八年级数学(含答案)
- 格式:doc
- 大小:1.17 MB
- 文档页数:17
一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 0.5B. √2C. -3D. 3/4答案:B解析:有理数是可以表示为两个整数之比的数,而√2是无理数,不能表示为两个整数之比。
2. 下列图形中,对称轴为直线y=x的是()A. 等腰三角形B. 等边三角形C. 平行四边形D. 梯形答案:B解析:等边三角形的对称轴为直线y=x。
3. 下列等式中,正确的是()A. a^2 + b^2 = (a + b)^2B. a^2 - b^2 = (a + b)(a - b)C. a^2 + 2ab + b^2 = (a + b)^2D. a^2 - 2ab + b^2 = (a - b)^2答案:B、C、D解析:根据平方差公式和完全平方公式,选项B、C、D都是正确的。
4. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = 2x^2D. y = √x答案:B解析:反比例函数的形式为y = k/x,其中k为常数。
选项B符合这个形式。
5. 下列方程中,有唯一解的是()A. 2x + 3 = 7B. 2x + 3 = 0C. 2x - 3 = 0D. 2x + 3 = 7x答案:A解析:选项A的方程为一次方程,有唯一解。
选项B、C、D的方程都至少有两个解。
二、填空题(每题5分,共25分)6. 已知a + b = 5,ab = 6,则a^2 + b^2 = __________。
答案:37解析:根据平方差公式,a^2 + b^2 = (a + b)^2 - 2ab = 5^2 - 26 = 37。
7. 已知y = kx + b,其中k和b为常数,且k < 0,b > 0,则函数图象在()A. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限答案:D解析:当k < 0时,函数图象斜率为负,因此图象在第二、四象限。
8. 已知x^2 - 5x + 6 = 0,则x的值为()A. 2B. 3C. 2或3D. 2和3答案:C解析:这是一个二次方程,可以通过因式分解或者求根公式求解。
初二数学试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是无理数?A. 0.33333…(3无限循环)B. πC. √2D. 0.52. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 83. 一个数的平方根是它本身,这个数可能是:A. 0B. 1C. -1D. 24. 一个圆的半径为5,那么它的周长是:A. 10πB. 15πC. 20πD. 25π5. 以下哪个表达式的结果是一个整数?B. √9C. √16D. √256. 一个正数的倒数是它本身,这个数是:A. 1B. 2C. 0.5D. -17. 如果一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 08. 一个数的立方根是它本身,这个数可能是:A. 0B. 1C. -1D. 89. 一个数的相反数是它本身,这个数是:A. 0B. 1C. -1D. 210. 以下哪个数是实数?A. √(-1)C. √2D. 0.5二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数可能是______。
12. 一个数的立方是-8,这个数是______。
13. 一个数的绝对值是7,这个数可能是______。
14. 如果一个数的相反数是-3,那么这个数是______。
15. 一个数的倒数是1/2,这个数是______。
16. 一个圆的直径是10,那么它的面积是______。
17. 一个直角三角形的两条直角边分别是6和8,斜边的长度是______。
18. 如果一个数的平方根是4,那么这个数是______。
19. 一个数的立方根是2,这个数是______。
20. 一个数的绝对值是它本身,这个数是______。
三、解答题(每题10分,共60分)21. 计算下列表达式的值:(3+2)² - 5 × 2。
22. 解方程:2x + 5 = 13。
23. 证明:如果一个三角形的两边长分别为a和b,且a² + b² =c²,那么这个三角形是一个直角三角形。
初二数学试题带解析及答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. 3.1415926B. √2C. 0.33333D. 1/3解析:无理数是不能表示为两个整数的比值的实数。
选项A是圆周率π的近似值,是无理数;选项B的√2是无理数,因为不能表示为两个整数的比;选项C是有限小数,可以表示为1/3;选项D是分数,也是有限小数。
因此,正确答案是B。
答案:B2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8解析:根据勾股定理,直角三角形的斜边长度等于两直角边的平方和的平方根。
即c = √(a² + b²),其中a和b是直角边,c是斜边。
将3和4代入公式得c = √(3² + 4²) = √(9 + 16) = √25 = 5。
答案:A3. 下列哪个代数式是二次方程?A. x + 2 = 0B. x² + 3x - 2 = 0C. 2x - 5 = 0D. x³ - 4 = 0解析:二次方程是形如ax² + bx + c = 0的方程,其中a、b、c是常数,且a≠0。
选项B符合这个形式,是二次方程。
答案:B4. 一个数的平方根是8,这个数是?A. 64B. 16C. -64D. -16解析:一个数的平方根是8,意味着这个数是8的平方。
即x =8² = 64。
负数没有实数平方根,所以选项C和D不正确。
答案:A5. 如果一个多项式f(x) = ax³ + bx² + cx + d,其中a ≠ 0,那么这个多项式的次数是?A. 1B. 2C. 3D. 4解析:多项式的次数是多项式中最高次项的次数。
在这个多项式中,最高次项是ax³,所以次数是3。
答案:C二、填空题(每题2分,共10分)6. 一个数的相反数是-5,这个数是______。
一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. √9B. -√16C. 0.25D. π2. 下列运算正确的是()A. (-3)² = -9B. (-2)³ = -8C. (-1)⁴ = 1D. (-3)⁴ = 813. 下列各式中,不是等式的是()A. 2x + 5 = 11B. x² - 4 = 0C. 5 - 3 = 2D. 3x = 94. 若a > b,则下列不等式中正确的是()A. a + 2 < b + 2B. a - 2 > b - 2C. 2a < 2bD. 2a > 2b5. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 圆形6. 若x² - 4x + 3 = 0,则x的值为()A. 1 或 3B. 2 或 3C. 1 或 2D. 2 或 47. 下列函数中,是正比例函数的是()A. y = 2x + 3B. y = 4xC. y = -2x + 1D. y = 3x²8. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A. (2, -3)B. (-2, 3)C. (2, -3)D. (-2, -3)9. 下列数据中,众数是5的是()A. 1, 2, 3, 4, 5, 5, 6B. 2, 3, 4, 5, 6, 7, 8C. 1, 2, 3, 4, 5, 6, 7D. 3, 4, 5, 6, 7, 8, 910. 若x = 2是方程x² - 5x + 6 = 0的解,则x的另一个解是()A. 3B. 2C. 6D. 1二、填空题(每题5分,共25分)11. 计算:(4 - 2√3)²12. 若a = 5,b = -3,则a² + b²的值为多少?13. 若一个数的平方是9,那么这个数是______。
八年级数学试题及答案一、选择题(共10分,每题2分)1. 下列哪个数是最小的正整数?A. -3B. 0C. 1D. 2答案:C2. 计算下列哪个表达式的结果是正数?A. -1 + (-2)B. 3 - 5C. 4 × (-2)D. -3 ÷ 2答案:D3. 如果a > b > 0,那么下列哪个不等式是正确的?A. a < bB. a > bC. b > aD. a = b答案:B4. 一个数的平方根是它本身,这个数可以是:A. 0B. 1C. -1D. 2答案:A5. 下列哪个分数是最简分数?A. 6/12B. 8/16C. 5/10D. 7/3答案:D二、填空题(共10分,每题2分)6. 一个长方形的长是10厘米,宽是5厘米,它的周长是________厘米。
答案:307. 如果一个数的立方根是2,那么这个数是________。
答案:88. 一个数的绝对值是5,这个数可以是________或________。
答案:5或-59. 一个圆的半径是7厘米,它的面积是________平方厘米。
答案:153.9410. 如果一个三角形的底边长是6厘米,高是4厘米,那么它的面积是________平方厘米。
答案:12三、计算题(共30分,每题6分)11. 计算下列表达式的值:(1) (-3) × 2 + 5(2) √(16) - 4答案:(1) -6 + 5 = -1(2) 4 - 4 = 012. 解下列方程:(1) 2x + 5 = 13(2) 3y - 7 = 8答案:(1) 2x = 8,x = 4(2) 3y = 15,y = 513. 计算下列多项式的值,当x = -2时:(1) 3x^2 - 2x + 1(2) x^3 + 4x - 5答案:(1) 3 × (-2)^2 - 2 × (-2) + 1 = 12 + 4 + 1 = 17(2) (-2)^3 + 4 × (-2) - 5 = -8 - 8 - 5 = -21四、解答题(共50分,每题10分)14. 一个班级有40名学生,其中30名学生参加了数学竞赛。
