 Ma.The zircons have high ΣREE concentrations of 496×10-6-4162×10-6,enriched in HREE with high (Yb/Nd)N=71.9-3133.8.The strong positive Ce anomalies (δCe =1.68-203.13) and strong to moderate negative Eu anomalies (δEu =0.05-0.67) of the zircons indicate that the rocks were formed of the partial melting of the Paleoproterozoic to Mesoproterozoic crust.The porphyry related mineralization in the period of 175-145 Ma in the region may related to the northwestward subduction of the Izanagi plate.All these data suggest the magma from the partial meilting material of the Lengjiaqi group in the lower crust or even much older crust was in the magma chamber already,the asthenospheric mantle fluid upwelled into the magma chamber and they mixed inhomogeneously by the effects of the delamination of lithosphere and asthenosphere upwelling.And then the magma intruded upward to form the quartz porphyry.【期刊名称】《大地构造与成矿学》【年(卷),期】2016(040)006【总页数】15页(P1185-1199)【关键词】石英斑岩;地球化学;锆石U-Pb年龄;Hf同位素;成因机制;湖南七宝山【作者】胡俊良;徐德明;张鲲;刘劲松【作者单位】中国地质调查局武汉地质调查中心,湖北武汉430205;中国地质调查局花岗岩成岩成矿地质研究中心,湖北武汉430205;中国地质调查局武汉地质调查中心,湖北武汉430205;中国地质调查局花岗岩成岩成矿地质研究中心,湖北武汉430205;中国地质调查局武汉地质调查中心,湖北武汉430205;中国地质调查局武汉地质调查中心,湖北武汉430205;中国地质调查局花岗岩成岩成矿地质研究中心,湖北武汉430205【正文语种】中文【中图分类】P611;P597;P595钦杭成矿带是在钦杭结合带的基础上提出的。
锆石U-Pb同位素定年的原理、方法及应用高少华;赵红格;鱼磊;刘钊;王海然【摘要】通过查阅大量中外文献,结合作者实验经过,对锆石的地球化学特征和内部结构,锆石U-Pb同位素定年的原理、定年方法的优缺点及地质应用等问题进行了讨论.结果表明,岩浆锆石与变质锆石在地化和内部结构方面具有不同的特征;定年的原理是利用U-Pb衰变方程得到206 pb/238U、207 pb/235U和207pb/206Pb 3个独立年龄;定年方法各有优缺点,应用时应根据从样品中分选出的锆石数量、粒度、内部结构、定年精度等因素,灵活选择;锆石U-Pb年龄常用于沉积盆地物源分析、岩体的年代约束及成矿年代学与韧性剪切带定年中,应用时要结合地质背景,对定年结果进行合理解释.【期刊名称】《江西科学》【年(卷),期】2013(031)003【总页数】7页(P363-368,408)【关键词】锆石;U-Pb同位素;原理;定年方法;地质应用【作者】高少华;赵红格;鱼磊;刘钊;王海然【作者单位】西北大学地质学系,陕西西安710069;西北大学地质学系,陕西西安710069;西北大学地质学系,陕西西安710069;西北大学地质学系,陕西西安710069;西北大学地质学系,陕西西安710069【正文语种】中文【中图分类】P597+.31.1 锆石的地球化学特征锆石的氧化物中ω(ZrO2)占67.2%、ω (SiO2)占32.8%,ω(HfO2)占0.5%~2.0%,P、Th、U、Y、REE以微量组分出现。
