天津河北区20XX中考试题
- 格式:docx
- 大小:11.76 KB
- 文档页数:1
2019-2020学年中考物理模拟试卷一、选择题(本题包括20个小题)1.我国未来的航母将采用自行研制的电磁弹射器.电磁弹射器的弹射车与飞机前轮连接,并处于强磁场中,当弹射车内的导体通以强电流时,舰载机受到强大的推力而快速起飞.电磁弹射器工作原理与下列设备或用电器工作原理一致的是()A.B.C.D.2.下列操作说明声音的相关知识正确的是()A.吹一细管,并将细管不断剪短,可以验证影响声音响度的因素B.将一个正在发声的音叉接近面颊,感到发麻,可以说明声音能够传递能量C.飞机旁边的工作人员佩戴耳罩是在传播过程中减弱噪声D.汽车上倒车雷达是根据电磁波传递信息,而轮船上的声呐是利用超声导航3.如图,用大小相等的拉力F,分别沿斜面和水平面拉木箱,拉力方向和运动方向始终一致,运动时间t ab>t cd,运动距离s ab=s cd,比较两种情况下拉力所做的功和功率()A.ab段做功较多B.ab段与cd段的功一样多C.ab段功率较大D.ab段与cd段的功率一样大4.如图所示的四个电路图中,能实现L1既能单独发光,又能与L2同时发光的是A.B.C.D.5.如图所示的家庭电路中,闭合开关后灯泡不亮.用试电笔检测插座的两孔,发现只有插入右孔时氖管才发光.用试电笔检测A点氖管发光,检测B点氖管不发光.发生这一现象的原因可能是A.灯泡短路B.灯丝断了C.开关接触不良D.插座短路6.小丽发现家里的油烟机上有照明灯和换气扇,使用时,有时需要各自独立工作,有时需率同时工作,如图所示的电路中,符合上述要求的是A.B.C.D.7.碳化硅纤维是一种陶瓷纤维类材料,具有高强度、耐高温、抗腐蚀、易加工编织等特性,用做增强材料时,常与碳纤维、玻璃纤维、金属铝复合,具有耐磨损、质轻、耐疲劳等特性。
下列可以直接用碳化硅纤维来制作的是A.喷气式飞机的刹车片B.体育用品C.过滤高温气体的滤布D.汽车部件8.如图电路,闭合开关S和S1小灯泡发光,此时若再闭合开关S2、S3、S4忽略导线分压,则下列说法中错误的是A.电路中的总功率将会增大B.小灯泡两端的电压将会小C.电路中的总电阻将会减小D.电路中干路电流将会增大9.年幼的弟弟发现密封的面包被挤扁,总说面包变少了,哥哥却说面包没变.你认为哥哥所说的“没变”可能是指下列哪个物理量A.体积B.质量C.密度D.硬度10.如图甲所示是某同学探究电流与电压关系的电路图,开关S闭合后,将滑动变阻器的滑片P从a端移至b端,电流表和电压表的示数变化关系如图乙所示,则由此可知()A .当滑动变阻器的滑片P 从a 端移至b 端滑动时,电压表和电流表的示数都变小B .该电路的电源电压为3VC .该电路最小电功率为1.8WD .R 的阻值变化范围是0~5Ω二、填空题(本题包括9个小题)11.我国是第一个实现可燃冰试开采并获得稳定产气的国家.可燃冰的主要成份是甲烷,30.1m 可燃冰可以转化生成316m 的甲烷气体,30.1m 可燃冰在锅炉内燃烧能使1 600 kg 的水温度升高72℃,则此时水吸收的热量是______J ,锅炉的热效率是_______.()7333.610J/m , 4.210J /kg q c ⎡⎤=⨯=⨯⋅⎣⎦甲烷水℃ 12.从冰箱冷冻室里拿出的冰糕包装纸表面很快形成一些“白粉”,即小冰晶,这是空气中的水蒸气_____形成的(选填物态变化名称),它与自然界中的_____(选填“雾”、“露水”、“霜”或“河面上的冰”)成因相同.13.(2017•黔西南卷)在烈日当空的海边玩耍,你会发现沙子烫脚,而海水却是凉凉的.这是因为_________的比热容较大,当沙子和水同时接受相同的阳光照射时,__________的温度升高得更快的缘故. 14.如图所示,质量不计的弹簧竖直固定在水平面上,t =0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球接触弹簧并将弹簧压缩至最低点(形变在弹性限度内),然后又被弹起离开弹簧,上升到一定高度后又下落,如此反复.通过安装在弹簧下端的压力传感器,测出该过程中弹簧弹力F 随时间t 变化的图象如图所示,不计空气阻力.(1)在整个运动过程中,小球的机械能____(守恒/不守恒)(2)小球动能最小的时刻是____(t 1/t 2/t 3),此时是____状态(平衡/非平衡)(3)在t 2~t 3这段时间内,小球的动能____(先增大后减小/先减小后增大/一直增大/一直减小) 15.使用弹簧测力计之前,要先观察弹簧测力计的______。
天津市河北区2019-2020学年中考中招适应性测试卷数学试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下面调查中,适合采用全面调查的是()A.对南宁市市民进行“南宁地铁1号线线路”B.对你安宁市食品安全合格情况的调查C.对南宁市电视台《新闻在线》收视率的调查D.对你所在的班级同学的身高情况的调查2.(2016福建省莆田市)如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD 3.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若点A(﹣3,y1)、点B(﹣12,y1)、点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有()A.1个B.3个C.4个D.5个4.若x=-2是关于x的一元二次方程x2+32ax-a2=0的一个根,则a的值为()A.-1或4 B.-1或-4C.1或-4 D.1或45.下列四个图形中,是中心对称图形的是()A.B.C.D.6.如图,已知⊙O的半径为5,AB是⊙O的弦,AB=8,Q为AB中点,P是圆上的一点(不与A、B重合),连接PQ,则PQ的最小值为()A.1 B.2 C.3 D.87.关于x的不等式2(1)4xa x><-⎧⎨-⎩的解集为x>3,那么a的取值范围为()A.a>3 B.a<3 C.a≥3D.a≤38.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个9.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,其顶点坐标为A(﹣1,﹣3),与x轴的一个交点为B(﹣3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②不等式ax2+(b ﹣m)x+c﹣n<0的解集为﹣3<x<﹣1;③抛物线与x轴的另一个交点是(3,0);④方程ax2+bx+c+3=0有两个相等的实数根;其中正确的是()A.①③B.②③C.③④D.②④10.下列运算正确的是()A.5a+2b=5(a+b)B.a+a2=a3C.2a3•3a2=6a5D.(a3)2=a511.计算tan30°的值等于()A.B.C.D.12.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.96二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:|-3|-1=__.14.如果将“概率”的英文单词probability中的11个字母分别写在11张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母b的概率是________.15.某排水管的截面如图,已知截面圆半径OB=10cm,水面宽AB是16cm,则截面水深CD为_____.16.如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象交矩形OABC的边AB于点D,交BC于点E,且BE=2EC,若四边形ODBE的面积为8,则k=_____.17.如图,半圆O的直径AB=7,两弦AC、BD相交于点E,弦CD=72,且BD=5,则DE=_____.18.某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动,以下是根据调查结果绘制的统计图表的一部分那么,其中最喜欢足球的学生数占被调查总人数的百分比为____________%三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.20.(6分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短时,求重叠部分的面积.21.(6分)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣3,0),B(1,0),与y轴相交于(0,﹣32),顶点为P.(1)求抛物线解析式;(2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标,并求出平行四边形的面积.22.(8分)已知:如图,在平面直角坐标系中,O 为坐标原点,△OAB 的顶点A 、B 的坐标分别是A (0,5),B (3,1),过点B 画BC ⊥AB 交直线于点C ,连结AC ,以点A 为圆心,AC 为半径画弧交x 轴负半轴于点D ,连结AD 、CD .(1)求证:△ABC ≌△AOD .(2)设△ACD 的面积为,求关于的函数关系式.(3)若四边形ABCD 恰有一组对边平行,求的值.23.(8分)如图,在Rt △ABC 中,90ACB ∠=︒,CD ⊥AB 于点D ,BE ⊥AB 于点B ,BE=CD ,连接CE ,DE .(1)求证:四边形CDBE 为矩形;(2)若AC=2,1tan 2ACD ∠=,求DE 的长.24.(10分)如图,一次函数y=kx+b 的图象与反比例函数y=m x(x >0)的图象交于A (2,﹣1),B (12,n )两点,直线y=2与y 轴交于点C .(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积.25.(10分)某商人制成了一个如图所示的转盘,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,转盘停止后,若指针指向字母“A”,则收费2元,若指针指向字母“B”,则奖励3元;若指针指向字母“C”,则奖励1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?26.(12分)某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.27.(12分)在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,这些矩形的长与宽之比都为2:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点P 为AB 边上的定点,且AP=AD.求证:PD=AB.如图(2),若在“完美矩形“ABCD 的边BC 上有一动点E,当BECE的值是多少时,△PDE 的周长最小?如图(3),点Q 是边AB 上的定点,且BQ=BC.已知AD=1,在(2)的条件下连接DE 并延长交AB 的延长线于点F,连接CF,G 为CF 的中点,M、N 分别为线段QF 和CD 上的动点,且始终保持QM=CN,MN 与DF 相交于点H,请问GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】A 、对南宁市市民进行“南宁地铁1号线线路”适宜采用抽样调查方式;B 、对你安宁市食品安全合格情况的调查适宜采用抽样调查方式;C 、对南宁市电视台《新闻在线》收视率的调查适宜采用抽样调查方式;D 、对你所在的班级同学的身高情况的调查适宜采用普查方式;故选D .【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.D【解析】试题分析:对于A ,由PC ⊥OA ,PD ⊥OB 得出∠PCO=∠PDO=90°,根据AAS 判定定理可以判定△POC ≌△POD ;对于B OC=OD ,根据SAS 判定定理可以判定△POC ≌△POD ;对于C ,∠OPC=∠OPD ,根据ASA 判定定理可以判定△POC ≌△POD ;,对于D ,PC=PD ,无法判定△POC ≌△POD ,故选D . 