8.2.6直线和椭圆的关系
- 格式:ppt
- 大小:435.00 KB
- 文档页数:23
1.直线和椭圆位置关系判定方法概述1直线斜率存在时221y kx bmx ny =+⎧⎨+=⎩⇒222()210m k n x kbnx b +++-=当0∆>时直线和椭圆相交当0∆=时直线和椭圆相切当0∆<时直线和椭圆相离2直线斜率不存在时22221x x y ab =⎧⎪⎨+=⎪⎩判断y 有几个解注:01无论直线斜率存在与否,关键是看联立后的方程组有几组解,而不是看""∆。
02直线和椭圆位置关系的判断只有这种“坐标法”,无几何法。
2.直线和椭圆相交时1弦长问题弦长公式22121221111AB k x x k y y a k∆=+-=+=+-注:2121212()4x x x x x x -=+-而12x x +和12x x 可用韦达定理解决,不必求出1x 和2x 的精确值,“设而不求”思想初现。
2三角形面积1过x 轴上一定点H 的直线l 与椭圆22221x y a b +=交于A 、B 两点,求AOB S ∆1212AOB S OH y y ∆=- 02过y 轴上一定点H 的直线l 与椭圆22221x y b a+=交于A 、B 两点,求AOB S ∆1212AOB S OH x x ∆=- 03弦任意,点任意12S ∆=弦长×点线距注:仍然蕴含“设而不求”思想。
3弦的中点问题01中点弦所在直线方程问题02平行弦中点轨迹03共点弦中点轨迹04其他问题类型题一:直线与椭圆位置1.已知直线2+=kx y 和椭圆12322=+y x ,当k 取何值时,此直线与椭圆:(1)相交;(2)相切;(3)相离。
2.已知直线2+=kx y 与椭圆2222=+y x 相交于不同的两点,求k 的取值范围。
3.点P 在椭圆284722=+y x 上,则点P 到直线01623=--y x 的距离的最大值为_____,最小值为________.类型题二:弦长公式1.已知椭圆:1922=+y x ,过左焦点1F 作倾斜角为6 的直线交椭圆于B A ,两点,求弦AB 的长。
直线与椭圆的位置关系1. 求解直线与圆锥曲线的位置关系的基本方法是解方程组,转化为利用判别式判断一元二次方程是否有解,应特别注意数形结合思想的应用.2. 注意根与系数的关系的应用.(1)弦长公式:斜率为k 的直线被圆锥曲线截得弦若A 、两点的坐标分别是A (x ,y ),B (x ,y )1122则|AB =\:'(X i _x 2)2+(y 1_y 2)2=v1+k 23. 有关中点弦问题.(1)已知直线与圆锥曲线方程,求弦的中点及与中点有关的问题,常用根与系数的关系.(2)有关弦的中点轨迹,中点弦所在直线方程,中点坐标问题,有时采用“点差法”可简化运算.4. 圆锥曲线中的有关最值问题,常用代数法和几何法解决.(1)若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决.(2)若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数、三角函数、均值不等式等)求最值.二、题型梳理1. 直线与椭圆位置关系的判断将直线的方程和椭圆的方程联立,通过讨论此方程组的实数解的组数来确定,即用消元后的关于x (或尹)的一元二次方程的判断式/的符号来确定:当/>0时,直线和椭圆相交;当/=0时,直线和椭圆相切;当/<0时,直线和椭圆相离.2. 直线和椭圆相交的弦长公式|AB |=\:1+k 2[齐+七2—4X ]X 2]或|AB 戶\「(1+£|[儿+歹22—帅」3. 直线与椭圆相交时的常见处理方法 =鶯(1+k 2)[(x i +x )2一4xx ]212 =<1+k 2 l a l当直线与椭圆相交时:涉及弦长问题,常用“根与系数的关系”,设而不求计算弦长;涉及到求平行弦中点的轨迹、求过定点的弦中点的轨迹和求被定点平分的弦所在的直线方程问题,常用“点差法”设而不求,将动点的坐标、弦所在直线的斜率、弦的中点坐标联系起来,相互转化.本次授课内容授课标题直线与椭圆的位置关系学习目标1•直线与椭圆位置关系的判断2.直线和椭圆相交的弦长公式3.