初二数学全套试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的相反数是它本身,那么这个数是:A. 0B. 1C. -1D. 23. 计算下列表达式的结果:\[ (-3) \times (-2) \]A. 6B. -6C. 3D. -34. 一个数的绝对值是它本身,这个数可能是:A. 正数B. 负数C. 0D. 正数或05. 一个三角形的三个内角的和是:A. 180度B. 360度C. 90度D. 270度6. 下列哪个选项是二次根式?A. \(\sqrt{4}\)B. \(\sqrt{-4}\)C. \(\sqrt{2x}\)D. \(\sqrt{x^2}\)7. 一个数的立方是它本身,这个数可能是:A. 1B. -1C. 0D. 1或-1或08. 一个数的平方是它本身,这个数可能是:A. 1B. -1C. 0D. 1或09. 计算下列表达式的结果:\[ \frac{1}{2} + \frac{1}{3} \]A. \(\frac{1}{6}\)B. \(\frac{5}{6}\)C. \(\frac{3}{4}\)D. \(\frac{7}{6}\)10. 一个数的倒数是它本身,这个数是:A. 1B. -1C. 0D. 1或-1二、填空题(每题4分,共20分)1. 一个数的平方是25,这个数是______。
2. 一个数的立方是27,这个数是______。
3. 一个数的绝对值是5,这个数可以是______或______。
4. 一个数的相反数是-5,这个数是______。
5. 一个三角形的两个内角分别是45度和45度,第三个内角是______度。
三、解答题(每题10分,共50分)1. 计算下列表达式,并简化结果:\[ \frac{3}{4} + \frac{5}{6} - \frac{1}{3} \]2. 一个数的平方减去这个数的两倍再加上1等于0,求这个数。
一、选择题(每题3分,共30分)1. 若方程2x - 3 = 7的解为x,则x的值为()A. 5B. 2C. 1D. 02. 下列数中,有理数是()A. √2B. πC. √-1D. 0.1010010001……3. 在△ABC中,若∠A=60°,∠B=45°,则∠C的度数为()A. 75°B. 90°C. 105°D. 120°4. 下列命题中,正确的是()A. 若a > b,则a² > b²B. 若a² > b²,则a > bC. 若a² = b²,则a = bD. 若a² = b²,则a = b或a = -b5. 下列函数中,是二次函数的是()A. y = 2x + 3B. y = x² - 2x + 1C. y = x³ + 2x² + xD. y = 3x - 46. 若x + y = 5,x - y = 1,则x的值为()A. 3B. 2C. 4D. 57. 下列数中,是正比例函数的图象经过第一、二、四象限的是()A. y = 2xB. y = -3xC. y = 0.5xD. y = -0.5x8. 下列等式中,正确的是()A. a² - b² = (a + b)(a - b)B. a³ - b³ = (a - b)(a² + ab + b²)C. a³ + b³ = (a + b)(a² - ab + b²)D. a³ - b³ = (a + b)(a² + ab - b²)9. 若函数y = kx²在第一象限,则k的取值范围是()A. k > 0B. k < 0C. k ≠ 0D. k ≥ 010. 下列数中,绝对值最大的是()A. -3B. -2C. 1D. 0二、填空题(每题3分,共30分)11. 若a + b = 5,a - b = 1,则ab的值为______。
第2节 三角形全等证明之二次全等在证明线段相等或者角相等时,常见的方法是通过证明线段或角所在的三角形全等来证明线段或者角相等.但有的时候,根据题目条件无法简单地通过一次全等证明来得到最终的结论,这时就需要证明两次三角形全等,即证明图中的两对三角形全等.这种方法较多见于对称型全等和旋转型全等的题目中.一、典型例题[例]图2-1是某产品商标的示意图,已知AB =CD,∠A =∠D,有人认为△ABC ≌△DCB,他的思考过程是:∵AB =CD,∠A =∠D,BC =CB,∴△ABC ≌△DCB.你认为这个思考过程对吗?如果正确,请指出他用的是判定三角形全等的哪个定理?如果不正确,请写出你的思考过程.解:他的思考过程不正确.在△ABE 和△DCE 中,∵{∠AEB =∠DEC∠A =∠D AB =DC∴△ABE ≌△DCE (AAS ).∴AE =DE,BE =CE.∴AE+EC =DE+EB,即AC =BD.在△ABC 和△DCB 中,∴{AC =BDAB =DC BC =CB∴△ABC ≌△DCB (SSS ).二、培优巩固练习篇1.如图2-2所示,点A,E,C 在一条直线上,∠1=∠2,∠3=∠4.求证:△ABE ≌△ADE.图2-2图2-12.如图2-3所示,点A,E,F,C 在一条直线上,AE =CF,分别过点E,F 作DE ⊥ AC,BF ⊥AC,连接AB,CD,且AB ∥CD,连接BD 交AC 于点C.求证:△DEG ≌△BFG.3.如图2-4所示,AB =AC,DB =DC,F 是AD 延长线上的一点.求证:BF =CF.4.如图2-5所示,AE 是∠BAC 的角平分线,EB ⊥AB 于点B,EC ⊥AC 于点C,点D 是AE 上一点.求证:BD =CD.5.如图2-6所示,DE ⊥AC,BF ⊥AC,AD =BC,DE =BF.求证:AB ∥DC.图2-3C图2-4图2-5图2-66.如图2-7所示,点E,F 在BD 上,且AB =CD,BF =DE,AE =CF.求证:AO =CO.7.如图2-8所示,AB 之间有一条河.想要测量AB 的长,但无法过河接近点A,于是在AB 外任取一点D,在AB 的延长线上任取一点E,连接ED 和BD,并延长BD 到点G,使DG =DB,延长ED 到点F,使DF =DE,连接FG,并延长FG 到点H,使点H,D,A 在一条直线上,则HG =AB.试说明这种测量方法的原理.8.如图2-9所示,在Rt △ABC 和Rt △ADE 中,∠ABC =∠ADE =90°,BC 与DE 相交于点F,且AB =AD,AC =AE,连接CD,EB.求证:(1)∠CAD =∠EAB;(2)CF =EFDH图2-8图2-99.如图2-10所示,在等边△ABC 内取一点D,使DA =DB,在△ABC 外取一点E,使∠DBE =∠DBC,且BE =BA,则∠BED =_______°.10.如图2-11所示,∠BAC 是钝角,AB =AC,点D,E 分别在AB,AC 上,且CD =BE.试说明:∠ADC =∠AEB.一个同学的解法是这样的: 在△ACD 和△ABE 中, ∵{AB =AC BE =CD ∠BAE =∠CAD ∴△ABE ≌△ACD.∴∠ADC =∠AEB.这种解法遭到了其他同学的质疑.理由是错在不能用“SSA ”判定三角形全等.请你给出正确的解法.图2-10CB AC B答案解析1.证明:在△DEC和△BEC中,{∠1=∠2 EC=EC ∠3=∠4∴△DEC≌△BEC(ASA).∴DE=BE.∵∠3=∠4,∴∠DEA=∠BEA.在△ABE和△ADE中,{AE=AE∠AEB=∠AEDBE=DE∴△ABE≌△ADE(SAS).2.证明:∵DE⊥AC,BF⊥AC, ∴∠AFB=90°=∠CED. ∵AE=CF,∴AE+EF=CF+FE,即AF=CE.∵AB∥CD,∴∠A=∠C.在△ABF和△CDE中,{∠A=∠C AF=CE∠AFB=∠CED ∴△ABF≌△CDE(ASA).∴DE=BF.在△BFG和△DEG中,{∠BFG=∠DEG ∠BGF=∠DGE BF=DE∴△BFG≌△DEG(AAS).3.证明:在△ABD和△ACD中,{AB=AC BD=CD AD=AD∴△ABD≌△ACD(SSS).∴∠BAD=∠CAD.在△BAF和△CAF中,{AB=AC∠BAF=∠CAF AF=AF∴△BAF≌△CAF(SAS).∴BF=CF.4.证明:∵AE是∠BAC的角平分线, ∴∠CAE=∠BAE. ∵EB⊥AB,EC⊥AC, ∴∠ECA=∠EBA=90°.在△CAE和△BAE中,{∠CAE=∠BAE ∠ECA=∠EBA AE=AE∴△CAE≌△BAE(AAS).∴AC=AB.在△CAD和△BAD中,{AC=AB ∠CAD=∠BAD AD=AD∴△CAD≌△BAD(SAS).∴BD=CD.5.证明:∵DE ⊥AC,BF ⊥AC, ∴∠AED =∠CFB =90°, ∠AFB =∠CED =90°, 在Rt △ADE 和Rt △CBF 中,∵{AD =CB DE =BF ∴Rt △ADE ≌Rt △CBF (HL ).∴AE =CF.∴AE+EF =CF+FE,即AF =CE.在△AFB 和△CED 中,∵{AF =CE∠AFB =∠CED DE =BF∴△AFB ≌△CED (SAS ). ∴∠BAF =∠DCE.∴AB ∥DC.∴AO =CO.6.证明:∵BF =DE, ∴BF-EF =DE-FE,即BE =DF. 在△ABE 和△CDF 中, {AB =CDAE =CF BE =DF∴△ABE ≌△CDF (SSS ).∴∠B =∠D.在△AOB 和△COD 中,{∠AOB =∠COD∠B =∠D AB =CD∴△AOB ≌△COD (AAS )7.解:在△BED 和△GFD 中,{DB =DG∠BDE =∠GDF DE =DF∴△BED ≌△GFD (SAS ).∴∠EBD =∠FGD.∴∠ABD =∠HGD.在△ABD 和△HGD 中,{∠ABD =∠HGDBD =GD∠BDA =∠GDH∴△ABD ≌△HGD (ASA ).∴HG =AB.8.证明:(1)在Rt △ABC 和Rt △ADE 中,{AC =AE AB =AD ∴Rt △ABC ≌Rt △ADE (HL ).∴∠BAC =∠DAE.∴∠BAC-∠DAB =∠DAE-∠DAB,即∠CAD =∠EAB.(2)在△ACD 与△AEB 中, {AC =AE∠CAD =∠EAB AD =AB∴△ACD ≌△AEB (SAS ).∴CD =BE,∠ACD =∠AEB.∵Rt △ABC ≌Rt △ADE (HL ), ∴∠ACB =∠AED.∴∠ACB-∠ACD =∠AED-∠AEB,即∠DCF =∠BEF.又∵∠DFC =∠BFE, ∴△DFC ≌△BFE (AAS ).∴CF =EF.9.解:如图2所示,连接CD.∵△ABC是等边三角形, ∴AB=BC=CA.∵BE=BA,BA=BC, ∴BE=BC.在△BDC和△BDE中,{BD=BD∠DBE=∠DBC BE=BC∴△BDC≌△BDE(SAS). ∴∠BED=∠BCD.在△BCD和△ACD中,{BC=AC BD=AD CD=CD∴△BCD≌△ACD(SSS).∴∠BCD=∠ACD=30°.∴∠BED=30°.10.证明:因为∠BAC是钝角,故过点B,C分别作CA,BA的垂线,垂足分别为点F, G,如图3所示.在△ABF和△ACG中,{∠F=∠G=90°∠FAB=∠GACAC=AB∴△ABF≌△ACG(AAS).∴BF=CG.在Rt△BEF和Rt△CDG中,{BF=CGBE=CD∴Rt△BEF≌Rt△CDG(HL).∴∠ADC=∠AEBEDC BA。