锆石的常量元素、微量元素在不同类型的岩石中具有一定规律[3,8],岩浆锆石具有晶体核部到边缘或环带内侧到外侧ZrO2/HfO2减小,而HfO2、UO2+ThO2增大;变质锆石与之相反[9]。
成因不同的锆石具有不同Th、U含量及Th/U比值[10]:岩浆锆石Th、U含量较高、Th/U比值较大(一般>0.4);变质锆石Th、U含量低、Th/U比值小(一般<0.1)[11,12]。
锆石U-Pb测年实用手册1花生哥整理,微信公众号“37地质人”首发在精准化、精确化的测年进程中,微区原位测试有着不可比拟的优势,使用激光剥蚀电感耦合等离子质谱仪(LA-ICP-MS)进行锆石U-Pb测年也被广为推崇。
一个成功的锆石U-Pb测年实验过程主要分为以下4个阶段:(1)根据实验目的采集合理的样品;(2)锆石挑选及制靶;(3)锆石选点及实验测试;(4)测试结果综合分析。
以下就锆石U-Pb测年的(1)(2)(3)项进行介绍,其中对锆石选点进行重点介绍。
实验仪器简介:激光剥蚀电感耦合等离子质谱仪(LA-ICP-MS)由LA、ICP、MS三个系统有机组合在一起的。
其结构示意图及实验工作台如图1、图2所示。
图1LA-ICP-MS仪器结构示意图图2 LA-ICP-MS实验工作台一、根据实验目的采集合理的样品采取合理的实验样品是进行成功的实验的前提,应根据项目需求以及针对实际的采样对象进行合理的样品采取。
一般来说:(1)采取新鲜的样品;(2)对锆石含量较高的花岗岩取3-5Kg,火山岩取10-15Kg,中基性-超基性岩采取20-25Kg。
二、锆石挑选及制靶锆石单矿物的挑选一般0.5-2g,纯度>98%。
对制靶的锆石应为随机取样,尽量避免人为选择性。
制靶时一般常见有大靶和小靶,可根据实际需要选取,小靶一般排列200粒锆石,靶的直径大小有一定差别,有常见小靶直径为2.54cm。
图3 样品池中锆石靶及标样图4锆石靶制靶时需注意,锆石之间的间距及排列顺序,较好的锆石制靶应保持锆石间距合适,相互独立但又排列有序(图5、图6)。
图5 锆石制靶间距适宜、排列有序图6锆石制靶间距太小、排列无序三、锆石选点及实验测试(一)锆石选点锆石的选点应综合考虑两个方面得因素:(1)实验者研究需求;(2)锆石本身条件。
第一个方面主要根据是实验者研究所需进行锆石(岩浆锆石、变质锆石、热液锆石)的选点。
在进行锆石选点之前,首先厘清锆石分类的相关概念。
锆石成因矿物学与锆石微区定年的综述发布时间:2021-05-31T13:49:05.760Z 来源:《基层建设》2021年第3期作者:李璇[导读] 摘要:锆石是一种硅酸盐矿物,在中酸性火成岩中很常见,也存在于变质岩和其他沉积物中。
河北地质大学河北石家庄 050031摘要:锆石是一种硅酸盐矿物,在中酸性火成岩中很常见,也存在于变质岩和其他沉积物中。
锆石是地球上形成最古老的矿物之一,因其稳定性好而成为同位素地质年代学最重要的定年矿物。
通过微区原位定年技术,能够给出有关寄主岩石的地质演化历史等重要信息,这可以为地质过程的精细年代学格架的建立提供有效的证据。
文章主要对锆石的微区原位测试技术、锆石的成因类型进行综述,并阐述其存在问题和发展方向。
关键词:锆石成因;微区原位测试;锆石U-Pb法引言传统意义上,锆石一直被视为具有高度稳定性的矿物,能持久保持矿物形成时的物理和化学特征,特别是元素和同位素特征。
普通铅含量低,富含U,Th等放射性元素,离子扩散速率低,封闭温度高等特点,因此被广泛应用于岩石学、矿物学和地球化学研究中。
以精细的锆石矿物学研究为基础,开展同位素定年工作,锆石已成为U-Pb法定年的理想对象。
1.研究现状对锆石的研究现状从以下几个方面进行讨论:锆石按照成因分类分为岩浆锆石、变质锆石和热液锆石。
第一类为岩浆岩中的锆石,岩浆锆石是指在岩浆中结晶形成的锆石,一般锆石自形程度较高,在双目镜下呈现无色透明。
锆石在硅中等饱和-饱和的岩浆岩中较多,在硅不饱和的岩浆岩中则较少,变质岩、沉积岩中可以保留部分原岩岩浆锆石残留核。
岩浆锆石一般具有岩浆振荡环带,通过观察发现一般中基性的岩浆锆石具有较宽的振荡环带,这是因为高温条件下微量元素扩散快;而酸性的岩浆锆石形成的振荡环带较窄,是因为低温条件下微量元素的扩散速度慢。
第二类为变质岩中的锆石,在变质作用过程中形成的锆石。
具有变质成因的锆石可以分为以下三类,包括变质结晶锆石,变质增生锆石和变质重结晶锆石。
工作笔记——锆石定年工作笔记—锆石定年2014年4月4日,于中国地质科学院地质所,经与多接受等离子质谱实验室联系,老师安排我做两天LA-MC-ICP-MS锆石U- P b 定年实验。