考点:角平分线的性质;全等三角形的判定.3.B【解析】根据题意和函数的图像,可知抛物线的对称轴为直线x=-2b a=1,即b=-4a ,变形为4a+b=0,所以(1)正确;由x=-3时,y >0,可得9a+3b+c >0,可得9a+c >-3c ,故(1)正确;因为抛物线与x 轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a ,可得a+4a+c=0,即c=-5a.代入可得7a ﹣3b+1c=7a+11a-5a=14a ,由函数的图像开口向下,可知a <0,因此7a ﹣3b+1c <0,故(3)不正确;根据图像可知当x <1时,y 随x 增大而增大,当x >1时,y 随x 增大而减小,可知若点A (﹣3,y 1)、点B (﹣12,y 1)、点C (7,y 3)在该函数图象上,则y 1=y 3<y 1,故(4)不正确; 根据函数的对称性可知函数与x 轴的另一交点坐标为(5,0),所以若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 1,且x 1<x 1,则x 1<﹣1<x 1,故(5)正确.正确的共有3个.故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax 1+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 1﹣4ac >0时,抛物线与x 轴有1个交点;△=b 1﹣4ac=0时,抛物线与x 轴有1个交点;△=b 1﹣4ac <0时,抛物线与x 轴没有交点.4.C【解析】试题解析:∵x=-2是关于x 的一元二次方程22302x ax a +-=的一个根, ∴(-2)2+32a×(-2)-a 2=0,即a 2+3a-2=0, 整理,得(a+2)(a-1)=0,解得 a 1=-2,a 2=1.即a 的值是1或-2.故选A .点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.5.D【解析】试题分析:根据中心对称图形的定义,结合选项所给图形进行判断即可.解:A 、不是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项正确;故选D .考点:中心对称图形.6.B【解析】【分析】连接OP 、OA ,根据垂径定理求出AQ ,根据勾股定理求出OQ ,计算即可.【详解】 解:由题意得,当点P 为劣弧AB 的中点时,PQ 最小,连接OP 、OA ,由垂径定理得,点Q 在OP 上,AQ=12AB=4, 在Rt △AOB 中,22OA AQ ,∴PQ=OP-OQ=2,故选:B .【点睛】本题考查的是垂径定理、勾股定理,掌握垂径定理的推论是解题的关键.7.D【解析】分析:先解第一个不等式得到x >3,由于不等式组的解集为x >3,则利用同大取大可得到a 的范围. 详解:解不等式2(x-1)>4,得:x >3,解不等式a-x <0,得:x >a ,∵不等式组的解集为x >3,∴a≤3,故选D .点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.8.B【解析】【分析】根据图形给出的信息求出两车的出发时间,速度等即可解答.【详解】解:①两车在276km 处相遇,此时快车行驶了4个小时,故错误. ②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km ,可求出速度为69km/h ,错误.④慢车6个小时走了276km ,可求出速度为46km/h ,正确.⑤慢车走了18个小时,速度为46km/h ,可得A,B 距离为828km ,正确. ⑥快车2时出发,14时到达,用了12小时,错误.故答案选B .【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键. 9.D【解析】【分析】①错误.由题意a >1.b >1,c <1,abc <1;②正确.因为y 1=ax 2+bx+c (a≠1)图象与直线y 2=mx+n (m≠1)交于A ,B 两点,当ax 2+bx+c <mx+n 时,-3<x <-1;即不等式ax 2+(b-m )x+c-n <1的解集为-3<x <-1;故②正确; ③错误.抛物线与x 轴的另一个交点是(1,1);④正确.抛物线y 1=ax 2+bx+c (a≠1)图象与直线y=-3只有一个交点,方程ax 2+bx+c+3=1有两个相等的实数根,故④正确.【详解】解:∵抛物线开口向上,∴a >1,∵抛物线交y 轴于负半轴,∴c <1,∵对称轴在y 轴左边,∴-2b a <1, ∴b >1,∴abc <1,故①错误.∵y 1=ax 2+bx+c (a≠1)图象与直线y 2=mx+n (m≠1)交于A ,B 两点, 当ax 2+bx+c <mx+n 时,-3<x <-1;即不等式ax 2+(b-m )x+c-n <1的解集为-3<x <-1;故②正确, 抛物线与x 轴的另一个交点是(1,1),故③错误,∵抛物线y 1=ax 2+bx+c (a≠1)图象与直线y=-3只有一个交点, ∴方程ax 2+bx+c+3=1有两个相等的实数根,故④正确.故选:D.【点睛】本题考查二次函数的性质、二次函数与不等式,二次函数与一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.10.C【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案.【详解】A、5a+2b,无法计算,故此选项错误;B、a+a2,无法计算,故此选项错误;C、2a3•3a2=6a5,故此选项正确;D、(a3)2=a6,故此选项错误.故选C.【点睛】此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键.11.C【解析】tan30°=.故选C.12.C【解析】【详解】解:根据图形,身高在169.5cm~174.5cm之间的人数的百分比为:12100%=24% 6+10+16+12+6,∴该校男生的身高在169.5cm~174.5cm之间的人数有300×24%=72(人).故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2【解析】【分析】根据有理数的加减混合运算法则计算.【详解】解:|﹣3|﹣1=3-1=2.故答案为2.【点睛】考查的是有理数的加减运算、乘除运算,掌握它们的运算法则是解题的关键.14.2 11【解析】分析:让英文单词probability中字母b的个数除以字母的总个数即为所求的概率.详解:∵英文单词probability中,一共有11个字母,其中字母b有2个,∴任取一张,那么取到字母b的概率为2 11.故答案为2 11.点睛:本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.15.4cm.【解析】【分析】由题意知OD⊥AB,交AB于点C,由垂径定理可得出BC的长,在Rt△OBC中,根据勾股定理求出OC 的长,由CD=OD-OC即可得出结论.【详解】由题意知OD⊥AB,交AB于点E,∵AB=16cm,∴BC=12AB=12×16=8cm,在Rt△OBE中,∵OB=10cm,BC=8cm,∴(cm),∴CD=OD-OC=10-6=4(cm)故答案为4cm.【点睛】本题考查的是垂径定理的应用,根据题意在直角三角形运用勾股定理列出方程是解答此题的关键.16.1【解析】【分析】连接OB,由矩形的性质和已知条件得出△OBD的面积=△OBE的面积=12四边形ODBE的面积,再求出△OCE的面积为2,即可得出k的值.【详解】连接OB,如图所示:∵四边形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面积=△OBC的面积,∵D、E在反比例函数y=kx(x>0)的图象上,∴△OAD的面积=△OCE的面积,∴△OBD的面积=△OBE的面积=12四边形ODBE的面积=1,∵BE=2EC,∴△OCE的面积=12△OBE的面积=2,∴k=1.故答案为:1.【点睛】本题考查了反比例函数的系数k的几何意义:在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.17.22【解析】【分析】连接OD,OC,AD,由⊙O的直径AB=7可得出OD=OC,故可得出OD=CD=OC,所以∠DOC=60°,∠DAC=30°,根据勾股定理可求出AD的长,在Rt△ADE中,利用∠DAC的正切值求解即可.【详解】解:连接OD,OC,AD,∵半圆O的直径AB=7,∴OD=OC=72,∵CD=72,∴OD=CD=OC∴∠DOC=60°,∠DAC=30°又∵AB=7,BD=5,∴22227526 AD AB BD=-=-=在Rt△ADE中,∵∠DAC=30°,∴DE=AD•tan30°32622 =⨯=.故答案为22.【点睛】本题考查了圆周角定理、等边三角形的判定与性质,勾股定理的应用等知识;综合性比较强.18.1%【解析】【分析】依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比.【详解】∵被调查学生的总数为10÷20%=50人,∴最喜欢篮球的有50×32%=16人,则最喜欢足球的学生数占被调查总人数的百分比=50104166250-----×100%=1%,故答案为:1.【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.证明见解析.【解析】【分析】利用AAS先证明∆ABH≌∆DCG,根据全等三角形的性质可得AH=DG,再根据AH=AG+GH,DG=DH+GH即可证得AG=HD.【详解】∵AB∥CD,∴∠A=∠D,∵CE ∥BF ,∴∠AHB =∠DGC ,在∆ABH 和∆DCG 中,A D AHB DGC AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴∆ABH ≌∆DCG(AAS),∴AH =DG ,∵AH =AG +GH ,DG =DH +GH ,∴AG =HD.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键. 20.(1)证明见解析;(2)能;BE=1或116;(3)9625 【解析】【详解】(1)证明:∵AB =AC ,∴∠B =∠C ,∵△ABC ≌△DEF ,∴∠AEF =∠B ,又∵∠AEF +∠CEM =∠AEC =∠B +∠BAE ,∴∠CEM =∠BAE ,∴△ABE ∽△ECM ;(2)能.∵∠AEF =∠B =∠C ,且∠AME >∠C ,∴∠AME >∠AEF ,∴AE≠AM ;当AE =EM 时,则△ABE ≌△ECM ,∴CE =AB =5,∴BE =BC−EC =6−5=1,当AM =EM 时,则∠MAE =∠MEA ,∴∠MAE +∠BAE =∠MEA +∠CEM ,即∠CAB =∠CEA ,又∵∠C =∠C ,∴△CAE ∽△CBA , ∴CE AC AC CB=, ∴CE =2256CB AC =,∴BE =6−256=116; ∴BE =1或116; (3)解:设BE =x ,又∵△ABE ∽△ECM , ∴CM CE BE AB=,即:65CM x x -=, ∴CM =22619(3)5555x x x -+=--+, ∴AM =5−CM 2116(3)55x =-+, ∴当x =3时,AM 最短为165, 又∵当BE =x =3=12BC 时, ∴点E 为BC 的中点,∴AE ⊥BC ,∴AE4=,此时,EF ⊥AC ,∴EM125=, S △AEM =116129625525创=. 21.(1)y=12x 2+x ﹣32(2)存在,(﹣1﹣,2)或(﹣,2)(3)点F 的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为 1【解析】【分析】(1)设抛物线解析式为y=ax 2+bx+c ,把(﹣3,0),(1,0),(0,32)代入求出a 、b 、c 的值即可;(2)根据抛物线解析式可知顶点P 的坐标,由两个三角形的底相同可得要使两个三角形面积相等则高相等,根据P 点坐标可知E 点纵坐标,代入解析式求出x 的值即可;(3)分别讨论AB 为边、AB 为对角线两种情况求出F 点坐标并求出面积即可;【详解】(1)设抛物线解析式为y=ax 2+bx+c ,将(﹣3,0),(1,0),(0,32)代入抛物线解析式得09a-3b+c 0a+b+c 32c ⎧⎪=⎪=⎨⎪⎪=-⎩,解得:a=12,b=1,c=﹣32∴抛物线解析式:y=12x2+x﹣32(2)存在.