串级控制系统
- 格式:docx
- 大小:78.07 KB
- 文档页数:10
简述串级控制系统的特点
串级控制系统是由多个级联连接的控制回路组成的控制系统。
其特点包括:
1. 多级控制:串级控制系统包含多个级联的控制回路,每个回路负责不同的控制任务。
不同的回路负责不同的控制目标,通过相互协调和影响来实现整体的控制效果。
2. 分层结构:串级控制系统的各个级联回路之间具有明确的层级结构,上层回路控制下层回路。
上层回路通常负责整体的控制策略和目标设定,下层回路负责具体的执行和动作控制。
3. 协调和互补:不同级联回路在控制过程中相互协调,上层回路的控制信号会影响下层回路的控制行为,以保持整个系统的稳定性和性能。
4. 灵活性和可扩展性:串级控制系统可以根据需要添加或删除不同的级联回路,使得系统的控制策略和目标可以根据需求灵活调整和扩展,提高系统的适应性。
5. 鲁棒性和容错性:由于多个回路相互协调和互补,串级控制系统具有较强的鲁棒性和容错性。
当某个回路出现故障或失效时,其他回路可以通过重新配置和调整来维持系统的整体性能。
串级控制系统串级控制系统-----两只调节器串联起来工作,其中一个调节器的输出作为另一个调节器的给定值的系统。
例:加热炉出口温度与炉膛温度串级控制系统1. 基本概念即组成结构串级控制系统采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。
前一个调节器称为主调节器,它所检测和控制的变量称主变量(主被控参数),即工艺控制指标;后一个调节器称为副调节器,它所检测和控制的变量称副变量(副被控参数),是为了稳定主变量而引入的辅助变量。
整个系统包括两个控制回路,主回路和副回路。
副回路由副变量检测变送、副调节器、调节阀和副过程构成;主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。
一次扰动:作用在主被控过程上的,而不包括在副回路范围内的扰动。
二次扰动:作用在副被控过程上的,即包括在副回路范围内的扰动。
2. 串级控制系统的工作过程当扰动发生时,破坏了稳定状态,调节器进行工作。
根据扰动施加点的位置不同,分种情况进行分析:* 1)扰动作用于副回路* 2)扰动作用于主过程* 3)扰动同时作用于副回路和主过程分析可以看到:在串级控制系统中,由于引入了一个副回路,不仅能及早克服进入副回路的扰动,而且又能改善过程特性。
副调节器具有“粗调”的作用,主调节器具有“细调”的作用,从而使其控制品质得到进一步提高。
3. 系统特点及分析* 改善了过程的动态特性,提高了系统控制质量。
* 能迅速克服进入副回路的二次扰动。
* 提高了系统的工作频率。
* 对负荷变化的适应性较强4. 工程应用场合* 应用于容量滞后较大的过程* 应用于纯时延较大的过程* 应用于扰动变化激烈而且幅度大的过程* 应用于参数互相关联的过程* 应用于非线性过程5. 系统设计* 主参数的选择和主回路的设计* 副参数的选择和副回路的设计* 控制系统控制参数的选择* 串级控制系统主、副调节器控制规律的选择* 串级控制系统主、副调节器正、反作用方式的确定[编辑本段]串级控制系统的设计1. 主回路的设计串级控制系统的主回路是定值控制,其设计单回路控制系统的设计类似,设计过程可以按照简单控制系统设计原则进行。
串级控制系统整理手册一、串级控制系统概述串级控制系统是一种常见的复杂控制系统,主要由两个或多个控制环组成,每个控制环都负责调节一个特定的过程变量。
这种系统具有结构紧凑、响应速度快、控制精度高等优点,广泛应用于各类工业生产过程中。