一、工作内容整个锆石定年过程大致包括锆石分选、样品制靶、锆石U-P b 测年、分析测试数据。
我们的实验工作主要为锆石U-P b测年,包括装靶/换靶→定位→吹气→打点→调数据→吹气→打点。
仪器运行几乎是全自动控制,我们的主要任务就是选好要测试的锆石颗粒以及每颗锆石要测试的年龄位置。
此次实验样品采自塔里木盆地前寒武纪基底的碎屑岩、变质岩、岩浆岩,测试时使用锆石标样GJ1、SRM610/620和91500作为参考物质。
二、工作流程方法(一)锆石分选锆石采集之前要对采样区的岩石出露情况、风化、剥蚀程度,岩浆活动的期次、成分,变质作用的程度、期次以及岩石成因机制等进行比较全面的了解。
锆石的主要成分是硅酸锆,由于岩石酸性不同,不同类型岩石一般采集重量不同。
偏酸性的岩类一般含锆石相对多一些,而偏基性岩类含锆石则相对较少。
对于花岗岩、流纹岩等偏酸性岩石,采集3~4kg重的样品就行;对于闪长岩、安山岩等中性岩石,通常采集7~10kg;而对辉长岩、玄武岩等偏基性岩石,一般采集40~50kg。
对采集样品进行机械粉碎(以不破坏锆石晶体形态为标准)、淘洗、重力分选或磁选、双目镜下把锆石分选开来。
(二)样品制靶在双目显微镜下挑选锆石颗粒粘到双面胶上,加注环氧树脂,待固化后,将靶内锆石打磨至原尺寸一半大小。
样品靶抛光后在显微镜下拍摄锆石反射光和折射光照片,在等离子质谱实验室拍摄阴极发光(CL)照片。
(三)锆石U-P b测年实验根据锆石CL照片、反射光和折射光照片选择锆石测试位置,利用激光器对锆石进行剥蚀。
每个实验样靶一般粘有6~8个样品,每个样品可以根据情况测试不同数量的样点,而样点多时一般分成几组进行打点。
样点分组时,每组前后都有四个标样,即两个GJ1、一个SRM610/620和一个91500,其中SRM620不能出现在总体样点的首位位置且只出现一次。
锆石的矿物成因学与U-Pb微区定年研究进展摘要:锆石是岩石中一种常见的副矿物,分布广,稳定性强,可以指示源区的构造背景等成因信息。
不同地质环境中形成的锆石具有不同的结构以及成分特征,准确判断锆石属于哪种成因类型才能正确理解锆石U- Pb年龄的意义。
而锆石的成因通常很复杂,单独以任何一种指标作为判别标志都可能对锆石成因类型判定的准确性造成影响。
目前锆石U-Pb定年与微量元素同时测定的原位微区分析是应用最广泛的地质测年方法之一,而在进行锆石U-Pb定年的同时,对锆石进行形貌特征、显微结构、矿物包裹体及微量元素特征等方面的综合研究,限定锆石的形成环境,才可能对具有复杂内部结构的锆石的同位素及化学成分分析结果做出正确合理的地质解释,对锆石成因做出正确的判断。
关键词:锆石;微量元素;U-Pb定年;成因学0.引言锆石作为一种常见的副矿物,普遍存在于沉积、岩浆和变质岩中。
因其具有特别稳定的晶体结构,极强的抗风化能力和物理、化学稳定性,能够完好地在各种环境中保存下来。
不仅如此,锆石的U-Pb体系封闭温度可以达到750℃以上,而形成后的Pb扩散封闭温度更高达900℃。
因此锆石成为了目前对峰期变质作用年龄、岩浆结晶年龄的测定和地质温度计的最理想的对象。
但是随着形成环境的不同,锆石往往会有不同的特点。
例如岩浆岩只具有单一阶段的演化历史,其中锆石U-Pb定年通常能够给出准确的年龄信息;而对具有复杂演化历史的变质岩来说,其中所包含的锆石则具有多期生长的复杂内部结构,如果只通过锆石微区U-Pb定年方法无法对获得的多组U-Pb年龄给与准确的地质解释。
因此需要再通过对锆石不同的区域进行系统的显微结构、微量元素特征和包裹体成分等进行综合研究,给出锆石中不同晶域的成因机制,对锆石的形成环境进行限定,进而为锆石U-Pb年龄的合理解释提供有效和重要的制约参数。
1.研究现状1.1不同成因锆石内部结构特征通常用来对锆石内部结构进行分析的方法有三种,分别是HF酸蚀刻法、背散射电子图像(BSE)和阴极发光图像(CL)。
锆石成因矿物学研究及其对UPb年龄解释的制约一、本文概述1、锆石的概述:介绍锆石的基本性质,包括化学组成、晶体结构及其在地质体中的分布等。
锆石,作为一种重要的副矿物,具有独特的物理化学性质和广泛的地质分布,为地质年代学和矿物学研究提供了重要的信息。
其基本性质主要包括化学组成、晶体结构以及在各类地质体中的分布等。
化学组成方面,锆石主要由锆和氧组成,其化学式为ZrSiO₄。
锆石中的锆元素是一种高场强元素,具有较高的离子半径和电荷,因此在矿物中通常以四面体配位形式存在。
锆石中还可能含有少量的其他元素,如Hf、Th、U等,这些元素的存在对锆石的成因和演化过程具有重要的指示意义。
晶体结构方面,锆石属于四方晶系,具有高度的结晶性。