∵y=12x2+x﹣32=12(x+1)2﹣2∴P点坐标为(﹣1,﹣2)∵△ABP的面积等于△ABE的面积,∴点E到AB的距离等于2,设E(a,2),∴12a2+a﹣32=2解得a1=﹣1﹣22,a2=﹣1+22∴符合条件的点E的坐标为(﹣1﹣22,2)或(﹣1+22,2)(3)∵点A(﹣3,0),点B(1,0),∴AB=4若AB为边,且以A、B、P、F为顶点的四边形为平行四边形∴AB∥PF,AB=PF=4∵点P坐标(﹣1,﹣2)∴点F坐标为(3,﹣2),(﹣5,﹣2)∴平行四边形的面积=4×2=1若AB为对角线,以A、B、P、F为顶点的四边形为平行四边形∴AB与PF互相平分设点F(x,y)且点A(﹣3,0),点B(1,0),点P(﹣1,﹣2)∴3112200222xy-+-+⎧=⎪⎪⎨+-+⎪=⎪⎩,∴x=﹣1,y=2∴点F(﹣1,2)∴平行四边形的面积=12×4×4=1综上所述:点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为1.【点睛】本题考查待定系数法求二次函数解析式及二次函数的几何应用,分类讨论并熟练掌握数形结合的数学思想方法是解题关键.22.(1)证明详见解析;(2)S=(m+1)2+(m>);(2)2或1.【解析】试题分析:(1)利用两点间的距离公式计算出AB=5,则AB=OA,则可根据“HL”证明△ABC≌△AOD;(2)过点B作直线BE⊥直线y=﹣m于E,作AF⊥BE于F,如图,证明Rt△ABF∽Rt△BCE,利用相似比可得BC=(m+1),再在Rt△ACB中,由勾股定理得AC2=AB2+BC2=25+(m+1)2,然后证明△AOB∽△ACD,利用相似的性质得,而S△AOB=,于是可得S=(m+1)2+(m>);(2)作BH⊥y轴于H,如图,分类讨论:当AB∥CD时,则∠ACD=∠CAB,由△AOB∽△ACD得∠ACD=∠AOB,所以∠CAB=∠AOB,利用三角函数得到tan∠AOB=2,tan∠ACB=,所以=2;当AD∥BC,则∠5=∠ACB,由△AOB∽△ACD得到∠4=∠5,则∠ACB=∠4,根据三角函数定义得到tan∠4=,tan∠ACB=,则=,然后分别解关于m的方程即可得到m的值.试题解析:(1)证明:∵A(0,5),B(2,1),∴AB==5,∴AB=OA,∵AB⊥BC,∴∠ABC=90°,在Rt△ABC和Rt△AOD中,,∴Rt△ABC≌Rt△AOD;(2)解:过点B作直线BE⊥直线y=﹣m于E,作AF⊥BE于F,如图,∵∠1+∠2=90°,∠1+∠2=90°,∴∠2=∠2,∴Rt△ABF∽Rt△BCE,∴,即,∴BC=(m+1),在Rt△ACB中,AC2=AB2+BC2=25+(m+1)2,∵△ABC≌△AOD,∴∠BAC=∠OAD,即∠4+∠OAC=∠OAC+∠5,∴∠4=∠5,而AO=AB,AD=AC,∴△AOB∽△ACD,∴=,而S△AOB=×5×2=,∴S=(m+1)2+(m>);(2)作BH⊥y轴于H,如图,当AB∥CD时,则∠ACD=∠CAB,而△AOB∽△ACD,∴∠ACD=∠AOB,∴∠CAB=∠AOB,而tan∠AOB==2,tan∠ACB===,∴=2,解得m=1;当AD∥BC,则∠5=∠ACB,而△AOB∽△ACD,∴∠4=∠5,∴∠ACB=∠4,而tan∠4=,tan∠ACB=,∴=,解得m=2.综上所述,m的值为2或1.考点:相似形综合题.23. (1)见解析;(2)1【解析】【分析】【详解】分析:(1)根据平行四边形的判定与矩形的判定证明即可;(2)根据矩形的性质和三角函数解答即可. 详解:(1)证明:∵ CD ⊥AB 于点D ,BE ⊥AB 于点B ,∴ 90CDA DBE ∠=∠=︒.∴ CD ∥BE .又∵ BE=CD ,∴ 四边形CDBE 为平行四边形.又∵90DBE ∠=︒,∴ 四边形CDBE 为矩形.(2)解:∵ 四边形CDBE 为矩形,∴ DE=BC .∵ 在Rt △ABC 中,90ACB ∠=︒,CD ⊥AB ,可得 ACD ABC ∠=∠.∵ 1tan 2ACD ∠=, ∴ 1tan tan 2ABC ACD ∠=∠=. ∵ 在Rt △ABC 中,90ACB ∠=︒,AC=2,1tan 2ABC ∠=, ∴ 4tan AC BC ABC==∠. ∴ DE=BC=1.点睛:本题考查了矩形的判定与性质,关键是根据平行四边形的判定与矩形的判定解答.24.(1)y=2x ﹣5,2y x =-;(2)214. 【解析】 【分析】 【详解】 试题分析:(1)把A 坐标代入反比例解析式求出m 的值,确定出反比例解析式,再将B 坐标代入求出n的值,确定出B 坐标,将A 与B 坐标代入一次函数解析式求出k 与b 的值,即可确定出一次函数解析式;(2)用矩形面积减去周围三个小三角形的面积,即可求出三角形ABC 面积.试题解析:(1)把A (2,﹣1)代入反比例解析式得:﹣1=2m ,即m=﹣2,∴反比例解析式为2y x =-,把B (12,n )代入反比例解析式得:n=﹣4,即B (12,﹣4),把A 与B 坐标代入y=kx+b 中得:21{142k b k b +=-+=-,解得:k=2,b=﹣5,则一次函数解析式为y=2x ﹣5;(2)如图,S △ABC =1113121266323222224⨯-⨯⨯-⨯⨯-⨯⨯= 考点:反比例函数与一次函数的交点问题;一次函数及其应用;反比例函数及其应用.25.商人盈利的可能性大.【解析】试题分析:根据几何概率的定义,面积比即概率.图中A ,B ,C 所占的面积与总面积之比即为A ,B ,C 各自的概率,算出相应的可能性,乘以钱数,比较即可.试题解析:商人盈利的可能性大.商人收费:80×48×2=80(元),商人奖励:80×18×3+80×38×1=60(元),因为80>60,所以商人盈利的可能性大.26.(1)25;28;(2)平均数:1.2;众数:3;中位数:1.【解析】【分析】(1)观察统计图可得,该商场服装部营业员人数为2+5+7+8+3=25人,m%=1-32%-12%-8%-20%=28%,即m=28;(2)计算出所有营业员的销售总额除以营业员的总人数即可的平均数;观察统计图,根据众数、中位数的定义即可得答案.【详解】解:(1)根据条形图2+5+7+8+3=25(人),m=100-20-32-12-8=28;故答案为:25;28;(2)观察条形统计图, ∵12215518721824318.6.25x ⨯+⨯+⨯+⨯+⨯== ∴这组数据的平均数是1.2.∵在这组数据中,3 出现了8次,出现的次数最多,∴这组数据的众数是3.∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是1,∴这组数据的中位数是1.【点睛】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.27.(1)证明见解析(2)22- (3 【解析】【分析】(1)根据题中“完美矩形”的定义设出AD 与AB ,根据AP=AD ,利用勾股定理表示出PD ,即可得证; (2)如图,作点P 关于BC 的对称点P′,连接DP′交BC 于点E ,此时△PDE 的周长最小,设AD=PA=BC=a ,表示出AB 与CD ,由AB-AP 表示出BP ,由对称的性质得到BP=BP′,由平行得比例,求出所求比值即可;(3)2)可知BF=BP=AB-AP ,由等式的性质得到MF=DN ,利用AAS 得到△MFH ≌△NDH ,利用全等三角形对应边相等得到FH=DH ,再由G 为CF 中点,得到HG 为中位线,利用中位线性质求出GH 的长即可.【详解】(1)在图1中,设AD=BC=a ,则有,∵四边形ABCD 是矩形,∴∠A=90°,∵PA=AD=BC=a,∴PD=22AD PA+=2a,∵AB=2a,∴PD=AB;(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,则有2a,∵BP=AB-PA,∴2a-a,∵BP′∥CD,∴2222BE BP a aCE CD a--===;(3)2由(2)可知BF=BP=AB-AP,∵AP=AD,∴BF=AB-AD,∵BQ=BC,∴AQ=AB-BQ=AB-BC,∵BC=AD,∴AQ=AB-AD,∴BF=AQ,∴QF=BQ+BF=BQ+AQ=AB,∵AB=CD,∴QF=CD,∵QM=CN,∴QF-QM=CD-CN,即MF=DN,∵MF∥DN,∴∠NFH=∠NDH,在△MFH和△NDH中,{MFH NDHMHF NHD MF DN∠∠∠∠=== ,∴△MFH ≌△NDH (AAS ),∴FH=DH ,∵G 为CF 的中点,∴GH 是△CFD 的中位线,∴GH=12CD=12×【点睛】此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质,熟练掌握相似三角形的性质是解本题的关键.。
2024年天津河北区中考数学试题及答案本试卷分为第I 卷(选择题)、第II 卷(非选择题)两部分。
第I 卷为第1页至第3页,第II 卷为第4页至第8页。
试卷满分120分。
考试时间100分钟。
答卷前,请务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。
答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。
考试结束后,将本试卷和“答题卡”一并交回。
祝你考试顺利!第I 卷注意事项:1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。
2.本卷共12题,共36分。
一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算()33--的结果等于( )A .—6B .0C .3D .62.下图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D.3的值在( )A .1和2之间B .2和3之间C .3和4之间D.4和5之间4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D.5.据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为( )A .70.0810⨯B .60.810⨯C .5810⨯D .48010⨯61-的值等于( )A .0B .1C 1-D 1-7.计算3311x x x ---的结果等于( )A .3B .x C .1xx -D .231x -8.若点()()()123,1,,1,,5A x B x C x -都在反比例函数5y x =的图象上,则312,,x x x 的大小关系是( )A .123x x x <<B .132x x x <<C .321x x x <<D .213x x x <<9.《孙子算经》是我国古代著名的数学典籍,其中有一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳度之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,绳子长y 尺,则可以列出的方程组为( )A . 4.50.51y x x y -=⎧⎨-=⎩B . 4.50.51y x x y -=⎧⎨+=⎩C . 4.51x y x y +=⎧⎨-=⎩D . 4.51x y y x +=⎧⎨-=⎩10.如图,Rt ABC △中,90,40C B ∠∠== ,以点A 为圆心,适当长为半径画弧,交AB 于点E ,交AC 于点F ;再分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧(所在圆的半径相等)在BAC ∠的内部相交于点P ;画射线AP ,与BC 相交于点D ,则ADC ∠的大小为( )A .60B .65C .70D .75 11.