11.3简谐运动的恢复力和能量
- 格式:ppt
- 大小:1.82 MB
- 文档页数:22
11.3 简谐运动的回复力和能量(解析版)简谐运动的回复力和能量(解析版)简谐运动是物理学中的一种基本运动形式,也是许多实际问题的基础模型。
本文将解析简谐运动中的回复力和能量的相关概念和计算方法。
一、简谐运动的回复力简谐运动的回复力是指物体在偏离平衡位置后所受的恢复力,该力的大小与偏离平衡位置的距离成正比,方向与偏离方向相反。
简谐运动的回复力服从胡克定律,可以表示为F = -kx,其中F为回复力的大小,k为回复力常数,x为偏离平衡位置的距离。
回复力的大小与物体的质量无关,只与被拉伸或压缩的弹簧的劲度系数k和偏离平衡位置的距离x有关。
当物体偏离平衡位置越远时,回复力的大小越大,当物体回到平衡位置时,回复力为零。
二、简谐运动的能量简谐运动的能量可以分为势能和动能两部分。
1. 势能势能是物体由于位置变化而具有的能量。
对于简谐运动,物体的势能可以表示为Ep = 1/2kx^2,其中Ep为势能,k为回复力常数,x为偏离平衡位置的距离。
当物体处于平衡位置时,势能为零,当物体偏离平衡位置越远时,势能越大。
2. 动能动能是物体由于运动而具有的能量。
对于简谐运动,物体的动能可以表示为Ek = 1/2mv^2,其中Ek为动能,m为物体的质量,v为物体的速度。
由于简谐运动的速度与物体的位置关系是正弦函数,因此动能也是随位置变化而变化的。
三、简谐运动的总能量守恒对于简谐运动系统来说,总能量是守恒的,即势能和动能的和保持不变。
当物体在偏离平衡位置时,势能增加,动能减小;当物体回到平衡位置时,势能减小,动能增加。
在一个简谐周期内,势能和动能交换,但总能量保持不变。
总能量可以表示为E = Ep + Ek。
在简谐运动中,总能量的大小等于势能的最大值等于动能的最大值。
四、总结简谐运动的回复力和能量是描述该运动的两个重要概念。
回复力的大小与偏离平衡位置的距离成正比,方向与偏离方向相反。
势能是由于位置变化而产生的能量,动能是由于运动而产生的能量。
11.3 简谐运动的回复力和能量一、简谐运动的回复力1.简谐运动的定义:如果质点所受的力与它偏离_____________的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。
2.回复力:力的方向总是指向平衡位置,它的作用总是把物体______________,这个力称为回复力。
它可以是某一个力,也可以是几个力的合力或某个力的分力,属于_________。
3.位移:由平衡位置指向振动质点所在位置的_____________,是矢量,其最大值等于振幅。
4.回复表达式:F=-kx,其中“-〞表示回复力与位移的方向相反,k是弹簧的劲度系数,x是弹簧振子的位移。
二、简谐运动的能量1.运动学特征:x、v、a均按_________________发生周期性变化〔注意v、a的变化趋势相反〕。
2.能量特征:系统的___________,振幅A不变。
平衡位置位移拉回到平衡位置效果力有向线段正弦或余弦规律机械能守恒一、简谐运动的特征1.受力特征:简谐运动的回复力满足F=-kx,位移x与回复力的方向相反。
由牛顿第二定律知,加速度a与位移的大小成正比,方向相反。
2.运动特征:当v、a同向时〔即v、F同向,也就是v、x反向〕时,v一定增大;当v、a反向时〔即v、F反向,也就是v、x同向〕时,v一定减小。
当物体靠近平衡位置时,a、f、x都减小,v增大;当物体远离平衡位置时,a、f、x都增大,v减小。
3.能量特征:对弹簧振子来说,振幅越大,能量越大,在振动过程中,动能和势能相互转化,机械能守恒。
4.周期特征:物体做简谐运动时,其位移、回复力、加速度、速度、动量等矢量都随时间做周期变化,他们的周期就是简谐运动的周期T。
物体动能和势能也随时间周期性变化,其周期为T/2。
5.对称性特征〔1〕速率的对称性:物体在关于平衡位置对称的两个位置具有相等的速率。