八年级数学题100道带答案1) 66x+17y=396725x+y=1200答案:x=48 y=47(2) 18x+23y=230374x-y=1998答案:x=27 y=79(3) 44x+90y=779644x+y=3476答案:x=79 y=48(4) 76x-66y=408230x-y=2940答案:x=98 y=51(5) 67x+54y=854671x-y=5680答案:x=80 y=59(6) 42x-95y=-141021x-y=1575答案:x=75 y=48(7) 47x-40y=85334x-y=2006答案:x=59 y=48(8) 19x-32y=-1786 75x+y=4950答案:x=66 y=95 (9) 97x+24y=7202 58x-y=2900答案:x=50 y=98 (10) 42x+85y=6362 63x-y=1638答案:x=26 y=62 (11) 85x-92y=-2518 27x-y=486答案:x=18 y=44 (12) 79x+40y=2419 56x-y=1176答案:x=21 y=19 (13) 80x-87y=2156 22x-y=880答案:x=40 y=12 (14) 32x+62y=5134 57x+y=2850答案:x=50 y=57 (15) 83x-49y=8259x+y=2183答案:x=37 y=61 (16) 91x+70y=5845 95x-y=4275答案:x=45 y=25 (17) 29x+44y=5281 88x-y=3608答案:x=41 y=93 (18) 25x-95y=-4355 40x-y=2000答案:x=50 y=59 (19) 54x+68y=3284 78x+y=1404答案:x=18 y=34 (20) 70x+13y=3520 52x+y=2132答案:x=41 y=50 (21) 48x-54y=-3186 24x+y=1080答案:x=45 y=99 (22) 36x+77y=7619 47x-y=799答案:x=17 y=91 (23) 13x-42y=-2717 31x-y=1333答案:x=43 y=78 (24) 28x+28y=3332 52x-y=4628答案:x=89 y=30 (25) 62x-98y=-2564 46x-y=2024答案:x=44 y=54 (26) 79x-76y=-4388 26x-y=832答案:x=32 y=91 (27) 63x-40y=-821 42x-y=546答案:x=13 y=41 (28) 69x-96y=-1209 42x+y=3822答案:x=91 y=78 (29) 85x+67y=7338 11x+y=308答案:x=28 y=74(30) 78x+74y=12928 14x+y=1218答案:x=87 y=83 (31) 39x+42y=5331 59x-y=5841答案:x=99 y=35 (32) 29x+18y=1916 58x+y=2320答案:x=40 y=42 (33) 40x+31y=6043 45x-y=3555答案:x=79 y=93 (34) 47x+50y=8598 45x+y=3780答案:x=84 y=93 (35) 45x-30y=-1455 29x-y=725答案:x=25 y=86 (36) 11x-43y=-1361 47x+y=799答案:x=17 y=36 (37) 33x+59y=325494x+y=1034答案:x=11 y=49 (38) 89x-74y=-2735 68x+y=1020答案:x=15 y=55 (39) 94x+71y=7517 78x+y=3822答案:x=49 y=41 (40) 28x-62y=-4934 46x+y=552答案:x=12 y=85 (41) 75x+43y=8472 17x-y=1394答案:x=82 y=54 (42) 41x-38y=-1180 29x+y=1450答案:x=50 y=85 (43) 22x-59y=824 63x+y=4725答案:x=75 y=14 (44) 95x-56y=-401 90x+y=1530(45) 93x-52y=-852 29x+y=464答案:x=16 y=45 (46) 93x+12y=8823 54x+y=4914答案:x=91 y=30 (47) 21x-63y=84 20x+y=1880答案:x=94 y=30 (48) 48x+93y=9756 38x-y=950答案:x=25 y=92 (49) 99x-67y=4011 75x-y=5475答案:x=73 y=48 (50) 83x+64y=9291 90x-y=3690答案:x=41 y=92(51) 17x+62y=3216 75x-y=7350(52) 77x+67y=2739 14x-y=364答案:x=26 y=11 (53) 20x-68y=-4596 14x-y=924答案:x=66 y=87 (54) 23x+87y=4110 83x-y=5727答案:x=69 y=29 (55) 22x-38y=804 86x+y=6708答案:x=78 y=24 (56) 20x-45y=-3520 56x+y=728答案:x=13 y=84 (57) 46x+37y=7085 61x-y=4636答案:x=76 y=97 (58) 17x+61y=4088 71x+y=5609答案:x=79 y=45(59) 51x-61y=-1907 89x-y=2314答案:x=26 y=53 (60) 69x-98y=-2404 21x+y=1386答案:x=66 y=71 (61) 15x-41y=754 74x-y=6956答案:x=94 y=16 (62) 78x-55y=656 89x+y=5518答案:x=62 y=76 (63) 29x+21y=1633 31x-y=713答案:x=23 y=46 (64) 58x-28y=2724 35x+y=3080答案:x=88 y=85 (65) 28x-63y=-2254 88x-y=2024答案:x=23 y=46 (66) 43x+50y=706485x+y=8330答案:x=98 y=57 (67) 58x-77y=1170 38x-y=2280答案:x=60 y=30 (68) 92x+83y=11586 43x+y=3010答案:x=70 y=62 (69) 99x+82y=6055 52x-y=1716答案:x=33 y=34 (70) 15x+26y=1729 94x+y=8554答案:x=91 y=14 (71) 64x+32y=3552 56x-y=2296答案:x=41 y=29 (72) 94x+66y=10524 84x-y=7812答案:x=93 y=27 (73) 65x-79y=-5815 89x+y=2314答案:x=26 y=95 (74) 96x+54y=6216 63x-y=1953答案:x=31 y=60 (75) 60x-44y=-352 33x-y=1452答案:x=44 y=68 (76) 79x-45y=510 14x-y=840答案:x=60 y=94 (77) 29x-35y=-218 59x-y=4897答案:x=83 y=75 (78) 33x-24y=1905 30x+y=2670答案:x=89 y=43 (79) 61x+94y=11800 93x+y=5952答案:x=64 y=84 (80) 61x+90y=5001 48x+y=2448答案:x=51 y=21(81) 93x-19y=286x-y=1548答案:x=18 y=88 (82) 19x-96y=-5910 30x-y=2340答案:x=78 y=77 (83) 80x+74y=8088 96x-y=8640答案:x=90 y=12 (84) 53x-94y=1946 45x+y=2610答案:x=58 y=12 (85) 93x+12y=9117 28x-y=2492答案:x=89 y=70 (86) 66x-71y=-1673 99x-y=7821答案:x=79 y=97 (87) 43x-52y=-1742 76x+y=1976答案:x=26 y=55 (88) 70x+35y=829540x+y=2920答案:x=73 y=91 (89) 43x+82y=4757 11x+y=231答案:x=21 y=47 (90) 12x-19y=236 95x-y=7885答案:x=83 y=40 (91) 51x+99y=8031 71x-y=2911答案:x=41 y=60 (92) 37x+74y=4403 69x-y=6003答案:x=87 y=16 (93) 46x+34y=4820 71x-y=5183答案:x=73 y=43 (94) 47x+98y=5861 55x-y=4565答案:x=83 y=20 (95) 30x-17y=239 28x+y=1064答案:x=38 y=53 (96) 55x-12y=4112 79x-y=7268答案:x=92 y=79 (97) 27x-24y=-450 67x-y=3886答案:x=58 y=84 (98) 97x+23y=8119 14x+y=966答案:x=69 y=62 (99) 84x+53y=11275 70x+y=6790答案:x=97 y=59 (100) 51x-97y=297 19x-y=1520答案:x=80 y=39。
一、选择题(每题3分,共30分)1. 下列数中,有理数是:A. √-1B. πC. 0.1010010001……D. √42. 如果a > b,那么下列不等式中正确的是:A. a - 2 > b - 2B. a + 2 < b + 2C. 2a > 2bD. 2a < 2b3. 已知等腰三角形底边长为6cm,腰长为8cm,则该三角形的周长为:A. 20cmB. 22cmC. 24cmD. 26cm4. 如果函数y = kx + b的图像经过点(1,3),那么k和b的值分别是:A. k = 2,b = 1B. k = 3,b = 1C. k = 1,b = 2D. k = 2,b = 35. 在直角坐标系中,点A(2,3)关于y轴的对称点是:A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)6. 一个正方形的对角线长为10cm,那么它的面积是:A. 50cm²B. 25cm²C. 100cm²D. 20cm²7. 下列方程中,解集为空集的是:A. x² - 1 = 0B. x² + 1 = 0C. x² - 4 = 0D. x² - 2x + 1 = 08. 下列命题中,正确的是:A. 平行四边形的对角线相等B. 等腰三角形的底角相等C. 相似三角形的面积比等于相似比D. 对顶角相等9. 如果直角三角形的两个锐角分别为30°和60°,那么这个三角形的周长是:A. 3√3B. 2√3C. 2√2D. 3√210. 下列函数中,是二次函数的是:A. y = x³ + 2x²B. y = x² + 2x + 1C. y = 2x + 1D. y = 3x² + 2x - 1二、填空题(每题5分,共25分)11. 若a = -3,b = 2,则a² - b² = ________。
