最新浙教版数学七年级下册第1章《平行线》单元测试(精)
- 格式:doc
- 大小:255.50 KB
- 文档页数:8
第一章平行线单元达标测试题一、选择题1.两条直线被第三条直线所截,那么下面说法正确的是()A、同位角相等B、内错角相等C、同旁内角互补D、以上都不对2.下列说法正确的有( )①不相交的两条直线是平行线; ②在同一平面内,两条直线的位置关系有两种; ③若线段AB与CD没有交点,则AB∥CD; ④若a∥b,b∥c,则a与c不相交.A.1个B.2个C.3个D.4个3.下列结论正确的是()A、不相交的直线互相平行B、不相交的线段互相平行C、不相交的射线互相平行D、有公共端点的直线一定不平行4.如图,直线c与直线a、b相交,且a∥b,则下列结论:①∠1=∠2;②∠1=∠3;③∠3=∠2中,正确的个数为()A.0个 B.1个 C.2个 D.3个(第4题) (第5题) (第6题)5.如图,已知∠1=70°,要使AB∥CD,则须具备另一个条件()A.∠2=70° B.∠2=100° C.∠2=110° D.∠3=110°6.如图所示,在下列四组条件中,能判定AB∥CD的是()A.∠1=∠2B.∠ABD=∠BDCC.∠3=∠4D.∠BAD+∠ABC=180°7.如图所示,如果∠D=∠EFC,那么( )A.AD∥BCB.EF∥BCC.AB∥DCD.AD∥EFFEDCBA(第7题) (第8题) (第10题) 8.如图,AB∥ED,∠ECF=70°,则∠BAF的度数为()A.130° B.110° C.70° D.20°9.如图所示,下列四组图形中,有一组中的两个图形经过平移其中一个能得到另一个,这组图形是( )10.如图,在△ABC中,∠C=90°。
若BD∥AE,∠DBC=20°,则∠CAE的度数是()A、40°B、60°C、70°D、80°二、填空题11.经过直线外一点,一条直线与这条直线平行。
2022-2023学年浙教版七年级数学下册《第1章平行线》单元综合达标测试题(附答案)一.选择题(共7小题,满分28分)1.如图,下列说法正确的是()A.∠1与∠2是同位角B.∠1与∠2是内错角C.∠1与∠3是同位角D.∠2与∠3是同旁内角2.如图,四边形ABCD中,∠1=∠3,AD∥BC,则下列等式不成立的是()A.∠1=∠2B.∠3=∠4C.∠2=∠3D.∠1+∠2+∠B=180°3.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上,如果∠2=42°,那么∠1的度数是()A.18°B.17°C.16°D.15°4.如图,在弯形管道ABCD中,若AB∥CD,拐角∠ABC=122°,则∠BCD的大小为()A.58°B.68°C.78°D.122°5.直线BD∥EF,两个直角三角板如图摆放,若∠CBD=10°,则∠1=()A.75°B.80°C.85°D.95°6.如图,△ABC沿BC方向平移得到△DEF,已知BC=5,EC=2,则平移的距离是()A.1B.2C.3D.47.如图,直线a∥b,点A在直线a上,点C、D在直线b上,且AB⊥BC,BD平分∠ABC,若∠1=32°,则∠2的度数是()A.13°B.15°C.14°D.16°二.填空题(共7小题,满分28分)8.如图,已知AB∥CD,∠1=55°,则∠2的度数为.9.如图,DE∥BC,CD平分∠ACB,∠ACB=58°,则∠EDC=.10.如图所示,要在竖直高AC为2米,水平宽BC为8米的楼梯表面铺地毯,地毯的长度至少需要米.11.∠1与∠2的两边分别平行,且∠2的度数比∠1的度数的3倍少40°,那么∠2的度数为.12.如图,AB∥CD∥EF,若∠ABC=125°,∠CEF=105°,则∠BCE的度数为.13.如图,AB∥CD,AD与BC相交于点F,BE平分∠ABC,DE平分∠ADC,∠AFB=96°,则∠BED的度数为度.14.太阳灶、卫星信号接收锅、探照灯以及其他很多灯具都与抛物线有关.如图,从点O 照射到抛物线上的光线OB,OC等反射以后沿着与POQ平行的方向射出.图中如果∠BOP=45°,∠QOC=68°,则∠ABO=,∠DCO=.三.解答题(共6小题,满分64分)15.如图,点D、E、F分别是三角形ABC的边BC、CA、AB上的点,且∠B+∠BDE=180°,∠A=∠FDE.求证:DF∥AC.16.如图,FG∥AC,∠1=∠2,DE与FC平行吗?为什么?17.如图,已知DE∥BC,∠3=∠B,则∠1+∠2=180°.下面是小王同学的说明过程,请你在括号内填上理由、依据或内容,请你帮助小王同学完成说明过程:∵DE∥BC(已知),∴∠3=∠EHC(),∵∠3=∠B(),∴∠B=∠EHC(等量代换),∴AB∥EH(),∴∠2+∠4=180°(),又∵∠1=∠4 (),∴∠1+∠2=180°().18.如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若BC平分∠ABD,∠D=112°,求∠C的度数.19.如图,点E在AB上,点F在CD上,CE、BF分别交AD于点G、H,已知∠A=∠AGE,∠D=∠DGC.(1)AB与CD平行吗?请说明理由;(2)若∠2+∠1=180°,且3∠B=∠BEC+20°,求∠C的度数.20.【提出问题】若两个角的两边分别平行,则这两个角有怎样的数量关系?【解决问题】分两种情况进行探究,请结合如图探究这两个角的数量关系.(1)如图1,AB∥EF,BC∥DE,试证:∠1=∠2;(2)如图2,AB∥EF,BC∥DE,试证:∠1+∠2=180°;【得出结论】由(1)(2)我们可以得到结论:若两个角的两边分别平行,则这两个角的数量关系为;【拓展应用】(3)若两个角的两边分别平行,其中一个角比另一个角的2倍少60°,求这两个角的度数.(4)同一平面内,若两个角的两边分别垂直,则这两个角的数量关系为.参考答案一.选择题(共7小题,满分28分)1.解:A、∠1和∠2不是同位角,故本选项不符合题意;B、∠1和∠2不是内错角,故本选项不符合题意;C、∠1和∠3是内错角,不是同位角,故本选项不符合题意;D、∠2和∠3是同旁内角,故本选项符合题意;故选:D.2.解:∵AD∥BC,∴∠2=∠3,∠1+∠2+∠B=180°,∵∠1=∠3,∴∠1=∠2,故A、C、D成立,不符合题意,根据题意不能判定∠3=∠4,故B不成立,符合题意,故选:B.3.解:如图,∵∠2+∠3=60°,∴∠3=60°﹣∠2=60°﹣42°=18°,根据平行线的性质可得,∠1=∠3=18°.故选:A.4.解:∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC=122°,∴∠BCD=180°﹣122°=58°,故选:A.5.解:∵∠ABC=30°,∠CBD=10°,∴∠ABD=∠ABC+∠CBD=30°+10°=40°,∵BD∥EF,∴∠BAF=∠ABD=40°,∵∠EFD=45°,∴∠1=180°﹣∠BAF﹣∠EFD=180°﹣40°﹣45°=95°.故选:D.6.解:点B平移后对应点是点E.∴线段BE就是平移距离,∵已知BC=5,EC=2,∴BE=BC﹣EC=5﹣2=3.故选:C.7.解:延长CB交直线a于点E,如图,∵AB⊥BC,∠1=32°,∴∠ABC=90°,∴∠AEC=90°﹣∠1=58°,∵a∥b,∴∠ECF=∠AEC=58°,∵BD平分∠ABC,∴∠CBD=∠ABC=45°,∵∠ECF是△BCD的外角,∴∠2=∠ECF﹣∠CBD=13°.故选:A.二.填空题(共7小题,满分28分)8.解:∵AB∥CD,∠1=55°,∴∠3=∠1=55°,∴∠2=180°﹣∠3=125°,故答案为:125°.9.解:∵CD平分∠ACB,∠ACB=58°,∴∠ECD=∠ACB=29°,∵DE∥BC,∴∠EDC=∠ECD=29°.故答案为:29°.10.解:由题意可知,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,所以地毯的长度至少需要8+2=10(米).故答案为:10.11.解:如图1所示:①当∠1=∠2时,∵∠2=3∠1﹣40°,∴∠1=3∠1﹣40°,解得∠1=20°,∴∠2=20°;如图2:②当∠1+∠2=180°时,∵∠2=3∠1﹣40°,∴∠1+3∠1﹣40°=180°,解得∠1=55°,∴∠2=125°;故答案为:20°或125°.12.解:∵AB∥CD∥EF,∠ABC=125°,∠CEF=105°,∴∠BCD=∠ABC=125°,∠DCE=180°﹣∠CEF=75°,∴∠BCE=∠BCD﹣∠DCE=50°.故答案为:50°.13.解:如图,过点E作EP∥AB,∵AB∥CD,∴AB∥CD∥EP,∴∠ABE=∠BEP,∠CDE=∠DEP,∠ABC=∠BCD,∵∠ABC+∠BAD+∠AFB=180°,∴∠ABC+∠BAD=180°﹣∠AFB=84°,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠ABC,∠CDE=∠ADC,∴∠ABE+∠CDE=(∠ABC+∠BAD)=42°,∴∠BED=∠BEP+∠DEP=∠ABE+∠CDE)=42°,故答案为:42.14.解:∵AB∥PQ,∴∠ABO=∠BOP=45°,∵CD∥PQ,∴∠DCO+∠QOC=180°,即∠DCO+68°=180°,解得∠DCO=112°.故答案为:45°;112°.三.解答题(共6小题,满分64分)15.证明:∵∠B+∠BDE=180°,∴AB∥DE,∴∠BFD=∠FDE,∵∠A=∠FDE,∴∠BFD=∠A,∴DF∥AC.16.解:DE∥FC,理由如下:∵FG∥AC,∴∠1=∠ACF,∵∠1=∠2,∴∠ACF=∠2,∴DE∥FC.17.解:∵DE∥BC(已知),∴∠3=∠EHC(两直线平行,内错角相等),∵∠3=∠B(已知),∴∠B=∠EHC(等量代换),∴AB∥EH(同位角相等,两直线平行),∴∠2+∠4=180°(两直线平行,同旁内角互补),∵∠1=∠4(对顶角相等),∴∠1+∠2=180°(等量代换).18.解:(1)证明:∵FG∥AE,∴∠FGC=∠2,∵∠1=∠2,∴∠1=∠FGC,∴AB∥CD;(2)∵AB∥CD,∴∠ABD+∠D=180°,∴∠ABD=180°﹣112°=68°,∵BC平分∠ABD,∴∠ABC=ABD=34°,∵AB∥CD,∴∠C=∠ABC=34°.所以∠C的度数为34°.19.解:(1)AB∥CD,理由如下:∵∠A=∠AGE,∠D=∠DGC,∠AGE=∠DGC,∴∠A=∠D,∴AB∥CD;(2)∵∠2+∠1=180°,∠CGD+∠2=180°,∴∠1=∠CGD,∴CE∥BF,∴∠C=∠BFD,∠BEC+∠B=180°,∵∠BEC=3∠B+20°,∴∠B=40°,∵AB∥CD,∴∠B=∠BFD,∴∠C=∠B=40°.20.【提出问题】(1)证明:如图1,∵AB∥EF,∴∠1=∠3,又∵BC∥DE,∴∠2=∠3,∴∠1=∠2;(2)证明:如图2,∵AB∥EF,∴∠1=∠4,∴∠2+∠4=180°,∴∠1+∠2=180°;【得出结论】解:由(1)(2)我们可以得到的结论是:若两个角的两边分别平行,则这两个角的数量关系是相等或互补,故答案为:相等或互补;【拓展应用】(3)解:设其中一个角为x,则另一角为2x﹣60°,当x=2x﹣60°时,解得x=60°,此时两个角为60°,60°;当x+2x﹣60°=180°,解得x=80°,则2x﹣60=100°,此时两个角为80°,100°;∴这两个角分别是60°,60°或80°,100°.(4)解:如图,这两个角之间的数量关系是:相等或互补.故答案为:相等或互补.。
第1章 平行线 单元测试卷一、单选题(共10题;共30分)1. 如图,直线a ∥b ,∠1=50°,∠2=30°,则∠3的度数为( )A. 30°B. 50°C. 80°D. 100°2. 一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向平行行驶,那么这两个拐弯的角度可能是( )A. 先向左转130°,再向左转50°B. 先向左转50°,再向右转50°C. 先向左转50°,再向右转40°D. 先向左转50°,再向左转40°3. 下列图形中1∠与2∠是内错角的是A. B. C.D.4. 如图,以下条件能判定GE CH ∥的是( )A. ∠FEB =∠ECDB. ∠AEG =∠DCHC. ∠GEC =∠HCFD. ∠HCE =∠AEG5. 如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A. 14°B. 15°C. 16°D. 17°6. 如图,在“A”字型图中,AB 、AC 被DE 所截,则ADE ∠与DEC ∠是( )A. 内错角B. 同旁内角C. 同位角D. 对顶角7. 如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B =30°,则∠C 为( )A. 30°B. 60°C. 80°D. 120°8. 如图,给出了过直线AB 外一点P ,作已知直线AB 的平行线的方法,其依据是( )A. 同位角相等,两直线平行B. 内错角相等,两直线平行C. 同旁内角互补,两直线品行D. 过直线外一点有且只有一条直线与这条直线平行9. 如图,直线l 1∥l 2,AB 与直线l 1垂直,垂足为点B ,若∠ABC=37°,则∠EFC的度数为( )A. 127°B. 133°C. 137°D. 143°10. 有下列说法:①三角形ABC在平移的过程中,对应线段一定相等;②三角形ABC在平移的过程中,对应线段一定平行;③三角形ABC在平移的过程中,周长不变;④三角形ABC在平移的过程中,面积不变.其中正确的有( )A. ①②③B. ①②④C. ①③④D. ②③④二、填空题(共6题;共24分)11. 如图所示,与∠C构成同旁内角的有___________个.12. 如图,已知∠1=∠2,则图中互相平行的线段是___________;理由是:__________________________.13. 如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是____________°.14. 如图,三角形ABC经过平移得到三角形DEF,那么图中平行且相等的线段有_____对;若∠BAC=50°,则∠EDF=_____.15. 如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=_____°.16. 如图,现给出下列条件:①∠1=∠2,②∠B=∠5,③∠3=∠4,④∠5=∠D,⑤∠B+∠BCD=180°,其中能够得到AD∥BC的条件是______(填序号);能够得到AB∥CD的条件是_______.(填序号)三、解答题(共8题;共66分)17. 如图,李老师在黑板上画了一个图形,请你在这个图形中分别找出角A的一个同位角、内错角和同旁内角,并指出是哪两条直线被哪条直线所截形成的.18. 如图,MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠=︒,试判断AB和CD的位置关系,并说明理由.25019. 如图,张三打算在院落里种上蔬菜,已知院落为东西长32m,南北宽20m的长方形,为了行走方便,要修筑同样宽的三条道路:东西两条,南北一条,南北道路垂直于东西道路,余下的部分要分别种上西红柿、青椒、菜豆、黄瓜等蔬菜,若每条道路的宽均为1m,求蔬菜的总种植面积是多少?20. 如图,已知AB∥CD∥EF,PS ⊥ GH交GH于P.在∠FRG=110°时,求∠PSQ.21. 如图,B处在A处的南偏西42°的方向,C处在A处的南偏东16°的方向,C 处在B处的北偏东72°的方向,求从C处观测A、B两处的视角∠ACB的度数.22. 如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN 的度数.23. 如图,E 点为DF 上的点,B 为AC 上的点,12C D ∠=∠∠=∠,,求证:(1)BD CE∥(2)DF AC∥24. 如图,直线l 1∥l 2,∠BAE =125°,∠ABF =85°,则∠1+∠2等于多少度?第1章平行线单元测试卷一、单选题(共10题;共30分)【1题答案】【答案】D【解析】【分析】利用平角的定义求出∠4=100°,再利用平行线的性质可得出结果.【详解】∵∠1=50°,∠2=30°,∴∠4=100°,∵a∥b,∴∠3=∠4=100°,故选D.【点睛】本题考查了平行线的性质,解题的关键是:两直线平行,同位角相等.【2题答案】【答案】B【解析】【详解】根据同位角相等,两直线平行,可得B.【3题答案】【答案】A【解析】【详解】A. <2与<1是内错角,故此选项正确;B. <2与<1的对顶角是内错角,故此选项错误;C. <2与<1 是同旁内角,故此选项错误;D. <2与<1的邻补角是内错角,故此选项错误;故选A.点睛:本题主要考查的知识点为内错角,两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.掌握内错角的定义是解答本题的关键.【4题答案】【答案】C【解析】【详解】解:∠FEB=∠ECD,∠AEG=∠DCH,∠HCE=∠AEG,它们不是直线∥;GE、CH被某条直线截得的同位角或内错角,不能判定GE CH∵∠GEC=∠HCF.且它们是直线GE、CH被直线EC截得的内错角.