其晶体结构中,锆离子与四个氧离子形成四面体配位,而硅离子则与四个氧离子形成硅氧四面体。
这些四面体结构在空间中相互连接,形成了锆石的独特晶体结构。
在地质体中的分布方面,锆石广泛存在于各类岩石中,特别是在火成岩和变质岩中更为常见。
锆石在岩石中的分布和形态受到多种因素的控制,如岩浆成分、温度、压力、时间等。
因此,锆石的研究不仅可以揭示岩石的形成和演化过程,还可以为地质年代学提供重要的年代信息。
锆石的基本性质决定了其在地质学研究中的重要地位。
通过深入研究锆石的成因矿物学特征,我们可以更好地理解地球的形成和演化历史,为地质学的发展提供新的思路和方法。
锆石中的UPb年龄信息也是制约我们理解地球历史的关键因素之一。
通过对锆石UPb年龄数据的精确测定和分析,我们可以更加准确地推断出岩石的形成时间、岩浆活动历史以及地壳演化过程等。
因此,锆石成因矿物学研究及其对UPb 年龄解释的制约是地质学研究领域中的一个重要课题。
2、锆石成因矿物学的重要性:阐述锆石成因矿物学在地球科学领域的研究意义,特别是在理解地壳演化、岩浆活动、变质作用等方面的作用。
锆石成因矿物学在地球科学领域的研究意义重大,其研究不仅有助于深入理解地壳演化、岩浆活动、变质作用等关键地质过程,同时也为地球内部物质循环和成矿作用提供了重要的制约。
LA-ICPMS锆石U-Pb测年技术主要内容一、 LA-ICP-MS介绍二、锆石U-Pb年代学三、激光剥蚀样品制备(靶)四、激光剥蚀数据处理一、 LA-ICP-MS介绍LA-ICPMS是什么•激光剥蚀-电感耦合等离子体质谱仪——L aser A blation-I nductively C oupled P lasma-M ass S pectrometry(缩写为LA-ICPMS)•基本原理:将激光微束聚焦于样品表面使之熔蚀气化,由载气将样品微粒送入等离子体中电离,再经质谱系统进行质量过滤,最后用接收器分别检测不同质荷比的离子。
激光剥蚀-电感耦合等离子体质谱仪(LA-ICP-MS)剥蚀池6LA-ICP-MS 是一种新发展和建立起来的定年方法, 它是利用等离子体质谱计(ICPMS)进行U-Th-Pb 同位素分析.先将锆石样品用环氧树脂浇铸在一个样品柱上(mount), 磨蚀和抛光至锆石核心出露, 无需喷炭或镀金. 也无需将标样置于同一 mount 中. 将这个mount 和标样放置于同一样品舱内. 用激光剥蚀锆石使其气化, 用Ar 气传输到ICP-MS 中进行分析.LA-ICP-MS能够作什么?•同位素比值分析(精度低)•元素含量分析(主、微量)•整体分析(低空间分辨率,剥蚀直径0. 1 ~4mm,剥蚀量为1 μg ~0. 1g)•微区分析(高空间分辨,剥蚀直径1 ~100 μm,剥蚀量为1pg ~1μg)•空间分辨分析(高、低空间分辨)•深度分析•扫面分析(Mapping)岩石、矿物、流体/熔体包裹体、金属、有机物……LA-ICPMS分析的技术优势1.样品制备简单2.原位、“无损”3.低样品消耗量4.低空白/背景5.高空间分辨率(>5µm或者>100nm)6. 高效率(单点分析<3min)7. 避免了水、酸所致的多原子离子干扰8. 可以同时测定主、微量元素•Gray (1985)率先将ICP-MS与激光剥蚀系统相结合,开创了LA-ICP-MS微区分析技术(第一代ICP-MS于1984年出现);•Jackson et al. (1992) 展示了LA-ICP-MS在地质样品微量元素定量分析中的潜力;•Fryer et al. (1993)将LA-ICP-MS应用于锆石U-Pb同位素定年。
2009年8月Aug.,2009 矿 床 地 质 M IN ERA L DEPOSIT S第28卷 第4期28(4):481~492文章编号:0258-7106(2009)04-0481-12LA-M C-ICP-M S锆石微区原位U-Pb定年技术侯可军1,李延河1,田有荣2(1中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室,北京 100037;2赛默飞世尔科技(上海)有限公司,北京 100007)摘 要 利用激光多接收等离子体质谱(LA-M C-ICP-M S)技术对30~1065M a的系列锆石进行了详细的定年研究。
包含离子计数器的多接收系统使得不同质量数的同位素信号可以同时静态接收,并且不同质量数的峰基本上都是平坦的,进而可以获得高精度的数据,均匀锆石颗粒207Pb/206Pb、206Pb/238U、207Pb/235U比值的测试精度(2σ)均为2%左右,对锆石标准的定年精度和准确度在1%(2σ)左右;不同质量数同位素信号的同时静态接收使得剥蚀时间缩短,剥蚀深度变浅,相比LA-ICP-M S方法,提高了激光剥蚀的空间分辨率。