二、串级控制系统的组成1. 主控制环:主控制环负责监控整个过程的主要变量,通常与系统的输出直接相关。
主控制器根据主控制环的偏差,调整副控制器的设定值,以实现系统整体的控制目标。
2. 副控制环:副控制环位于主控制环内部,负责调节过程中的辅助变量。
副控制器根据副控制环的偏差,调整执行机构的输出,以影响主控制环的变量。
3. 执行机构:执行机构是串级控制系统的执行者,负责根据控制器的指令调整过程变量。
常见的执行机构有电机、阀门、变频器等。
4. 被控对象:被控对象是串级控制系统的作用对象,包括各种生产过程中的设备、工艺和参数。
三、串级控制系统的特点1. 快速响应:串级控制系统通过多个控制环的协同作用,能够迅速响应过程变化,提高系统的动态性能。
2. 高精度:串级控制系统可以实现对外部干扰的有效抑制,提高控制精度,确保产品质量。
3. 灵活性:串级控制系统可根据实际生产需求,调整控制参数,适应不同工况。
4. 易于维护:串级控制系统结构清晰,便于故障排查和日常维护。
四、串级控制系统的设计要点1. 确定控制目标:明确串级控制系统的主、副控制环控制目标,确保系统稳定运行。
2. 选择合适的控制器:根据被控对象的特性,选择合适的控制器类型和参数。
3. 优化控制参数:通过调整控制器参数,使串级控制系统达到最佳控制效果。
4. 考虑系统抗干扰能力:在设计过程中,充分考虑外部干扰因素,提高系统的抗干扰能力。
5. 系统调试与优化:在系统投运后,根据实际运行情况,不断调整和优化控制参数,确保系统稳定、高效运行。
五、串级控制系统的实施步骤1. 系统分析与建模:深入了解生产工艺,对被控对象进行详细分析,建立准确的数学模型,为控制器设计提供依据。
习题六1.什么叫串级控制系统?画出一般串级控制系统的典型方块图。
答:串级控制系统是由其结构上的特征而得名的。
它是由主、副两个控制器串接工作的。
主控制器的输出作为副控制器的给定值,副控制器的输出去操纵控制阀,以实现对变量的定值控制。
2.串级控制系统有哪些特点?主要使用在哪些场合?答串级控制系统的主要特点为:(1)在系统结构上,它是由两个串接工作的控制器构成的双闭环控制系统;(2)系统的目的在于通过设置副变量来提高对主变量的控制质量}(3)由于副回路的存在,对进入副回路的干扰有超前控制的作用,因而减少了干扰对主变量的影响;(4)系统对负荷改变时有一定的自适应能力。
串级控制系统主要应用于:对象的滞后和时间常数很大、干扰作用强而频繁、负荷变化大、对控制质量要求较高的场合。
3.串级控制系统中主、剧变量应如何选择?答主变量的选择原则与简单控制系统中被控变量的选择原则是一样的。
副变量的选择原则是:.(1)主、副变量间应有一定的内在联系,副变量的变化应在很大程度上能影响主变量的变化;(2)通过对副变量的选择,使所构成的副回路能包含系统的主要干扰;(3)在可能的情况下,应使副回路包含更多的主要干扰,但副变量又不能离主变量太近;(4)副变量的选择应考虑到主、副对象时间常数的匹配,以防“共振”的发生4.为什么说串级控制系统中的主回路是定值控制系统,而副回路是随动控制系统?答串级控制系统的目的是为了更好地稳定主变量,使之等于给定值,而主变量就是主回路的输出,所以说主回路是定值控制系统。
副回路的输出是副变量,副回路的给定值是主控制器的输出,所以在串级控制系统中,副变量不是要求不变的,而是要求随主控制器的输出变化而变化,因此是一个随动控制系统。
5.怎样选择串级控制系统中主、副控制器的控制规律?答串级控制系统的目的是为了高精度地稳定主变量,对主变量要求较高,一般不允许有余差,所以主控制器一般选择比例积分控制规律,当对象滞后较大时,也可引入适当的微分作用。