∥∴GE CH故选C.【5题答案】【答案】C【解析】【分析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【详解】如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选C.【点睛】考查了平行线的性质,解题时注意:两直线平行,内错角相等.【6题答案】【答案】A【解析】【详解】试题分析:如图,∠ADE与∠DEC是AB、AC被DE所截的内错角.故选A.考点:同位角、内错角、同旁内角.点评:正确记忆内错角的定义是解决本题的关键.【7题答案】【答案】A【解析】【分析】根据两直线平行,同位角相等可得∠EAD=∠B,再根据角平分线的定义求出∠EAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=2×30°=60°,∴∠C=∠EAC﹣∠B=60°﹣30°=30°,故选:A.【点睛】本题主要考查平行线的性质及角平分线的定义,熟练掌握平行线的性质及角平分线的定义是解题的关键.【8题答案】【答案】A【解析】【分析】由平行线的画法可知,∠2与∠1相等,根据图形判断出∠2与∠1的位置关系,由此可得答案.【详解】解:由平行线的画法可知,∠2与∠1相等,且∠2与∠1是一对同位角,所以画法的依据是:同位角相等,两直线平行.故选A.【点睛】本题考查的是平行线的原理,熟练掌握平行线的判定方法是解答本题的关键.【9题答案】【答案】A【解析】【详解】因为AB与直线l1垂直,垂足为点B,∠ABC=37°,所以∠CBD=90°-∠ABC=53°;又因为直线l1∥l2,所以∠CBD=∠BFG=53°(两直线平行,同位角相等),所以∠EFC=180°-∠BFG=127°.故选A【10题答案】【答案】C【解析】【详解】①∵平移不改变图形的大小,∴△ABC在平移过程中,对应线段一定相等,故正确;②∵经过平移,对应线段所在的直线共线或平行,∴对应线段一定平行错误;③∵平移不改变图形的形状和大小,∴△ABC在平移过程中,周长不变,故正确;④∵平移不改变图形的形状和大小且对应角相等,∴△ABC在平移过程中,面积不变,故正确;∴①、③、④都符合平移的基本性质,都正确.故选C.二、填空题(共6题;共24分)【11题答案】【答案】3【解析】【分析】据图形和同旁内角的定义,可知∠C构成同旁内角的有∠EBC、∠DBC、∠BDC,共3个.【详解】AC把EB、DC相截,与∠C构成同旁内角的有∠EBC;AC把BD、DC相截,与∠C构成同旁内角的有∠DBC;DC把BD、BC相截,与∠C构成同旁内角的有∠BDC;共3个.答案为3.【点睛】本题主要考查同旁内角的定义,注意区分同位角、内错角、同旁内角的差别.【12题答案】【答案】①. AD∥BC②. 内错角相等,两直线平行【解析】【详解】解:∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行).故答案为AD∥BC,内错角相等,两直线平行.【13题答案】【答案】105°【解析】【详解】由图a知,∠EFC=155°.图b中,∠EFC=155°,则∠GFC=∠EFC-∠EFG=155°-25°=130°.图c中,∠GFC=130°,则∠CFE=130°-25°=105°.故答案为105°.点睛:在长方形的折叠问题中,因为有平行线和角平分线,所以存在一个基本的图形等腰三角形,即图b中的等腰△CEF,其中CE=CF,这个等腰三角形是解决本题的关键所在.【14题答案】【答案】①. 6,②. 50°【解析】【分析】【详解】试题分析:根据平移的性质直接得出对应边平行且相等,对应角相等得出答案即可.解:∵三角形ABC经过平移得到三角形DEF,∴图中平行且相等的线段有:AB DE,AC DF,CB FE,AD BE,EB CF,AD CF,一共有六对,∵∠BAC=50°,∴∠EDF=50°.故答案为6,50°.点评:此题主要考查了平移的性质,熟练掌握平移的性质得出是解题关键.【15题答案】【答案】46【解析】【分析】根据平行线的性质和平角的定义即可得到结论.【详解】解:∵直线a∥b,∴∠3=∠1=34°,∵∠BAC=100°,∴∠2=180°−34°−100°=46°,故答案为:46.【16题答案】【答案】①. ①④②. ②③⑤【解析】【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【详解】解:∵①∠1=∠2,∴AD∥BC;②∵∠B=∠5,∴AB∥DC;③∵∠3=∠4,∴AB∥CD;④∵∠5=∠D,∴AD∥BC;⑤∵∠B+∠BCD=180°,∴AB∥CD,∴能够得到AD∥BC的条件是①④,能够得到AB∥CD的条件是②③⑤,故答案为①④,②③⑤.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.三、解答题(共8题;共66分)【17题答案】【答案】见解析【解析】【详解】分析:根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行分析即可.详解:∠A的同位角是∠BCE,是直线AB、BC被AE所截而成;∠A的内错角是∠ACF,是直线AB、GF被AC所截而成;∠A的同旁内角是∠B,是直线AC、BC被AB所截而成.点睛:此题主要考查了三线八角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.【18题答案】【答案】AB ∥CD ,理由见解析【解析】【分析】延长MF 交CD 于点H ,利用平行线的判定证明.【详解】解:延长MF 交CD 于点H ,∵∠1=90°+∠CHF ,∠1=140°,∠2=50°,∴∠CHF =140°-90°=50°,∴∠CHF =∠2,∴AB ∥CD .【点睛】本题主要考查了平行线的判定和外角定理,解题的关键是作出适当的辅助线求解.【19题答案】【答案】558【解析】【详解】试题分析:从平移的角度考虑本题,只需要将道路平移到边上去,即可求出总面积.试题解析:如图,将三条道路都平移到边上去,则空白部分的面积(即蔬菜的总种植面积)不变,因此,蔬菜的总种植面积为:()()()22021321558m -⨯-=.答:蔬菜的总种植面积是558平方米.【20题答案】【答案】∠PSQ=20°.【解析】【分析】首先利用平行线,垂线的定义和性质,然后根据平行线的性质求出∠APR=110°,∠APS =20°,再利用平行线的性质即可解题.【详解】∵AB∥EF,∴∠FRG=∠APR,∵∠FRG=110°,∴∠APR=110°,又∵PS⊥GH,∴∠SPR=90°,∴∠APS=∠APR-∠SPR=20°,∵AB∥CD,∴∠PSQ=∠APS=20°.【点睛】本题考查了平行线的性质,垂线的性质,中等难度,熟悉平行线的性质是解题关键.【21题答案】【答案】∠ACB=92°.【解析】【详解】试题分析:根据方向角的定义,即可求得∠EBA,∠EBC,∠DAC的度数,然后根据三角形内角和定理即可求解.试题解析:如图,∵AD,BE是正南正北方向,∴BE∥AD,∵∠EBA=42°,∴∠BAD=∠EBA=42°,∵∠DAC=16°,∴∠BAC=∠BAD+∠DAC=42°+16°=58°,又∵∠EBC=72°,∴∠ABC=72°-42°=30°,∴∠ACB=180°-∠ABC-∠BAC=180°-58°-30°=92°.【点睛】本题主要考查了方向角的定义,以及三角形的内角和定理,正确理解定义是解题的关键.【22题答案】【答案】32.5°.【解析】【详解】试题分析:已知AB ∥CD ,∠B =65°,根据平行线的性质可求得∠BCE =115°;再由角平分线的定义求得∠ECM 的度数,即可求得∠DCN 的度数.试题解析:∵ AB ∥CD ,∴ ∠B +∠BCE =180°(两直线平行,同旁内角互补)∵ ∠B =65°,∴ ∠BCE =115°∵ CM 平分∠BCE ,∴ ∠ECM =∠BCE =57.5°∵ ∠ECM +∠MCN +∠NCD =180°,∠MCN =90°∴ ∠NCD =180°-∠ECM -∠MCN =180°-57.5°-90°=32.5°.点睛:本题主要考查了角平分线的定义,两直线平行同旁内角互补这一性质,题目较为简单,属于基础题.【23题答案】【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)先由对顶角相等,得到:14∠=∠,然后根据等量代换得到:24∠∠=,然后根据同位角相等两直线平行,得到BD CE ∥;(2)根据两直线平行,同位角相等,得到C DBA ∠=∠,然后根据等量代换得到:D DBA ∠=∠,最后根据内错角相等两直线平行,即可得到DF AC ∥.【小问1详解】∵14∠=∠,12∠=∠,∴24∠∠=,∴BD CE ∥;【小问2详解】∵BD CE∥∴C DBA ∠=∠,∵C D ∠=∠,∴D DBA ∠=∠,∴DF AC ∥.【点睛】本题主要考查了平行线的性质与判定,对顶角相等,熟知平行线的性质与判定条件是解题的关键.【24题答案】【答案】30°.【解析】【分析】过点A 作l 1的平行线,过点B 作l 2的平行线,根据两直线平行,内错角相等可得∠3=∠1,∠4=∠2,再根据两直线平行,同旁内角互补求出∠CAB+∠ABD=180°,然后计算即可得解.【详解】解:如图,过点A 向左作AC ∥l 1,过点B 向左作BD ∥l 2,则∠1=∠3,∠2=∠4.因为l 1∥l 2,所以AC ∥B D.所以∠CAB +∠DBA =180°.又因为∠3+∠4+∠CAB +∠DBA =125°+85°=210°,所以∠3+∠4=30°.所以∠1+∠2=30°.【点睛】本题考查平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题关键.。
浙教版七年级下册数学第一章《平行线》单元测试卷一、选择题(共10小题;共30分)1. 在同一平面内,如果两条直线都垂直于第三条直线,那么这两条直线的位置关系是( )A . 平行B . 垂直C . 相交D . 可能垂直,也有可能平行2. 如图,在下列条件中,能判断AD ∥BC 的是 ( )A .∠DAC =∠BCAB .∠DCB +∠ABC =180° C .∠ABD =∠BDCD .∠BAC =∠ACD3. 下列说法正确的个数有( )(1)过一点有且只有一条直线与已知直线平行(2)一条直线有且只有一条垂线(3)不相交的两条直线叫做平行线(4)直线外一点到这条直线的垂线段叫做这点到这条直线的距离A . 0个B .1个C . 2 个D .3 个4. 如图,在610 的网格中,每个小方格的边长都是1个单位长度,将 ⊿ABC 平移到 ⊿DEF 的位置,下面正确的平移步骤是 ( )A . 先向左平移5个单位长度,再向下平移2个单位长度B . 先向右平移 5个单位长度,再向下平移2个单位长度C . 先向左平移5个单位长度,再向上平移 2个单位长度D . 先向右平移 5个单位长度,再向上平移 2个单位长度5.下列说法:(1)不相交的两条线是平行线(2)在同一平面内,两条直线的位置关系有两种(3)若线段AB 与CD 没有交点,则AB ∥CD(4)若A ∥B ,B ∥C ,则A 与C 不相交第6题图 第7题图若以上的说法均不考虑重合的情况,则其中正确的说法个数为( )A .1B .2C . 3D .46.如图,AB ∥CD ,直线PQ 分别交AB 、CD 于点F 、E ,EG 是∠FED 的平分线,交AB 于点G . 若∠PEC =40°,那么∠EGB 等于( )A .80°B .100°C .110°D .120°7.如图,多边形的相邻两边均互相垂直,则这个多边形的周长为( )A .a +bB .2a +bC .2(a +b )D .a +2b8.如图,AB ∥DE ,则下列说法中一定正确的是( )A .∠1=∠2+∠3B .∠1+∠2∠3=180°C .∠+∠2∠3=270°D .∠1-∠2+∠3=90°9.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm , 那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm10.如图,AB ∥EF ,∠C =90°,则δβα,,的关系为( )A .δαβ+=B .︒=++180δβαC .︒=-+90αδβD .︒=-+90δβα二、填空题(共6小题;共18分)11. 如图利用直尺和三角板过已知直线l 外一P 作直线l 平行线的方法,其理由是 .第10题图12.如图,直线AB被直线CD所截,若∠1=112°,∠2=68°,∠3=100°,则∠4=°.13.如图,∠1=∠2,∠A=60°,则∠ADC = °.14.如图,直线A∥B,点B在直线B上,且AB⊥BC,∠2=59°,则∠1=_________°.15.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,这两个角的度数分别是 °.16.七巧板是我国祖先的一次卓越创造,在19世界曾极为流行,如图在由七巧板拼成的图形中,互相平行的线段有________对.三、解答题(共7小题;共52分)17.(6分)已知:如图所示,AB∥CD,EF交AB于点G,交CD于点F,FH平分∠EFD,交AB于点H,∠AGE=50°,求:∠BHF的度数.18.(6分)读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作P R⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.19.(6分)如图,A,B,C三点在同一直线上,∠1=∠2,∠3=∠D,试判断BD与CF的位置关系,并说明理由.20.(8分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.21.(8分)如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=150°,求∠AFG的度数.22.(8分)如图,∠A=∠C=90°,BE,DF分别为∠ABC与∠ADC的平分线,能判断BE∥DF 吗?试说明理由.23.(10分)如图,直线AB∥CD,直线MN与AB,CD分别交于点M,N,ME,NE分别是∠AMN与∠CNM的平分线,NE交AB于点F,过点N作NG⊥EN交AB于点G.(1)求证:EM∥NG;(2)连接EG,在GN上取一点H,使∠HEG=∠HGE,作∠FEH的平分线EP交AB于点P,求∠PEG的度数.答案一、选择题:AAAAB CCBCD二、填空题:11.同位角相等,两直线平行12.10013.12014.3115.10,10或2,13816.7三、解答题17.∵AB∥CD ,∴∠EFC=∠AGE=50°∴∠EFD=130°∵FH 平分∠EFD∴∠HFD=65°.∵AB∥CD ,∴∠HFD+∠BHF=180°∴∠BHF=115°.18.(1)(2)如图所示.(3)∠PQC=60°.∵PQ∥CD,∴∠DCB+∠PQC=180°.∵∠DCB=120°,∴∠PQC=180°120°=60°.19.BD∥CF.因为∠1=∠2 ,所以AD∥BF,所以∠D=∠DBF,因为∠3=∠D,所以∠3=∠DBF ,所以BD ∥CF.20.证明:∵AE平分∠BAD,∴∠1=∠2,∵AB∥CD,∠CFE=∠E,∴∠1=∠CFE=∠E,∴∠2=∠E,∴AD∥BC.21.(1)BF ∥DE.理由如下:∵∠AGF=∠ABC∴FG ∥BC∴∠1=∠3∵∠1+∠2=180°∴∠3+∠2=180 °∴∠3+∠2=180 °∴BF ∥DE(2)∵BF ∥DE,BF⊥AC∴DE ⊥AC∵∠1+∠2=180°,∠2=150°∴∠1=30°∴∠AFG=60°22.∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,又BE,DF分别为∠ABC与∠ADC的平分线∴2∠ABE+2∠ADF=180°,即∠ABE+∠ADF=90°,又∠ABE+∠AEB=90°,∴∠AEB=∠ADF,∴BE∥DF23.解:(1)∵AB∥CD,∴∠AMN+∠CNM=180°,∵ME,NE分别是∠AMN与∠CNM的平分线,∴∠EMN =21∠AMN ,∠ENM =21∠MNC , ∴∠EMN +∠ENM =90°,即∠MEN =90°,又∵NG ⊥EN ,∴∠MEN +∠ENH =180°,∴EM ∥NG ;(2)设∠HEG =x ,则∠HGE =∠MEG =x ,∠NEH =90°﹣2x , ∵EP 平分∠FEH ,∴∠FEH =2∠PEH =2(∠PEG +x ),又∵∠FEH +∠HEN =180°,∴2(∠PEG +x )+90°﹣2x =180°,解得∠PEG =45°.。