如图,ABC △中,30B ∠= ,将ABC △绕点C 顺时针旋转60 得到DEC △,点,A B 的对应点分别为,D E ,延长BA 交DE 于点F ,下列结论一定正确的是( )A .ACB ACD∠∠=B .AC DE ∥C .AB EF =D .BF CE⊥12.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是()230506h t t t =-≤≤.有下列结论:①小球从抛出到落地需要6s ;②小球运动中的高度可以是30m ;③小球运动2s 时的高度小于运动5s 时的高度.其中,正确结论的个数是( )A .0B .1C .2D .32024年天津市初中学业水平考试试卷数学第II 卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔).2.本卷共13题,共84分.二、填空题(本大题共6小题,每小题3分,共18分)13.不透明袋子中装有10个球,其中有3个绿球、4个黑球、3个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为______.14.计算86x x ÷的结果为______.15.计算)11+-的结果为______.16.若正比例函数y kx =(k 是常数,0k ≠)的图象经过第三、第一象限,则k 的值可以是______(写出一个即可).17.如图,正方形ABCD 的边长为,AC BD 相交于点O ,点E 在CA 的延长线上,5OE =,连接DE .(I )线段AE 的长为______;(II )若F 为DE 的中点,则线段AF 的长为______.18.如图,在每个小正方形的边长为1的网格中,点,,A F G 均在格点上.(I )线段AG 的长为______;(II )点E 在水平网格线上,过点,,A E F 作圆,经过圆与水平网格线的交点作切线,分别与,AE AF 的延长线相交于点,,B C ABC △中,点M 在边BC 上,点N 在边AB 上,点P 在边AC 上.请用无刻度的直尺,在如图所示的网格中,画出点,,M N P ,使MNP △的周长最短,并简要说明点,,M N P 的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明,演算步骤或推理过程)19.(本小题8分)解不等式组213, 317. x x x +≤⎧⎨-≥-⎩①②请结合题意填空,完成本题的解答.(I )解不等式①,得______;(II )解不等式②,得______;(III )把不等式①和②的解集在数轴上表示出来:(IV )原不等式组的解集为______.20.(本小题8分)为了解某校八年级学生每周参加科学教育的时间(单位:h ),随机调查了该校八年级a 名学生,根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(I )填空:a 的值为______,图①中m 的值为______,统计的这组学生每周参加科学教育的时间数据的众数和中位数分别为______和______;(II )求统计的这组学生每周参加科学教育的时间数据的平均数;(III )根据样本数据,若该校八年级共有学生500人,估计该校八年级学生每周参加科学教育的时间是9h 的人数约为多少?21.(本小题10分)已知AOB △中,30,ABO AB ∠=为O 的弦,直线MN 与O 相切于点C .(I )如图①,若AB MN ∥,直径CE 与AB 相交于点D ,求AOB ∠和BCE ∠的大小;(II )如图②,若,OB MN CG AB ⊥∥,垂足为,G CG 与OB 相交于点,3F OA =,求线段OF 的长.22.(本小题10分)综合与实践活动中,要用测角仪测量天津海河上一座桥的桥塔AB 的高度(如图①).某学习小组设计了一个方案:如图②,点,,C D E 依次在同一条水平直线上,36m,DE EC AB =⊥,垂足为C .在D 处测得桥塔顶部B 的仰角(CDB ∠)为45 ,测得桥塔底部A 的俯角(CDA ∠)为6,又在E 处测得桥塔顶部B 的仰角(CEB ∠)为31 .(I )求线段CD 的长(结果取整数);(II )求桥塔AB 的高度(结果取整数).参考数据:tan310.6,tan60.1≈≈ .23.(本小题10分)已知张华的家、画社、文化广场依次在同一条直线上,画社离家0.6km ,文化广场离家1.5km .张华从家出发,先匀速骑行了4min 到画社,在画社停留了15min ,之后匀速骑行了6min 到文化广场,在文化广场停留6min 后,再匀速步行了20min 返回家.下面图中x 表示时间,y 表示离家的距离.图象反映了这个过程中张华离家的距离与时间之间的对应关系.请根据相关信息,回答下列问题:(I )①填表:张华离开家的时间/min141330张华离家的距离/km 0.6②填空:张华从文化广场返回家的速度为______km /min ;③当025x ≤≤时,请直接写出张华离家的距离y 关于时间x 的函数解析式;(II )当张华离开家8min 时,他的爸爸也从家出发匀速步行了20min 直接到达了文化广场,那么从画社到文化广场的途中()0.6 1.5y <<两人相遇时离家的距离是多少?(直接写出结果即可)24.(本小题10分)将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ==.(I )填空:如图①,点C 的坐标为______,点B 的坐标为______;(II )若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围;②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可).25.(本小题10分)已知抛物线()2,,,0y ax bx c a b c a =++>为常数的顶点为P ,且20a b +=,对称轴与x 轴相交于点D ,点(),1M m 在抛物线上,1,m O >为坐标原点.(I )当1,1a c ==-时,求该抛物线顶点P 的坐标;(II )当OM OP ==a 的值;(III )若N 是抛物线上的点,且点N 在第四象限,90,MDN DM DN == ,点E 在线段MN 上,点F 在线段DN 上,NE NF +=,当DE MF +a 的值.机密★启用前参考答案一、选择题(本大题共12小题,每小题3分,共36分)1.D2.B 3.C 4.C 5.C 6.A 7.A 8.B 9.A 10.B 11.D 12.C二、填空题(本大题共6小题,每小题3分,共18分)13.31014.2x 15.1016.1(答案不唯一,满足0k >即可)17.(I )2;(II18.(I ;(II )如图,根据题意,切点为M ;连接ME 并延长,与网格线相交于点1M ;取圆与网格线的交点D 和格点H ,连接DH 并延长,与网格线相交于点2M ;连接12M M ,分别与,AB AC 相交于点,N P ,则点,,M N P 即为所求.三、解答题(本大题共7小题,共6619.(本小题8分)解:(I )1x ≤;(II )3x ≥-;(III )(IV )31x -≤≤.20.(本小题8分)解:(I )50,34,8,8.(II )观察条形统计图,63778179151088.36,3717158x ⨯+⨯+⨯+⨯+⨯==++++ ∴这组数据的平均数是8.36.(III ) 在所抽取的样本中,每周参加科学教育的时间是9h 的学生占30%,∴根据样本数据,估计该校八年级学生500人中,每周参加科学教育的时间是9h的学生占30%,有50030%150⨯=.∴估计该校八年级学生每周参加科学教育的时间是9h 的人数约为150.21.(本小题10分)解:(I )AB 为O 的弦,OA OB ∴=.得A ABO ∠∠=.AOB △中,180A ABO AOB ∠∠∠++= ,又30ABO ∠=,1802120AOB ABO ∠∠∴=-= .直线MN 与O 相切于点,C CE 为O 的直径,CE MN ∴⊥.即90ECM ∠= .又AB MN ∥,90CDB ECM ∠∠∴== .在Rt ODB △中,9060BOE ABO ∠=-= .12BCE BOE ∠∠= ,30BCE ∠∴= .(II )如图,连接OC .同(I ),得90COB ∠=.CG AB ⊥ ,得90FGB ∠= .∴在Rt FGB △中,由30ABO ∠= ,得9060BFG ABO ∠∠=-=.60CFO BFG ∠∠∴== .在Rt COF △中,tan ,3OC CFO OC OA OF∠===,3tan tan60OC OF CFO ∠∴===.22.(本小题10分)解:(I )设CD x =,由36DE =,得36CE CD DE x =+=+.EC AB ⊥ ,垂足为C ,90BCE ACD ∠∠∴== .在Rt BCD △中,tan ,45BC CDB CDB CD∠∠== ,tan tan45BC CD CDB x x ∠∴=⋅=⋅= .在Rt BCE △中,tan ,31BC CEB CEB CE∠∠== ,()tan 36tan31BC CE CEB x ∠∴=⋅=+⋅ .()36tan31x x ∴=+⋅ .得36tan31360.6541tan3110.6x ⨯⨯=≈=-- .答:线段CD 的长约为54m .(II )在Rt ACD △中,tan ,6AC CDA CDA CD∠∠== ,tan 54tan6540.1 5.4AC CD CDA ∠∴=⋅≈⨯≈⨯= .5.45459AB AC BC ∴=+≈+≈.答:桥塔AB 的高度约为59m .23.(本小题10分)解:(I )①0.15,0.6,1.5;②0.075;③当04x ≤≤时,0.15y x =;当419x <≤时,0.6y =;当1925x <≤时,0.15 2.25y x =-.(II )1.05km .24.(本小题10分)解:(I )((,.(II )①由折叠知,60,OO C AOC O P OP t ∠∠==='''= ,则2OO t '=. 点()3,0A ,得3OA =.23AO OO OA t ∴'=='--.四边形OABC 为平行四边形,2,AB OC AB OC ∴==∥.得60O AB AOC ∠∠==' .AO E ∴'△为等边三角形.有23AE AO t '==-.BE AB AE =- ,即()22352BE t t =--=-,25BE t ∴=-+,其中t 的取值范围是3522t <<.S ≤≤.25.(本小题10分)解:(I )20,1a b a +== ,得22b a =-=-.又1c =-,∴该抛物线的解析式为221y x x =--.()222112y x x x =--=-- ,∴该抛物线顶点P 的坐标为()1,2-.(II )过点(),1M m 作MH x ⊥轴,垂足为,1H m >,则90,1,MHO HM OH m ∠===.在Rt MOH △中,由222,HM OH OM OM +==,221m ∴+=.解得1233,22m m ==-(舍).∴点M 的坐标为3,12⎛⎫ ⎪⎝⎭.20a b += ,即12b a-=.∴抛物线22y ax ax c =-+的对称轴为1x =.对称轴与x 轴相交于点D ,则1,90OD ODP ∠== .在Rt OPD △中,由222,OD PD OP OP +==221PD ∴+=.解得32PD =.由0a >,得该抛物线顶点P 的坐标为31,2⎛⎫- ⎪⎝⎭.∴该抛物线的解析式为()2312y a x =--. 点3,12M ⎛⎫ ⎪⎝⎭在该抛物线上,有2331122a ⎛⎫=-- ⎪⎝⎭.10a ∴=.(III )过点(),1M m 作MH x ⊥轴,垂足为,1H m >,则90,1,MHO HM OH m ∠===.1DH OH OD m ∴=-=-.∴在Rt DMH △中,()222211DM DH HM m =+=-+.过点N 作NK x ⊥轴,垂足为K ,则90DKN ∠= .90,MDN DM DN ∠== ,又90DNK NDK MDH ∠∠∠=-= ,NDK DMH ∴≌△△.得点N 的坐标为()2,1m -.在Rt DMN △中,45DMN DNM ∠∠==,22222MN DM DN DM =+=,即MN =.根据题意,NE NF +=,得ME NF =.在DMN △的外部,作45DNG ∠= ,且NG DM =,连接GF ,得90MNG DNM DNG ∠∠∠=+=.GNF DME ∴≌△△.有GF DE =.DE MF GF MF GM ∴+=+≥.当满足条件的点F 落在线段GM 上时,DE MF +取得最小值,即GM =.在Rt GMN △中,22223GM NG MN DM =+=,223DM ∴=.得25DM =.()2115m ∴-+=.解得123,1m m ==-(舍).∴点M 的坐标为()3,1,点N 的坐标为()2,2-.点()()3,1,2,2M N -都在抛物线22y ax ax c =-+上,得196,244a a c a a c =-+-=-+.1a ∴=.2024年天津河北区中考数学试题及答案本试卷分为第I 卷(选择题)、第II 卷(非选择题)两部分。