串级控制系统两步整定法一、什么是串级控制系统?串级控制系统是指由两个或多个具有不同动态特性的控制环节组成的控制系统。
其中,前一级控制器的输出作为后一级控制器的输入。
它可以实现对复杂过程的高效精确控制。
二、串级控制系统的优点1. 可以有效地降低过程变量对干扰和负载变化的敏感度。
2. 可以提高整个系统的稳定性和响应速度。
3. 可以提高系统的鲁棒性,使得系统更加稳定可靠。
三、串级控制系统两步整定法1. 第一步:前置环节PID参数整定(1)选择合适的开环传递函数模型,求出其传递函数;(2)根据经验或实验数据选择合适的调节器类型,如比例积分型;(3)根据Ziegler-Nichols方法或其他方法确定比例增益Kp和积分时间Ti;(4)通过仿真或实验验证整定参数是否合理,并进行修正。
2. 第二步:主环节PID参数整定(1)将前置环节固定为已知值,得到主环节开环传递函数;(2)根据经验或实验数据选择合适的调节器类型,如比例积分型;(3)根据Ziegler-Nichols方法或其他方法确定比例增益Kp和积分时间Ti;(4)通过仿真或实验验证整定参数是否合理,并进行修正。
四、串级控制系统两步整定法的应用实例以温度控制系统为例,假设前置环节为加热器,主环节为温度传感器。
1. 第一步:前置环节PID参数整定(1)选择加热器的传递函数模型为:G1(s)=0.5/(s+0.2);(2)选择比例积分型调节器;(3)根据Ziegler-Nichols方法得到Kp=0.5,Ti=2s;(4)通过仿真验证参数合理性,并进行修正。
2. 第二步:主环节PID参数整定(1)将前置环节固定为已知值,得到温度传感器的开环传递函数:G2(s)=0.1/(s+0.1);(2)选择比例积分型调节器;(3)根据Ziegler-Nichols方法得到Kp=0.8,Ti=3s;(4)通过仿真验证参数合理性,并进行修正。
五、总结与展望串级控制系统是一种高效精确的控制系统,可以应用于各种复杂过程的控制。
串级控制系统pid -回复什么是串级控制系统?串级控制系统是一种常用的自动控制系统,它有着广泛的应用。
它由一个或多个控制环构成,每个环负责系统的不同方面。
其中,PID控制器是串级控制系统中的重要组成部分。
PID控制器的基本结构由比例(P)、积分(I)和微分(D)三个部分组成。
这些部分根据需要采取不同的权重,通过对输入信号进行加权和调整来实现对系统输出的精确控制。
具体而言,PID控制器会根据误差信号对输出信号进行调整,从而使系统的响应更快、更准确。
在串级控制系统中,PID控制器通常用于对内环进行控制,以使内环更加稳定和精确。
内环输出的调节信号则作为外环的输入,进一步调节并优化整个系统的性能。
这种层次化的控制结构使得串级控制系统能够应对不同的系统需求,并提供更加强大的控制能力。
串级控制系统的设计与调整需要经过多个步骤,以确保系统能够实现更高的控制精度和稳定性。
下面,我们将逐步介绍串级控制系统PID的一般设计和调整过程。
第一步:系统建模和理论分析在设计串级控制系统之前,我们需要对被控对象进行建模和理论分析。
这包括对系统的动态特性和稳定性进行分析,以及参数的确定。
通过数学模型、实验数据和仿真等手段,我们可以了解系统的频率响应、阻尼比和时间响应等重要参数。
第二步:内环控制器设计和调整根据内环的稳定性和控制要求,我们可以设计和调整PID控制器。
常见的方法包括经验调参、Ziegler-Nichols方法和优化算法等。
通过调整比例、积分和微分参数,我们可以使系统的超调量、稳定时间和稳态误差等性能指标满足预期要求。
第三步:外环控制器设计和调整在内环控制器设计和调整完毕后,我们需要继续进行外环的设计和调整。