浙教版七年级下第一章平行线单元测试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明一.选择题(共10小题,3*10=30)1.若∠α与∠β同旁内角,且∠α=50°时,则∠β的度数为()A.50°B.130°C.50°或130°D.无法确定2.已知∠AOB,P是任一点,过点P画一条直线与OA平行,则这样的直线()A.有且仅有一条B.有两条C.不存在D.有一条或不存在3.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行4.如图是用一张长方形纸片折成的,如果∠1=100°,那么∠2的度数是()A.50°B.60°C.70°D.80°5.如图所示,AB∥CD,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为()A.35°B.30°C.25°D.20°6.如图,AB∥CD,MP∥AB,MN平分∠AMD,∠A=40°,∠D=30°,则∠NMP等于()A.10°B.15°C.5°D.7.5°7.将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C,其中正确的有()A.①②③B.①②④C.③④D.①②③④8.如图,多边形ABCDEFGHIJ的相邻两边互相垂直,要求出它的周长,至少需要知道()条边的边长.A.3 B.4 C.5 D.69.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对10.如图,已知AB∥DE,那么下列结论正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2﹣∠3=180°C.∠1=∠2+∠3 D.∠1﹣∠2+∠3=180°第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明二.填空题(共6小题,3*6=18)11.在同一平面内有三条直线,如果其中有两条且只有两条相互平行,那么它们有个交点.12.如图,与∠1构成同位角的是,与∠2构成同旁内角的是.13.经过直线外一点,一条直线与这条直线平行.14.如图,将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°,则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C.其中正确的有.(填序号)15.如图a是长方形纸带,∠DEF=26°,将纸带沿EF折叠成图b,则∠FGD的度数是度,再沿BF折叠成图c,则图c中的∠DHF的度数是.16.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在MN的位置上,若∠EFG=55°,则∠2=.三.解答题(共7小题,52分)17.(6分)按要求完成作图,并回答问题;如图在△ABC中:(1)过点A画BC的垂线,垂足为E;(2)画∠ABC的平分线,交AC于F;(3)过E画AB的平行线,交AC于点G;(4)过点C画AB所在的直线的垂线段,垂足为H.18.(6分)如图,有四条互相不平行的直线L1、L2、L3、L4所截出的八个角.请你任意选择其中的三个角(不可选择未标注的角),尝试找到它们的关系,并选择其中一组予以证明.19.(6分)如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD()∴∠2=∠CGD(等量代换)∴CE∥BF()∴∠=∠BFD()又∵∠B=∠C(已知)∴∠BFD=∠B(等量代换)∴AB∥CD()20.(8分)(1)如图1,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在线段AB上,则∠1,∠2,∠3之间的等量关系是;如图2,点A在B处北偏东40°方向,在C处的北偏西45°方向,则∠BAC=°.(2)如图3,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°,试说明:AB∥CD;并探究∠2与∠3的数量关系.21.(8分)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM 交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N 的度数.22.(8分)若在方格(每小格正方形边长为1m)上沿着网格线平移,规定:沿水平方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿竖直方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.例如:点A按“平移量”{1,4}可平移至点B.(1)从点C按“平移量”{,}可平移到点B;(2)若点B依次按“平移量”{4,﹣3}、{﹣2,1}平移至点D,①请在图中标出点D;(用黑色水笔在答题卡上作出点D)②如果每平移1m需要2.5秒,那么按此方法从点B移动至点D需要多少秒?③观察点D的位置,其实点B也可按“平移量”{,}直接平移至点D;观察这两种平移的“平移量”,猜想:点E依次按“平移量”{2a,3b}、{﹣5a,b}、{a,﹣5b}平移至点F,则相当于点E按“平移量”{,}直接平移至点F.23.(10分)如图1所示,已知BC∥OA,∠B=∠A=120°(1)说明OB∥AC成立的理由.(2)如图2所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC的度数.(3)在(2)的条件下,若左右平移AC,如图3所示,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.参考答案与试题解析一.选择题(共10小题)1.D2.D 3.A 4.A 5.C 6.C 7.B 8.A 9.D 10.B 二.填空题(共6小题)11.2 12.∠B,∠1 13.有且只有.14.①②④15.52,78°16.110°三.解答题(共7小题)17.解:(1)作法利用量角器测得∠AEC=90°,AE即为所求;(2)作法:①以点B为圆心,以任意长为半径画弧,两弧交∠ABC两边于点M,N.②分别以点M,N为圆心,以大于MN的长度为半径画弧,两弧交于点P③作射线BP,则射线BP为角ABC的角平分线;④射线BP交AC于点F;(3)作法:用量角器测得∠ABC=∠GEC,EG即为所求;(4)作法:利用量角器测得∠BHC=90°,CH即为所求.18.解:如∠2+∠4+∠6=360°,∠1+∠5+∠7=180°,∠2=∠5+∠7,∠3=∠1+∠8,已知如图:有四条互相不平行的直线L1、L2、L3、L4所截出的八个角,求证:∠1+∠5+∠7=180°,证明:∵∠DAC+∠7+∠5=180°,又∵∠1=∠DAC,∴∠1+∠5+∠7=180°.19.解:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换),∴CE∥BF(同位角相等,两直线平行),∴∠C=∠BFD(两直线平行,同位角相等),又∵∠B=∠C(已知),∴∠BFD=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:(对顶角相等),(同位角相等,两直线平行),C,(两直线平行,同位角相等),(内错角相等,两直线平行).20.解:(1)如图1中,作PM∥AC,∵AC∥BD,∴PM∥BD,∴∠1=∠CPM,∠2=∠MPD,∴∠1+∠2=∠CPM+∠MPD=∠CPD=∠3.由题可知:∠BAC=∠B+∠C,∵∠B=40°,∠C=45°,∴∠BAC=40°+45°=85°.故答案为:∠1+∠2=∠3,85°.(2)证明:∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.21.解:(1)作PG∥AB,如图①所示:则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,故答案为:∠PFD+∠AEM=90°;(2)证明:如图②所示:∵AB∥CD,∴∠PFD+∠BHF=180°,∵∠P=90°,∴∠BHF+∠2=90°,∵∠2=∠AEM,∴∠BHF=∠PHE=90°﹣∠AEM,∴∠PFD+90°﹣∠AEM=180°,∴∠PFD﹣∠AEM=90°;(3)如图③所示:∵∠P=90°,∴∠PHE=90°﹣∠FEB=90°﹣15°=75°,∵AB∥CD,∴∠PFC=∠PHE=75°,∵∠PFC=∠N+∠DON,∴∠N=75°﹣30°=45°.22.解:(1)从C到B,向左2个单位,向下1个单位,所以,平移量为{﹣2,﹣1};(2)①点B依次按“平移量”{4,﹣3}、{﹣2,1}平移至点D如图所示;②(4+3+2+1)×2.5=10×2.5=25秒;③由图可知,点B到点D,向右2个单位,向下2个单位,所以,平移量为{2,﹣2},∵2a﹣5a+a=﹣2a,3b+b﹣5b=﹣b,∴点E到F的平移量为{﹣2a,﹣b}.故答案为:(1)﹣2,﹣1;(2)③2,﹣2;﹣2a,﹣b.23.【解答】解:(1)∵BC∥OA,∴∠B+∠O=180°,∴∠O=180°﹣∠B=60°,而∠A=120°,∴∠A+∠O=180°,∴OB∥AC;(2)∵OE平分∠BOF,∴∠BOE=∠FOE,而∠FOC=∠AOC,∴∠EOF+∠COF=∠AOB=×60°=30°,即∠EOC=30°;(3)比值不改变.∵BC∥OA,∴∠OCB=∠AOC,∠OFB=∠AOF,∵∠FOC=∠AOC,∴∠AOF=2∠AOC,∴∠OFB=2∠OCB,即∠OCB:∠OFB的值为1:2;(4)设∠AOC的度数为x,则∠OFB=2x,∵∠OEB=∠AOE,∴∠OEB=∠EOC+∠AOC=30°+x,而∠OCA=180°﹣∠AOC﹣∠A=180°﹣x﹣120°=60°﹣x,∵∠OEB=∠OCA,∴30°+x=60°﹣x,解得x=15°,∴∠OCA=60°﹣x=60°﹣15°=45°.浙教版七年级下第一章平行线单元检测卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
浙教版七年级下数学第一章平行线单元测试题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共12小题,3*12=36)1.下列说法正确的是()A.如果两条直线被第三条直线所截,那么内错角必相等B.如果两条直线被第三条直线所截,那么同位角的角平分线必平行C.如果同旁内角互补,那么它们的角平分线必互相垂直D.如果两角的两边分别平行,那么这两个角必相等2.在同一平面内,不重合的两条直线的位置关系是()A.平行B.相交C.平行或相交D.平行、相交或垂直3.如图所示,下列结论中不正确的是()A.∠1和∠2是同位角B.∠2和∠3是同旁内角C.∠1和∠4是同位角D.∠2和∠4是内错角4.如图,∠1和∠2不是同位角的是()A.B.C.D.5.下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)在同一平面内,两条直线的位置关系只有相交,平行两种;(4)不相交的两条直线叫做平行线.A.1个B.2个C.3个D.4个6.如图,下列条件:①∠1=∠2,②∠3+∠4=180°,③∠5+∠6=180°,④∠2=∠3,⑤∠7=∠2+∠3,⑥∠7+∠4﹣∠1=180°中能判断直线a∥b的有()A.3个B.4个C.5个D.6个7.在下面的四个图形中,已知∠1=∠2,那么能判定AB∥CD的是()A.B.C.D.8.我们可以用图示所示方法过直线a外的一点P折出直线a的平行线b,下列判定不能作为这种方法依据的是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.平行于同一条直线的两条直线互相平行9.一次数学活动中,检验两条纸带①、②的边线是否平行,小明和小丽采用两种不同的方法:小明对纸带①沿AB折叠,量得∠1=∠2=50°;小丽对纸带②沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A.纸带①的边线平行,纸带②的边线不平行B.纸带①的边线不平行,纸带②的边线平行C.纸带①、②的边线都平行D.纸带①、②的边线都不平行10.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.55°11.如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γB.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°12.如图,长方形ABCD中,AB=8,第一次平移长方形ABCD沿AB的方向向右平移6个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移6个单位,得到长方形A2B2C2D2,……第n次平移将长方形A n﹣1B n﹣1C n﹣1D n﹣1的方向平移6个单位,得到长方形A nB n∁n D n(n>2),若AB n的长度为2018,则n的值为()A.334 B.335 C.336 D.337第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共6小题,3*6=18)13.已知:a∥b,b∥c,则a∥c.理由是.14.如图,已知直线EF⊥MN垂足为F,且∠1=140°,则当∠2等于时,AB∥CD.15.如图∠2=∠3,∠1=60°,要使a∥b,则∠4=.16.如图把三角板的直角顶点放在直线b上,若∠1=40°,则当∠2=度时,a∥b.17.如图是我们常用的折叠式小刀,刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成∠1与∠2,若∠1=75°,则∠2的度数为.18.如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条“之”字路,余下部分绿化,道路的宽为1米,则绿化的面积为m2.评卷人得分三.解答题(共8小题,66分)19.(8分)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.求证:EF∥CD.20.(8分)完成下面的证明:如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.证明:∵BE平分∠ABD()∴∠ABD=2∠α()∵DE平分∠BDC(已知)∵∠BDC=()∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)()∵∠α+∠β=90°(已知)∴∠ABD+∠BDC=()∴AB∥CD()21.(8分)如图,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB与EF的位置关系,并说明理由.22.(8分)如图所示,折叠一个宽度相等的纸条,求∠1的度数.23.(8分)(1)如图①,若∠B+∠D=∠BED,试猜想AB与CD的位置关系,并说明理由;(2)如图②,要想得到AB∥CD,则∠1、∠2、∠3之间应满足怎样的数量关系,试说明理由.24.(8分)某学习小组发现一个结论:已知直线a∥b,若直线c∥a,则c∥b.他们发现这个结论运用很广,请你利用这个结论解决以下问题:已知直线AB∥CD,点E在AB、CD之间,点P、Q分别在直线AB、CD上,连接PE、EQ.(1)如图1,运用上述结论,探究∠PEQ与∠APE+∠CQE之间的数量关系,并说明理由;(2)如图2,PF平分∠BPE,QF平分∠EQD,当∠PEQ=140°时,求出∠PFQ的度数;(3)如图3,若点E在CD的下方,PF平分∠BPE,QH平分∠EQD,QH的反向延长线交PF于点F.当∠PEQ=70°时,请求出∠PFQ的度数.25.(8分)如图(1)所示,AB∥CD,根据平行线的性质可知内错角∠B与∠C相等,观察图(2),(3)与(4),回答下列问题.①如图(2)所示,AB∥CD,试问∠E+∠C与∠B+∠F哪个大?请说明理由;②如图(3)所示,AB∥CD,试问∠E+∠G+∠C与∠B+∠H+∠F哪个大?(直接写出答案,不必说明理由)③根据第①,②小题的结论,在图(4)中,若AB∥CD,你又能得到什么结论?26.(10分)已知l1∥l2,点A,B在l1上,点C,D在l2上,连接AD,BC.AE,CE分别是∠BAD,∠BCD的角平分线,∠α=70°,∠β=30°.(1)如图①,求∠AEC的度数;(2)如图②,将线段AD沿CD方向平移,其他条件不变,求∠AEC的度数.参考答案与试题解析一.选择题(共12小题)1.C 2.C 3.A 4.D 5.C 6.C 7.A 8.D 9.B 10.C 11.D 12.B 二.填空题(共6小题)13.平行于同一直线的两条直线平行14.50°15.120°16.50 17.15°18.375 三.解答题(共8小题)19.证明:∵DG⊥BC,AC⊥BC,∴∠DGB=∠ACB=90°(垂直定义),∴DG∥AC(同位角相等,两直线平行),∴∠2=∠ACD(两直线平行,内错角相等),∵∠1=∠2,∴∠1=∠DCA,∴EF∥CD(同位角相等,两直线平行).20.证明:BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义)∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补两直线平行).故答案为:已知,角平分线的定义,2∠β,角平分线的定义,等量代换,等量代换,同旁内角互补两直线平行.21.