一、选择题(每题3分,共30分)1. 若a、b、c是等差数列,且a+b+c=0,则a、b、c的公差为()A. 0B. 1C. -1D. 无法确定答案:C2. 下列数列中,不是等比数列的是()A. 1,2,4,8,16…B. 2,4,8,16,32…C. 1,-1,1,-1,1…D. 1,1/2,1/4,1/8,1/16…答案:C3. 已知数列{an}的通项公式为an=2n-1,则数列{an}的前n项和S_n=()A. n^2B. n^2-1C. n^2+1D. 2n^2-1答案:B4. 已知等差数列{an}的公差为d,若a_1=3,a_3=7,则d=()A. 2B. 3C. 4D. 5答案:A5. 已知等比数列{an}的公比为q,若a_1=2,a_3=8,则q=()A. 2B. 3C. 4D. 5答案:A6. 若一个数的平方等于它本身,则这个数是()A. 0B. 1C. 0或1D. 0或-1答案:C7. 已知x^2-5x+6=0,则x的值为()A. 2B. 3C. 2或3D. 2或-3答案:C8. 若a^2+b^2=1,则a+b的取值范围是()A. [-√2,√2]B. [-1,1]C. [-√2,√2]D. [-1,1]答案:A9. 已知a、b、c是等差数列,且a+b+c=0,则下列选项中,不是等差数列的是()A. a^2、b^2、c^2B. 2a、2b、2cC. a^2+b^2、b^2+c^2、c^2+a^2D.2a+1、2b+1、2c+1答案:A10. 已知等比数列{an}的公比为q,若a_1=3,a_4=24,则q=()A. 2B. 3C. 4D. 5答案:A二、填空题(每题3分,共30分)11. 若a、b、c是等差数列,且a+b+c=0,则a、b、c的公差为______。
答案:012. 下列数列中,不是等比数列的是______。
答案:1,2,4,8,16…13. 已知数列{an}的通项公式为an=2n-1,则数列{an}的前n项和S_n=______。
初二数学试题库及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次根式?A. 3x^2B. √xC. 2xD. x^22. 一个等腰三角形的两边长分别为3和5,那么它的周长是多少?A. 11B. 14C. 16D. 无法确定3. 一个数的相反数是-3,那么这个数是多少?A. 3B. -3C. 0D. 无法确定4. 以下哪个方程是一元一次方程?A. x^2 + 2x + 1 = 0B. 2x - 3 = 5C. x/y = 2D. 3x - 2y = 05. 一个数的平方根是它本身,那么这个数是?A. 0B. 1C. -1D. 无法确定6. 一个数的立方是-8,那么这个数是?A. 2B. -2C. 8D. -87. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 无法确定8. 下列哪个选项是不等式?A. 3x + 2 = 7B. 2x - 3 > 5C. x^2 - 4 = 0D. 3x = 99. 一个数的倒数是1/2,那么这个数是?A. 2B. 1/2C. 1D. 无法确定10. 一个数的平方是25,那么这个数是?A. 5B. -5C. 5或-5D. 无法确定二、填空题(每题3分,共30分)1. 一个数的平方根是4,那么这个数是______。
2. 如果一个三角形的两边长分别为4和6,那么第三边的取值范围是______。
3. 一个数的立方根是2,那么这个数是______。
4. 一个数的相反数是-5,那么这个数是______。
5. 如果一个数的绝对值是3,那么这个数可能是______。
6. 一个数的倒数是2,那么这个数是______。
7. 一个数的平方是16,那么这个数是______。
8. 一个数的立方是-27,那么这个数是______。
9. 一个数的平方根是-2,那么这个数是______。
10. 一个数的绝对值是-4,那么这个数是______。
三、解答题(每题10分,共40分)1. 解方程:2x - 3 = 7。
八年级(上学期)期末数学试卷(含答案解析)(时间90分钟,满分100分)题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.以下列各数为边长,能构成直角三角形的是()A. 1,2,2B. 1,,2C. 4,5,6D. 1,1,2.在如图所示的直角坐标系中,M,N的坐标分别为()A. M(2,-1),N(2,1)B. M(2,-1),N(1,2)C. M(-1,2),N(1,2)D. M(-1,2),N(2,1)3.在一次投篮训练中,甲、乙、丙、丁四人各进行10次投篮,每人投篮成绩的平均数都是8,方差分别为S甲2=0.24,S乙2=0.42,S丙2=0.56,S丁2=0.75,成绩最稳定的是()A. 甲.B. 乙C. 丙D. 丁4.若a<<b,且a与b为连续整数,则a与b的值分别为()A. 1;2B. 2;3C. 3;4D. 4;55.如图,直线a∥b,下列各角中与∠1相等的是()A. ∠2B. ∠3C. ∠4D. ∠56.估计3的运算结果应在()A. 14到15之间B. 15到16之间C. 16到17之间D. 17到18之间7.下列函数中经过第一象限的是()A. y=-2xB. y=-2x-1C.D. y=x2+28.下列命题错误的个数有()①实数与数轴上的点一一对应;②无限小数就是无理数;③三角形的一个外角大于任何一个和它不相邻的内角;④两条直线被第三条直线所截,同旁内角互补.A. 1个B. 2个C. 3个D. 4个9.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()A. 90B. 100C. 110D. 12110.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法不正确的是()A. 甲的速度保持不变B. 乙的平均速度比甲的平均速度大C. 在起跑后第180秒时,两人不相遇D. 在起跑后第50秒时,乙在甲的前面二、填空题(本大题共5小题,共15.0分)11.当a= ______ 时,代数式+1取值最小.12.将直线y=3x向上平移3个单位,得到直线______.13.如图,直线AB:y=kx+b与直线CD:y=mx+n交于点E(3,1),则关于x的二元一次方程组的解为______.14.点A(-2a,a-1)在x轴上,则A点的坐标是______,A点关于y轴的对称点的坐标是______.15.图(1)中的梯形符合条件时,可以经过旋转和翻折形成图案(2).三、解答题(本大题共7小题,共55.0分)16..17.某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.社团名称人数文学社团18科技社团a书画社团45体育社团72其他b请解答下列问题:(1)a= ______ ,b= ______ ;(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为______ ;(3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.18.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?19.为了响应市委和市政府“绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1)求幸福商场甲、乙两种节能灯各购进了多少只?(2)全部售完100只节能灯后,商场共计获利多少元?20.在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出△ABC关于y轴的对称△A1B1C1;(2)写出对称点A1、B1、C1的坐标;(3)在y轴上找一点Q,使QA+QB最小.21.(1)如图,在△ABC中,∠A=40°,∠B=70°,CD是AB边上的高,CE是∠ACB的平分线,DF⊥CE于F,求∠CDF的度数.(2)计算:(-x)2•x3•(-2y)3+(2xy)2•(-x)3•y22.如图:一次函数y=-x+3的图象与坐标轴交于A、B两点,点P是函数y=-x+3(0<x<4)图象上任意一点,过点P作PM⊥y轴于点M,连接OP.(1)当AP为何值时,△OPM的面积最大?并求出最大值;(2)当△BOP为等腰三角形时,试确定点P的坐标.答案和解析1.【答案】B【解析】解:A、12+22≠22,不符合勾股定理的逆定理,不能构成直角三角形;B、12+()2=22,符合勾股定理的逆定理,能构成直角三角形;C、42+52≠62,不符合勾股定理的逆定理,不能构成直角三角形;D、12+12≠()2,不符合勾股定理的逆定理,不能构成直角三角形.故选:B.根据勾股定理的逆定理可知,当三角形中三边的关系为:a2+b2=c2时,则三角形为直角三角形.此题考查的是勾股定理的逆定理:已知三角形ABC的三边满足:a2+b2=c2时,则三角形ABC是直角三角形.解答时,只需看两较小数的平方和是否等于最大数的平方.2.【答案】D【解析】解:点M在第二象限,那么横坐标小于0,是-1,纵坐标大于0,是2,即M点的坐标为(-1,2);又因为点N在第一象限,那么它的横,纵坐标都大于0,即N的坐标为(2,1).故选:D.先判断象限内点的坐标的符号特点,进而找相应坐标.本题主要考查了平面直角坐标系中各个象限内点的符号,注意先找横坐标,再找纵坐标.3.【答案】A【解析】解:∵S甲2=0.24,S乙2=0.42,S丙2=0.56,S丁2=0.75,,∴S甲2<S乙2<S丙2<S丁2,∴成绩最稳定的是甲,故选:A.根据方差的意义求解可得.本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.4.【答案】B【解析】解:∵4<7<9,∴2<<3,∵a<<b,且a与b是两个连续整数,∴a=2,b=3.故选:B.根据4<7<9,结合a<<b,且a与b为连续整数,即可得出a、b的值.本题考查了估算无理数的大小,解题的关键是找出2<<3.5.【答案】C【解析】解:∵a∥b,∴∠2=∠3,又∵∠2+∠1=180°,∠3+∠4=180°,∴∠1=∠4,故选:C.依据平行线的性质,即可得到∠2=∠3,再根据∠2+∠1=180°,∠3+∠4=180°,即可得到∠1=∠4.本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.6.【答案】C【解析】解:3=12+3,∵,∴,∴,即3的运算结果应在16到17之间.故选:C.先进行二次根式的运算,然后再进行估算.本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.7.