外环的目标是进一步改善系统的响应速度、稳定性和精度。
在这一步骤中,我们可以选择适当的控制策略和参数,例如,比例控制器、模糊控制器或者多变量控制器等。
第四步:系统仿真和优化在设计和调整内外环控制器后,我们可以使用仿真软件对整个串级控制系统进行仿真和优化。
第三章串级控制系统简单控制系统由于结构简单,而得到广泛的应用,其数量占有所有控制系统总数的80% 以上,在绝大多数场合下已能满足生产要求。
但随着科技的发展,新工艺、新设备的出现,生产过程的大型化和复杂化,必然导致对操作条件的要求更加严格,变量之间的关系更加复杂。
同时,现代化生产往往对产品的质量提出更高的要求,例如甲醇精馏塔的温度偏离不允许超过1℃石油裂解气的生冷分离中,乙烯纯度要求达到99.99%等,此外,生产过程中的某些特殊要求,如物料配比、前后生产工序协调问题、为了安全而采取的软保护的问题、管理与控制一体化问题等,这些问题的解决都是简单控制系统所不能胜任的,因此,相应地就出现了复杂控制系统。
在简单反馈回路中增加了计算环节、控制环节或其他环节的控制系统统称为复杂控系统。
复杂控制系统种类较多,按其所满足的控制要求可分为两大类:以提高系统控制质量为目的的复杂控制系统,主要有串级和前馈控制系统;满足某些特定要求的控制系统,主要有比值、均匀、分程、选择性等。
本章将重点介绍串级控制系统。
串级控制系统是所有复杂控制系统中应用最多的一种,它对改善控制产品有独到之处。
当过程的容量之后较大,负荷或扰动变化比较剧烈、比较频繁、或是工艺对生产质量提出的要求很高,采用单控制系统不能满足要求时,可考虑采用串级控制系统。
3.1 串级控制系统概述图3-1是串级控制系统的方框图。
该系统有主、副两个控制回路,主、副调节器相串联工作,其中主调节器有自己独立的给定值R,它的输出m1作为副调节器图3-1串级控制系统方框图3.2 串级控制系统的特点串级控制系统从总体来看,仍然是一个定制控制系统,因此主变量在扰动作用下的过渡过程和简单定制控制系统的过渡过程具有相同的品质指标和类似的形式。
但是串级控制系统和简单控制系统相比,在结构上增加了一个与之相连的副回路,因此具有一系列特点。
由于副回路的存在,改善了过程的动态特性提高了系统的工作频率。
串级控制系统在结构上区别于接单控制系统的主要标志是用一个闭合的副回路代替了原来的一部分被控对象。
所以,也可以把整个副回路看作是主回路的一个环节,或把副回路称为等效副对象。
由于副过程在一般情况下可以用一阶滞后环节来表示,如果副控制器采用比例作用,那么串级控制系统由于副回路的存在,改善了过程的动态特性,是。
而等效副对象的时间常数减小,意味着对象的容量滞后减小,这会使系统的反应速度增加,控制更为及时。
另一方面,由于等效副对象的时间常数减小,系统的工作频率可获得提高。
当主副对象都是一阶惯性环节,主副控制器均采用纯比例作用是,与简单控制系统相比,在相同衰减比的条件下,串级系统的工作频率要高于简单控制系统。
所以,串级控制系统由于副回路的存在,改善了被控对象的动态特性,是控制过程加快,从而有效地克服容量滞后、使整个系统的工作频率有所提高,进一步提高了控制质量,其主要优点表现在:①能及时克服进入副回路的扰动影响,提高了系统抗扰动能力与同等条件下的简单控制系统相比较,串级控制系统由于副回路的存在,能迅速克服进入副回路扰动的影响,从而大大提高了抗二次扰动的能力,抗一次扰动的能力也有所提高。
这是因为当扰动进入副回路后,在他还未影响到主变量之前,首先由副变量检测到扰动的影响,并通过副回路的定值控制作用,及时调节操纵变量,师傅变量回复到设定值,从而是扰动对主主变量的影响减少。