直线与椭圆相交时的常见处理方法重点难点直线与椭圆相交时的常见处理方法考点1点差法与中点弦例1⑴椭圆16+寻=1的弦被点P(2'1)所平分’求此弦所在直线的方程.(2)已知椭圆C:養+^2=l(a>b>0)过点P(T,T),c为椭圆的半焦距,且c=⑵•过点P作两条互相垂直的直线l1,l2与椭圆C分别交于另两点M,N.(1)求椭圆C的方程;(2)若直线11的斜率为一1,求口尸肋的面积;(3)若线段MN的中点在x轴上,求直线MN的方程.考点2直线与圆锥曲线的位置关系例2在平面直角坐标系xOy中,经过点(0,2)且斜率为k的直线l与椭圆斗+y2二1有两个不同的交点P和Q.求k的取值范围.规律方法(1)解决直线与圆锥曲线的交点问题的方法:一是判别式法;二是几何法;(2)直线与圆锥曲线有唯一交点,不等价于直线与圆锥曲线相切,还有一种情况是平行于对称轴(抛物线)或平行于渐近线(双曲线);(3)联立方程组、消元后得到一元二次方程,不但要对A进行讨论,还要对二次项系数是否为0进行讨论•考点3与弦长有关的问题x2□例3已知椭圆:古+y2二1,过左焦点尸作倾斜角为匚的直线/交椭圆于A、B两点,求96弦AB的长.考点4直线与椭圆综合x2y2例5如图,在平面直角坐标系xOy中,已知椭圆一+厂二1(a>b>0)(a>b>0)的离心a2b2率为#,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;考点5椭圆中的定点、定值问题例6椭圆C:a2+b2=l(a>b>0)的离心率为拿,过其右焦点F与长轴垂直的弦长为1.(1)求椭圆C的方程;⑵设椭圆C的左、右顶点分别为A,B,点P是直线x=l上的动点,直线PA与椭圆的另交点为直线PB与椭圆的另一交点为N.求证:直线MN经过一定点.x2y2例7如图,在平面直角坐标系xOy中,已知A,B,C是椭圆石+乞=1(°>&>°)上不同的三点,A(3\迂,爭),B(-3,—3),C在第三象限,线段BC的中点在直线OA上.(1)求椭圆的标准方程;(2)求点C的坐标;(3)设动点P在椭圆上(异于点A,B,C),且直线PB,PC分别交直线OA于M,N两点,证明:OM・ON为定值,并求出该定值.探究提高(1)求定值问题常见的方法有两种:□从特殊入手,求出定值,再证明这个值与变量无关•□直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. (2)如果要解决的问题是一个定点问题,而题设条件又没有给出这个定点,那么,我们可以这样思考:由于这个定点对符合要求的一些特殊情况必然成立,那么我们根据特殊情况先找到这个定点,明确解决问题的目标,然后进行推理探究,这种先根据特殊情况确定定点,再进行一般性证明的方法就是由特殊到一般的方法.考点6圆锥曲线中的最值、范围问题例8已知圆C:(x+1)2+y2二&定点A(1,O),M为圆上一动点,点P在AM上,点N在CM上,且满足AM=2AP,NP-AM=0,点N的轨迹为曲线E.(I)求曲线E的方程;(II)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足FG=X FH,求九的取值范围.x2y21•已知直线尸-x+1与椭圆一+[二1(a>b>0)相交于A、B两点,且线段AB的中点在a2b2直线l:x-2y=0上,求此椭圆的离心率.x2y22•已知椭圆C的方程丁+y=1,试确定m的取值范围,使得对于直线y=4x+m,椭圆C上有不同两点关于该直线对称.3.已知椭圆C:匸+「二1(a>b>0)的右焦点为F,离心率e二二,椭圆C上的点到Fa2b22的距离的最大值为、迈+1,直线l过点F与椭圆C交于不同的两点A,B.(1)求椭圆C的方程;3,''2(2)若IAB1=十,求直线l的方程.4•已知椭圆—+二=1(a>b>0)的离心率为冷―,短轴的一个端点到右焦点的距离为詣a2b23直线l:y二kx+m交椭圆于不同的两点A,B.(I)求椭圆的方程;(II)若坐标原点O到直线/的距离为£,求A AOB面积的最大值.5•已知椭圆C:02+诗=l(a>b>0)过点P(—1,—1),C为椭圆的半焦距,且c=-j3b.