一类高阶次线性奇异边值问题的正解
- 格式:pdf
- 大小:103.27 KB
- 文档页数:4
一类奇异椭圆方程的正解椭圆方程有着悠久的历史,也是数学中最常见的方程形式之一。
它的解法也有很多,本文就要聚焦在一类奇异椭圆方程的正解,以下将详细阐述。
椭圆方程可以用常见的Ax2+Bxy+Cy2+Dx+Ey+F=0表示,这样的椭圆方程中A、C具有不等式约束,即AC>0,而且当B2-4AC<0时,则椭圆方程称为「奇异椭圆方程」。
即使当B2-4AC大于0时,当 a=0时,椭圆方程也可以被视为一种奇异椭圆方程。
首先,要求解一类奇异椭圆方程,一般采用求根法,从而得到一类奇异椭圆方程的正解。
可以将原本的奇异椭圆方程分解为两个完全平方式,记为X2+2PX+Q=0和Y2+2RY+S=0,可以利用公式Δ=(P2+Q)2-4(QRS-P2S)求解得出Δ≤0,即两个完全平方式没有实根。
接下来,一类奇异椭圆方程的正解可以通过另一种方法求得,即将行列式M={A B/2 D/2B/2 C E/2D/2 E/2 F}表示为(A B/2 D/2)(C E/2 F)-(B/2 E/2)(B/2 E/2),求出M=0,由此得出X=-P±(QRS-P2S)1/2Y,Y=-R±(QRS-P2S)1/2X。
至此,可以得出一类奇异椭圆方程的正解,即X=-P±(QRS-P2S)1/2Y,Y=-R±(QRS-P2S)1/2X。
此外,有时候为了方便求解,也可以将一类奇异椭圆方程转化为比较简单的方程式,即将奇异椭圆方程所对应的各变量用某种转化方法,从而将奇异椭圆方程转换为一般椭圆方程,转化得到的方程式也可以成为一类奇异椭圆方程的正解。
总而言之,一类奇异椭圆方程的正解可以通过种种方法得出,即求根法和行列式法,也可以将奇异椭圆方程转化为一般椭圆方程,从而得出正解。
虽然求解过程可能比较复杂,但是只要熟练掌握相关的解法,就可以顺利求出一类奇异椭圆方程的正解。
奇异三点边值问题的正解袁邢华;蒋巧云【摘要】The existence of positive solutions for a class of second-order three-point boundary value problem was ob-tained by applying the fixed point index theory under some conditions concerning the eigenvalues of relevant linear operator. When compared with other conditions in superlinear and sublinear problems , this conditions are almost the best. so results in this paper extend and improve the main results in early references.%应用不动点指数方法,在与相应线性算子第一特征值有关的条件下,得到一类奇异三点边值问题正解的存在性结果。
在超线性和次线性问题中,这类条件比其他形式的条件更优,所得结果推广和改进了已有文献中的主要结果。
【期刊名称】《南通大学学报(自然科学版)》【年(卷),期】2014(000)002【总页数】4页(P91-94)【关键词】边值问题;不动点指数;正解;存在性【作者】袁邢华;蒋巧云【作者单位】南通大学理学院,江苏南通 226007;南通大学理学院,江苏南通226007【正文语种】中文【中图分类】O175.15本文研究二阶奇异三点边值问题正解的存在性,其中η∈(0,1),α∈[0,+∞),并且允许a(t)在t=0 和t=1 处奇异.多点边值问题在弹性稳定性理论中有着广泛的应用,它的研究始于Il′in 和Moiseev[1],此后Cupta 等人相继就解的存在性得到了一些结果[2-3].文献[4]首次考虑了边值问题的正解的存在性,但非线性项不具有奇性.在这些工作中,很多应用拓扑度、锥上的不动点定理等得到边值问题正解存在性的结论.本文在与相应的线性算子第一特征值有关的条件下,应用锥理论和不动点指数方法获得了三点边值问题(1)正解的存在性结果,本质地推广和改进了文献[4]中的主要结论.关于锥理论和不动点指数的概念和性质参见专著[5].本文是文献[6-7]工作的继续.1 预备知识与引理本文取Banach 空间C[0,1],范数由‖u‖ =定义.令P={u∈C[0, 1]u(t)≥0,t∈[0, 1]}于是P为C[0,1]中的正锥.本文中序关系是由P 导出的.Br={u∈C[0,1] ‖u‖≤r}(r>0)表示半径为r 的开球,本文假设:(H1)a:(0, 1)→[0,∞)连续, a(t)≠0,并且(H2)f:[0,+∞)→[0,∞)连续.(H3)0<α <令显然 G(t, s)在[0,1]×[0, 1]上连续,且由(H3)可得G(t, s)≥0(0≤t,s≤1).注意到αt>0,有令由函数G(t,s)的表达式可得这说明G(t, s)≥δG(τ, s),∀τ, t,s∈[0, 1]令K={u∈P u(t)≥δ‖u‖},其中δ由式(2)给出,容易验证K 是C[0,1]中的锥且K⊂P.定义由Ascoli-Arzela 定理和文献[8]第五章的定理2.1 不难得到以下引理:引理1 A,T:P→P(或K)是全连续算子.引理2 设(H1),(H3)成立,那么由上面定义的算子T 有r(T)≠0,且T 存在相应于第一特征值λ1=r(T)-1 的正的特征向量u*∈K\{θ}.若(H1)~(H3)成立,算子 A 在 K\{θ}中有一个不动点u,不难验证u∈C[0,1]∩C2[0,1]且u 满足式(1),即u 是奇异二阶三点边值问题(1)的正解.