即副回路对扰动进行粗调,主回路对扰动进行细调。
由于对进入副回路的扰动有两级控制措施,即使扰动作用影响主环,也比单回路的控制及时,因此,串级控制系统能迅速克服副回路的影响。
②具有一定的自适应能力。
在简单控制系统中,控制器的参数是在一定的负荷、一定的操作条件下,根据该负荷的对象特性,按一定的质量指标整定得到的。
因此,一组控制器参数只能适应于一定的生产负荷和操作条件。
如果被控对象具有非线性,那么,随着负荷和操作条件的改变,对象特性就会发生改变。
这样,在原负荷下整定所得的控制器参数就不在能够适应,需要重新整定。
如果仍用原先的参数,控制质量就会下降。
这一问题在简单控制系统中是很难解决的。
但是,在串级控制系统中,主回路虽然是一个定值控制系统,而副回路对主控器来说却是一个随动系统,他的设定值是随着主控制器的输出而变化的。
这样,当负荷或操作条件发生变化时,主控制器就可以按照负荷或操作条件的变化情况而及时调整副控制器的设定值,使系统运行在新的工作点上,从而保证在新的负荷和操作条件下,控制系统仍然具有较好的控制质量。
从这一意义上来讲,串级控制系统有一定的自适应能力。
综上所述,串级控制系统由于副回路的存在,对于进入其中的扰动有较强的克服能力,而且由于副回路的存在改善了过程的动态特性,提高了系统的工作频率,所以控制质量比较高。
此外,副回路的快速随动特性使串级控制系统具有一定的自适应能力。
因此,对于控制质量要求高,扰动大、滞后时间长的过程,当采用简单控制系统达不到质量要求时,采用串级控制方案往往可以获得较为满意的结果。
不过串级控制系统比单回路控制系统所需要的线路仪表多,系统的投运和整定相应地也较为复杂一些。
所以,如果单回路控制系统能够解决的问题,就尽量不要采用串级控制方案。
3.3 主、副调节器控制规律的选择在串级控制系统中,主、副调节器所起的作用是不同的。
主调节器起定值控制作用,它的控制任务是使主参数等于给定值(无余差),故一般宜采用PI或PID调节器。
由于副回路是一个随动系统,它的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P或PI调节器。
3.4 PID控制器工业生产过程中,对于生产装置的温度、压力、流量、液位等工艺变量常常要求维持在一定的数值上,或按一定的规律变化,以满足生产工艺的要求。
PID 控制器是根据PID控制原理对整个控制系统进行偏差调节,从而使被控变量的实际值与工艺要求的预定值一致。
不同的控制规律适用于不同的生产过程,必须合理选择相应的控制规律,否则PID控制器将达不到预期的控制效果。
3.4.1 PID控制器理论PID控制器(比例-积分-微分控制器),由比例单元P、积分单元I 和微分单元D 组成。
通过Kp,Ki和Kd三个参数的设定。
PID控制器主要适用于基本线性和动态特性不随时间变化的系统。
PID 控制器是一个在工业控制应用中常见的反馈回路部件。
这个控制器把收集到的数据和一个参考值进行比较,然后把这个差别用于计算新的输入值,这个新的输入值的目的是可以让系统的数据达到或者保持在参考值。
和其他简单的控制运算不同,PID控制器可以根据历史数据和差别的出现率来调整输入值,这样可以使系统更加准确,更加稳定。
可以通过数学的方法证明,在其他控制方法导致系统有稳定误差或过程反复的情况下,一个PID反馈回路却可以保持系统的稳定。
一个控制回路包括三个部分:系统的传感器得到的测量结果控制器作出决定通过一个输出设备来作出反应控制器从传感器得到测量结果,然后用需求结果减去测量结果来得到误差。
然后用误差来计算出一个对系统的纠正值来作为输入结果,这样系统就可以从它的输出结果中消除误差。