【答案】D【解析】【分析】本题考查了一次函数图象与系数的关系、正(反)比例函数的性质以及二次函数的性质,逐一分析四个选项中函数图象经过的象限是解题的关键.A、由k=-2,可得出正比例函数y=-2x的图象经过第二、四象限,A不符合题意;B、由k=-2、b=-1,可得出一次函数y=-2x-1的图象经过第二、三、四象限,B不符合题意;C、由k=-2,可得出反比例函数y=-的图象在第二、四象限,C不符合题意;D、由a=1、b=0、c=2,可得出二次函数y=x2+2的图象经过第一、二象限,D符合题意.此题得解.【解答】解:A、∵k=-2,∴正比例函数y=-2x的图象经过第二、四象限,A不符合题意;B、∵k=-2,b=-1,∴一次函数y=-2x-1的图象经过第二、三、四象限,B不符合题意;C、∵k=-2,∴反比例函数y=-的图象在第二、四象限,C不符合题意;D、∵a=1,b=0,c=2,∴二次函数y=x2+2的图象经过第一、二象限,D符合题意.故选:D.8.【答案】B【解析】解:①实数与数轴上的点一一对应,正确,不符合题意;②无限不循环小数就是无理数,故原命题错误,符合题意;③三角形的一个外角大于任何一个和它不相邻的内角,正确,不符合题意;④两条平行直线被第三条直线所截,同旁内角互补,故原命题错误,符合题意.错误的有2个,故选:B.利用实数的性质、无理数的定义、三角形的外角的性质及平行线的性质分别判断后即可确定正确的选项.考查了命题与定理的知识,解题的关键是了解实数的性质、无理数的定义、三角形的外角的性质及平行线的性质,难度不大.9.【答案】C【解析】【分析】延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.本题考查了勾股定理的应用,作出辅助线构造出正方形是解题的关键.【解答】解:如图,延长AB交KF于点O,延长AC交GM于点P,易得△CAB≌△BOF≌△FLG,∴AB=OF=3,AC=OB=FL=4,∴OA=OL=3+4=7,∵∠CAB=∠BOF=∠L=90°,所以四边形AOLP是正方形,OL=7,所以KL=3+7=10,LM=4+7=11,因此矩形KLMJ的面积为10×11=110.故选:C.10.【答案】B【解析】解:由图象可知,甲的速度保持不变,故选项A正确;甲的速度为:800÷180=4米/秒,乙的平均速度为:800÷220=3米/秒,∵4>3,∴乙的平均速度比甲的平均速度小,故选项B错误;在起跑后第180秒时,甲到达终点,乙离终点还有一段距离,他们不相遇,故选项C正确;在起跑后第50秒时,乙在甲的前面,故选项D正确;故选:B.根据题意和函数图象中的数据可以判断各个选项中的说法是否正确,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.11.【答案】-【解析】解:∵代数式+1取值最小时,则取到最小,∴2a+1=0,解得:a=-.故答案为:-.根据二次根式的性质代数式+1取值最小,则取到最小,进而求出即可.此题主要考查了二次根式的定义,关键是掌握二次根式中的被开方数为非负数.12.【答案】y=3x+3【解析】解:将直线y=3x向上平移3个单位,得到直线:y=3x+3.故答案为y=3x+3.利用一次函数“上加下减”的平移规律即可得出答案.此题主要考查了一次函图象与平移变换,正确记忆平移规律“左加右减,上加下减”是解题关键.13.【答案】【解析】解:∵直线AB:y=kx+b与直线CD:y=mx+n交于点E(3,1),则关于x的二元一次方程组的解为,故答案为:.利用方程组的解就是两个相应的一次函数图象的交点坐标进行判断.本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.14.【答案】(-2,0)(2,0)【解析】解:∵点A(-2a,a-1)在x轴上,∴a-1=0,解得:a=1,∴A(-2,0),∴A点关于y轴的对称点的坐标(2,0),故答案为:(-2,0)、(2,0).根据x轴上的坐标特点:纵坐标为0可得a-1=0,解出a的值,进而可得A点坐标,再根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.此题主要考查了坐标轴上点的坐标特点,以及关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.15.【答案】底角为60°且上底与两腰相等的等腰梯形【解析】试题分析:利用等腰梯形的性质求解.从图得到,梯形的上底与两腰相等,上底角为360°÷3=120°,∴下底角=60°,∴梯形符合底角为60°且上底与两腰相等的等腰梯形条件时,可以经过旋转和翻折形成图案(2).16.【答案】解:原式=-2+2-2-2(-1)×1=-2+2-2-2+2-2.【解析】分别进行负整数指数幂、二次根式的化简、绝对值的化简、零指数幂等运算,然后合并.本题考查了二次根式的混合运算,涉及了负整数指数幂、二次根式的化简、绝对值的化简、零指数幂等知识掌握运算法则是解答本题关键.17.【答案】解:(1)36;9;(2)90°;(3)估计该校学生中选择“文学社团”的人数是3000×=300(人).【解析】【分析】本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.(1)根据体育社团的人数是72人,所占的百分比是40%即可求得调查的总人数,然后利用百分比的意义求得a和b的值;(2)利用360°乘以对应的百分比求解;(3)用样本估计总体,利用总人数乘以对应的百分比求解.【解答】解:(1)调查的总人数是72÷40%=180(人),则a=180×20%=36(人),则b=180-18-45-72-36=9(人).故答案是36;9;(2)书画社团”所对应的扇形圆心角度数是360°×=90°.故答案为90°;(3)见答案.18.【答案】解:设水池的深度为x尺,由题意得:x2+52=(x+1)2,解得:x=12,则x+1=13,答:水深12尺,芦苇长13尺.【解析】首先设水池的深度为x尺,则这根芦苇的长度为(x+1)尺,根据勾股定理可得方程x2+52=(x+1)2,再解即可.此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.19.【答案】解:(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意得:,解得:.答:商场购进甲种节能灯40只,购进乙种节能灯60只.(2)40×(40-30)+60×(50-35)=1300(元).答:商场共计获利1300元.【解析】(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据幸福商场用3300元购进甲、乙两种节能灯共计100只,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据总利润=每只甲种节能灯的利润×购进数量+每只乙种节能灯的利润×购进数量,即可求出结论.本题考查二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.20.【答案】解:(1)如图,△A1B1C1即为所求;(2)由图可得,A1(-1,2)B1(-3,1)C1(2,-1);(3)如图,Q点就是所求的点.【解析】(1)根据轴对称的性质,作出△ABC关于y轴的对称△A1B1C1;(2)根据△A1B1C1各顶点的位置,写出其坐标即可;(3)连接A1B,交y轴于点Q,则QA+QB最小.本题主要考查了轴对称的性质以及轴对称变换的运用,解决问题时注意:凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.21.【答案】解:(1)∵∠A=40°,∠B=70°,∴∠ACB=180°-40°-70°=70°.∵CE是∠ACB的平分线,∴∠BCE=∠ACB=×70°=35°.∵CD⊥AB即∠CDB=90°,∴∠BCD=180°-90°-70°=20°,∴∠DCE=∠BCE-∠BCD=35°-20°=15°.∵DF⊥CE即∠DFC=90°,∴∠CDF=180°-90°-15°=75°;(2)(-x)2•x3•(-2y)3+(2xy)2•(-x)3•y=x2•x3•(-8y3)+4x2y2•(-x3)•y=-8x5y3-4x5y3=-12x5y3.【解析】(1)由DF⊥CE可知,要求∠CDF的度数,只需求出∠FCD,只需求出∠BCE和∠BCD即可;(2)根据整式的混合运算的法则计算即可.本题主要考查了三角形的内角和定理、直角三角形的两锐角互余、角平分线的定义等知识,在三角形中求角度时,通常需利用三角形内角和定理和外角的性质,还考查了整式的混合运算.22.【答案】解:(1)令点P的坐标为P(x0,y0)∵PM⊥y轴∴S△OPM=OM•PM=将代入得∴当x0=2时,△OPM的面积有最大值S max=,即:PM=2,∴PM∥OB,∴即∵直线AB分别交两坐标轴于点A、B,∴A(0,3),B(4,0),∴OA=3,OB=4,∴AB=5,∴AP=;(2)①在△BOP中,当BO=BP时BP=BO=4,AP=1∵P1M∥OB,∴∴,将代入代入中,得∴P1(,);②在△BOP中,当OP=BP时,如图,过点P作PM⊥OB于点N∵OP=BP,∴ON=将ON=2代入中得,∴点P的坐标为P(2,),即:点P的坐标为(,)或(2,).【解析】(1)先设出点P的坐标,进而得出点P的纵横坐标的关系,进而建立△OPM的面积与点P的横坐标的函数关系式,即可得出结论;(2)分两种情况,利用等腰三角形的两边相等建立方程即可得出结论.此题是一次函数综合题,主要考查了三角形的面积公式,等腰三角形的性质,用方程的思想和函数思想解决问题是解本题的关键.。