〔2〕时间的对称性:物体通过关于平衡位置对称的两段位移的时间相等。
〔3〕加速度的对称性:物体在关于平衡位置对称的两位置具有等大、反向的加速度。
简谐运动的回复力和能量简谐运动是一种在物理学中经常出现的现象,它是指一种物体在作往复振动时,其位移随时间变化呈现出正弦曲线的运动。
简单来说,就是物体在一定的位置上来回振动,比如一个摆锤在悬挂在绳子上摆动,或者是一个弹簧在振动。
这种运动具有回复力和能量的特点,下面将分别进行讨论。
回复力的定义和特点在简谐运动中,回复力指的是弹性势能的作用力,它是当物体离开平衡位置时,受到的恢复力,使物体朝向平衡位置方向移动。
回复力的大小和方向与物体离开平衡位置的距离成正比,反向指向平衡位置。
具体来说,回复力的公式为F = -kx,其中k是弹性系数,x是物体离开平衡位置的距离。
回复力对于简谐运动来说是一个非常重要的特性,因为它是使物体朝向平衡位置恢复的力量,同时也是振动维持的关键因素。
在简谐运动中,振动的频率、周期和振幅都取决于回复力的大小和弹性系数的变化。
当振幅变大时,回复力也会变大,当弹性系数增大或减小时,回复力的大小也会发生相应的变化。
能量的定义和特点能量是指物体的运动状态所具有的“有用”的物理量。
在简谐运动中,能量由动能和势能组成,它们之间通过运动的转化实现互相转换。
简谐运动的总能量等于动能和势能的和,它是一个守恒量,也就是说在运动过程中能量的总和始终保持不变。
具体来说,当物体在平衡位置附近振动时,它具有最小的动能和弹性势能;当物体脱离平衡位置时,弹性势能会转化为动能,同时物体有更大的动能;当物体到达到最远的位置时,它的动能最大,而弹性势能为零。
这意味着,简谐运动所产生的能量是从一种形式到另一种形式的转化。
简谐运动是一种常见的物理现象,它具有回复力和能量的特点。
回复力是指物体朝向平衡位置方向恢复的力量;能量由动能和势能组成,是物体运动状态的“有用”物理量。
回复力和能量是简谐运动的关键特性,它们直接决定了运动的频率、周期和振幅变化,因此在研究简谐运动时非常重要。
《11.3 简谐运动的回复力和能量》针对训练1.如图所示,对做简谐运动的弹簧振子m 的受力分析,正确的是A .重力、支持力、弹簧的弹力B .重力、支持力、弹簧的弹力、回复力C .重力、支持力、回复力、摩擦力D .重力、支持力、摩擦力【答案】A【解析】有不少同学误选B ,产生错解的主要原因是对回复力的性质不能理解清楚或者说是对回复力来源没有弄清楚造成的,一定清楚地认识到回复力是根据效果命名的,它是由其他力所提供的力。
2.关于做简谐运动的物体完成一次全振动的意义有以下说法,其中正确的A .回复力第一次恢复原来的大小和方向所经历的过程B .速度第一次恢复原来的大小和方向所经历的过程C .动能或势能第一次恢复原来的大小所经历的过程D .速度和加速度第一次同时恢复原来的大小和方向所经历的过程【答案】D【解析】回复力满足F =-kx ,一个周期内两次经过同一位置,故全振动过程是回复力第2次恢复原来的大小和方向所经历的过程,故A 错误;一个周期内速度相同的位置有两处,故全振动过程是速度第二次恢复原来的大小和方向所经历的过程,故B 错误;每次经过同一位置动能或势能相同,关于平衡位置对称的点的动能或势能也相同,故一个周期内动能和势能相同的时刻有4个时刻,故C 错误;根据a =-kx m,加速度相同说明位移相同,经过同一位置速度有两个不同的方向,故全振动过程是速度和加速度第一次同时恢复原来的大小和方向所经历的过程,故D 正确。
3.下图为某个弹簧振子做简谐运动的图象,由图象可知A .由于在0.1s 末振幅为零,所以振子的振动能量为零B .在0.2s 末振子具有最大势能C .在0.4s 末振子具有的势能尚未达到最大值D .在0.4s 末振子的动能最大【答案】B【解析】简谐振动的能量是守恒的,故A 、C 错;0.2秒末、0.4秒末位移最大,动能为零,势能最大,故B 对,D 错。
4.光滑的水平面上放有质量分别为m 和12m 的两木块,下方木块与一劲度系数为k 的弹簧相连,弹簧的另一端固定在墙上,如图所示。