解:AB∥EF,理由如下:∵AB∥CD,∴∠B=∠BCD,(两直线平行,内错角相等)∵∠B=70°,∴∠BCD=70°,(等量代换)∵∠BCE=20°,∴∠ECD=50°,∵CEF=130°,∴∠E+∠DCE=180°,∴EF∥CD,(同旁内角互补,两直线平行)∴AB∥EF.(平行于同一直线的两条直线互相平行)22.解:∵AB∥CD,∴∠1=∠3,由折叠可得∠2=∠3,∴∠1=∠2,又∵∠EFC=∠1+∠2,∴∠1=∠EFC=40°.23.解:(1)AB∥CD,理由:如图(1),延长BE交CD于F.∵∠BED=∠B+∠D,∠BED=∠EFD+∠D,∴∠B=∠EFD,∴AB∥CD;(2)∠1=∠2+∠3.理由如下:如图(2),延长BA交CE于F,∵AB∥CD(已知),∴∠3=∠EF A(两直线平行,同位角相等),∵∠1=∠2+∠EF A,∴∠1=∠2+∠3.24.解:(1)∠PEQ=∠APE+∠CQE,理由如下:如图1,过点E作EH∥AB,∴∠APE=∠PEH,∵EH∥AB,AB∥CD,∴EH∥CD,∴∠CQE=∠QEH,∵∠PEQ=∠PEH+∠QEH,∴∠PEQ=∠APE+∠CQE;(2)如图2,过点E作EM∥AB,同理可得,∠PEQ=∠APE+∠CQE=140°,∵∠BPE=180°﹣∠APE,∠EQD=180°﹣∠CQE,∴∠BPE+∠EQD=360°﹣(∠APE+∠CQE)=220°,∵PF平分∠BPE,QF平分∠EQD,∴∠BPF=∠BPE,∠DQF=∠EQD,∴∠BPF+∠DQF=(∠BPE+∠EQD)=110°,作NF∥AB,同理可得,∠PFQ=∠BPF+∠DQF=110°;(3)如图3,过点E作EM∥CD,设∠QEM=α,∴∠DQE=180°﹣α,∵QH平分∠DQE,∴∠DQH=∠DQE=90°﹣α,∴∠FQD=180°﹣∠DQH=90°+α,∵EM∥CD,AB∥CD,∴AB∥EM,∴∠BPE=180°﹣∠PEM=180°﹣(70°+α)=110°﹣α,∵PF平分∠BPE,∴∠BPF=∠BPE=55°﹣α,作NF∥AB,同理可得,∠PFQ=∠BPF+∠DQF=145°.25.解:①如图,分别过E,F作AB的平行线EM,FN,∵AB∥CD,∴AB∥CD∥EM∥NF,∴∠ABE=∠BEM,∠MEF=∠EFN,∠NFC=∠FCD,∴∠BEF+∠C=∠B+∠EFC,∴∠E+∠C=∠B+∠F;②分别过E,F,G,H作AB的平行线EM,NF,GP,QH,和①的方法一样可得∠E+∠G+∠C=∠B+∠H+∠F;③∠E1+∠E2+…+∠E n+∠C=∠F1+∠F2+…+∠F n+∠B(开口朝左的所有角度之和与开口朝右的所有角度之和相等).26.解:(1)过点E作EF∥l1,∵l1∥l2,∴EF∥l2,∵l1∥l2,∴∠BCD=∠α,∵∠α=70°,∴∠BCD=70°,∵CE是∠BCD的角平分线,∴∠ECD=70°=35°,∵EF∥l2,∴∠FEC=∠ECD=35°,同理可求∠AEF=15°,∴∠AEC=∠AEF+∠CEF=50°;(2)过点E作EF∥l1,∵l1∥l2,∴EF∥l2,∵l1∥l2,∴∠BCD=∠α,∵∠α=70°,∴∠BCD=70°,∵CE是∠BCD的角平分线,∴∠ECD=70°=35°,∵EF∥l2,∴∠FEC=∠ECD=35°,∵l1∥l2,∴∠BAD+∠β=180°,∵∠β=30°,∴∠BAD=150°,∵AE平分∠BAD,∴∠BAE=×150°=75°,∵EF∥l1,∴∠BAE+∠AEF=180°,∴∠AEF=105°,∴∠AEC=105°+35°=140°.。
浙教版七年级下册第一章平行线单元测试题姓名:________ 班级:________ 成绩:________一、单选题1 . 如图,、分别是矩形边、上的点,将矩形沿折叠,使、分别落在和处,若,则的度数是()A.B.C.D.2 . 如图,DE//MN,的直角顶点在上,顶点在上,且平分,若,则的度数为()A.B.C.D.3 . 如图,在△ABC中,CD是AB边上的高,BE是AC边的高,点O是两条高的交点,则∠A与∠1+∠2的大小关系是()A.∠A>∠1+∠2B.∠A=∠1+∠2C.∠A<∠1+∠2D.无法确定4 . 如图,∠1=∠2,∠3=75°,则∠4的度数为()A.75°B.70°C.60°D.50°5 . 如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD且与EF交于点O,那么与∠AOE相等的角有()A.5个B.4 个C.3个D.2个6 . 如图,如果AB∥CD,CD∥EF,∠1=20°,∠2=60°,则∠BCE等于()A.80°B.120°C.140°D.160°7 . 如图,直线AB∥CD,∠1=136°,∠E为直角,则∠C等于()A.42°B.44°C.46°D.48°8 . 如图,AC∥BD,AD与BC相交于O,∠A=45°,∠B=30°,那么∠AOB等于()A.75°B.60°C.45°D.30°9 . 下列命题中,是公理的是()A.等角的补角相等B.内错角相等,两直线平行C.两点之间线段最短D.三角形的内角和等于180º10 . 如图,在平面直角坐标系中,点A是y轴正半轴上的一个定点,点B是反比例函数y=(k为常数)在第一象限内图象上的一个动点.当点B的纵坐标逐渐增大时,△OAB的面积()A.逐渐减小B.逐渐增大C.先增大后减小D.不变二、填空题11 . 如图,将三角形ABC平移到三角形A′B′C′的位置(点B′在AC边上),若∠B=55°,则∠A′B′C′的度数为________.12 . 如图,把一张对边互相平行的纸条,折成如图所示,EF是折痕,若∠EFB=32°,则∠AEG的度数是__.13 . 如图,□ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为______14 . 如图,在矩形ABCD中,对角线AC与BD相交于O点,且AB=OA=2cm,则BD的长为cm.15 . 如下图,(1)若射线OC平分∠AOB,则∠AOC=_______;(2)若∠AOB=2_____,则OC为∠AOB的平分线.16 . 观察下列图形:已知在第一个图中,可得∠1+∠2=180°,则按照以上规律:_________度.17 . 根据图中所给条件,求得∠x=______,∠y=_____.三、解答题18 . 如图,已知∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由;19 . 如图,已知AF分别与BD、CE交于点G、H,∠1=50°,∠2=130°.(1)BD与CE平行吗?为什么?(2)若∠A=∠F,探索∠C与∠D的数量关系,并说明理由.20 . (1)动手操作:如图1所示,已知A、B、C三个点都在网格纸的格点上,∠1是∠ABC的余角,∠2是∠ABC的补角,CD⊥AB 于点D,CE∥AB,试在图中分别画出:∠1、∠2、垂线段CD和直线CE.(2)已知:如图2,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D,试说明:AC∥DF,请将下面的解答过程补充完整:解:∵∠1=∠2(已知)又∵∠1=∠3∴=(等量代换)∴EC∥DB∴∠C=(两直线平行,同位角相等)∵∠C=∠D(已知)∴∠D=∴AC∥DF21 . 如图1,已知∠AOB=,∠AOC=,OE是∠AOB内部的一条射线,且OF平分∠AOE.(1)若∠EOB=,求∠COF的度数;(2)若∠COF=,求∠EOB的度数(用含n的式子表示);(3)当射线OE绕点O逆时针旋转到如图2的位置时,请把图补充完整;此时,∠COF与∠EOB有怎样的数量关系?请说明理由.22 . 已知:如图,,、分别是、的角平分线.求证:MG∥NH.23 . 如图,是一块破损的木板.(1)请你设计一种方案,检验木板的两条直线边缘AB、CD是否平行;(2)若AB∥CD,连接BC,过点A作AM⊥BC于M,垂足为M,画出图形,并写出∠BCD与∠BAM的数量关系.参考答案一、单选题1、2、3、4、5、6、7、8、9、10、二、填空题1、2、3、4、5、6、7、三、解答题1、2、3、4、5、6、。
平行线综合测试一、选择题1. (2010 广西柳州市) 三条直线a b c 、、,若a c ∥,b c ∥,则a 与b 的位置关系是( )A .a b ⊥ B.a b ∥ C.a b a b ⊥或∥ D.无法确定2. (2010 四川省凉山州) 下列图形中,只要用其中一部分平移一次就可以得到的是( )A B C D3. (2011 青海省西宁市) 如图,DEF △经过怎样的平移得到ABC △( )(A )把DEF △向左平移4个单位,再向下平移2个单位 (B )把DEF △向右平移4个单位,再向下平移2个单位 (C )把DEF △向右平移4个单位,再向上平移2个单位(D )把DEF △向左平移4个单位,再向上平移2个单位 4. (2012 吉林省长春市) 如图,在Rt ∆ABC 中,90C ∠=︒,D 为边CA 延长线上一点,DE //AB ,∠ADE =42︒,则∠B 的大小为(A )42︒. (B )45︒. (C )48︒. (D )58︒.5. (2012 福建省三明市) 如图,AB //CD ,∠CDE =140︒,则∠A 的度数为(▲) A .140︒ B .60︒ C .50︒ D .40︒6. (2013 广西桂林市) 如图,与∠1 是同位角的是A .2∠B .3∠C .4∠D .5∠7. (2014 广东省汕尾市) 如图,能判定AC EB //的条件是( ) A .ABE C ∠=∠ B .EBD A ∠=∠ C .ABC C∠=∠ D .ABE A ∠=∠8. (2014 浙江省舟山市)如图,将△ABC 沿BC 方向平移2cm 得到△DEF ,若△ABC 的周长为16cm ,则四边形ABFD 的周长为( )A . 16cmB . 18cmC . 20cmD . 22cm9. (2014 吉林省) 如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为 (A )10°. (B )15°. (C )20°. (D )25°.10. (2014 重庆市A 卷) 如图,直线AB ∥CD ,直线EF 分别交直线AB 、CD 于点EF ,过点F 作FG ⊥FE ,交直线AB 于点G .若∠1=42°,则∠2的大小是( ) A .56° B .48° C .46° D .40°二、填空题11. (2014 广西贵港市) 如图所示,AB ∥CD ,∠D=27°,∠E=36°,则∠ABE 的度数是 63° .12. (2014 湖北省黄冈市) 如图,若AD ∥BE ,且∠ACB =90°,∠CBE =30°,则∠CAD = °.13. (2014 浙江省温州市) 如图,直线AB ,CD 被BC 所截,若AB ∥CD ,145∠=︒,235∠=︒,则3∠=__________度.CDA14. (2014 云南省) 如图,直线a ∥b ,直线a、b 被直线c 所截,∠1=37°,则∠2=15. (2014 浙江省台州市)如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是 .8题图A CB D三、应用题16. (2013 福建省厦门市) 如图7,已知∠ACD=70°,∠ACB=60°,∠ABC=50°,求证:AB ∥CD .17. (2014 湖南省益阳市) 如图5,EF ∥BC ,AC 平分BAF ∠,80B ∠=︒.求C ∠的度数.18. (2014 安徽省)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点). (1)将△ABC 向上平移3个单位得到△A 1B 1C 1,请画出△A 1B 1C 1; (2)请画一个格点△A 2B 2C 2,使△A 2B 2C 2∽△ABC ,且相似比不为1.四、复合题A 80°E B CF 图519. (2011 山东省淄博市) 如图,直线AB ,CD 分别与直线AC 相交于点A ,C ,与直线BD 相交于点B ,D .若12∠=∠,375∠=°,求4∠的度数.五、猜想、探究题20. (2014 内蒙古赤峰市)参考答案一、选择题1. B2. B3. A4. C5. D6. C7. D8. C9. D10. B二、填空题11. 63°12. 6013. 8014. 143°15.55°三、应用题16. 证明1:∵∠ACD=70°,∠ACB=60°,∴∠BCD=130°.∵∠ABC=50°,∴∠BCD+∠ABC=180°.∴AB∥CD.证明2:∵∠ABC=50°,∠ACB=60°,∴∠CAB=180°—50°—60°=70°.∵∠ACD=70°,∴∠CAB=∠ACD.∴AB∥CD.17. 解:∵EF ∥BC ,∴180100BAF B ∠=︒-∠=︒.……………………………………………………2分 ∵AC 平分BAF ∠, ∴1502CAF BAF ∠=∠=︒,………………………………………………………4分 ∵EF ∥BC ,∴50C CAF ∠=∠=︒.……………………………………………………………6分18.略四、复合题 19. 解:12∠=∠ AB CD ∴∥ 34∴∠=∠ 375∠=° 475∴∠=°五、猜想、探究题20. 解:(1)①∠AED=70° ②∠AED=80° ③∠AED=∠EAB+∠EDC …………(4分) (。
第一章平行线单元测试一.单项选择题〔共10题;共30分〕1.如图,能使BF∥DG的条件是〔〕A. ∠1=∠3 B. ∠2=∠4 C. ∠2=∠3 D. ∠1=∠4 2.如图,在△ABC中,点D、E、F分别是三条边上的点,EF∥AC,DF∥AB,∠B=45°,∠C=60°.那么∠EFD=〔〕A. 80°B. 75°C. 70°D. 65°3.如图,∠1和∠2是一对〔〕A. 同位角B. 内错角C. 同旁内角D. 对顶角4.如下列图的图案中,不能由根本图形通过平移方法得到的图案是〔〕A. B. C. D.5.以下条件不能够证明a∥b的是〔〕A. ∠2+∠3=180°B. ∠1=∠4 C. ∠2+∠4=180° D. ∠2=∠36.如图,在△ABC中,D、E、F分别在AB、BC、AC上,且EF∥AB,要使DF∥BC,只需满足以下条件中的〔〕A. ∠1=∠2B. ∠2=∠AFDC. ∠1=∠AFDD. ∠1=∠DFE7.如图,直线a∥b,∠1=120°,那么∠2的度数是〔〕A. 120°B. 80°C. 60°D. 50°8.如图,以下能判定AB∥CD的条件有〔〕个.①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.A. 1B. 2C. 3D. 49.,如图AB∥CD,∠1=∠2,EP⊥FP,那么以下错误的选项是〔〕A. ∠3=∠4B. ∠2+∠4=90°C. ∠1与∠3互余D. ∠1=∠310.如图,点E在BC的延长线上,由以下条件能得到AD∥BC的是〔〕A. ∠1=∠ 2B. ∠3=∠4 C. ∠B=∠DCE D. ∠D+∠DAB=180°二.填空题〔共8题;共28分〕11.如图,按角的位置关系填空:∠A与∠1是________ ;∠A与∠3是________ ;∠2与∠3是________ .12.如图把三角板的直角顶点放在直线b上,假设∠1=40°,那么当∠2=________ 度时,a ∥b.13.如图,四边形ABCD中,AB∥CD,∠B=60°,当∠D=________°时,AD∥BC.14.完成下面推理过程:如图,DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC〔〕∴∠ADE=________〔________〕∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF= ________〔________〕∠ABE= ________〔________〕∴∠ADF=∠ABE∴________∥________〔________〕∴∠FDE=∠DEB.〔________ 〕15.如图,直线a,b与直线c,d相交,∠1=∠2,∠3=110°,那么∠4的度数为________.16.如图,∠1=∠2,∠2=∠C,那么图中互相平行的直线有________17.如图,超市里的购物车,扶手AB与车底CD平行,∠2比∠3大10°,∠1是∠2的倍,∠2的度数是________.18.如图是一块电脑主板的示意图〔单位:mm〕,其中每个角都是直角,那么这块主板的周长是________mm.三.解答题〔共6题;共40分〕19.如下列图,∠1与∠2,∠3与∠4之间各是哪两条直线被哪一条直线所截而形成的什么角?20.如下列图,AB∥CD,∠1=36°,∠1:∠4=1:2.〔1〕求∠3的度数;〔2〕求证:AB平分∠EBG.21.如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?22.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.23.如图,∠1=∠2,∠B=∠C.求证:(1)AB∥CD(2)∠AEC=∠3.24.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.。