2023年天津河北区中考语文真题及答案本试卷分为第I卷(选择题)、第Ⅱ卷(非选择题)两部分。
第I卷为第1页至第4页,第Ⅱ卷为第5页至第8页。
试卷满分120分。
考试时间120分钟。
答卷前,请务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。
答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。
考试结束后,将本试卷和“答题卡”一并交回。
祝你考试顺利!第I卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦于净后,再选涂其他答案标号的信息点。
2.本卷共11题,共29分。
一、(本大题共11小题,共29分。
1~4小题,每题2分:5~11小题,每题3分)(一)积累与运用1.下面各组词语中加点字的注音,完全正确的一项是A.愧怍(zuò) 翩然(piān) 拈轻怕重(zhān)B.震悚(sǒng) 亘古(gèng) 坦荡如砥(dǐ)C.汲取(xī) 酝酿(yùn) 人迹罕至(hǎn)D.摇曳(yè) 遵循(xún) 不屑置辩(xiè)2.依次填入下面一段文字横线处的词语,最恰当的一项是历史悠久的书法艺术,着中华文明的发展进程,承载着中华优秀传统文化,______着丰厚的中华美学精神。
无论是修长幻称的篆书、蚕头燕尾的隶书,还是狂放酒脱的草书、方正规矩的楷书,都_________了中华文化之美,具有以美育人、以美化人的重要作用。
因此,经典书法作品已成为学校开展德育、美育的重要载体。
A.记录包含显露B.收录蕴含显露C.记录蕴含体现D.收录包含体现3.下面一段文字中有语病的一项是①人工智能引领技术创新。
②从人脸识别到自动驾驶,人工智能在越来越多的领域发挥着作用。
③随着我国数字基础设施建设的提速,使更多潜在应用场景不断涌现。
④智能制造、智能供应链等为人工智能的应用提供了广阔的舞台。
天津市河北区2019-2020学年中考中招适应性测试卷数学试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是( )A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c2.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是()A.方有两个相等的实数根B.方程有一根等于0C.方程两根之和等于0 D.方程两根之积等于03.已知抛物线y=ax2+bx+c与反比例函数y= bx的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.4.如图,函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,AC⊥AB,且AC=AB,则点C的坐标为()A.(2,1)B.(1,2)C.(1,3)D.(3,1)5.自1993年起,联合国将每年的3月11日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出10名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表. 节约用水量(单位:吨) 1 1.1 1.4 1 1.5 家庭数46531这组数据的中位数和众数分别是( ) A .1.1,1.1;B .1.4,1.1;C .1.3,1.4;D .1.3,1.1.6.今年春节某一天早7:00,室内温度是6℃,室外温度是-2℃,则室内温度比室外温度高( ) A .-4℃B .4℃C .8℃D .-8℃7.已知函数y=(k-1)x 2-4x+4的图象与x 轴只有一个交点,则k 的取值范围是( ) A .k≤2且k≠1 B .k<2且k≠1 C .k=2D .k=2或18.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?” 如图所示,请根据所学知识计算:圆形木材的直径AC 是( )A .13寸B .20寸C .26寸D .28寸9.如图,已知函数3y x =-与k y x =的图象在第二象限交于点()1,A m y ,点()21,B m y -在ky x=的图象上,且点B 在以O 点为圆心,OA 为半径的O e 上,则k 的值为( )A .34-B .1-C .32-D .2-10.如图,数轴上的四个点A ,B ,C ,D 对应的数为整数,且AB =BC =CD =1,若|a|+|b|=2,则原点的位置可能是( )A.A或B B.B或C C.C或D D.D或A 11.3--的倒数是()A.13-B.-3 C.3 D.1312.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49B.112C.13D.16二、填空题:(本大题共6个小题,每小题4分,共24分.)13.对于任意非零实数a、b,定义运算“⊕”,使下列式子成立:3122⊕=-,3212⊕=,()212510-⊕=,()21525⊕-=-,…,则a⊕b=.14.如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,则∠ADC的度数为_____.15.同学们设计了一个重复抛掷的实验:全班48人分为8个小组,每组抛掷同一型号的一枚瓶盖300次,并记录盖面朝上的次数,下表是依次累计各小组的实验结果.1组1~2组1~3组1~4组1~5组1~6组1~7组1~8组盖面朝上次数165 335 483 632 801 949 1122 1276盖面朝上频率0.550 0.558 0.537 0.527 0.534 0.527 0.534 0.532根据实验,你认为这一型号的瓶盖盖面朝上的概率为____,理由是:____.16.将直线y=x+b沿y轴向下平移3个单位长度,点A(-1,2)关于y轴的对称点落在平移后的直线上,则b 的值为____.17.已知一组数据3,4,6,x ,9的平均数是6,那么这组数据的方差等于________.18.如图为二次函数2y ax bx c =++图象的一部分,其对称轴为直线1x =.若其与x 轴一交点为A(3,0)则由图象可知,不等式20ax bx c ++<的解集是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,二次函数232(0)2y ax x a =-+≠的图象与x 轴交于A 、B 两点,与y 轴交于点C ,已知点A (﹣4,0).求抛物线与直线AC 的函数解析式;若点D (m ,n )是抛物线在第二象限的部分上的一动点,四边形OCDA 的面积为S ,求S 关于m 的函数关系式;若点E 为抛物线上任意一点,点F 为x 轴上任意一点,当以A 、C 、E 、F 为顶点的四边形是平行四边形时,请求出满足条件的所有点E 的坐标.20.(6分)如图,在▱ABCD 中,过点A 作AE ⊥BC 于点E ,AF ⊥DC 于点F ,AE=AF . (1)求证:四边形ABCD 是菱形; (2)若∠EAF=60°,CF=2,求AF 的长.21.(6分)已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球. (1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x 个白球和y 个黑球,从口袋中随机取出一个白球的概率是,求y 与x 之间的函数关系式.22.(8分)为响应国家“厉行节约,反对浪费”的号召,某班一课外活动小组成员在全校范围内随机抽取了若干名学生,针对“你每天是否会节约粮食”这个问题进行了调查,并将调查结果分成三组(A .会;B .不会;C .有时会),绘制了两幅不完整的统计图(如图)(1)这次被抽查的学生共有______人,扇形统计图中,“A 组”所对应的圆心度数为______; (2)补全两个统计图;(3)如果该校学生共有2000人,请估计“每天都会节约粮食”的学生人数;(4)若不节约零食造成的浪费,按平均每人每天浪费5角钱计算,小江认为,该校学生一年(365天)共将浪费:2000×20%×0.5×365=73000(元),你认为这种说法正确吗?并说明理由.23.(8分)如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE .若DE :AC=3:5,求ADAB的值.24.(10分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件. (1)求商场经营该商品原来一天可获利润多少元? (2)设后来该商品每件降价x 元,商场一天可获利润y 元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y 与x 之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x 取何值时,商场获利润不少于2160元. 25.(10分)解不等式组:.26.(12分) (1)计算:)1201631(1)2384π-⎛⎫---+ ⎪⎝⎭(2)先化简,再求值:2214()244x x x x x x x +---÷--+,其中x 是不等式371x +>的负整数解.27.(12分)阅读材料:对于线段的垂直平分线我们有如下结论:到线段两个端点距离相等的点在线段的垂直平分线上.即如图①,若PA=PB,则点P在线段AB的垂直平分线上请根据阅读材料,解决下列问题:如图②,直线CD是等边△ABC的对称轴,点D在AB上,点E是线段CD上的一动点(点E不与点C、D重合),连结AE、BE,△ABE经顺时针旋转后与△BCF重合.(I)旋转中心是点,旋转了(度);(II)当点E从点D向点C移动时,连结AF,设AF与CD交于点P,在图②中将图形补全,并探究∠APC 的大小是否保持不变?若不变,请求出∠APC的度数;若改变,请说出变化情况.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.【详解】解:依题意,得:b=a+1,c=a+7,d=a+1.A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,选项A符合题意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,∴a+c+2=b+d,选项B不符合题意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,∴a+b+14=c+d,选项C不符合题意;D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,∴a+d=b+c,选项D不符合题意.故选:A.【点睛】考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.2.C【解析】试题分析:根据已知得出方程ax2+bx+c=0(a≠0)有两个根x=1和x=﹣1,再判断即可.解:∵把x=1代入方程ax2+bx+c=0得出:a+b+c=0,把x=﹣1代入方程ax2+bx+c=0得出a﹣b+c=0,∴方程ax2+bx+c=0(a≠0)有两个根x=1和x=﹣1,∴1+(﹣1)=0,即只有选项C正确;选项A、B、D都错误;故选C.3.B【解析】分析: 根据抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.详解: ∵抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选B.点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.4.D【解析】【分析】过点C作CD⊥x轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再证明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,则C点坐标可求.【详解】如图,过点C作CD⊥x轴与D.∵函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,∴当x=0时,y=2,则B(0,2);当y=0时,x=1,则A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,,∴△ABO≌△CAD,∴AD=OB=2,CD=OA=1,∴OD=OA+AD=1+2=3,∴C点坐标为(3,1).故选D.【点睛】本题主要考查一次函数的基本概念。