在一个PID回路中,这个纠正值有三种算法,消除目前的误差,平均过去的误差,和透过误差的改变来预测将来的误差。
比如说,假如一个水箱在为一个植物提供水,这个水箱的水需要保持在一定的高度。
一个传感器就会用来检查水箱里水的高度,这样就得到了测量结果。
控制器会有一个固定的用户输入值来表示水箱需要的水面高度,假设这个值是保持65%的水量。
控制器的输出设备会连在一个马达控制的水阀门上。
打开阀门就会给水箱注水,关上阀门就会让水箱里的水量下降。
这个阀门的控制信号就是我们控制的变量,它也是这个系统的输入来保持这个水箱水量的固定。
PID控制器可以用来控制任何可以被测量的并且可以被控制变量。
比如,它可以用来控制温度,压强,流量,化学成分,速度等等。
汽车上的巡航定速功能就是一个例子。
一些控制系统把数个PID控制器串联起来,或是链成网络。
这样的话,一个主控制器可能会为其他控制输出结果。
一个常见的例子是马达的控制。
我们会常常需要马达有一个控制的速度并且停在一个确定的位置。
这样呢,一个子控制器来管理速度,但是这个子控制器的速度是由控制马达位置的主控制器来管理的。
连合和串联控制在化学过程控制系统中是很常见的。
3.4.2 PID 控制规律的选择尽管不同类型的控制器,其结构、原理各不相同,但是基本控制规律只有三个:比例(P )控制、积分(I )控制和微分(D )控制。
这几种控制规律可以单独使用,但是更多场合是组合使用。
如比例(P )控制、比例-积分(PI )控制、比例-积分-微分(PID )控制等。
1) 比例(P )控制单独的比例控制也称“有差控制”,输出的变化与输入控制器的偏差成比例关系,偏差越大输出越大。
(3-1)P ∆—调节器的输出变化量 C K —调节器的比例增益,即放大系数e —调节器的输入,即偏差实际应用中,比例度的大小应视具体情况而定,比例度太大,控制作用太弱,不利于系统克服扰动,余差大,控制质量差;比例度太小,控制作用强,容易导致系统的稳定性变差,引发振荡。
对于反应灵敏、放大能力强的被控对象,为提高系统的稳定性,应当使比例度稍大些;而对于反应迟钝,放大能力又较弱的被控对象,比例度可选小一些,以提高整个系统的灵敏度,也可以相应减小余差。
单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定余差存在的场合。
工业生产中比例控制规律使用较为普遍。
2) 比例积分(PI )控制比例控制规律是基本控制规律中最基本的、应用最普遍的一种,其优点就是控制及时、迅速。
只要有偏差产生,控制器立即产生控制作用。
但是,不能最终消除余差的缺点限制了它的单独使用。
然而当比例控制的基础上加上积分控制作用则能克服余差。
(3-2) e K P C =∆)t ed T (e c K ΔP ⎰+=11P ∆—调节器的输出变化量C K —调节器的比例增益,即放大系数e —调节器的输入,即偏差1T —积分时间积分控制器的输出与输入偏差对时间的积分成正比。
积分控制器的输出不仅与输入偏差的大小有关,而且还与偏差存在的时间有关。
只要偏差存在,输出就会不断累积(输出值越来越大或越来越小),一直到偏差为零,累积才会停止。
所以,积分控制可以消除余差。
积分控制规律又称无差控制规律。
积分时间的大小表征了积分控制作用的强弱。
积分时间越小,控制作用越强;反之,控制作用越弱。
积分控制虽然能消除余差,但它存在着控制不及时的缺点。
因为积分输出的累积是渐进的,其产生的控制作用总是落后于偏差的变化,不能及时有效地克服干扰的影响,难以使控制系统稳定下来。
所以,实用中一般不单独使用积分控制,而是和比例控制作用结合起来,构成比例积分控制。