第1章平行线单元检测卷一、选择题(每小题3分,共30分)1.下列各图中,∠1与∠2是同位角的是()2.下列结论正确的是()A.过一点有且只有一条直线与已知直线垂直B.过一点有且只有一条直线与已知直线平行C.在同一平面内,不相交的两条射线是平行线D.如果两条直线都与第三条直线平行,那么这两条直线互相平行3.如图,在5×5的方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个长方形,那么下面的平移方法中正确的是()A.先向下平移3格,再向右平移1格B.先向下平移2格,再向右平移1格C.先向下平移2格,再向右平移2格D.先向下平移3格,再向右平移2格(第4题图)(第5题图)(第6题图)4.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转()A.15°B.30°C.45°D.60°5.如图,点D,E,F分别在AB,BC,AC上,且EF∥AB,要使DF∥BC,只需添加条件() A.∠1=∠2 B.∠1=∠DFE C.∠1=∠AFD D.∠2=∠AFD6.如图,将三角形ABC平移到三角形EFG的位置,则图中共有平行线()A.3对B.5对C.6对D.7对7.如图,AB∥CD,EF⊥AB于点E,EF交CD于点F,已知∠1=64°,则∠2等于()A.26°B.32°C.25°D.36°(第7题图)(第8题图)(第9题图)(第10题图) 8.如图,把长方形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF等于()A.100°B.115°C.120°D.130°9.小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度数为()A.38°B.42°C.48°D.52°10.如图,AB∥CD,∠1=100°,∠2=120°,则∠α等于()A.100°B.80°C.60°D.40°二、填空题(每小题3分,共24分)11.如图,在同一平面内,有三条直线a,b,c,a与b相交于点O,如果a∥c,那么直线b与c的位置关系是__ __.(第11题图)(第12题图)(第13题图)(第14题图) 12.如图,AB∥CD,点E在CB的延长线上,若∠ABE=60°,则∠ECD的度数为___.13.在一块长为a,宽为b的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位长度),则草地的面积为___.14.如图,已知BE平分∠ABC,∠CDE=150°,当∠C=____时,AB∥CD.15.如图,将边长为2个单位长度的等边三角形ABC沿边BC向右平移1个单位长度得到三角形DEF,则四边形ABFD的周长为____.(第15题图)(第17题图)(第18题图) 16.如图①是我们常用的折叠式小刀,图②中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图②所示的∠1与∠2,则∠1与∠2的度数和是___度.17.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°;②OF平分∠BOD;③∠1=∠2;④∠POB=2∠3.其中正确的结论有__ __.(填序号)18.如图,AB∥CD,则∠α,∠β,∠γ之间的关系是____.三、解答题(共66分)19.(8分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.20.(8分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC ∥DF.21.(8分)如图,在长方形ABCD中,AB=10 cm,BC=6 cm,试问将长方形ABCD沿着BC方向平移多少才能够使平移后的长方形与原来的长方形ABCD重叠部分的面积为20 cm2?22.(10分)如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.23.(10分)如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.24.(10分)如图①,在三角形ABC中,点E,F分别为线段AB,AC上任意两点,EG交BC 于点G,交AC的延长线于点H,∠1+∠AFE=180°.(1)求证:BC∥EF;(2)如图②,若∠2=∠3,∠BEG=∠EDF,求证:DF平分∠AFE.25.(12分)如图①,在四边形ABCD中,∠ABC+∠ADC=180°,BE,DF分别是∠ABC 与∠ADC的平分线,∠1与∠2互余.(1)试判断直线BE与DF的位置关系,并说明理由;(2)如图②,延长CB,DF相交于点G,过点B作BH⊥FG,垂足为H,试判断∠FBH与∠GBH的大小关系,并说明理由.答案:一、选择题(每小题3分,共30分)1.下列各图中,∠1与∠2是同位角的是(B)2.下列结论正确的是(D)A.过一点有且只有一条直线与已知直线垂直B.过一点有且只有一条直线与已知直线平行C.在同一平面内,不相交的两条射线是平行线D.如果两条直线都与第三条直线平行,那么这两条直线互相平行3.如图,在5×5的方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个长方形,那么下面的平移方法中正确的是(D)A.先向下平移3格,再向右平移1格B.先向下平移2格,再向右平移1格C.先向下平移2格,再向右平移2格D.先向下平移3格,再向右平移2格(第4题图)(第5题图)(第6题图)4.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转(A)A.15°B.30°C.45°D.60°5.如图,点D,E,F分别在AB,BC,AC上,且EF∥AB,要使DF∥BC,只需添加条件A.∠1=∠2 B.∠1=∠DFE C.∠1=∠AFD D.∠2=∠AFD6.如图,将三角形ABC平移到三角形EFG的位置,则图中共有平行线(C)A.3对B.5对C.6对D.7对7.如图,AB∥CD,EF⊥AB于点E,EF交CD于点F,已知∠1=64°,则∠2等于(A) A.26°B.32°C.25°D.36°(第7题图)(第8题图)(第9题图)(第10题图)8.如图,把长方形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF等于(B)A.100°B.115°C.120°D.130°9.小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度数为(B) A.38°B.42°C.48°D.52°10.如图,AB∥CD,∠1=100°,∠2=120°,则∠α等于(D)A.100°B.80°C.60°D.40°二、填空题(每小题3分,共24分)11.如图,在同一平面内,有三条直线a,b,c,a与b相交于点O,如果a∥c,那么直线b与c的位置关系是__相交__.(第11题图)(第12题图)(第13题图)(第12.如图,AB∥CD,点E在CB的延长线上,若∠ABE=60°,则∠ECD的度数为__120°__.13.在一块长为a,宽为b的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位长度),则草地的面积为__b(a-1)__.14.如图,已知BE平分∠ABC,∠CDE=150°,当∠C=__120°__时,AB∥CD.15.如图,将边长为2个单位长度的等边三角形ABC沿边BC向右平移1个单位长度得到三角形DEF,则四边形ABFD的周长为__8__.(第15题图)(第17题图)(第18题图) 16.如图①是我们常用的折叠式小刀,图②中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图②所示的∠1与∠2,则∠1与∠2的度数和是__90__度.17.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°;②OF平分∠BOD;③∠1=∠2;④∠POB=2∠3.其中正确的结论有__①②③__.(填序号)18.如图,AB∥CD,则∠α,∠β,∠γ之间的关系是__∠α+∠β-∠r=180°__.三、解答题(共66分)19.(8分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.解:∠2=50°20.(8分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC ∥DF.解:∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴DB∥EC,∴∠C=∠ABD,又∵∠C=∠D,∴∠D=∠ABD,∴AC∥DF21.(8分)如图,在长方形ABCD中,AB=10 cm,BC=6 cm,试问将长方形ABCD沿着BC方向平移多少才能够使平移后的长方形与原来的长方形ABCD重叠部分的面积为20 cm2?解:由题意知长方形CDEF的面积为20 cm2,∴10×DE=20,∴DE=2,∴AE=6-2=4,即将长方形ABCD沿着BC方向平移4 cm22.(10分)如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.解:∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠APC,又∵∠1=∠2,∴∠EAP=∠FPA,∴AE∥PF,∴∠E=∠F23.(10分)如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.解:∵∠3=∠4,∴CF∥BD,∴∠5=∠BAF,∵∠5=∠6,∴∠BAF=∠6,∴AB∥CD,∴∠2=∠BGD,∵∠1=∠2,∴∠1=∠BGD,∴ED∥FB24.(10分)如图①,在三角形ABC中,点E,F分别为线段AB,AC上任意两点,EG交BC 于点G,交AC的延长线于点H,∠1+∠AFE=180°.(1)求证:BC∥EF;(2)如图②,若∠2=∠3,∠BEG=∠EDF,求证:DF平分∠AFE.解:(1)∵∠1+∠AFE=180°,∠CFE+∠AFE=180°,∴∠1=∠CFE,∴BC∥EF (2)∵∠BEG=∠EDF,∴DF∥EH,∴∠DFE=∠GEF,由(1)知BC∥EF,∴∠GEF=∠2,∴∠DFE=∠2,∵∠2=∠3,∴∠DFE=∠3,∴DF平分∠AFE25.(12分)如图①,在四边形ABCD中,∠ABC+∠ADC=180°,BE,DF分别是∠ABC 与∠ADC的平分线,∠1与∠2互余.(1)试判断直线BE与DF的位置关系,并说明理由;(2)如图②,延长CB,DF相交于点G,过点B作BH⊥FG,垂足为H,试判断∠FBH与∠GBH的大小关系,并说明理由.解:(1)BE∥DF.理由:∵BE,DF分别平分∠ABC和∠ADC,∴∠1=12∠ADC,∠ABE=12∠ABC,∵∠ABC+∠ADC=180°,∴∠1+∠ABE=12∠ADC+12∠ABC=12(∠ADC+∠ABC)=12×180°=90°,即∠1+∠ABE=90°,又∵∠1+∠2=90°,∴∠ABE=∠2,∴BE∥DF(2)∠FBH=∠GBH.理由:∵BH⊥FG,∴∠BHG=90°,由(1)知,BE∥DF,∴∠EBH=∠BHG=90°,∴∠FBH+∠ABE=90°,∠GBH+∠CBE=180°-90°=90°,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠FBH=∠GBH。
2021-2022学年浙教版七年级数学下册《第1章平行线》单元综合达标测试题(附答案)一.选择题(共10小题,满分30分)1.已知图①~④,在上述四个图中,∠1与∠2是同位角的有()A.①②③④B.①②③C.①③D.①2.如图,在下列给出的条件中,不能判定AB∥DF的是()A.∠A=∠3B.∠A+∠2=180°C.∠1=∠4D.∠1=∠A3.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.6B.8C.10D.124.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D',C'的位置,若∠EFB=65°,则∠AED'等于()A.50°B.55°C.60°D.65°5.如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM等于()A.15°B.25°C.30°D.45°6.如图,已知GF⊥AB,∠1=∠2,∠B=∠AGH,则下列结论:①GH∥BC;②∠D=∠F;③HE平分∠AHG;④HE⊥AB,其中正确的有()A.0个B.1个C.2个D.3个7.如图,将Rt△ABC沿着点B到点C的方向平移到△DEF的位置,已知AB=6,HD=2,CF=3,则图中阴影部分的面积为()A.12B.15C.18D.248.学习平行线性质后,老师给小明出了一道题:如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前道路平行,则∠C是多少度?请你帮小明求出()A.120°B.130°C.140°D.150°9.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或10°、10°D.以上都不对10.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是()A.y=x+z B.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°二.填空题(共10小题,满分30分)13.平面上不重合的四条直线,可能产生交点的个数为个.14.如图,将长为5cm,宽为3cm的长方形ABCD先向右平移2cm,再向下平移1cm,得到长方形A'B'C'D',则阴影部分的面积为cm2.15.如图,已知CD∥GH,点B在GH上,点A为平面内一点,AB⊥AD,过点A作AF⊥CD,AE平分∠F AD,AC平分∠F AB,若∠ABC+∠GBC=180°,∠ACB=4∠F AE.则∠ABG=.16.如图,∠AOB的一边OA为平面镜,∠AOB=38°45',在OB边上有一点E,从点E射出一束光线经平面镜反射后,反射光线DC恰好与OB平行,则∠DEB的度数是.17.两块不同的三角板按如图所示摆放,两个直角顶点C重合,∠A=60°,∠D=45°.接着保持三角板ABC不动,将三角板CDE绕着点C旋转,但保证点D在直线AC的上方,若三角板CDE有一条边与斜边AB平行,则∠ACD=.18.如图,OP∥QR∥ST,若∠2=100°,∠3=120°,则∠1=.19.如图①是长方形纸带,∠DEF=α,将纸带沿EF折叠成图②,再沿BF折叠成图③,则图③中的∠CFE的度数是.20.已知AB∥CD,∠ACD=60°,∠BAE:∠CAE=2:3,∠FCD=4∠FCE,若∠AEC=78°,则∠AFC=.19.如图,AB∥CD,有图中α,β,γ三角之间的关系是.20.如图,AB∥CD,用含∠1,∠2,∠3的式子表示∠4,则∠4的值.三.解答题(共6小题,满分60分)21.如图,已知BC∥GE,AF∥DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠F AC,交BC于点Q,且∠Q=15°,求∠ACB的度数.22.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.23.(1)如图(1),已知任意三角形ABC,过点C作DE∥AB,求证:∠DCA=∠A;(2)如图(1),求证:三角形ABC的三个内角(即∠A、∠B、∠ACB)之和等于180°;(3)如图(2),求证:∠AGF=∠AEF+∠F;(4)如图(3),AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF =150°,求∠F.24.如图,AB∥CD,EM是∠AMF的平分线,NF是∠CNE的平分线,EN、MF交于点O.(1)若∠AMF=52°,∠CNE=38°,求∠MEN、∠MFN的度数;(2)若2∠MFN﹣∠MEN=45°,求出∠AMF的度数;(3)探究∠MEN、∠MFN与∠MON之间存在怎样的数量关系.(直接写出结果)25.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.26.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB∥CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF∥AB,则有∠BEF=.∵AB∥CD,∴∥,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a∥b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).参考答案一.选择题(共10小题,满分30分)1.解:图①③中,∠1与∠2是同位角;故选:C.2.解:A、因为∠A=∠3,所以AB∥DF(同位角相等,两直线平行),故本选项不符合题意.B、因为∠A+∠2=180,所以AB∥DF(同旁内角互补,两直线平行),故本选项不符合题意.C、因为∠1=∠4,所以AB∥DF(内错角相等,两直线平行),故本选项不符合题意.D、因为∠1=∠A,所以AC∥DE(同位角相等,两直线平行),不能证出AB∥DF,故本选项符合题意.