过点P 作两条互相垂直的直线l1,l2与椭圆C分别交于另两点M,N.(1)求椭圆C的方程;(2)若直线11的斜率为一1,求D PMN的面积;(3)若线段MN的中点在x轴上,求直线MN的方程.6•已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.(口)求椭圆C的标准方程;(口)若直线l:y二kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.37•已知,椭圆C以过点A(1,2),两个焦点为(一1,0)(1,0)•(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.本次课课后练习1•椭圆36+才=1的一条弦被A(4,2)平分’那么这条弦所在的直线方程是一X2(11、2•已知椭圆〒+y2二1,求过点P-,-且被P平分的弦所在的直线方程.2\22丿x23•已知椭圆q:}+严=1,椭圆C2以q的长轴为短轴,且与q有相同的离心率.(1)求椭圆C2的方程;(2)设O为坐标原点,点A,B分别在椭圆C1和C2上,OB=204,求直线AB的方程.x2y24•如图,在平面直角坐标系xOy中,椭圆石+右=1(。
1.直线和椭圆位置关系判定方法概述1直线斜率存在时221y kx bmx ny =+⎧⎨+=⎩⇒222()210m k n x kbnx b +++-=当0∆>时直线和椭圆相交当0∆=时直线和椭圆相切当0∆<时直线和椭圆相离2直线斜率不存在时22221x x y ab =⎧⎪⎨+=⎪⎩判断y 有几个解注:01无论直线斜率存在与否,关键是看联立后的方程组有几组解,而不是看""∆。
02直线和椭圆位置关系的判断只有这种“坐标法”,无几何法。
2.直线和椭圆相交时1弦长问题弦长公式22121221111AB k x x k y y a k∆=+-=+=+-注:2121212()4x x x x x x -=+-而12x x +和12x x 可用韦达定理解决,不必求出1x 和2x 的精确值,“设而不求”思想初现。
2三角形面积1过x 轴上一定点H 的直线l 与椭圆22221x y a b +=交于A 、B 两点,求AOB S ∆1212AOB S OH y y ∆=- 02过y 轴上一定点H 的直线l 与椭圆22221x y b a+=交于A 、B 两点,求AOB S ∆1212AOB S OH x x ∆=- 03弦任意,点任意12S ∆=弦长×点线距注:仍然蕴含“设而不求”思想。
3弦的中点问题01中点弦所在直线方程问题02平行弦中点轨迹03共点弦中点轨迹04其他问题类型题一:直线与椭圆位置1.已知直线2+=kx y 和椭圆12322=+y x ,当k 取何值时,此直线与椭圆:(1)相交;(2)相切;(3)相离。
2.已知直线2+=kx y 与椭圆2222=+y x 相交于不同的两点,求k 的取值范围。
3.点P 在椭圆284722=+y x 上,则点P 到直线01623=--y x 的距离的最大值为_____,最小值为________.类型题二:弦长公式1.已知椭圆:1922=+y x ,过左焦点1F 作倾斜角为6 的直线交椭圆于B A ,两点,求弦AB 的长。
直线与椭圆的位置关系
直线与椭圆的位置关系是数学几何学的一个重要问题。
在这篇
文档中,我们将讨论直线与椭圆的几种可能的位置关系。
直线位于椭圆内部
当一条直线完全位于椭圆内部时,我们可以得到以下几种情况:
1. 直线与椭圆没有交点:这意味着直线与椭圆没有任何交点,
且直线与椭圆的轴是平行的。
2. 直线与椭圆有两个交点:这说明直线与椭圆相交于两个点,
椭圆的两个焦点位于直线上。
直线与椭圆位于同一平面
当直线与椭圆位于同一平面时,我们可以得到以下几种情况:
1. 直线与椭圆相切:这种情况下,直线与椭圆只有一个交点,
并且交点是椭圆的一个焦点。
2. 直线与椭圆相交于两点:这意味着直线与椭圆相交于两个不同的点,并且这两个点分别位于椭圆的两个焦点的同侧。
3. 直线与椭圆相离:这种情况下,直线与椭圆没有任何交点,并且直线与椭圆的轴平行。
直线与椭圆相交于无穷多点