天津市河北区2019-2020学年第二次中考模拟考试物理试卷一、单选题(本大题共10小题,共30分)1.下列关于热学知识的说法不正确的是A.烧开水是通过热传递的方法增加水的内能B.热机通常用水来降温,是利用水的比热容大的特性C.未来柴油机的效率可以达到100%D.端午粽子飘香,说明分子在不停的做无规则运动C【解析】【详解】A、烧开水时发生了内能的转移,是通过热传递的方法增加水的内能,故A正确;B、水的比热容较大,与其他物质相比,相同质量、升高相同温度的情况下,吸热的热量较多,所以用水来降温,故B正确;C、因为额外功和热量散失是不可避免的,所以无论怎样改良,柴油机的效率也不可能达到100%,故C 错误;D、端午节粽子飘香,是因为粽子香气中含有的分子是在不停的做无规则运动,向四周扩散,使人们闻到粽子的香气,故D正确。
2.下列实例中,为了增大压强的是()A.书包带做得很宽B.图钉帽做得面积较大C.铁轨铺在多根枕木上D.压路机做得很重D【解析】【详解】A.书包带做得较宽,是在压力一定时,通过增大受力面积来减小压强;故A不合题意;B.图钉帽做得面积较大,是在压力一定时,通过增大受力面积来减小压强;故B不合题意;C.铁轨铺在多根枕木上,是在压力一定时,通过增大受力面积来减小压强;故C不合题意;D.压路机做得很重,是在受力面积一定时,通过增大压力来增大压强;故D符合题意.3.目前家庭汽车保有量越来越高,以下跟汽车有关的热现象中说法错误的是()A.汽车玻璃起“雾”影响行车安全,是车内水蒸气液化形成的B.冬天排气管冒出的“白气”,是水蒸气凝华成的小冰晶D.空调制冷时,制冷剂汽化吸热、液化放热,将车内的“热”“搬”到车外B【解析】【详解】A.汽车玻璃起“雾”是车内水蒸气液化形成的小水滴附着在内表面,故A正确;B.冬天排气管冒出的“白气”,是水蒸气遇冷液化形成的小水滴,故B错误;C.汽车水箱中加入适量酒精能降低水的凝固点,防止水结冰胀破水箱,故C正确;D.空调制冷时,液态制冷剂在车内热交换器内吸热由液态变为气态,发生汽化,气态制冷剂又由压缩机压入车外的热交换器,在交换器内放热液化,即将车内的“热”“搬”到车外,故D正确.4.下列关于质量的说法正确的是A.橡皮泥捏成泥人后,质量变小了B.白糖热化抽丝制成棉花糖后,质量变大了C.1kg的棉花和1kg的铁块,铁块的质量大D.物理课本从武汉快递到潜江,质量是一样的D【解析】【分析】物体含有物质的多少叫做质量,质量是物体的一种属性,它不随物体的状态、位置、形状的改变而改变。
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是11()1323x x x ▲---+=-, 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x =5,于是,他很快便补好了这个常数,并迅速地做完了作业。
同学们,你能补出这个常数吗?它应该是( ) A .2B .3C .4D .52.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( ) A .B .C .D .3.如图,在矩形AOBC 中,O 为坐标原点,OA 、OB 分别在x 轴、y 轴上,点B 的坐标为(0,33),∠ABO =30°,将△ABC 沿AB 所在直线对折后,点C 落在点D 处,则点D 的坐标为( )A .(32,33) B .(2,33) C .(33,32) D .(32,3﹣33) 4.如图,AB 与⊙O 相切于点A ,BO 与⊙O 相交于点C ,点D 是优弧AC 上一点,∠CDA =27°,则∠B 的大小是( )A .27°B .34°C .36°D .54°5.下列各式:①a 0=1 ②a 2·a 3=a 5 ③ 2–2= –14④–(3-5)+(–2)4÷8×(–1)=0⑤x 2+x 2=2x 2,其中正确的是 ( ) A .①②③B .①③⑤C .②③④D .②④⑤6.一元二次方程210x x --=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法判断7.下列选项中,可以用来证明命题“若a 2>b 2,则a >b“是假命题的反例是( ) A .a =﹣2,b =1B .a =3,b =﹣2C .a =0,b =1D .a =2,b =18.下列计算正确的是A .a 2·a 2=2a 4B .(-a 2)3=-a 6C .3a 2-6a 2=3a 2D .(a -2)2=a 2-49.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A . 4.50.51y x y x =+⎧⎨=-⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =-⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩10.若抛物线y =x 2﹣3x+c 与y 轴的交点为(0,2),则下列说法正确的是( ) A .抛物线开口向下B .抛物线与x 轴的交点为(﹣1,0),(3,0)C .当x =1时,y 有最大值为0D .抛物线的对称轴是直线x =32二、填空题(本题包括8个小题) 11.已知反比例函数y=2m x-,当x >0时,y 随x 增大而减小,则m 的取值范围是_____. 12.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______. 13.某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标 价为___________元.14.如图,已知,第一象限内的点A 在反比例函数y =2x的图象上,第四象限内的点B 在反比例函数y =kx的图象上.且OA ⊥OB ,∠OAB =60°,则k 的值为_________.15.如图,平行于x 轴的直线AC 分别交抛物线21x y =(x≥0)与22x y 5=(x ≥0)于B 、C 两点,过点C作y 轴的平行线交y 1于点D ,直线DE ∥AC ,交y 2于点E ,则DEAB=_.16.关于x的方程x2-3x+2=0的两根为x1,x2,则x1+x2+x1x2的值为______.17.如图,正方形ABCD的边长为422,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长是__________.18.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:x …-5 -4 -3 -2 -1 …y … 3 -2 -5 -6 -5 …则关于x的一元二次方程ax2+bx+c=-2的根是______.三、解答题(本题包括8个小题)19.(6分)下面是小星同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程:已知:如图,直线l和直线l外一点A求作:直线AP,使得AP∥l作法:如图①在直线l上任取一点B(AB与l不垂直),以点A为圆心,AB为半径作圆,与直线l交于点C.②连接AC,AB,延长BA到点D;③作∠DAC的平分线AP.所以直线AP就是所求作的直线根据小星同学设计的尺规作图过程,使用直尺和圆规,补全图形(保留作图痕迹)完成下面的证明证明:∵AB=AC,∴∠ABC=∠ACB(填推理的依据)∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(填推理的依据)∴∠DAC=2∠ABC∵AP平分∠DAC,∴∠DAC=2∠DAP∴∠DAP=∠ABC∴AP∥l(填推理的依据)20.(6分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.21.(6分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:本次调查中,一共调查了位好友.已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?22.(8分)某校对六至九年级学生围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.如图是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少学生进行了抽样调查?本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?若该校九年级共有200名学生,如图是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请估计全校六至九年级学生中最喜欢跳绳活动的人数约为多少?23.(8分)如图①,在正方形ABCD 的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M ,则图中ADE ≌DFC △,可知ED FC =,求得DMC ∠=______.如图②,在矩形()ABCD AB BC >的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M .()1求证:ED FC =. ()2若20ADE ∠=,求DMC ∠的度数.24.(10分)如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边DE=0.4m ,EF=0.2m ,测得边DF 离地面的高度AC=1.5m ,CD=8m ,求树高.25.(10分)在我校举办的“读好书、讲礼仪”活动中,各班积极行动,图书角的新书、好书不断增多,除学校购买的图书外,还有师生捐献的图书,下面是九(1)班全体同学捐献图书情况的统计图(每人都有捐书).请你根据以上统计图中的信息,解答下列问题:该班有学生多少人?补全条形统计图.九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为多少度?请你估计全校 2000 名学生所捐图书的数量.26.(12分)如图,已知反比例函数1ky x=和一次函数21y ax =+的图象相交于第一象限内的点A ,且点A 的横坐标为1.过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1.求反比例函数和一次函数的解析式.若一次函数21y ax =+的图象与x 轴相交于点C ,求∠ACO 的度数.结合图象直接写出:当1y >2y >0时,x 的取值范围.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.D 【解析】 【分析】设这个数是a ,把x=1代入方程得出一个关于a 的方程,求出方程的解即可. 【详解】 设这个数是a , 把x=1代入得:13(-2+1)=1-5a 3-,∴1=1-5a 3-, 解得:a=1. 故选:D . 【点睛】本题主要考查对解一元一次方程,等式的性质,一元一次方程的解等知识点的理解和掌握,能得出一个关于a的方程是解此题的关键.2.C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A.