故选:D.3.解:根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,因为AD=1,BF=BC+CF=BC+1,DF=AC;又因为AB+BC+AC=8,所以,四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选:C.4.解:由折叠可知,∠DEF=∠D′EF,∵AD∥BC,∴∠DEF=∠EFB=65°,∴∠AED′=180°﹣∠DEF﹣∠EFB=50°.故选:A.5.解:∵AB∥CD,∴∠DNM=∠BME=75°,∵∠PND=45°,∴∠PNM=∠DNM﹣∠DNP=30°,故选:C.6.解:∵∠B=∠AGH,∴GH∥BC,故①正确;∴∠1=∠HGF,∵∠1=∠2,∴∠2=∠HGF,∴DE∥GF,∴∠D=∠DMF,根据已知条件不能推出∠F也等于∠DMF,故②错误;∵DE∥GF,∴∠F=∠AHE,∵∠D=∠1=∠2,∴∠2不一定等于∠AHE,故③错误;∵GF⊥AB,GF∥HE,∴HE⊥AB,故④正确;即正确的个数是2,故选:C.7.解:∵△ABC沿着点B到点C的方向平移到△DEF的位置,∴△ABC的面积=△DEF的面积,∴阴影部分面积等于梯形ABEH的面积,由平移的性质得,DE=AB=6,BE=CF=3,∵AB=6,DH=2,∴HE=DE﹣DH=6﹣2=4,∴阴影部分的面积=×(4+6)×3=15.故选:B.8.解:作BD∥AE,如图,∵AE∥CF,∴BD∥CF,∵BD∥AE,∴∠ABD=∠A=120°,∴∠DBC=150°﹣120°=30°,∵BD∥CF,∴∠C+∠DBC=180°,∴∠C=180°﹣30°=150°.故选:D.9.解:如图1,∵AB∥EF,∴∠3=∠2,∵BC∥DE,∴∠3=∠1,∴∠1=∠2.如图2,∵AB∥EF,∴∠3+∠2=180°,∵BC∥DE,∴∠3=∠1,∴∠1+∠2=180°∴如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.设另一个角为x,则这一个角为4x﹣30°,(1)两个角相等,则x=4x﹣30°,解得x=10°,4x﹣30°=4×10°﹣30°=10°;(2)两个角互补,则x+(4x﹣30°)=180°,解得x=42°,4x﹣30°=4×42°﹣30°=138°.所以这两个角是42°、138°或10°、10°.故选:C.10.解:过C作CM∥AB,延长CD交EF于N,则∠CDE=∠E+∠CNE,即∠CNE=y﹣z∵CM∥AB,AB∥EF,∴CM∥AB∥EF,∴∠ABC=x=∠1,∠2=∠CNE,∵∠BCD=90°,∴∠1+∠2=90°,∴x+y﹣z=90°.故选:B.二.填空题(共10小题,满分30分)13.解:(1)当四条直线平行时,无交点;(2)当三条平行,另一条与这三条不平行时,有三个交点;(3)当两两直线平行时,有4个交点;(4)当有两条直线平行,而另两条不平行时,有5个交点;(5)当四条直线同交于一点时,只有一个交点;(6)当四条直线两两相交,且不过同一点时,有6个交点;(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点.故答案为:0,1,3,4,5,6.14.解:由题意,空白部分是矩形,长为5﹣2=3(cm),宽为3﹣1=2(cm),∴阴影部分的面积=5×3×2﹣2×2×3=18(cm2),故答案为:18.15.解:延长F A交GB于点M,如图所示:∵CD∥GH,AF⊥CD,∴AM⊥GH,∵AE平分∠F AD,∴∠F AD=2∠F AE,∠F AE=∠DAE,∵AB⊥AD,∴∠F AD+∠MAB=90°,∵∠MAB+∠ABM=90°,∴∠ABM=∠F AD=2∠F AE,∴∠MAB=90°﹣∠ABM=90°﹣2∠F AE,∵AC平分∠F AB,∴∠BAC=∠F AC=∠F AD+∠DAC=2∠F AE+∠DAC,∵∠BAC+∠DAC=90°,∴2∠F AE+∠DAC+∠DAC=90°,整理得:∠DAC=45°﹣∠F AE,∴∠BAC=90°﹣∠DAC=90°﹣(45°﹣∠F AE)=45°+∠F AE,∵∠ACB=4∠F AE,在△ABC中,∠ABC=180°﹣∠BAC﹣∠ACB=180°﹣(45°+∠F AE)﹣4∠F AE=135°﹣5∠F AE,∵∠ABC+∠GBC=180°,∴∠ABC+∠ABC+∠ABG=180°,2∠ABC+∠ABG=180°,2(135°﹣5∠F AE)+2∠F AE=180°,解得:∠F AE=11.25°,∴∠ABG=2∠F AE=22.5°.故答案为:22.5°.16.解:∵CD∥OB,∴∠ADC=∠AOB,∵∠EDO=∠ADC,∴∠EDO=∠AOB=38°45′,∴∠DEB=∠AOB+∠EDO=38°45′+38°45′=77°30′,故答案为:77°30′.17.解:如图,CD∥AB,∠BCD=∠B=30°,∠ACD=∠ACB+∠BCD=90°+30°=120°;如图2,DE∥AB时,延长EC交AB于F,则∠AFC=∠E=45°,在△ACF中,∠ACF=180°﹣∠A﹣∠AFC,=180°﹣60°﹣45°=75°,则∠BCF=90°﹣∠ACF=90°﹣75°=15°.∴∠ACD=180°﹣∠BCF=180°﹣15°=165°;如图3,CD∥CE∥AB时,∠ACD=30°,故答案为:30°或120°或165°.18.解:∵OP∥QR∥ST,∠2=100°,∠3=120°,∴∠2+∠PRQ=180°,∠3=∠SRQ=120°,∴∠PRQ=180°﹣100°=80°,∴∠1=∠SRQ﹣∠PRQ=40°,故答案是40°.19.解:∵AD∥BC,∴∠BFE=∠DEF=α,∠CFE=180°﹣∠DEF=180°﹣α,∴∠CFG=∠CFE﹣∠BFE=180°﹣α﹣α=180°﹣2α,∴∠CFE=∠CFG﹣∠BFE=180°﹣2α﹣α=180°﹣3α.故答案为:180°﹣3α.20.解:∵AB∥CD,∴∠CAB=180°﹣∠ACD=180°﹣60°=120°,∵∠BAE:∠CAE=2:3,∴∠CAE=120×=72°,∵∠AEC=78°,∴∠ACE=180°﹣∠AEC﹣∠CAE=180°﹣78°﹣72°=30°,设∠FCE=x,则∠FCD=4x,∴∠ACF=∠ACD﹣∠FCD=60°﹣4x,∴∠ACE=∠ACF+∠ECF=60°﹣3x,∴60°﹣3x=30°,∴x=10°,∴∠ACF=60°﹣40°=20°,∴∠AFC=180°﹣∠ACF﹣∠CAE=180°﹣20°﹣72°=88°,故答案是:88°.19.解:如图,延长AE交直线CD于F,∵AB∥CD,∴∠α+∠AFD=180°,∵∠AFD=∠β﹣∠γ,∴∠α+∠β﹣∠γ=180°,20.解:过点E作EG∥AB,过点F作FH∥CD,∵AB∥CD,∴AB∥CD∥EG∥FH,∴∠1=∠AEG,∴∠GEF=∠2﹣∠1,∵EG∥FH,∴∠EFH=180°﹣∠GEF=180°﹣(∠2﹣∠1)=180°﹣∠2+∠1,∴∠CFH=∠3﹣∠EFH=∠3﹣(180°﹣∠2+∠1)=∠3+∠2﹣∠1﹣180°,∵FH∥CD,∴∠4=∠3+∠2﹣∠1﹣180°,三.解答题(共6小题,满分30分)21.解:(1)∵BC∥EG,∴∠E=∠1=50°.∵AF∥DE,∴∠AFG=∠E=50°;(2)作AM∥BC,∵BC∥EG,∴AM∥EG,∴∠F AM=∠AFG=50°.∵AM∥BC,∴∠QAM=∠Q=15°,∴∠F AQ=∠F AM+∠QAM=65°.∵AQ平分∠F AC,∴∠QAC=∠F A Q=65°,∴∠M AC=∠QAC+∠QAM=80°.∵AM∥BC,∴∠ACB=∠MAC=80°.22.解:∠AED=∠ACB.理由:∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠4.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).23.证明:(1)∵DE∥BC,∴∠DCA=∠A;(2)如图1所示,在△ABC中,∵DE∥BC,∴∠B=∠2,∠1=∠A(内错角相等).∵∠1+∠BCA+∠2=180°,∴∠A+∠B+∠C=180°.即三角形的内角和为180°;(3)∵∠AGF+∠FGE=180°,由(2)知,∠GEF+∠F+∠FGE=180°,∴∠AGF=∠AEF+∠F;(4)∵AB∥CD,∠CDE=119°,∴∠DEB=119°,∠AED=61°,∵GF交∠DEB的平分线EF于点F,∴∠DEF=59.5°,∴∠AEF=120.5°,∵∠AGF=150°,∵∠AGF=∠AEF+∠F,∴∠F=150°﹣120.5°=29.5°.24.解:(1)作EH∥AB,如图,∵AB∥CD,∴EH∥CD,∴∠1=∠AME,∠2=∠CNE,∴∠MEN=∠AME+∠CNE,∵EM是∠AMF的平分线,∴∠AME=∠AMF,∴∠MEN=∠AMF+∠CNE=×52°+38°=64°;同理可得∠MFN=∠AMF+∠CNE=52°+×38°=71°;(2)∵∠MEN=∠AMF+∠CNE,∠MFN=∠AMF+∠CNE,∴2∠MFN=2∠AMF+∠CNE,∴2∠MFN﹣∠MEN=∠AMF,∵2∠MFN﹣∠MEN=45°,∴∠AMF=45°,∴∠AMF=30°;(3)与(1)的证明方法一样可得∠MON=∠AMF+∠CNE,而∠MEN=∠AMF+∠CNE,∠MFN=∠AMF+∠CNE,∴2∠MEN=∠AMF+2∠CNE,2∠MFN=2∠AMF+∠CNE,∴2∠MEN+2∠MFN=3(∠AMF+∠CNE),∴∠AMF+∠CNE=(∠MEN+∠MFN),∴∠MON=(∠MEN+∠MFN).25.解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.26.解:(1)过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案为:∠B;EF;CD;∠D;(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度数为65°;②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=,∠EDC=∠ADC=,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣+.答:∠BED的度数为180°﹣.。
平行线单元综合测试题(时间45分钟 满分100分)班级 _______ 学号 _ 姓名 _______ 得分一、选择题(共6小题,每题5分,共30分)1.已知:如T-1,AB ∥CD ,∠DCE =80°,则∠BEF 的度数为( ) A. 120°B. 110°C. 100°D. 80°EDCB AT-1 T-2 2. 如,2,直线DE 经过点A,DE ∥BC,,∠B=60°,下列结论成立的是( ) (A )∠C=60°(B )∠DAB=60° (C )∠EAC=60°(D )∠BAC=60°3、如图T-3,已知AB ∥CD ,那么()A 、∠1=∠2B 、∠3=∠4C 、∠1+∠3=180°D 、∠4+∠2=1804、下列运动中:①人乘电梯,从一楼上到二楼的运动;②被投掷出去的铅球运动;③温度计中,液面的升降运动;④在笔直的铁轨上,火车的运动,属于平移运动的有( )A 、1种B 、2种C 、3种D 、4种5、下列说法正确的是( )A 、不相交的两条直线互相平行B 、同旁内角相等,两直线平行C 、在同一平面内,不平行的两条直线会相交D 、同位角相等6、如图T-6,下列条件中能判断直线AD ∥BC 的是()A 、∠A=∠ABCB 、∠ADB=∠CBDC 、∠A+∠ADC=180 ºD 、∠A=∠C7、如图7,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B.25°C.20°CDT-3T-6AD.15° 图78、如图8,已知直线a ∥b,∠1=40°,∠2=60°,则∠3等于( ) A.100° B.60° C .40° D.20° 9、如图9,有一直的宽纸袋,按如图折叠,则∠a 的度数等于( ) A 、50B 、60C 、75D 、85010. 如图10,是5级台阶侧面的示意图(每个台阶的宽度和高度可能不同),若要在台阶上铺地毯 ,则至少要测量( ) A.1次 B.2 C.3次 D.4次图9图10二、填空题(共7小题,每题5分,共35分) 11、如图T-8,∠1的同位角是,∠1的内错角是 ,∠2与∠3图12 图13 图1412.如图13所示,直线a 、b 被c 、d 所截,且︒=∠⊥⊥701,,b c a c ,则=∠213. 如图10,梯子的各条横档互相平行,若∠1=70o,则∠2的度数是 014..如图15,已知CD 平分∠ACD ,DE ∥AC ,∠1=30°,则∠2= 度.15.已知三条不同的直线a ,b ,c 在同一平面内,下列四个命题:①如果a ∥b ,a ⊥c ,那么b ⊥c ; ②如果b ∥a ,c ∥a ,那么b ∥c ;AT-812435③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是.(填写所有真命题的序号)16.如图16,C岛在A岛的北偏东50o方向,C岛在B岛的北偏西40o方向,则从C岛看A,B两岛的视角∠ACB等于.图16三、解答题(本题有7小题,共44分)17.在如图所示,将方格中的图形向右平移3格,再向上平移4格,画出平移后的图形18、(本题6分)如图∠1=1000,∠2=1000,∠3=1200解∵∠1=∠2=1000()∴m//n()∴∠_____=∠______()∵∠3=1200(已知)∴∠4=___________ 4231nmba19、(本题6分)已知,如图∠1=∠2,CF⊥AB, DE⊥AB,说明FG//BC 解∵CF⊥AB, DE⊥AB,()∴∠BED=900, ∠BFC=900,()∴∠BED=∠BFC∴ED//FC( )∴∠1=___________( )∵∠1=∠2(已知)∴∠2=∠BCF∴FG//BC()14、如图:已知;AB∥CD,AD∥BC,∠B与∠D相等吗?试说明理由.15、如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.(1)AE与FC会平行吗?说明理由.(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么.D CBAF E21DCBA16、如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于点C 和D ,在C 、D 之间有一点P ,如果P 点在C 、D 之间运动时,问∠PAC ,∠APB ,∠PBD 之间的关系是否发生变化.若点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合),试探索∠PAC ,∠APB ,∠PBD 之间的关系又是如何?参考答案一、选择题(共6小题,每题5分,共30分)1. (2011江苏南通)已知:如图1,AB ∥CD ,∠DCE =80°,则∠BEF 的度数为 B. 120°B. 110°C. 100°D. 80°【答案】CEDCB A图1 图2 图32. (2011四川南充市) 如,2,直线DE 经过点A,DE ∥BC,,∠B=60°,下列结论成立的是( ) (A )∠C=60°(B )∠DAB=60° (C )∠EAC=60°(D )∠BAC=60°【答案】Bl 1l CB DPl 2A3.(2010湖北孝感)如图3,直线AB、CD相交于点O,OT⊥AB于O,CE∥AB交CD于点C,若∠ECO=30°,则∠DOT=()A.30°B.45°C. 60°D. 120°【答案】C4、(2011浙江丽水)如图4,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30° B.25° C.20° D.15°【答案】B图4 图5 图65、(2011广东株洲,)某商品的商标可以抽象为如图5所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是( )A.30︒ B.45︒ C.60︒ D.75︒【答案】B6、(2011湖南怀化)如图6,已知直线a∥b,∠1=40°,∠2=60°,则∠3等于A.100°B.60° C.40° D.20°【答案】A二、填空题(共7小题,每题5分,共35分)7.(2010 浙江衢州)如图7,直线DE交∠ABC的边BA于点D,若DE∥BC,∠B=70°,则∠ADE的度数是.【答案】70°图1012345A B CDEF图7 图8 图98.(2010广西桂林)如图8,直线AB 、CD 被直线EF 所截,则∠3的同旁内角是( ). A .∠1 B .∠2 C .∠4 D .∠5 【答案】B9.(2010广西南宁)如图9所示,直线a 、b 被c 、d 所截,且︒=∠⊥⊥701,,b c a c , 则=∠2 0【答案】7010.(2010广东茂名)如图10,梯子的各条横档互相平行,若∠1=70o,则∠2的度数是A .80oB .110oC .120oD .140o图11 图12 【答案】B 11. (2011广东广州市)已知三条不同的直线a ,b ,c 在同一平面内,下列四个命题:①如果a ∥b ,a ⊥c ,那么b ⊥c ; ②如果b ∥a ,c ∥a ,那么b ∥c ; ③如果b ⊥a ,c ⊥a ,那么b ⊥c ; ④如果b ⊥a ,c ⊥a ,那么b ∥c . 其中真命题的是 .(填写所有真命题的序号) 【答案】①②④12. (2011 浙江湖州).如图11,已知CD 平分∠ACD ,DE ∥AC ,∠1=30°,则∠2= 度. 【答案】6013.(2010山东日照)如图12,C 岛在A 岛的北偏东50o方向,C 岛在B 岛的北偏西40o方向,则从C 岛看A ,B 两岛的视角∠ACB 等于 . 【答案】90o三、解答题(共25分)CAE D B14、如图:已知;AB ∥CD ,AD ∥BC ,∠B 与∠D 相等吗?试说明理由. 【答案】相等。