初二数学试题答案及解析1.如图,在中,,,则的一条中线是,一条角平分线是 .【答案】、【解析】根据三角形的中线、角平分线的定义即可作出判断.由题意得的一条中线是,一条角平分线是.【考点】三角形中的特殊线段点评:本题属于基础应用题,只需学生熟练掌握三角形的中线、角平分线的定义,即可完成.2.计算下列各式(每题4分,共12分)(1) (2)(3)【答案】见解析.【解析】(1)原式=.(2)原式=.(3)原式=.3..实数a、b在数轴上的对应位置如图所示,则+|b|的值为▲【答案】11【解析】略4.【答案】D【解析】略5.求下列函数中自变量的取值范围.(1)y=-3x+5;(2);(3);(4);(5).【答案】(1)x的取值范围为一切实数.(2)解不等式x-4≠0,得x≠4,故x的取值范围为x≠4.(3)解不等式2x-4≥0,得x≥2,故x的取值范围为x≥2.(4)解不等式x+3>0,得x>-3,故x的取值范围为x>-3.(5)解不等式组得1≤x≤3,故x的取值范围为1≤x≤3.【解析】(1)等式右边是整式,x应为全体实数;(2)等式右边是分式,应让分母不为0;(3)等式右边是二次根式,应让被开方数为非负数;(4)等式右边既含二次根式又是分式的形式,除被开方数x+3≥0外,还应x+3≠0;(5)是两个二次根式的和,应同时满足让两个被开方数为非负数.6.在同一平面直角坐标系中画出下列函数的图象.(1)y=2x与y=2x+3;(2)y=2x+1与.【答案】(1)列表:x…01…(2)列表:描点、连线,图象如图②所示.【解析】所给函数的自变量x可以是任意实数,列表表示两组对应值,描出两个点,连成直线即可.7.用反证法证明“在直角三角形中,至少有一个锐角不大于45º”,应先假设这个直角三角形中()A.有一个锐角小于45ºB.每一个锐角都小于45ºC.有一个锐角大于45ºD.每一个锐角都大于45º【答案】D.【解析】用反证法证明的第一步是作出与原命题相矛盾的假设,因此用反证法证明“在直角三角形中,至少有一个锐角不大于45º”,应先假设这个直角三角形中的每一个锐角都大于45º,故答案选D.【考点】反证法.8.小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍.小颖在小亮出发后50min 才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m,图中的折线表示小亮在整个行走过程中y与x的函数关系.(1)小亮行走的总路程是 m,他途中休息了 min;(2)①当50≤x≤80时,求y与x的函数关系式;②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?【答案】(1)3600,20;(2)①当50≤x≤80时,y=55x﹣800.②当小颖到达缆车终点时,小亮离缆车终点的路程是1100米.【解析】(1)纵坐标为小亮行走的路程,其休息的时间为纵坐标不随x的值的增加而增加;(2)根据当50≤x≤80时函数图象经过的两点的坐标,利用待定系数法求得函数的解析式即可.试题解析:(1)3600,20;(2)①当50≤x≤80时,设y与x的函数关系式为y=kx+b,根据题意,当x=50时,y=1950;当x=80时,y=3600,∴,解得:,∴函数关系式为:y=55x﹣800.②缆车到山顶的线路长为3600÷2=1800米,缆车到达终点所需时间为1800÷180=10分钟小颖到达缆车终点时,小亮行走的时间为10+50=60分钟,把x=60代入y=55x﹣800,得y=55×60﹣800=2500.∴当小颖到达缆车终点时,小亮离缆车终点的路程是3600﹣2500=1100米.【考点】一次函数的应用.9.为表彰在“深圳读书月”活动中表现积极的同学,某班级决定购买文具盒与钢笔作为奖品.已知3个文具盒、2支钢笔共需72元;1个文具盒、2支钢笔共需44元.(1)每个文具盒、每支钢笔各多少元?(2)时逢“元旦”,商店举行优惠促销活动,具体办法如下:文具盒九折,钢笔10支以上超出部分八折.设买x1个文具盒需要y1元,买x2支钢笔需要y2元,求y1、y2关于x的函数关系式,并写出自变量的取值范围.【答案】(1)每个文具盒为14元,每支钢笔为15元.(2)y1=12.6x,当x≤10时,y2=15x,当x>10,y2=12x+30.【解析】(1)设每个文具盒x元,每支钢笔y元,根据3个文具盒、2支钢笔共需72元;1个文具盒、2支钢笔本共需44元,列出方程组解答即可;(2)根据题意分别得出y1、y2与x的函数关系.试题解析:(1)设每个文具盒为x元,每支钢笔为y元,依题意得,解得:.答:每个文具盒为14元,每支钢笔为15元.(2)y1=14×0.9x,即y1=12.6x,当x≤10时,y2=15x,当x>10,y2=15×10+(x-10)×15×0.8=12x+30.【考点】1.二元一次方程组的应用;2.根据实际问题列一次函数关系式.10.菱形的两条对角线长分别是6cm和8cm,则菱形的面积 cm2.【答案】24cm2.【解析】根据菱形的面积公式:两对角线乘积的一半,即可得得菱形的面积为cm2.【考点】菱形的面积公式.11.如图在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,求DF的长.【答案】4.5.【解析】由等腰三角形三线合一的性质可得AD⊥BC,∠BAD=∠CAD,再求出∠DAE=∠EAB=30°,然后由平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F,再由等角对等边求出AD=DF,然后求出∠B=30°,由直角三角形30°角所对的直角边等于斜边的一半解答.试题解析:解:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=∠BAD=×60°=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°﹣60°=30°,∴AD=AB=×9=4.5,∴DF=4.5.【考点】1.等腰三角形的性质;2.含30度角的直角三角形.12.分解因式:= .【答案】【解析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.即3x2-6x+3=3(x2-2x+1)=3(x-1)2.【考点】因式分解13.点M(1,2)关于x轴对称的点的坐标为()A.(-1,-2)B.(-1,2)C.(1,-2)D.(2,-1)【答案】C.【解析】点M(1,2)关于x轴对称的点的坐标为:(1,-2)故选C.【考点】关于x轴、y轴对称的点的坐标.14.当时,.【答案】4【解析】根据的性质进行化简.∵1≤x<5,∴x-1≥0,x-5<0,∴原式=x-1+5-x=4.【考点】二次根式的化简15.(2015•成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?【答案】(1)120件;(2)150元【解析】(1)可设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,根据第二批这种衬衫单价贵了10元,列出方程求解即可;(2)设每件衬衫的标价y元,求出利润表达式,然后列不等式解答.解:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有+10=,解得x=120,经检验,x=120是原方程的解,且符合题意.答:该商家购进的第一批衬衫是120件.(2)3x=3×120=360,设每件衬衫的标价y元,依题意有(360﹣50)y+50×0.8y≥(13200+28800)×(1+25%),解得y≥150.答:每件衬衫的标价至少是150元.【考点】分式方程的应用;一元一次不等式的应用.16.设的小数部分为b,那么(4+b)b的值是()A.1B.是一个有理数C.3D.无法确定【答案】C【解析】首先确定的整数部分,然后即可确定小数部分b,由题意可知b=﹣2,把它代入所求式子计算即可.解:∵的小数部分为b,∴b=﹣2,把b=﹣2代入式子(4+b)b中,原式=(4+b)b=(4+﹣2)×(﹣2)=3.故选C.【考点】估算无理数的大小.17.计算:(﹣1)101+(π﹣3)0+()﹣1﹣|1﹣|【答案】3﹣.【解析】根据零指数幂、负整数指数幂以及绝对值进行计算即可.解:原式=﹣1+1+2+1﹣=3﹣.【考点】实数的运算;零指数幂;负整数指数幂.18.去年我市有近4千名考生参加中考,为了解这些考生的数学成绩,从中抽取100名考生的数学成绩进行统计分析,以下说法正确的是()A.这100名考生是总体的一个样本B.近4千名考生是总体C.每位考生的数学成绩是个体D.100名学生是样本容量【答案】C【解析】试题分析:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.解:A、这100名考生的数学成绩是总体的一个样本,故选项错误;B、近4千名考生的数学成绩是总体,故选项错误;C、正确;D、样本容量是:100,选项错误;故选C.【考点】总体、个体、样本、样本容量.19.解分式方程+=3时,去分母后变形正确的是()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3D.2﹣(x+2)=3(x﹣1)【答案】D【解析】分式方程去分母转化为整式方程,即可作出判断.解:方程变形得:﹣=3,去分母得:2﹣(x+2)=3(x﹣1),故选D20.已知点A(2,y1),B(1,y2)在反比例函数y=(k<0)的图象上,则y1y2.(选填“>”、“=”、“<”)【答案】y1>y2【解析】解:∵k<0,∴反比例函数图象的两个分支在第二四象限,且在每个象限内y随x的增大而增大,又∵A(2,y1),B(1,y2)在反比例函数y=(k<0)的图象上,且2>1>0,∴y1>y2.故答案为y1>y2.【点评】本题考查利用反比例函数的增减性质判断图象上点的坐标特征.21.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为()A.x>1B.x>2C.x<1D.x<2【答案】C【解析】求使y1<y2的x的取值范围,即求对于相同的x的取值,直线y1落在直线y2的下方时,对应的x的取值范围.直接观察图象,可得出结果.解:由图象可知,当x<1时,直线y1落在直线y2的下方,故使y1<y2的x的取值范围是:x<1.故选C.点评:本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.22.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数B.中位数C.平均数D.方差【答案】B【解析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:B.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.23.如果▱ABCD的周长为28cm,且AB:BC=2:5,那么AD= cm,CD= cm.【答案】4,10.【解析】由▱ABCD的周长为28cm,根据平行四边形的性质,即可求得AB+BC=14cm,又由AB:BC=2:5,即可求得答案.解:∵▱ABCD的周长为28cm,∴AB+BC=14cm,∵AB:BC=2:5,∴CD=AB=×14=4(cm),AD=BC=×14=10(cm).故答案为:4,10.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握平行四边形的对边相等的性质的应用是解此题的关键.24.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC沿x轴翻折后再沿x轴向右平移1个单位,在图中画出平移后的△AB1C1。