不是轴对称图形,也不是中心对称图形.故错误;B.不是轴对称图形,也不是中心对称图形.故错误;C.是轴对称图形,也是中心对称图形.故正确;D.不是轴对称图形,是中心对称图形.故错误.故选C.【点睛】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.3.A【解析】解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,33),∴AC=OB=33,∠CAB=10°,∴BC=AC•tan10°=33×3=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=33.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=12AD=332,∴AM=33×cos10°=92,∴MO=92﹣1=32,∴点D的坐标为(32,332).故选A.4.C【解析】【分析】由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.解:∵AB 与⊙O 相切于点A , ∴OA ⊥BA . ∴∠OAB=90°. ∵∠CDA=27°, ∴∠BOA=54°. ∴∠B=90°-54°=36°. 故选C .考点:切线的性质. 5.D 【解析】 【分析】根据实数的运算法则即可一一判断求解. 【详解】①有理数的0次幂,当a=0时,a 0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2= 14,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确. 故选D. 6.A 【解析】 【分析】把a=1,b=-1,c=-1,代入24b ac ∆=-,然后计算∆,最后根据计算结果判断方程根的情况. 【详解】21,1,14145a b c b ac ==-=-∴∆-=+=∴方程有两个不相等的实数根.故选A. 【点睛】本题考查根的判别式,把a=1,b=-1,c=-1,代入24b ac ∆=-计算是解题的突破口. 7.A 【解析】 【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.由此即可解答.∵当a =﹣2,b =1时,(﹣2)2>12,但是﹣2<1, ∴a =﹣2,b =1是假命题的反例. 故选A . 【点睛】本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法. 8.B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得. 【详解】A. a 2·a 2=a 4 ,故A 选项错误; B. (-a 2)3=-a 6 ,正确;C. 3a 2-6a 2=-3a 2 ,故C 选项错误;D. (a -2)2=a 2-4a+4,故D 选项错误, 故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.9.A 【解析】 【分析】根据“用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”可以列出相应的方程组,本题得以解决. 【详解】 由题意可得,4.50.51y x y x =+⎧⎨=-⎩, 故选A . 【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组. 10.D 【解析】 【分析】A 、由a=1>0,可得出抛物线开口向上,A 选项错误;B 、由抛物线与y 轴的交点坐标可得出c 值,进而可得出抛物线的解析式,令y=0求出x 值,由此可得出抛物线与x 轴的交点为(1,0)、(1,0),B 选项错误;C 、由抛物线开口向上,可得出y 无最大值,C 选项错误;D 、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-32,D 选项正确. 综上即可得出结论. 【详解】解:A 、∵a=1>0,∴抛物线开口向上,A 选项错误;B 、∵抛物线y=x 1-3x+c 与y 轴的交点为(0,1), ∴c=1,∴抛物线的解析式为y=x 1-3x+1. 当y=0时,有x 1-3x+1=0, 解得:x 1=1,x 1=1,∴抛物线与x 轴的交点为(1,0)、(1,0),B 选项错误; C 、∵抛物线开口向上, ∴y 无最大值,C 选项错误; D 、∵抛物线的解析式为y=x 1-3x+1, ∴抛物线的对称轴为直线x=-b 2a =-321⨯=32,D 选项正确.故选D . 【点睛】本题考查了抛物线与x 轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键. 二、填空题(本题包括8个小题) 11.m >1. 【解析】分析:根据反比例函数y=2m x-,当x >0时,y 随x 增大而减小,可得出m ﹣1>0,解之即可得出m 的取值范围.详解:∵反比例函数y=2m x-,当x >0时,y 随x 增大而减小,∴m ﹣1>0,解得:m >1. 故答案为m >1.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m ﹣1>0是解题的关键. 12.2y x =-等 【解析】 【分析】根据二次函数的图象最高点是坐标原点,可以得到a <0,b=0,c=0,所以解析式满足a <0,b=0,c=0即可.【详解】解:根据二次函数的图象最高点是坐标原点,可以得到a <0,b=0,c=0,例如:2y x =-.【点睛】此题是开放性试题,考查函数图象及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义.13.28【解析】设标价为x 元,那么0.9x-21=21×20%,x=28.14.-6【解析】如图,作AC ⊥x 轴,BD ⊥x 轴,∵OA ⊥OB ,∴∠AOB=90°,∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°,∴∠OAC=∠BOD ,∴△ACO ∽△ODB , ∴OA OC AC OB BD OD==, ∵∠OAB=60°,∴OA OB =, 设A (x ,2x),∴,,∴B,),把点B 代入y=kx 得,-x ,解得k=-6, 故答案为-6.15.5【解析】试题分析:本题我们可以假设一个点的坐标,然后进行求解.设点C 的坐标为(1,15),则点B 的坐标为5,15),点D 的坐标为(1,1),点E 的坐标为51),则5,51,则DE AB =55. 考点:二次函数的性质16.5【解析】试题分析:利用根与系数的关系进行求解即可.解:∵x 1,x 2是方程x 2-3x +2=0的两根,∴x 1+ x 2=3b a -=,x 1x 2=2c a=, ∴x 1+x 2+x 1x 2=3+2=5.故答案为:5.17.2【解析】【分析】设EF=x ,先由勾股定理求出BD ,再求出AE=ED ,得出方程,解方程即可.【详解】设EF=x ,∵四边形ABCD 是正方形,∴AB=AD ,∠BAD=90°,∠ABD=∠ADB=45°,∴22+4,EF=BF=x ,∴2x ,∵∠BAE=22.5°,∴∠DAE=90°-22.5°=67.5°,∴∠AED=180°-45°-67.5°=67.5°,∴∠AED=∠DAE ,∴BD=BE+ED=2x+4+22=42+4,解得:x=2,即EF=2.18.x1=-4,x1=2【解析】解:∵x=﹣3,x=﹣1的函数值都是﹣5,相等,∴二次函数的对称轴为直线x=﹣1.∵x=﹣4时,y=﹣1,∴x=2时,y=﹣1,∴方程ax1+bx+c=3的解是x1=﹣4,x1=2.故答案为x1=﹣4,x1=2.点睛:本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.三、解答题(本题包括8个小题)19.(1)详见解析;(2)(等边对等角),(三角形外角性质),(同位角相等,两直线平行).【解析】【分析】(1)根据角平分线的尺规作图即可得;(2)分别根据等腰三角形的性质、三角形外角的性质和平行线的判定求解可得.【详解】解:(1)如图所示,直线AP即为所求.(2)证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角),∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(三角形外角性质),∴∠DAC=2∠ABC,∵AP平分∠DAC,∴∠DAC=2∠DAP,∴∠DAP=∠ABC,∴AP∥l(同位角相等,两直线平行),故答案为(等边对等角),(三角形外角性质),(同位角相等,两直线平行).本题主要考查作图能力,解题的关键是掌握角平分线的尺规作图、等腰三角形的性质、三角形外角的性质和平行线的判定.20.(1) 14;(2)112.【解析】【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=14;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.21.(1)30;(2)①补图见解析;②120;③70人.【解析】分析:(1)由B类别人数及其所占百分比可得总人数;(2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;②用360°乘以A类别人数所占比例可得;③总人数乘以样本中C、D类别人数和所占比例.详解:(1)本次调查的好友人数为6÷20%=30人,故答案为:30;(2)①设D类人数为a,则A类人数为5a,根据题意,得:a+6+12+5a=30,解得:a=2,即A类人数为10、D类人数为2,补全图形如下:②扇形图中,“A”对应扇形的圆心角为360°×1030=120°, 故答案为:120; ③估计大约6月1日这天行走的步数超过10000步的好友人数为150×12230+=70人. 点睛:此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.(1)50(2)36%(3)160【解析】【分析】(1)根据条形图的意义,将各组人数依次相加即可得到答案;(2)根据条形图可直接得到最喜欢篮球活动的人数,除以(1)中的调查总人数即可得出其所占的百分比;(3)用样本估计总体,先求出九年级占全校总人数的百分比,然后求出全校的总人数;再根据最喜欢跳绳活动的学生所占的百分比,继而可估计出全校学生中最喜欢跳绳活动的人数.【详解】(1)该校对50名学生进行了抽样调查.()2本次调查中,最喜欢篮球活动的有18人,18100%36%50⨯=, ∴最喜欢篮球活动的人数占被调查人数的36%.(3)()130%26%24%20%-++=,20020%1000÷=人,8100%100016050⨯⨯=人. 答:估计全校学生中最喜欢跳绳活动的人数约为160人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.23.阅读发现:90°;(1)证明见解析;(2)100°【解析】【分析】阅读发现:只要证明15DFC DCF ADE AED ∠=∠=∠=∠=,即可证明.拓展应用:()1欲证明ED FC =,只要证明ADE ≌DFC △即可.()2根据DMC FDM DFC FDA ADE DFC ∠=∠+∠=∠+∠+∠即可计算.【详解】解:如图①中,四边形ABCD 是正方形,AD AB CD ∴==,90ADC ∠=, ADE ≌DFC △,DF CD AE AD ∴===,6090150FDC ∠=+=,15DFC DCF ADE AED ∴∠=∠=∠=∠=,601575FDE ∴∠=+=,90MFD FDM ∴∠+∠=,90FMD ∴∠=,故答案为90()1ABE 为等边三角形,60EAB ∴∠=,EA AB =. ADF 为等边三角形,60FDA ∴∠=,AD FD =.四边形ABCD 为矩形,90BAD ADC ∴∠=∠=,DC AB =.EA DC ∴=.150EAD EAB BAD ∠=∠+∠=,150CDF FDA ADC ∠=∠+∠=,EAD CDF ∴∠=∠.