浙教版2023年七年级下册第1章平行线单元检测卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)在同一平面内,两直线的位置关系必是()A.相交B.平行C.相交或平行D.垂直2.(3分)若将如图平移,则得到的图形是()A.B.C.D.3.(3分)如图,直线a,b被c所截,则∠1与∠2是()A.邻补角B.同位角C.内错角D.同旁内角4.(3分)如图,直线a,b被直线c所截,若a∥b,∠2=110°,则∠1的度数为()A.70°B.75°C.80°D.85°5.(3分)下列说法正确的是()A.a、b、c是直线,若a⊥b,b∥c,则a∥cB.a、b、c是直线,若a⊥b,b⊥c,则a⊥cC.a、b、c是直线,若a∥b,b⊥c,则a∥cD.a、b、c是直线,若a∥b,b∥c,则a∥c6.(3分)如图,下列推理中,正确的是()A.如果∠2=∠4,那么AD∥BCB.如果∠1=∠3,那么AD∥BCC.如果∠4+∠D=180°,那么AD∥BCD.如果∠4+∠B=180°,那么AB∥DC7.(3分)如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠2=40°,则∠1=()A.60°B.50°C.40°D.30°8.(3分)如图,三角形ABC的周长是16cm,将三角形ABC向右平移3cm得到三角形DEF,则四边形ABFD的周长是()A.16cm B.18cm C.20cm D.22cm9.(3分)如图,把一张长方形的纸按图那样折叠后,B,C两点落在B1,C1处,若∠AEB1=70°,则∠BEF=()A.70°B.60°C.65°D.55°10.(3分)如图,AD∥BC,∠D=∠ABC,点E是边DC上一点,连接AE交BC的延长线于点H.点F是边AB 上一点.使得∠FBE=∠FEB,作∠FEH的角平分线EG交BH于点G,若∠DEH=100°,则∠BEG的度数为()A.30°B.40°C.50°D.60°二.填空题(共5小题,满分20分,每小题4分)11.(4分)下列现象是数学中的平移的是.(填序号)①苹果垂直从树上落下;②电梯从底楼升到顶楼;③骑自行车时轮胎的滚动;④钟摆的摆动.12.(4分)如图,直线a,b被直线c所截,∠3的同旁内角是.13.(4分)一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=135°,则∠ABC=度.14.(4分)如图,将Rt△ABC沿着点B到点C的方向平移到△DEF的位置,已知AB=6,HD=2,CF=3,则图中阴影部分的面积为.15.(4分)如图,直线EF上有两点A、C,分别引两条射线AB、CD.∠BAF=100°,CD与AB在直线EF异侧.若∠DCF=60°,射线AB、CD分别绕A点,C点以1度/秒和6度/秒的速度同时顺时针转动,设时间为t秒,在射线CD转动一周的时间内,当时间t的值为时,CD与AB平行.三.解答题(共7小题,满分50分)16.(6分)如图,指出图中直线AC,BC被直线AB所截的同位角、内错角、同旁内角.17.(6分)如图,已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.证明:∵∠BAD=∠DCB,∠1=∠3(),∴∠BAD﹣=∠DCB﹣(等式的性质),即=.∴AD∥BC().18.(6分)已知:如图,AE与BD相交于点F,∠B=∠C,∠1=∠2.求证:AB∥CE.19.(6分)如图,AF分别与BD、CE交于点G、H,AC分别与BD、CE交于点B、C,DF分别与BD、CE交于点D、E,∠1=55°.若∠A=∠F,∠C=∠D,求∠2的度数.20.(8分)如图,已知点E在直线DC上,射线EF平分∠AED,过E点作EB⊥EF,G为射线EC上一点,连接BG,且∠EBG+∠BEG=90°.(1)求证:∠DEF=∠EBG;(2)若∠EBG=∠A,求证:AB∥EF.21.(8分)如图,AF的延长线与BC的延长线交于点E,AD∥BE,∠1=∠2=30°,∠3=∠4=80°.(1)求∠CAE的度数;(2)求证:AB∥DC.22.(10分)如图1,已知AC∥BD,点P是直线AC,BD间的一点,连接AB,AP,BP,过点P作直线MN∥AC.(1)MN与BD的位置关系是什么,请说明理由;(2)试说明∠APB=∠PBD+∠P AC;(3)如图2,当点P在直线AC上方时,(2)中的三个角的数量关系是否仍然成立?如果成立,试说明理由;如果不成立,试探索它们存在的关系,并说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:在同一个平面内,两条直线只有两种位置关系,即平行或相交.故选:C.2.【解答】解:将图中所示的图案平移后得到的图案是:,故选:C.3.【解答】解:∠1与∠2是内错角.故选:C.4.【解答】解:如图:∵a∥b,∠2=110°,∴∠3=∠2=110°,∵∠1+∠3=180°,∴∠1=70°.故选:A.5.【解答】解:A、∵a⊥b,b∥c,∴a⊥c,故本选项错误;B、在同一平面内,当a⊥b,b⊥c时,a∥c,故本选项错误;C、当a∥b,b⊥c时,a⊥c,故本选项错误;D、当a∥b,b∥c时,a∥c,故选项正确;故选:D.6.【解答】解:A、由内错角相等,两直线平行可知如果∠2=∠4,那么AB∥CD,不能得到AD∥BC,故此选项不符合题意;B、由内错角相等,两直线平行可知如果∠1=∠3,那么AD∥BC,故此选项符合题意;C、由同旁内角互补,两直线平行可知,如果∠3+∠4+∠D=180°,那么AD∥BC,,故此选项不符合题意;D、由同旁内角互补,两直线平行可知,如果∠3+∠4+∠B=180°,那么AB∥DC,故此选项不符合题意;故选:B.7.【解答】解:如图,∵∠2=40°,∴∠3=90°﹣∠2=50°,∴∠1=50°.故选:B.8.【解答】解:由平移的性质可知,AD=BE=CF=3cm,AB=DE,BC=EF,AC=DF,由于三角形ABC的周长是16cm,即AB+BC+AC=16cm,所以四边形ABFD的周长=AD+AB+BC+CF+DF=AB+BC+AC+AD+CF=16+3+3=22(cm),故选:D.9.【解答】解:∵把一张长方形的纸按图那样折叠后,B,C两点落在B1,C1处,∴∠BEF=∠B1EF,∵∠AEB1=70°,∠AEB1+∠BEF+∠AEB1=180°,∴∠BEF=(180°﹣∠AEB1)==55°.故选:D.10.【解答】解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,∵AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEH=∠F AE=80°,∠AEF=180°﹣∠FEG﹣∠HEG=180°﹣2β,在△AEF中,80°+2α+180﹣2β=180°故β﹣α=40°,而∠BEG=∠FEG﹣∠FEB=β﹣α=40°,故选:B.二.填空题(共5小题,满分20分,每小题4分)11.【解答】解:①苹果垂直从树上落下,是平移,②电梯从底楼升到顶楼,是平移,③骑自行车时轮胎的滚动,是旋转,④钟摆的摆动,是旋转,所以,上列现象是数学中的平移的是:①②,故答案为:①②.12.【解答】解:根据题意,∠3的同旁内角是∠6.故答案为:∠6.13.【解答】解:如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=135°,∠BAE=90°,∴∠1=45°,∠2=90°,∴∠ABC=∠1+∠2=135°.故答案为:135.14.【解答】解:由平移的性质知,BE=CF=3,DE=AB=6,∴HE=DE﹣DH=6﹣2=4,∴S四边形HDFC=S梯形ABEH=(AB+HE)•BE=(6+4)×3=15.故答案为:15.15.【解答】解:分三种情况:如图①,AB与CD在EF的两侧时,∵∠BAF=110°,∠DCF=60°,∴∠ACD=180°﹣60°﹣(6t)°=120°﹣(6t)°,∠BAC=100°﹣t°,要使AB∥CD,则∠ACD=∠BAF,即120°﹣(6t)°=100°﹣t°,解得t=4;此时(180°﹣60°)÷6=20,∴0<t<20;②CD旋转到与AB都在EF的右侧时,∵∠BAF=100°,∠DCF=60°,∴∠DCF=360°﹣(6t)°﹣60°=300°﹣(6t)°,∠BAC=100°﹣t°,要使AB∥CD,则∠DCF=∠BAC,即300°﹣(6t)°=100°﹣t°,解得t=40,此时(360°﹣60°)÷6=50,∴20<t<50;③CD旋转到与AB都在EF的左侧时,∵∠BAF=100°,∠DCF=60°,∴∠DCF=(6t)°﹣(180°﹣60°+180°)=(6t)°﹣300°,∠BAC=t°﹣100°,要使AB∥CD,则∠DCF=∠BAC,即(6t)°﹣300°=t°﹣100°,解得t=40,此时t>50,∵40<50,∴此情况不存在.综上所述,当时间t的值为4秒或40秒时,CD与AB平行.故答案为:4秒或40秒.三.解答题(共7小题,满分50分)16.【解答】解:∵直线AC、BC被直线AB所截,∴∠1 与∠2,∠4 与∠DBC是同位角;∠1 与∠3,∠4 与∠5 是内错角;∠3 与∠4 是同旁内角,∠1 与∠5 是同旁内角.17.【解答】证明:∵∠BAD=∠DCB,∠1=∠3(已知),∴∠BAD﹣∠1=∠DCB﹣∠3(等式的性质),即∠2=∠4.∴AD∥BC(内错角相等,两直线平行).故答案为:已知,∠1,∠3,∠2,∠4,内错角相等,两直线平行.18.【解答】解:∵∠1=∠2,∴AC∥BD,∴∠C=∠BDE,∵∠B=∠C,∴∠B=∠BDE,∴AB∥CE.19.【解答】解:∵∠A=∠F,∴AC∥DF,∴∠C=∠CEF,∵∠C=∠D,∴∠CEF=∠D,∴BD∥CE,∴∠1=∠AHC=55°,∴∠2=180°﹣∠AHC=125°.20.【解答】证明:(1)∵EB⊥EF,∴∠FEB=90°,∴∠DEF+∠BEG=180°﹣90°=90°.又∵∠EBG+∠BEG=90°,∴∠DEF=∠EBG;(2)∵∠EBG=∠A,∠DEF=∠EBG,∴∠A=∠DEF.∵EF平分∠AED,∴∠AEF=∠DEF,∴∠A=∠AEF,∴AB//EF.21.【解答】(1)解:∵AD∥BE,∴∠CAD=∠3,∵∠2+∠CAE=∠CAD,∠3=80°,∴∠2+∠CAE=80°,∵∠2=30°,∴∠CAE=50°;(2)证明:∵∠2+∠CAE=∠CAD=∠3,∠1=∠2,∠3=∠4,∴∠1+∠CAE=∠4,即∠BAE=∠4,∴AB∥DC.22.【解答】解:(1)平行;理由如下:∵AC∥BD,MN∥AC,∴MN∥BD;(2)∵AC∥BD,MN∥BD,∴∠PBD=∠1,∠P AC=∠2,∴∠APB=∠1+∠2=∠PBD+∠P AC.(3)答:不成立.它们的关系是∠APB=∠PBD﹣∠P AC.理由是:如图2,过点P作PQ∥AC,∵AC∥BD,∴PQ∥AC∥BD,∴∠P AC=∠APQ,∠PBD=∠BPQ,∴∠APB=∠BPQ﹣∠APQ=∠PBD﹣∠P AC.。
浙教版七年级下数学第一章综合测评卷一、选择题(每题3分,共30分)1.下列各组图形可以通过平移互相得到的是( ).A. B. C. D.2.如图所示,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,若∠1=70°,则∠2等于( ).A.70°B.80°C.110°D.120°(第2题)(第3题)(第4题)(第5题)3.如图所示,点A,D在射线AE上,AB∥CD,∠CDE=140°,那么∠A的度数为( ).A.140°B.60°C.50°D.40°4.如图所示,直线AC∥BD,AO,BO分别是∠BAC,∠ABD的平分线,那么∠BAO与∠ABO之间的大小关系一定为( ).A.互余B.相等C.互补D.不等5.将一把直角三角尺和一把直尺按如图所示的方式放置,若∠α=44°,则∠β的度数为( ).A.44°B.45°C.46°D.54°6.如图所示,AB∥CD,∠1=50°,∠2=110°,则∠3的度数为( ).A.60°B.50°C.70°D.80°(第6题)(第7题)(第8题)(第9题)7.如图所示,直线AB∥CD,一把含60°角的直角三角尺EFG(∠E=60°)的直角顶点F在直线AB上,斜边EG与AB相交于点H,CD与FG相交于点M.若∠AHG=50°,则∠FMD等于( ).A.10°B.20°C.30°D.50°8.如图所示,将矩形纸带ABCD沿EF折叠后,点C,D分别落在点C′,D′的位置,经测量得∠EFB=65°,则∠AED′的度数为( ).A.65°B.55°C.50°D.25°9.如图所示,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从点E射出一条光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数为( ).A.74°12′B.74°36′C.75°12′D.75°36′(第10题)10.如图所示,DE∥FG,点A在直线DE上,点C在直线FG上,∠BAC=90°,AB=AC.若∠BCF=20°,则∠EAC的度数为( ).A.25°B.65°C.70°D.75°二、填空题(每题4分,共24分)11.如图所示,∠B的同位角是,内错角是,同旁内角是.(第11题) (第12题)(第13题)12.如图所示,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD 的周长为cm.13.如图所示,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM= .14.如图所示,将三角尺与直尺贴在一起,使三角尺的直角顶点C(∠ACB=90°)在直尺的一边上,若∠2=65°,则∠1= .(第14题)(第15题)(第16题)15.如图所示,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是.16.如图所示,直线l1∥l2,∠α=∠β,∠1=40°,则∠2= .三、解答题(共66分)17.(6分)如图所示,已知AD∥BE,∠1=∠2,求证:∠A=∠E.(第17题)18.(8分)如图所示,已知AB∥CD,∠1∶∠2∶∠3=1∶2∶3,那么AB是否平分∠EBF,试说明理由.(第18题)19.(8分)如图所示,已知BE平分∠ABD,DE平分∠CDB,且∠1与∠2互余,试判断直线AB,CD 的位置关系,并说明理由.(第19题)20.(10分)如图所示,已知∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.(第20题)21.(10分)已知直线AB和CD被直线MN所截.(1)如图1所示,EG平分∠BEF,FH平分∠DFE,则∠1与∠2满足时,AB∥CD. (2)如图2所示,EG平分∠MEB,FH平分∠DFE,则∠1与∠2满足时,AB∥CD. (3)如图3所示,EG平分∠AEF,FH平分∠DFE,则∠1与∠2满足时,AB∥CD,并说明理由.图1 图2 图3(第21题)22.(12分)等腰三角形是一种特殊的三角形,它的两个底角相等;反之,如果一个三角形有两个角相等,那么它是一个等腰三角形.请利用上述资料解答下列问题:(1)如图1所示,点A在直线MN上,点B在直线MN外,连结AB,过线段AB的中点P作PC∥MN,交∠MAB的平分线AD于点C,连结BC.求证:BC⊥AD.(2)如图2所示,点B在∠MAN内部,连结AB,过线段AB的中点P作PC∥AM,交∠MAB的平分线AD于点C;作PE∥AN,交∠NAB的平分线AF于点E,连结BC,BE.若∠MAN=150°,求∠CBE的度数.图1 图2(第22题)23.(12分)如图1所示,已知直线CD∥EF,点A,B分别在直线CD与EF上,点P为两平行线间一点.(1)求证:∠APB=∠DAP+∠FBP.(2)利用(1)的结论解答:①如图2所示,AP1,BP1分别平分∠DAP,∠FBP,请你直接写出∠APB与∠AP1B的数量关系.②如图3所示,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=80°,求∠AP2B的度数.图1 图2 图3(第23题)参考答案一、选择题(每题3分,共30分)1.下列各组图形可以通过平移互相得到的是(C).A. B. C. D.2.