定义新运算(人教版)一、单选题(共8道,每道7分)1.对任意四个有理数a,b,c,d定义新运算:,已知,则x=( )A.-9B.-3C.0D.3答案:D解题思路:试题难度:三颗星知识点:定义新运算2.现定义一种新运算:,对于任意整数,有,则的值为( )A.21B.22C.23D.26答案:B解题思路:试题难度:三颗星知识点:定义新运算3.对于有理数定义新运算:,其中为常数.已知,,则的值为( )A.45B.-37C.25D.41答案:D解题思路:试题难度:三颗星知识点:定义新运算4.我们知道,一元二次方程没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“”,使其满足(即方程有一个根为).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有,,,,从而对于任意正整数,我们可以得到,同理可得,,.那么的值为( )A.0B.1C.-1D.答案:D解题思路:试题难度:三颗星知识点:定义新运算5.对于任意的自然数和,定义新运算:,其中是一个确定的自然数.若,则( )A.1B.2C.3D.8答案:C解题思路:试题难度:三颗星知识点:定义新运算6.在实数的原有运算法则中,我们补充定义“新运算”如下:当时,,当时,则.当时,的最大值为( )A.-1B.0C.1D.2答案:B解题思路:试题难度:三颗星知识点:定义新运算7.对于任意不相等的两个非负实数和,定义一种新的运算,则下列关于这种运算的几个结论:①;②;③;④不存在这样的实数和,使得.其中正确结论的个数是( )A.1个B.2个C.3个D.4个答案:C解题思路:试题难度:三颗星知识点:定义新运算8.定义新运算△为:a△b=ab+2a+2b+2,若x△2△2△2△2△2=5118,则x=( )A.1B.2C.3D.无法确定答案:C解题思路:试题难度:三颗星知识点:定义新运算二、填空题(共7道,每道6分)9.定义一种新运算:,利用这种算法计算____.答案:8解题思路:试题难度:知识点:定义新运算10.定义新运算:,,请计算:(39*12)□3=____.答案:36解题思路:试题难度:知识点:定义新运算11.定义一种新运算“△”,其运算规则是.已知,则的值是____.答案:2解题思路:试题难度:知识点:定义新运算12.规定一种新的运算:,则4*(3*2)的值为____.答案:3解题思路:试题难度:知识点:定义新运算13.定义运算“*”的运算法则是,则(2*6)*8的值为____.答案:6解题思路:试题难度:知识点:定义新运算14.在有理数的原有运算法则中,我们补充定义新运算“※”如下:当时,;当时,,则当时,的值为____.答案:12解题思路:试题难度:知识点:定义新运算15.若一个正整数是3的倍数,将它的各个数字分别立方求和,称为第一次运算;得到一个新数,再将新数的各个数字分别立方求和,称为第二次运算;重复上述运算若干次,你会发现最后这个数将一成不变,称这个数为“魔”数.若现有一个3的倍数是9,则它的第三次运算结果是____,这个“魔”数是____.答案:513, 153解题思路:试题难度:知识点:定义新运算。
八年级数学测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. πC. √2D. 0.33333…(循环小数)答案:C2. 已知a > 0,b < 0,c < 0,下列不等式成立的是:A. a + b < 0B. a - c > 0C. b - c < 0D. a × b < 0答案:D3. 若x² + 5x + 6 = 0,下列哪个是方程的解?A. x = -1B. x = -6C. x = -2 或 x = -3D. x = 2 或 x = 3答案:C4. 下列哪个是二次根式?A. √3x²C. √xD. √x²答案:B5. 函数y = 3x + 5的斜率是:A. 3B. 5C. -3D. -5答案:A6. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 8答案:A7. 已知一个数列1, 3, 5, 7, ...,这个数列的第10项是:A. 17B. 19C. 21D. 23答案:B8. 下列哪个是完全平方数?B. 25C. 27D. 29答案:B9. 一个圆的半径是5,那么它的周长是:A. 10πB. 20πC. 30πD. 40π答案:B10. 一个长方体的长、宽、高分别是2, 3, 4,它的体积是:A. 24B. 12C. 36D. 48答案:A二、填空题(每题4分,共20分)11. 一个数的平方根是4,这个数是________。
答案:1612. 一个数的相反数是-7,这个数是________。
答案:713. 一个数的绝对值是5,这个数可能是________或________。
答案:5 或 -514. 一个二次方程的一般形式是________。
答案:ax² + bx + c = 0(a≠0)15. 一个正数的倒数是1/8,这个正数是________。
一、选择题1. 答案:B。
解析:勾股定理的公式是a² + b² = c²,其中c是斜边,a和b是两条直角边。
2. 答案:C。
解析:在等腰三角形中,底角相等,顶角为180度减去底角的度数。
3. 答案:A。
解析:正比例函数的图像是一条通过原点的直线。
4. 答案:D。
解析:一次函数的图像是一条直线,斜率k决定了直线的倾斜程度。
5. 答案:B。
解析:平行四边形的对边相等,对角线互相平分。
二、填空题6. 答案:-2。
解析:二次函数的顶点公式为(-b/2a, f(-b/2a)),将a=1, b=3代入计算得到顶点坐标为(-3/2, -1)。
7. 答案:2。
解析:三角形的外角等于不相邻的两个内角之和。
8. 答案:π。
解析:圆的周长公式为C=2πr,其中r是半径。
9. 答案:3。
解析:等差数列的通项公式为an=a1+(n-1)d,其中a1是首项,d是公差,n是项数。
10. 答案:9。
解析:勾股定理的应用,根据题目条件,a² + b² = c²,代入a=3, b=4计算得到c=5。
三、解答题11. 解答:(1)由题意知,正方形的边长为a,则对角线长度为a√2。
根据题目条件,对角线长度为8,所以a√2=8,解得a=8/√2=4√2。
(2)正方形的面积为边长的平方,所以面积为(4√2)²=32。
12. 解答:(1)由题意知,梯形的上底为a,下底为b,高为h。
根据题目条件,梯形的中位线为m=(a+b)/2,所以m=5。
(2)梯形的面积公式为S=(a+b)×h/2,代入m=5和h=4计算得到S=(5+5)×4/2=20。
13. 解答:(1)由题意知,直角三角形的两条直角边分别为a和b,斜边为c。
根据题目条件,a=3,b=4,代入勾股定理计算得到c=5。
(2)直角三角形的面积公式为S=1/2×a×b,代入a=3和b=4计算得到S=1/2×3×4=6。
数学测试题及答案八年级一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的平方等于它本身,这个数是:A. 0B. 1C. -1D. 0和1答案:D3. 计算下列哪个表达式的结果等于9?A. 3 * 3B. 2 * 4 + 1C. 5 - 4D. 6 / 2答案:A4. 一个等腰三角形的两个底角相等,如果一个底角是40度,那么顶角的度数是:A. 40度B. 100度C. 140度D. 160度答案:B5. 下列哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 所有选项答案:B6. 一个数的绝对值是5,这个数可以是:A. 5B. -5C. 5或-5D. 0答案:C7. 一个圆的半径是5厘米,那么它的直径是:A. 10厘米B. 20厘米C. 25厘米D. 15厘米答案:A8. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0、1和-1答案:D9. 计算下列哪个表达式的结果等于-8?A. 2 * (-4)B. (-2) * 4C. -2 * (-4)D. 4 * (-2)答案:A10. 一个直角三角形的两个锐角分别是30度和60度,那么斜边的长度是:A. 2倍的较短直角边B. 3倍的较短直角边C. 4倍的较短直角边D. 5倍的较短直角边答案:A二、填空题(每题4分,共20分)1. 一个数的相反数是-8,那么这个数是______。
答案:82. 如果一个数的平方等于36,那么这个数可以是______。
答案:±63. 一个三角形的内角和等于______度。
答案:1804. 一个数的立方根是2,那么这个数是______。
答案:85. 一个数除以它本身等于______。
答案:1(非零数)三、解答题(每题10分,共50分)1. 解方程:2x - 3 = 5答案:x = 42. 计算:(3x - 2)(x + 4) = 0,求x的值。
一、选择题(每题4分,共20分)1. 下列各数中,绝对值最小的是()A. -3B. 0C. 2D. -5答案:B2. 已知 a < b,则下列不等式中正确的是()A. a + 1 < b + 1B. a - 1 > b - 1C. a × 2 < b × 2D. a ÷ 2 > b ÷ 2答案:A3. 下列函数中,自变量x的取值范围正确的是()A. y = √(x - 2)B. y = √(2x + 1)C. y = √(x^2 - 1)D. y = √(x^2)答案:C4. 下列图形中,面积最大的是()A. 正方形,边长为2B. 正方形,边长为3C. 长方形,长为4,宽为2D. 长方形,长为5,宽为1答案:B5. 已知等腰三角形的底边长为6,腰长为8,则该三角形的面积是()A. 12B. 24C. 36D. 48答案:C二、填空题(每题5分,共25分)6. 若 |a| = 5,则 a 的值为 _______ 或 _______。
答案:5 或 -57. 若 a + b = 10,且 a - b = 2,则 a 的值为 _______。
答案:68. 已知函数 y = 2x - 3,当 x = 4 时,y 的值为 _______。
答案:59. 下列数中,属于有理数的是 _______。
答案:0.5 或 -310. 下列图形中,属于圆的是 _______。
答案:① 或④三、解答题(每题10分,共30分)11. 解下列方程:(1) 3x - 5 = 2x + 4(2) 2(x - 3) = 5x + 1答案:(1) x = 9(2) x = -112. 已知等腰三角形底边长为10,腰长为13,求该三角形的面积。
答案:6513. 已知一次函数 y = kx + b,当 x = 1 时,y = 3;当 x = 2 时,y = 5,求该函数的解析式。
北师大版八年级上册数学书习题答案
做北师大版八年级数学上册的课本习题如上阶尽管费力,却一步比一步高。
小编整理了关于北师大版八年级上册数学书习题的答案,希望对大家有帮助!