对5个锆石标准和2个实际样品的测试表明,206Pb/238U年龄测定误差在1%(2σ)以内,定年结果在误差范围内与前人报道值完全一致,测试精度达到国际同类实验室先进水平。
关键词 地球化学;锆石;LA-M C-ICP-M S;U-Pb年代学中图分类号:P597+.3 文献标志码:AIn situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MSHOU KeJun1,LI YanHe1and TIAN YouRong2(1M RL Key L aboratory of M etallogeny and M ineral Assessment,I nstitute of Mineral Resources,Chinese Academyof Geological Sciences,Beijing100037,China;2Thermo Fisher Scientific(Shanghai)Co.,Ltd,Beij ing100007,China)AbstractHigh resolution in situ U-Pb zircon geochronology on zoned g rains can obtain isotope signatures from multi-ple grow th or thermal events.We present a method using laser ablation-multicollector-inductively coupled plas-ma-mass spectrometry(LA-MC-ICP-MS)to overcome com plications associated w ith intricately zoned zircon crystals through in situ sampling of zircon volumes as small as12μm,25μm and40μm in diameter by about10μm in depth.High precision U-Pb age of a series of zircon standard covering a w ide age range of30to1065Ma w as acquired using LA-MC-ICP-MS.The precision of measured Pb/U ratios in homogeneous zircon is about2% (2σ),resulting in routinely achieved precision of U-Pb ages obtained by ex ternal calibration of~1%(2σ)or bet-ter.All masses of interest can be simultaneously recorded w ith a multi-ion counting system(M IC)operating in static mode,and the sho rt ablation required to achieve such precision results in spatial resolution that is superior to comparable U-Pb zircon analy ses by single collector ICP-M S.The resulting present U-Pb age for five zircon reference samples and tw o geological samples show an excellent agreement with the previously reported ID-TIMS o r SH RIM P data.Key words:geochemistry,zircon,LA-MC-ICP-MS,U-Pb geochronology本研究得到国土资源部公益性行业科研专项经费(200811114)、国土资源大调查项目(1212010816039)和公益性科研院所基本科研业务费(K2007-2-3,Yw f060712)的联合资助第一作者简介 侯可军,1981年生,男,硕士,从事同位素地球化学研究。