如图所示,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,若∠1=70°,则∠2等于(C).A.70°B.80°C.110°D.120°(第2题)(第3题)(第4题)(第5题)3.如图所示,点A,D在射线AE上,AB∥CD,∠CDE=140°,那么∠A的度数为(D).A.140°B.60°C.50°D.40°4.如图所示,直线AC∥BD,AO,BO分别是∠BAC,∠ABD的平分线,那么∠BAO与∠ABO之间的大小关系一定为(A).A.互余B.相等C.互补D.不等5.将一把直角三角尺和一把直尺按如图所示的方式放置,若∠α=44°,则∠β的度数为(C).A.44°B.45°C.46°D.54°6.如图所示,AB∥CD,∠1=50°,∠2=110°,则∠3的度数为(A).A.60°B.50°C.70°D.80°(第6题)(第7题)(第8题)(第9题)7.如图所示,直线AB∥CD,一把含60°角的直角三角尺EFG(∠E=60°)的直角顶点F在直线AB上,斜边EG与AB相交于点H,CD与FG相交于点M.若∠AHG=50°,则∠FMD等于(B).A.10°B.20°C.30°D.50°8.如图所示,将矩形纸带ABCD沿EF折叠后,点C,D分别落在点C′,D′的位置,经测量得∠EFB=65°,则∠AED′的度数为(C).A.65°B.55°C.50°D.25°9.如图所示,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从点E射出一条光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数为(C).A.74°12′B.74°36′C.75°12′D.75°36′(第10题)10.如图所示,DE∥FG,点A在直线DE上,点C在直线FG上,∠BAC=90°,AB=AC.若∠BCF=20°,则∠EAC的度数为(B).A.25°B.65°C.70°D.75°二、填空题(每题4分,共24分)11.如图所示,∠B的同位角是∠ACD,内错角是∠BCE,同旁内角是∠BAC和∠ACB .(第11题) (第12题)(第13题)12.如图所示,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为 20 cm.13.如图所示,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM= 30°.14.如图所示,将三角尺与直尺贴在一起,使三角尺的直角顶点C(∠ACB=90°)在直尺的一边上,若∠2=65°,则∠1= 25° .(第14题)(第15题)(第16题)15.如图所示,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是80° .16.如图所示,直线l1∥l2,∠α=∠β,∠1=40°,则∠2= 140° .三、解答题(共66分)17.(6分)如图所示,已知AD∥BE,∠1=∠2,求证:∠A=∠E.(第17题)【答案】∵AD∥BE,∴∠A=∠3.∵∠1=∠2,∴DE∥AC.∴∠E=∠3.∴∠A=∠3=∠E.18.(8分)如图所示,已知AB∥CD,∠1∶∠2∶∠3=1∶2∶3,那么AB是否平分∠EBF,试说明理由.(第18题)【答案】BA平分∠EBF.理由如下:∵AB∥CD,∴∠ABE=∠FDB.∵∠1∶∠2∶∠3=1∶2∶3,∴∠3=∠1+∠2.∵∠3=∠1+∠FDB,∴∠2=∠FDB.∴∠2=∠ABE.∴BA平分∠EBF.19.(8分)如图所示,已知BE平分∠ABD,DE平分∠CDB,且∠1与∠2互余,试判断直线AB,CD的位置关系,并说明理由.(第19题)【答案】AB∥CD.理由如下:∵BE平分∠ABD,DE平分∠CDB,又∵∠1+∠2=90°,∴∠ABD+∠CDB=180°.∴AB∥CD.20.(10分)如图所示,已知∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.【答案】∵BE⊥FD,∴∠EGD=90°.∴∠1+∠D=90°.∵∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2.又∵∠C=∠1,∴∠C=∠2.∴AB∥CD.21.(10分)已知直线AB和CD被直线MN所截.(1)如图1所示,EG平分∠BEF,FH平分∠DFE,则∠1与∠2满足∠1+∠2=90°时,AB∥CD.(2)如图2所示,EG平分∠MEB,FH平分∠DFE,则∠1与∠2满足∠1=∠2时,AB∥CD.(3)如图3所示,EG平分∠AEF,FH平分∠DFE,则∠1与∠2满足∠1=∠2时,AB∥CD,并说明理由.图1 图2 图3(第21题)【答案】(1)∠1+∠2=90° (2)∠1=∠2(3)∠1=∠2.理由如下:∵EG平分∠AEF,FH平分∠DFE,∴∠AEF=2∠1,∠DFE=2∠2.∵∠1=∠2,∴∠AEF=∠DFE.∴AB∥CD.22.(12分)等腰三角形是一种特殊的三角形,它的两个底角相等;反之,如果一个三角形有两个角相等,那么它是一个等腰三角形.请利用上述资料解答下列问题:(1)如图1所示,点A在直线MN上,点B在直线MN外,连结AB,过线段AB的中点P作PC∥MN,交∠MAB的平分线AD于点C,连结BC.求证:BC⊥AD.(2)如图2所示,点B在∠MAN内部,连结AB,过线段AB的中点P作PC∥AM,交∠MAB的平分线AD于点C;作PE∥AN,交∠NAB的平分线AF于点E,连结BC,BE.若∠MAN=150°,求∠CBE的度数.图1 图2(第22题)【答案】 (1)∵PC∥MN,∴∠PCA=∠MAC. ∵AD 为∠MAB 的平分线,∴∠MAC=∠PAC. ∴∠PCA=∠PAC.∴PC=PA.∵PA=PB,∴PC=PB.∴∠B=∠BCP. ∵∠B+∠BCP+∠PCA+∠PAC=180°, ∴∠BCA=90°.∴BC⊥AD.(2)∵∠MAB 的平分线为AD ,∠NAB 的平分线为AF ,∠MAN=150°, ∴∠BAC+∠BAE=75°.由(1)的结论可得BC⊥AD,BE⊥AF,∴∠BCA+∠BEA=180°. ∴∠BAC+∠BAE+∠CBA+∠ABE=180°, ∴∠CBE=∠CBA+∠ABE=180°-75°=105°.23.(12分)如图1所示,已知直线CD∥EF,点A ,B 分别在直线CD 与EF 上,点P 为两平行线间一点.(1)求证:∠APB=∠DAP+∠FBP. (2)利用(1)的结论解答:①如图2所示,AP 1,BP 1分别平分∠DAP ,∠FBP,请你直接写出∠APB 与∠AP 1B 的数量关系. ②如图3所示,AP 2,BP 2分别平分∠CAP ,∠EBP,若∠APB=80°,求∠AP 2B 的度数.图1 图2 图3(第23题)【答案】(1)过点P 作PM∥CD,则∠APM=∠DAP.∵CD∥EF,∴PM∥EF.∴∠MPB=∠FBP.∴∠APM+∠MPB=∠DAP+∠FBP ,即∠APB=∠DAP+∠FBP. (2)①∠APB=2∠AP 1B.②由①得∠APB=∠DAP+∠FBP ,∠AP 2B=∠CAP 2+∠EBP 2.∵AP 2,BP 2分别平分∠CAP ,∠EBP ,∴∠CAP 2=21∠CAP ,∠EBP 2=21∠EBP. ∴∠AP 2B=21∠CAP+21∠EBP=21(180°-∠DAP )+21(180°-∠FBP )=180°-21(∠DAP+∠FBP )=180°-40°=140°.。
平行线单元综合测试题(时间45分钟 满分100分)班级 _______ 学号 _ 姓名 _______ 得分一、选择题(共6小题,每题5分,共30分)1.已知:如T-1,AB ∥CD ,∠DCE =80°,则∠BEF 的度数为( ) A. 120°B. 110°C. 100°D. 80°EDCB AT-1 T-2 2. 如,2,直线DE 经过点A,DE ∥BC,,∠B=60°,下列结论成立的是( ) (A )∠C=60°(B )∠DAB=60° (C )∠EAC=60°(D )∠BAC=60°3、如图T-3,已知AB ∥CD ,那么( )A 、∠1=∠2B 、∠3=∠4C 、∠1+∠3=180°D 、∠4+∠2=1804、下列运动中:①人乘电梯,从一楼上到二楼的运动;②被投掷出去的铅球运动;③温度计中,液面的升降运动;④在笔直的铁轨上,火车的运动,属于平移运动的有( )A 、1种B 、2种C 、3种D 、4种5、下列说法正确的是( )A 、不相交的两条直线互相平行B 、同旁内角相等,两直线平行C 、在同一平面内,不平行的两条直线会相交D 、同位角相等 6、如图T-6,下列条件中能判断直线AD ∥BC 的是( )A 、∠A=∠ABCB 、∠ADB=∠CBDC 、∠A+∠ADC=180 ºD 、∠A=∠C7、如图7,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B.25°C.20°D.15° 图78、如图8,已知直线a∥b,∠1=40°,∠2=60°,则∠3等于( )C DT-3T-6A BA.100°B.60° C .40° D.20°9、如图9,有一直的宽纸袋,按如图折叠,则∠a 的度数等于( )A 、500B 、600C 、750D 、85010. 如图10,是5级台阶侧面的示意图(每个台阶的宽度和高度可能不同),若要在台阶上铺地毯 ,则至少要测量( ) A.1次 B.2 C.3次 D.4次图9 图10二、填空题(共7小题,每题5分,共35分) 11、如图T-8,∠1的同位角是 ,∠1的内错角是 ,∠2与∠3图12 图13 图1412.如图13所示,直线a 、b 被c 、d 所截,且︒=∠⊥⊥701,,b c a c ,则=∠2 013.如图10,梯子的各条横档互相平行,若∠1=70o,则∠2的度数是 014..如图15,已知CD 平分∠ACD ,DE ∥AC ,∠1=30°,则∠2=度. 15.已知三条不同的直线a ,b ,c 在同一平面内,下列四个命题:①如果a ∥b ,a ⊥c ,那么b ⊥c ; ②如果b ∥a ,c ∥a ,那么b ∥c ; ③如果b ⊥a ,c ⊥a ,那么b ⊥c ; ④如果b ⊥a ,c ⊥a ,那么b ∥c . 其中真命题的是 .(填写所有真命题的序号)AT-81243516.如图16,C 岛在A 岛的北偏东50o 方向,C 岛在B 岛的北偏西40o方向,则从C 岛看A ,B 两岛的视角∠ACB 等于 .图16三、解答题(本题有7小题,共44分)17.在如图所示,将方格中的图形向右平移3格,再向上平移4格,画出平移后的图形18、(本题6分)如图∠1=1000,∠2=1000,∠3=1200解∵∠1=∠2=1000( )∴m//n ( )∴∠_____=∠______( )∵∠3=1200( 已知 ) ∴∠4=___________19、(本题6分)已知,如图∠1=∠2,CF ⊥AB, DE ⊥AB,说明FG//BC 解∵CF ⊥AB, DE ⊥AB,( )∴∠BED=900, ∠BFC=900,( )∴∠BED=∠BFC∴ED//FC( ) ∴∠1=___________( ) ∵∠1=∠2( 已知 ) ∴∠2=∠BCF∴FG//BC ( )4231nmba14、如图:已知;AB ∥CD ,AD ∥BC ,∠B 与∠D 相等吗?试说明理由.15、如图,∠1+∠2=180°,∠DAE =∠BCF ,DA 平分∠BDF . (1)AE 与FC 会平行吗?说明理由. (2)AD 与BC 的位置关系如何?为什么? (3)BC 平分∠DBE 吗?为什么.F 21DCBA16、如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于点C 和D ,在C 、D 之间有一点P ,如果P 点在C 、D 之间运动时,问∠PAC ,∠APB ,∠PBD 之间的关系是否发生变化.若点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合),试探索∠PAC ,∠APB ,∠PBD 之间的关系又是如何?参考答案一、选择题(共6小题,每题5分,共30分)1. (2011江苏南通)已知:如图1,AB ∥CD ,∠DCE =80°,则∠BEF 的度数为l 1l CB DPl 2AD CBAB. 120° B. 110°C. 100°D. 80°【答案】CEDCB A图1 图2 图32. (2011四川南充市) 如,2,直线DE 经过点A,DE ∥BC,,∠B=60°,下列结论成立的是( ) (A )∠C=60°(B )∠DAB=60° (C )∠EAC=60°(D )∠BAC=60°【答案】B3. (2010湖北孝感)如图3,直线AB 、CD 相交于点O ,OT ⊥AB 于O ,CE ∥AB 交CD 于点C ,若∠ECO=30°,则∠DOT=( )A.30°B.45°C. 60°D. 120° 【答案】C4、(2011浙江丽水)如图4,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( ) A .30°B.25°C.20°D.15°【答案】B图4 图5 图65、(2011广东株洲,)某商品的商标可以抽象为如图5所示的三条线段,其中AB ∥CD ,∠EAB=45°,则∠FDC 的度数是( )A .30︒B .45︒C .60︒D .75︒ 【答案】B6、(2011湖南怀化)如图6,已知直线a∥b,∠1=40°,∠2=60°,则∠3等于 A.100° B.60° C .40° D.20° 【答案】A图10 二、填空题(共7小题,每题5分,共35分)7.(2010 浙江衢州)如图7,直线DE 交∠ABC 的边BA 于点D ,若DE ∥BC ,∠B =70°, 则∠ADE 的度数是 .【答案】70°12345A B CDEF图7 图8 图9 8.(2010广西桂林)如图8,直线AB 、CD 被直线EF 所截,则∠3的同旁内角是( ). A .∠1 B .∠2 C .∠4 D .∠5 【答案】B 9.(2010广西南宁)如图9所示,直线a 、b 被c 、d 所截,且︒=∠⊥⊥701,,b c a c , 则=∠2 0【答案】7010.(2010广东茂名)如图10,梯子的各条横档互相平行,若∠1=70o,则∠2的度数是A .80oB .110oC .120oD .140o图11 图12【答案】B11. (2011广东广州市)已知三条不同的直线a ,b ,c 在同一平面内,下列四个命题:①如果a ∥b ,a ⊥c ,那么b ⊥c ; ②如果b ∥a ,c ∥a ,那么b ∥c ; ③如果b ⊥a ,c ⊥a ,那么b ⊥c ; ④如果b ⊥a ,c ⊥a ,那么b ∥c . 其中真命题的是 .(填写所有真命题的序号) 【答案】①②④12. (2011 浙江湖州).如图11,已知CD 平分∠ACD ,DE ∥AC ,∠1=30°,则∠2= 度. 【答案】6013.(2010山东日照)如图12,C 岛在A 岛的北偏东50o方向,C 岛在B 岛的北偏西40o方向,则从C 岛看A ,B 两岛的视角∠ACB 等于 .CAE D B【答案】90o三、解答题(共25分)14、如图:已知;AB ∥CD ,AD ∥BC ,∠B 与∠D 相等吗?试说明理由. 【答案】相等。
理由略。
15、如图,∠1+∠2=180°,∠DAE =∠BCF ,DA 平分∠BDF . (1)AE 与FC 会平行吗?说明理由. (2)AD 与BC 的位置关系如何?为什么? (3)BC 平分∠DBE 吗?为什么.F E21DCBA【答案】(1)平行;(2)平行; (3) 平分。
理由略。
16、如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于点C 和D ,在C 、D 之间有一点P ,如果P 点在C 、D 之间运动时,问∠PAC ,∠APB ,∠PBD 之间的关系是否发生变化.若点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合),试探索∠PAC ,∠APB ,∠PBD 之间的关系又是如何?解: 若P 点在C 、D 之间运动时,则有∠APB =∠PAC +∠PBD . 理由是:如图4,过点P 作PE ∥l 1,则∠APE =∠PAC , 又因为l 1∥l 2,所以PE ∥l 2,所以∠BPE =∠PBD ,l 1l CB DPl 2AD C BA所以∠APE +∠BPE =∠PAC +∠PBD ,即∠APB =∠PAC +∠PBD .若点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合),则有两种情形: (1)如图1,有结论:∠APB =∠PBD -∠PAC . 理由是:过点P 作PE ∥l 1,则∠APE =∠PAC , 又因为l 1∥l 2,所以PE ∥l 2,所以∠BPE =∠PBD , 所以∠APB =∠BAE +∠APE ,即∠APB =∠PBD -∠PAC . (2)如图2,有结论:∠APB =∠PAC -∠PBD . 理由是:过点P 作PE ∥l 2,则∠BPE =∠PBD , 又因为l 1∥l 2,所以PE ∥l 1,所以∠APE =∠PAC , 所以∠APB =∠APE +∠BPE ,即∠APB =∠PAC +∠PBD .E 图1CD l 2 Pl 3l 1 ABE 图2CDl 2 P l 3l 1 AB。