在EAD 和CDF 中,AE CD EAD FDC AD DF =⎧⎪∠=∠⎨⎪=⎩,EAD ∴≌CDF .ED FC ∴=;()2EAD ≌CDF ,20ADE DFC ∴∠=∠=,602020100DMC FDM DFC FDA ADE DFC ∴∠=∠+∠=∠+∠+∠=++=.【点睛】本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.24.树高为 5.5 米【解析】【分析】根据两角相等的两个三角形相似,可得 △DEF ∽△DCB ,利用相似三角形的对边成比例,可得DE EF DC CB =, 代入数据计算即得BC 的长,由 AB =AC+BC ,即可求出树高.【详解】∵∠DEF =∠DCB =90°,∠D =∠D ,∴△DEF ∽△DCB∴ DE EF DC CB=, ∵DE =0.4m ,EF =0.2m ,CD =8m , ∴0.40.28CB=, ∴CB =4(m ),∴AB =AC+BC =1.5+4=5.5(米)答:树高为 5.5 米.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.25.(1)50;(2)详见解析;(3)36°;(4)全校2000名学生共捐6280册书.【解析】【分析】(1)根据捐2本的人数是15人,占30%,即可求出该班学生人数;(2)根据条形统计图求出捐4本的人数为,再画出图形即可;(3)用360°乘以所捐图书是6本的人数所占比例可得;(4)先求出九(1)班所捐图书的平均数,再乘以全校总人数2000即可.【详解】(1)∵捐2 本的人数是15 人,占30%,∴该班学生人数为15÷30%=50 人;(2)根据条形统计图可得:捐 4 本的人数为:50﹣(10+15+7+5)=13;补图如下;(3)九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为360°×550=36°.(4)∵九(1)班所捐图书的平均数是;(1×10+2×15+4×13+5×7+6×5)÷50=157 50,∴全校2000 名学生共捐2000×15750=6280(本),答:全校2000 名学生共捐6280 册书.【点睛】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,用到的知识点是众数、中位数、平均数.26.(1)y1=2x;y2=x+1;(2)∠ACO=45°;(3)0<x<1.【解析】【分析】(1)根据△AOB的面积可求AB,得A点坐标.从而易求两个函数的解析式;(2)求出C点坐标,在△ABC中运用三角函数可求∠ACO的度数;(3)观察第一象限内的图形,反比例函数的图象在一次函数的图象的上面部分对应的x的值即为取值范围.【详解】(1)∵△AOB的面积为1,并且点A在第一象限,∴k=2,∴y1=2x;∵点A的横坐标为1,∴A(1,2).把A(1,2)代入y2=ax+1得,a=1.∴y2=x+1.(2)令y2=0,0=x+1,∴x=−1,∴C(−1,0).∴OC=1,BC=OB+OC=2.∴AB=CB,∴∠ACO=45°.(3)由图象可知,在第一象限,当y1>y2>0时,0<x<1.>y2>0时,−1<x<0(舍去).在第三象限,当y1【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于结合函数图象进行解答.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知////AB CDEF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=2.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC 的度数是()A.85°B.105°C.125°D.160°3.已知圆内接正三角形的面积为33,则边心距是()A.2 B.1 C.3D.324.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。
2019-2020学年中考物理模拟试卷一、选择题(本题包括20个小题)1.关于磁体、磁场和磁感线,以下说法中正确的是()A.铜、铁和铝都能够被磁体所吸引B.磁感线是磁场中真实存在的曲线C.磁体之间的相互作用都是通过磁场发生的D.物理学中,把小磁针静止时S极所指的方向规定为该点磁场的方向2.如图1所示,为医用氧气瓶.若以○表示氧气分子,用图2的方式代表容器内氧气的分布情况.病人吸完氧气并将其静置一段时间后(瓶内仍有剩余氧气),瓶内氧气分子分布为A.B.C.D.3.下列物态变化过程中,需要吸收热量的是()A.湖水结成冰B.樟脑丸变小C.露珠的形成D.雾凇的形成4.下列现象属于光的折射的是A.在湖边看到水中的鱼B.日食和月食C.人在穿衣镜前能看到自己在镜中的像D.阳光下人站在地面上会出现影子5.透镜在我们的生活中应用广泛,下列说法中正确的是( )A.借助放大镜看地图时,地图到放大镜的距离应大于一倍焦距B.投影仪能使物体在屏幕上成正立、放大的实像C.照相时,要使所拍摄景物的像变大,应将照相机的镜头远离被拍摄物体D.近视眼镜利用了凹透镜对光的发散作用6.如下图所示的四幅图中,分别表示远视眼成像情况和矫正做法的是A.②、①B.③、①C.②、④D.③、④7.关于声现象,下列说法正确的是A.声音的传播速度是340 m/sB.物体振动越快,发出的声音响度越大C.用“B超”查看胎儿的发育情况,利用了声波可以传递能量D.高架道路两旁建隔音墙是在传播过程中减弱噪声8.第24届冬季奥林匹克运动会将在2022年由北京市和张家口市联合举办.冰球是比赛项目之一,越来越被大众喜爱.下图为帅气的冰球选手备战训练的瞬间.下列说法正确的是A.冰球运动员在加速滑行过程中,运动状态不变B.运动员不蹬地,会慢慢停下来,说明力是维持物体运动状态的原因C.运动员滑行时不能立即停下来,是因为运动员受到惯性D.运动员站在水平冰面上时,冰面对人的支持力与人受到的重力是一对平衡力9.如图所示,把螺线管沿东西方向水平悬挂起来,然后给导线通电,会发生的现象是A.通电螺线管仍保持静止不动B.通电螺线管能在任意位置静止C.通电螺线管转动,直至B端指向南,A端指向北D.通电螺线管转动,直至A端指向南,B端指向北10.指南针是我国四大发明之一,《论衡》记载:司南之杓,投之于地,其柢指南.如图所示的司南放在水平光滑的“地盘”上,静止时它的长柄指向南方.司南长柄所指方向是()A.地理南极,地磁北极B.地理南极,地磁南极C.地理北极,地磁北极D.地理北极,地磁南极二、填空题(本题包括9个小题)11.如图是马俊同学在课间休息时将一重为100N的小球在水平桌面上滚动了80cm后滚出桌面,0.6s后落在离桌面边缘水平方向1.5m的地面上,如果桌子高0.9m,那么小球在整个运动过程中,重力做了_____J 的功,其功率是_____。
2019-2020学年中考物理模拟试卷一、选择题(本题包括20个小题)1.如图所示是装满豆浆的密闭杯子,以下列两种不同的方式放在水平桌面上,若杯子上表面面积是下表面面积的2倍,则()A.甲对桌面产生的压强是乙对桌面产生压强的2倍B.甲杯底受到的压强是乙杯底受到压强的2倍C.甲对桌面产生的压力比乙对桌面产生的压力大D.甲杯底受到的压力比乙杯底受到的压力大2.关于声音,下列说法正确的是A.一切发声的物体都在振动B.只要物体在振动,我们就能听到声音C.声音在不同介质中的传播速度相同D.声音在真空中的传播速度为3×108m/s3.在探究凸透镜成像规律的实验中,当蜡烛、凸透镜、光屏位于如图所示的位置时在光屏上呈现一个清晰的烛焰的像.下列说法正确的是A.透镜不动,蜡烛和光屏都向右移动,可以看到像变大B.此时成正立、放大的实像,与投影仪原理相同C.透镜右移,眼睛在光屏和透镜间,通过透镜看到正立的像D.若在透镜和蜡烛之间放远视镜片,应将光屏适当右移,可再次出现清晰的像4.如图所示的实验或机器均改变了物体的内能,其中与另外三个改变内能方法不同的是()A.探究萘的熔化规律B.压缩气体点燃棉花C.内燃机压缩冲程D.水蒸气将软木塞冲出5.在如图所示的实验装置中,闭合开关后,当左右移动导体棒AB时,能观察到电流计指针发生偏转.利用这一现象所揭示的原理,可制成的设备是()A.发电机B.电热器C.电动机D.电磁铁6.下列有关物理学家和他的主要贡献,说法正确的是A.托里拆利﹣﹣测出大气压的值B.阿基米德﹣﹣光的色散现象C.牛顿﹣﹣杠杆原理D.安培﹣﹣电流周围存在磁场7.如图所示,电源电压保持不变,闭合电键S后,当滑动变阻器的滑片向右移动时,在①②③④各种情况中,数据变大的有①电压表V的示数②电流表A2的示数③电压表V的示数与电流表A的示数的比值④电流表A1与电流表A的示数的比值A.只有①B.②和③C.只有③D.③和④8.如图所示,设水对底部的压强为p瓶子对桌面的压强为p′.将瓶子从正放(如图甲)变为倒放(如图乙),则p和p′的变化情况是A.p变小,p′变小B.p变小,p′变大C.p变大,p′变小D.p变大,p′变大9.如图所示,放在M、N两水平桌面上的A、B两物体,分别在FA=5N、FB=3N的水平拉力作用下做匀速直线运动,可以确定A.桌面M一定比桌面N粗糙B.A的速度一定大于B的速度C.A的质量一定大于B的质量D.A受到的摩擦力一定大于B 受到的摩擦力10.自然及生活中许多光现象都是由于光不同的传播特点而形成.如图所示的四个情景中,由于光沿直线传播形成的是()A.水中的倒影B.阳光下的影子C.水面“折断”的笔D.放大镜中的景物二、填空题(本题包括9个小题)11.天然气是一种热值高、污染小的清洁能源。
2019-2020学年中考物理模拟试卷一、选择题(本题包括20个小题)1.下列各电学实验,都可以通过调节滑动变阻器来测量多组电流和电压,其中为了减小实验误差的是()A.电阻的大小与哪些因素有关B.电流的大小与哪些因素有关C.用“伏安法”测电阻器电阻D.用“伏安法”测小灯泡功率2.夏天,盛一盆水,在盆里放入两块高出水面的砖头,砖头上搁一只篮子,再把装有剩饭剩菜的碗放入篮子,用纱布袋罩好,就做成一个“简易冰箱”如图,篮子里的饭菜放置大半天也不会变质,以上“简易冰箱”的工作原理是()A.液化放热B.蒸发吸热C.凝固放热D.升华吸热3.下列关于物态变化说法正确的是A.春天,河里冰雪消融,是凝固现象B.夏天,冰糕周围冒“白气”,是汽化现象C.秋天,早晨花草上出现的小露珠,是溶化现象D.冬天,温暖的室内窗玻璃变模糊,是液化现象4.下列光学现象与规律不相符的是()A.小孔成像——光的直线传播B.海市蜃楼——光的折射C.湖光镜月——光的反射D.人面桃花相映红——光的折射5.如图所示,放在水平桌面上的物块用细线通过定滑轮与沙桶相连,当沙桶与沙的总质量为m时,物块恰好做匀速直线运动(忽略细线与滑轮之间的摩擦).以下说法正确的是A.物块受到的滑动摩擦力大小为mgB.物块的重力与它对桌面的压力是一对平衡力C.物块受到的滑动摩擦力与支持力是一对平衡力D.小桶匀速下降的过程中重力势能转化为动能6.下列有关信息和能源说法正确的是A.我国自主建立的北斗卫星定位系统是利用电磁波传递信息的B.目前世界上已投入使用的核电站有利用核聚变发电的也有利用核裂变发电的C.煤、石油、水力、太阳能、风能等属于可再生能源D.电吹风主要利用电磁波的能量特性进行工作7.下列有关光的现象中,正确的说法是A.阳光下,微风吹拂的河面,波光粼粼,这里蕴含着光的反射B.光与镜面成30°角射在平面镜上,则其反射角也是30°C.人在照镜子时,总是靠近镜子去看,其原因是靠近时像会变大D.老年人通过放大镜看书,看到的字的实像8.拍照用的“自拍神器”给旅行者自拍带来了方便.如图所示,与直接拿手机自拍相比,利用自拍杆可以A.增大物距,成像更大B.增大像距,成像更大C.增大取景范围,成像变小D.减小取景范围,成像变小9.如图所示,当开关S闭合,滑动变阻器的滑片P由右端向左滑向中点的过程中A.电压表V的示数变小,电流表A2的示数变大B.灯泡变亮,电流表A2示数变小C.电压表的V的示数不变,灯泡亮度不变D.电流表A1的示数不变,电流表A2的示数变小10.物理实验课上,某小组配制了一杯盐水,利用天平和量筒测量这杯盐水的密度,实验过程如下:(1)将天平放在水平桌面上,将_____调至标尺左端的零刻度线处,并调节横梁两端的平衡螺母,使指针指在分度盘的中线处。