北师大版八年级上册数学书习题答案(一)
第31页练习
北师大版八年级上册数学书习题答案(二)
第34页练习
1.解:(1)因为3.6²<13.6<3.7^2,所以3.6<√13.6<3.7.又因为3.68^2<13.6<3.63^2,所以3.68<√13.6<3.69,所以√13.6 的估算值是3.7.
(2)因为9³<800<10^3所以9<∛800<10.又因为9.2^3<800<9.3^3,所以9.2<∛800<9.3.所以∛800 的估算值是9.
2.解:因为2.5²=6.25,所以√6<√6.25,所以√6<2.5.
北师大版八年级上册数学书习题答案(三)
第39页练习
1.解:(1)错误.带根号的数不一定是无理数,如√4=
2.
(2)正确.
(3)错误.因为数轴上的每一个点都表示一个实数.
2.解(1)-√7,1/√7,√7 (2)2,-1/2,2 (3)-7,1/7,7
3.解:如图2-6-5所示,点A表示√10.。
5.(2014•湖州)数据﹣2,﹣1,0,1,2的方差是()A.0 B.C.2D.4分析:先求出这组数据的平均数,再根据方差的公式进行计算即可.解:∵数据﹣2,﹣1,0,1,2的平均数是:(﹣2﹣1+0+1+2)÷5=0,∴数据﹣2,﹣1,0,1,2的方差是:[(﹣2)2+(﹣1)2+02+12+22]=2.故选C.点评:本题考查了方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.10.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.分析:分别构造出平行四边形和三角形,根据平行四边形的性质和全等三角形的性质进行比较,即可判断.解:A选项延长AC、BE交于S,∵∠CAE=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即乙走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B选项延长AF、BH交于S1,作FK∥GH,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB,又∵AS+BS<AS2+BS2,故选D.点评:本题考查了平行线的判定,平行四边形的性质和判定的应用,注意:两组对边分别平行的四边形是平行四边形,平行四边形的对边相等.二、填空题(共6小题,每小题4分,共24分)12.(2014•湖州)如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是.分析:根据从上面看得到的图形是俯视图,可得俯视图,根据矩形的面积公式,可得答案.解:从上面看三个正方形组成的矩形,矩形的面积为1×3=3,故答案为:3.点评:本题考查了简单组合体的三视图,先确定俯视图,再求面积.14.(2014•湖州)下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况,记该月A市和B市日平均气温是8℃的天数分别为a天和b天,则a+b=.分析:根据折线图即可求得a、b的值,从而求得代数式的值.解:根据图表可得:a=10,b=2,则a+b=10+2=12.故答案是:12.点评:本题考查读频数分布折线图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.16.(2014•湖州)已知当x1=a,x2=b,x3=c时,二次函数y=x2+mx对应的函数值分别为y1,y2,y3,若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c时,都有y1<y2<y3,则实数m的取值范围是.分析:根据三角形的任意两边之和大于第三边判断出a最小为2,再根据二次函数的增减性和对称性判断出对称轴在2、3之间偏向2,即不大于2.5,然后列出不等式求解即可.解:∵正整数a,b,c恰好是一个三角形的三边长,且a<b<c,∴a最小是2,∵y1<y2<y3,∴﹣<2.5,解得m>﹣.故答案为:m>﹣.点评:本题考查了二次函数图象上点的坐标特征,三角形的三边关系,判断出a最小可以取2以及对称轴的位置是解题的关键.三、解答题(共8小题,共66分)20.(2014•湖州)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.分析:(1)根据待定系数法,可得答案;(2)根据三角形的面积公式,可得答案.解:(1)把A(2,5)分别代入y=和y=x+b,得,解得k=10b=3;(2)作AC⊥x轴与点C,,由(1)得直线AB的解析式为y=x+3,∴点B的坐标为(﹣3,0),OB=3,点A的坐标是(2,5),∴AC=5,∴=5=.点评:本题考查了反比例函数与一次函数的交点问题,利用了待定系数法,三角形的面积公式.21.(2014•湖州)已知2014年3月份在某医院出生的20名新生婴儿的体重如下(单位:kg)4.7 2.9 3.2 3.5 3.8 3.4 2.8 3.3 4.0 4.53.64.8 4.3 3.6 3.4 3.5 3.6 3.5 3.7 3.7(1)求这组数据的极差;(2)若以0.4kg为组距,对这组数据进行分组,制作了如下的“某医院2014年3月份20名新生婴儿体重的频数分布表”(部分空格未填),请在频数分布表的空格中填写相关的量(温馨提示:请在答题卷的对应位置填写,填写在试题卷上无效)(3)经检测,这20名婴儿的血型的扇形统计图如图所示(不完整),求:①这20名婴儿中是A型血的人数;②表示O型血的扇形的圆心角度数.分析:(1)根据求极差的方法用这组数据的最大值减去最小值即可;(2)根据所给出的数据和以0.4kg为组距,分别进行分组,再找出各组的数即可;(3)①用总人数乘以A型血的人数所占的百分比即可;②用360°减去A型、B型和AB型的圆心角的度数即可求出O型血的扇形的圆心角度数.解:(1)这组数据的极差是4.8﹣2.8=2(kg);(2)根据所给出的数据填表如下:(3)①A型血的人数是:20×45%=9(人);②表示O型血的扇形的圆心角度数是360°﹣(45%+30%)×360°﹣16°=360°﹣270°﹣16°=74°;点评:此题考查了频数(率)分布表、扇形统计图以及极差的求法,读图时要全面细致,同时,解题方法要灵活多样,切忌死记硬背,要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.22.(2014•湖州)已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收元,若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.分析:(1)设y关于x的函数关系式y=kx+b,代入(50,200)、(60,260)两点求得解析式即可;(2)把y=620代入(1)求得答案即可;(3)利用水费+污水处理费=600元,列出方程解决问题,解答:解:(1)设y关于x的函数关系式y=kx+b,∵直线y=kx+b经过点(50,200),(60,260)∴解得∴y关于x的函数关系式是y=6x﹣100;(2)由图可知,当y=620时,x>50∴6x﹣100=620,解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得6x﹣100+(x﹣80)=600,化简得x2+40x﹣14000=0解得:x1=100,x2=﹣140(不合题意,舍去).答:这个企业2014年3月份的用水量是100吨.点评:此题考查一次函数的运用,一元二次方程和一元一次方程的运用,注意理解题意,结合图象,根据实际选择合理的方法解答.23.(2014•湖州)如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c (c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD.(1)若点A的坐标是(﹣4,4)①求b,c的值;②试判断四边形AOBD的形状,并说明理由;(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由.分析:(1)①将抛物线上的点的坐标代入抛物线即可求出b、c的值;②求证AD=BO和AD∥BO即可判定四边形为平行四边形;(2)根据矩形的各角为90°可以求得△ABO∽△OBC即=,再根据勾股定理可得OC=BC,AC=OC,可求得横坐标为±c,纵坐标为c.解:(1)①∵AC∥x轴,A点坐标为(﹣4,4).∴点C的坐标是(0,4)把A、C代入y═﹣x2+bx+c得,得,解得;②四边形AOBD是平行四边形;理由如下:由①得抛物线的解析式为y═﹣x2﹣4x+4,∴顶点D的坐标为(﹣2,8),过D点作DE⊥AB于点E,则DE=OC=4,AE=2,∵AC=4,∴BC=AC=2,∴AE=BC.∵AC∥x轴,∴∠AED=∠BCO=90°,∴△AED≌△BCO,∴AD=BO.∠DAE=∠BCO,∴AD∥BO,∴四边形AOBD是平行四边形.(2)存在,点A的坐标可以是(﹣2,2)或(2,2)要使四边形AOBD是矩形;则需∠AOB=∠BCO=90°,∵∠ABO=∠OBC,∴△ABO∽△OBC,∴=,又∵AB=AC+BC=3BC,∴OB=BC,∴在Rt△OBC中,根据勾股定理可得:OC=BC,AC=OC,∵C点是抛物线与y轴交点,∴OC=c,∴A点坐标为(c,c),∴顶点横坐标=c,b=c,∵将A点代入可得c=﹣+c•c+c,∴横坐标为±c,纵坐标为c即可,令c=2,∴A点坐标可以为(2,2)或者(﹣2,2).点评:本题主要考查了二次函数对称轴顶点坐标的公式,以及函数与坐标轴交点坐标的求解方法.答案:B。
答案:C。
答案:D。
答案:C,韦达定理。
答案:11答案:4答案:30答案:k≤4且k≠0答案:12答案:答案:15.如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一个交点分别为M、N,如果点A与点B,点M与点N都关于原点O成中心对称,则抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是_______________________和_________________________16.已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推…,若A1C1=2,且点A,D2,D3,…,D10都在同一直线上,则正方形A9C9C10D10的边长是__________________________。