当直线与椭圆相交于无穷多点时,这种情况被称为直线与椭圆重叠。
直线与椭圆重叠意味着直线和椭圆重合,任意一点都同时位于直线和椭圆上。
结论
通过研究直线与椭圆的位置关系,我们可以得出结论:直线与椭圆的位置关系取决于直线与椭圆之间的交点数量和位置。
这个问题在计算机图形学、建筑设计等领域都有广泛的应用。
了解这些位置关系有助于我们更好地理解直线和椭圆之间的几何性质。
总之,直线与椭圆的位置关系是一个有趣且复杂的问题,通过分析直线与椭圆的交点情况,我们可以获得更多关于它们的几何特性的信息。
椭圆与直线知识点总结一、椭圆的定义及性质1. 椭圆的定义椭圆是指平面上到定点F1和F2的距离之和为常数2a(a>0)的点P的轨迹。
F1、F2称为焦点,2a称为主轴长,2b称为次轴长,椭圆的离心率定义为e=c/a,其中c是焦点之间的距离。
2. 椭圆的性质(1)直径的性质:椭圆的直径上的任意两点,到两个焦点的距离之和等于该椭圆的长轴长。
(2)切线的性质:椭圆的切线和法线的性质类似于圆的情况,即切线垂直于法线。
(3)对称性:椭圆关于两个坐标轴都有对称性,对称轴上所有的点和焦点F1和F2的对应点关于中心对称。
3. 椭圆的方程椭圆的标准方程为(x^2/a^2)+(y^2/b^2)=1。
二、直线的定义及性质1. 直线的定义直线是平面上长度任意延伸的图形。
直线是无限延伸的。
2. 直线的性质(1)相交性:两条直线可以相交,也可以平行,可以重合。
(2)倾斜角:直线的斜率决定了它的倾斜角。
(3)截距:直线在坐标轴上的截距可以描述直线的位置。
3. 直线的方程直线的点斜式方程为y-y1=k(x-x1)。
三、椭圆与直线的关系1. 直线与椭圆的位置关系(1)直线与椭圆的位置关系可以分为四种情况:相离、相切、相交、内切。
(2)直线与椭圆相离时,直线与椭圆之间没有交点。
(3)直线与椭圆相切时,直线与椭圆有且仅有一个交点。
(4)直线与椭圆相交时,直线与椭圆有两个交点。
(5)直线与椭圆内切时,直线与椭圆有一个交点,并且该交点在椭圆内部。
2. 椭圆与直线的方程(1)椭圆的标准方程为(x^2/a^2)+(y^2/b^2)=1。
(2)直线的一般方程为Ax+By+C=0。
(3)求直线与椭圆的交点时,将直线方程代入椭圆方程,得到一个关于x的二次方程,解出交点的x坐标,再代入直线方程求出y坐标。
(4)根据判别式求解二次方程,可以判断交点的情况。
3. 椭圆与直线的性质及应用(1)椭圆与直线的位置关系可以应用在工程测量、图像处理、计算机图形学等领域中。
直线和椭圆位置关系总结大全1.直线不交于椭圆:当直线与椭圆不相交时,可以分为以下两种情况:(1)直线在椭圆外部:此时直线与椭圆没有交点;(2)直线在椭圆内部:此时直线与椭圆没有交点。
2.直线与椭圆外切:当一条直线与椭圆相切时,可以分为以下两种情况:(1)直线与椭圆外切于一个点:此时直线与椭圆有且仅有一个切点;(2)直线与椭圆外切于一条线段:此时直线与椭圆有且仅有两个切点。
3.直线与椭圆内切:当一条直线与椭圆相切时,可以分为以下两种情况:(1)直线与椭圆内切于一个点:此时直线与椭圆有且仅有一个切点;(2)直线与椭圆内切于一条线段:此时直线与椭圆有且仅有两个切点。
4.直线穿过椭圆:当一条直线穿过椭圆时,可以分为以下三种情况:(1)直线与椭圆有两个交点:此时直线与椭圆相交于两个不同的点;(2)直线与椭圆相交于椭圆的一个点:此时直线是椭圆的切线;(3)直线与椭圆没有交点:此时直线与椭圆相离。
5.直线包围椭圆:当一条直线将椭圆切割成两个部分时,可以分为以下两种情况:(1)直线穿过椭圆:此时直线将椭圆分成内外两个部分;(2)直线在椭圆外部:此时直线将椭圆分成两个不相交的部分。
6.直线与椭圆重合:当直线与椭圆方程相同或者参数相同时,直线与椭圆重合。
7.直线与椭圆相交:当直线与椭圆有交点时,可以分为以下几种情况:(1)直线与椭圆有两个交点:此时直线与椭圆相交于两个不同的点;(2)直线与椭圆相交于椭圆的一个点:此时直线是椭圆的切线;(3)直线与椭圆相交于两条线段:此时直线穿过椭圆。
总之,直线和椭圆之间的位置关系相当复杂,可以分为不交、外切、内切、相离、穿过、重合和相交等情况。