LA-ICPMS锆石U-Pb定年主要技术问题锆石是自然界岩石中的一种重要副矿物,由于它具有较高的U、Th含量使其成为U-Pb同位素地质年代学中最常研究的对象,并逐渐形成了一个应用前景极其广阔的分支学科-锆石学(zirconology)。
特别是,将锆石U-Pb年龄与其微量元素和Hf、O等同位素结合,为探讨地质作用的时标及过程提供了重要地球化学参数。
根据所测样品的性质,目前在锆石U-Pb同位素地质年代学中主要采用微量锆石法、单颗粒锆石法和微区分析三种方法。
但从分析的空间分辨率和使用的技术来看,上述方法基本可分为热电离质谱(TIMS)和微区原位(in situ)分析两类。
其中TIMS分析精度最高,但缺点是得不到锆石年龄变化的空间信息。
因此,锆石的微区原位分析构成近年来U-Pb同位素地质年代学的主导趋势。
在微区分析方法中,应用最广泛的是目前人们熟悉的离子探针(Secondary Ion Mass Spectrometry,简称SIMS),它有SHRIMP和CAMECA两种。
由于该仪器可对锆石进行微区原位高精度定年,从而成为目前研究复杂锆石年龄的最主要手段,并成为80年代以来地质科学创新成果的重大技术支撑。
离子探针锆石U-Pb 年代学研究和取得的成果不仅全面推动了地球科学的迅速发展,同时也带动了一系列同位素地球化学分析技术和方法的进步。
尽管运用离子探针可获得较高精度的年龄,但该仪器价格昂贵,且全球数量有限,难以满足锆石U-Pb定年的需求。
因此继离子探针之后,锆石的激光剥蚀等离子体质谱(LA-ICPMS)定年技术快速发展,并出现了若干LA-ICPMS锆石U-Pb微区原位定年结果可与SHRIMP数据媲美的实例(Ballard et al., 2001; 袁洪林等,2003),从而使锆石微区U-Pb年代学更加经济和简便(Košler and Sylvester, 2003)。
1.锆石LA-ICPMS定年发展概况锆石LA-ICPMS定年差不多是10年前才开始发展的。
应用激光拉曼光谱研究锆石 LA -ICP -MS U -Pb 定年中的α通量基体效应王家松;许雅雯;彭丽娜;李国占【期刊名称】《岩矿测试》【年(卷),期】2016(035)005【摘要】α通量基体效应是由标准锆石与样品锆石之间的晶体损伤(以α通量表示)不同引起的激光剥蚀速率和坑下分馏行为的差异,已被证实是导致锆石 LA -ICP -MS U -Pb 定年结果存在系统偏倚的重要原因。
α通量越高,剥蚀速率越快,坑下分馏越明显,然而α通量基体效应的校正尚未引起足够的重视。
本文采用激光拉曼光谱和 LA -ICP -MS 对八达岭花岗杂岩样品进行研究,结果表明:实际α通量(DPα)≤0.75×1018 g -1的锆石样品,蜕晶化程度较弱,其定年结果存在的α通量基体效应可以忽略;DPα>0.75×1018 g -1的锆石样品,蜕晶化程度较高,其定年结果受α通量基体效应的影响明显,依据年龄差-DPα经验方程如 y =347.8× exp(0.260×10-15 x)进行校正可获得准确的年龄结果。
本研究认为:采用激光拉曼光谱和半高宽(FWHM)-DPα校准曲线获得目标锆石DPα,利用年龄差-DPα经验方程估计 LA -ICP -MS 系统偏倚,是校正α通量基体效应的可行途径。
【总页数】10页(P458-467)【作者】王家松;许雅雯;彭丽娜;李国占【作者单位】中国地质调查局天津地质调查中心,天津 300170;中国地质调查局天津地质调查中心,天津 300170;中国地质调查局天津地质调查中心,天津300170;中国地质调查局天津地质调查中心,天津 300170【正文语种】中文【中图分类】P618.85;O657.37;O657.63【相关文献】-ICP-MS锆石U-Pb同位素定年存在的基体效应研究进展 [J], 王家松;彭丽娜;张楠2.云南腾冲大松坡锡矿成矿年代学研究:锆石LA-ICP-MS U-Pb年龄和锡石LA-MC-ICP-MS U-Pb年龄证据 [J], 马楠;邓军;王庆飞;王长明;张静;李龚健-ICP-MS锆石U-Pb定年实验流程的建立及其在滇西剑川正长岩锆石年代学中的应用 [J], 雷海佳;沈晓明;刘希军;唐秀党4.榍石LA-ICP-MS U-Pb定年基体效应研究 [J], 袁继海;孙冬阳;赵令浩;胡明月;詹秀春5.氧化物型含铀矿物在LA-ICP-MS U-Pb同位素测年中的基体效应校正方法简述[J], 崔玉荣;周红英;李惠民;耿建珍;郝爽;李国占因版权原因,仅展示原文概要,查看原文内容请购买。