具体的位置关系可以通过解方程或者观察图形进行判断,同时利用相关的几何性质也可以得到更加精确的结论。
直线与椭圆的位置关系及判断方法直线与椭圆的位置关系是指确定一条直线和一个椭圆之间的相对位置关系,主要有以下几种情况:直线与椭圆相离、直线与椭圆相切、直线穿过椭圆两个交点、直线包含椭圆等情况。
判断直线与椭圆的位置关系可以通过研究直线方程和椭圆方程的解来实现。
一、直线与椭圆相离的情况:当直线方程与椭圆方程不存在实数解时,说明直线与椭圆相离。
直线方程通常采用一般式表示,即Ax+By+C=0,椭圆方程通常采用标准方程表示,即((x-h)^2)/(a^2)+((y-k)^2)/(b^2)=1、将直线方程的x、y分别带入椭圆方程,得到一个关于x的二次方程。
通过判别式B^2-4AC的值来确定二次方程是否有实数解,当判别式小于零时,直线与椭圆相离。
二、直线与椭圆相切的情况:当直线方程刚好与椭圆方程有一个实数解时,说明直线与椭圆相切。
判断方法是将直线方程的x、y分别带入椭圆方程,得到一个关于x的二次方程。
当判别式B^2-4AC等于零时,直线与椭圆相切。
三、直线穿过椭圆两个交点的情况:当直线方程与椭圆方程有两个实数解时,说明直线穿过椭圆的两个交点。
判断方法是将直线方程的x、y分别带入椭圆方程,得到一个关于x 的二次方程。
当判别式B^2-4AC大于零时,直线与椭圆有两个交点。
四、直线包含椭圆的情况:当直线方程将椭圆方程的所有解都包含时,说明直线包含椭圆。
判断方法是将直线方程的x、y分别带入椭圆方程,而不是代入x的解,得到一个关于y的二次方程。
如果这个二次方程对于任何实数x都有解,则直线包含椭圆。
需要注意的是,在判断直线与椭圆的位置关系时,需要先将椭圆方程化简为标准方程,即将h、k分别代表椭圆的中心坐标,a、b分别代表椭圆的长半轴和短半轴长度。
总结起来,判断直线与椭圆的位置关系,可以通过以下步骤实现:1.将椭圆方程化简为标准方程。
2.将直线方程写为一般式。
3.将直线方程的x、y带入椭圆方程,得到关于x的二次方程。
4.判断该二次方程的判别式B^2-4AC的值,确定直线是否与椭圆有交点、相切或相离。
直线与椭圆位置关系(经典)本文介绍了直线与椭圆的位置关系以及弦长计算方法。
1.点与椭圆的位置关系对于椭圆$x^2/a^2+y^2/b^2=1$,点$P(x,y)$在椭圆内部的充要条件是$x^2/a^2+y^2/b^21$,在椭圆上的充要条件是$x^2/a^2+y^2/b^2=1$。
2.直线与椭圆的位置关系设直线$l: Ax+By+C=0$,椭圆$C: x^2/a^2+y^2/b^2=1$,联立$l$与$C$,消去某一变量$(x$或$y)$得到关于另一个变量的一元二次方程,此一元二次方程的判别式为$\Delta$,则$l$与$C$相离的充要条件是$\Delta0$。
3.弦长计算计算椭圆被直线截得的弦长,往往是设而不求,即设弦两端坐标为$P_1(x_1,y_1)$,$P_2(x_2,y_2)$,则$|P_1P_2|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}=1+kx_1-x_2=1+\frac{1}{k}(y_1-y_2)$($k$为直线斜率)。
题目:已知椭圆$\frac{x^2}{5m}+\frac{y^2}{m}=1$,直线$y=kx+1$,求实数$m$的取值范围使得直线与椭圆有公共点。
解法一:将直线方程代入椭圆方程,得到关于$x$的一元二次方程,其判别式为$\Delta=m-5k-1$,要使直线与椭圆有交点,需要$\Delta\geq0$,即$m\geq5k+1$。
另外要注意,当$m=5k+1$时,直线与椭圆可能只有一个交点,在这种情况下也算有公共点。
因此,实数$m$的取值范围为$m\geq1$且$m\neq5$。
解法二:观察椭圆方程,发现其长轴在$x$轴上,短轴在$y$轴上,因此,当$m5$时,椭圆焦点在$y$轴上,与直线的交点只有$1$个或$3$个。
因此,要使直线与椭圆有公共点,需要$m\geq5$。
另外,当$m=5$时,椭圆退化成一个点,直线与该点有交点,因此也算有公共点。