又由文献[9]得:引理3 设P 是Banach 空间E 中的锥,T:E→E 是全连续算子且 T(P)⊂P,若存在u∈P\{θ},λ >0 使得Tu≥λu,则 r(T)≥λ,其中 r(T)是算子 T 的谱半径.2 主要结论定理1 假设(H1)~(H3)成立,如果其中λ1 是算子T 的第一特征值,则三点边值问题(1)至少存在一个正解.证明:由式(3)可知,存在 r1>0,使得设u*是算子T 相应于λ1 的正特征向量,于是u*=λ1Tu*.对任意的u∈∂Br1∩K,根据式(5),有不妨设A 在∂Br1∩K 上没有不动点(否则定理得证).现在证明如若不然,存在u0∈∂Br1∩K 和τ0≥0 使得u0-Au0=τ0u*.于是τ0>0,并且u0=Au0+ τ0u*≥τ0u*.令τ*=sup{τ u0≥τu*},容易知道τ*≥τ0 >0 和u0≥τ*u*.由 T(K)⊂K可见因此根据式(6),有u0=Au0+ τ0u*≥λ1Tu0+ τ0u*≥(τ*+ τ0)u*,这与τ*的定义矛盾,故式(7)成立,于是由文献[5]中的推论2.3.1,可得由式(4)可知,存在r2>r1 和0<σ <1,使得f(u)≤σλ1u,∀u≥r2令T1u=σλ1Tu(∀u∈C[0, 1]),则 T1:C[0,1]→C[0,1]是有界线性全连续算子且 T1(K)⊂K.令明显有M <+∞.再令W={u∈C[0,1]u=μAu,0≤μ≤1}下面我们证明W 是有界集.对任意的u∈W,令那么有因此((I- T1)u)(t)≤M,t∈[0, 1].因为λ1 是 T 的第一特征值且 0<σ<1,所以(r(T1))-1>1.从而逆算子(I- T1)-1 存在并且可以表示为由 T1(K)⊂K 知(I - T1)-1(K)⊂K,因此 u(t)≤(I- T1)-1M,t∈[0, 1],从而 W 是有界集.取 r3>max{r2,sup W},那么由不动点指数的同伦不变性有由式(8)、(9)得从而A 在Br3∩K\B r1∩K 存在非零不动点,这就说明边值问题(1)至少存在一个正解.定理2 假设(H1)~(H3)成立,如果其中λ1 是算子T 的第一特征值,则三点边值问题(1)至少存在一个正解.证明:由式(10)可知,存在 R >r,使得 f(u)≥λ1u,∀u≥δR,其中δ在式(2)中给出,类似于定理1 前半部分的证明可得由式(11)可知,存在0<r<1,使得对任意的u∈B¯r∩K,由式(13)有因而 A u≤λ1Tu,∀u∈r∩K.假设 A 在∂Br∩K 上没有不动点(否则定理得证).现在证明如若不然,存在u1∈∂Br∩K 和μ0≥1 使得Au1=μ0u1,因此μ0>1,μ0u1=Au1≤λ1Tu1.由引理 3可得 1<μ0≤λ1r(T) =1,矛盾.因此式(14)成立.由文献[5]中的引理2.3.1,有由式(12)、(15)得从而A 在BR∩K\B ¯r∩K 存在非零不动点,这就说明边值问题(1)至少存在一个正解.例如,考虑三点边值问题这里,α =1,,a(t)=1.注意到对∀u∈P 有和由常微分方程两点边值问题的理论知r(T1)=π2,从而可推出这比其他形式的条件估计得更精确.参考文献:[1]Il′in V A, Moiseev E I.Nonlocal boundary value problem of the first kind for a Sturm-Liouville opeartor in its differential and finite difference aspects[J].Differential Equations, 1987,23(7):803-810.[2]Cupta C P.Solvability of a three-point nonlinear boundary value problem for a sceond order ordinary differential equation[J].J Math Anal Appl,1992, 168(2):540-551.[3]Ma R.Existence theorems for a second order three-point boundary value problem[J].J Math Anal appl, 1997, 212(2):430-442.[4]Ma R.Positive solutions of a nonlinear three-point boundary value problem[J].Electron J Diff Eqns, 1999, 34:1-8.[5]Dajun G,Lakshmikantham V.Nonlinear problems in abstract cones [M].New York:Academic Presss Inc, 1988.[6]袁邢华,蒋巧云.弱紧型条件下Banach 空间中一类非线性Volterra 型积分方程解的存在性[J].南通大学学报:自然科学版, 2008, 7(2):77-81.[7]蒋巧云,袁邢华.一族耦合Kaup-Newell 方程及其相伴可积哈密顿系统[J].南通大学学报:自然科学版,2011,10(3):83-86.[8]郭大钧,孙经先.非线性积分方程[M].济南:山东科技出版社,1987.[9]Nussbaum R D.Eigenvectors of nonlinear postive operator and the linear Krein-Nutman theorem in fixed point theory[M].New York:Springer-Verlag, 1980.。
一类Hadamard分数阶微分方程边值问题解的存在唯一性张海燕;李耀红【摘要】利用Leray-Schauder选择原理及Banach压缩映射原理,本文在一定的非线性增长和压缩条件下研究了一类具有Hadamard积分边值条件的Hadamard 分数阶微分方程边值问题,获得了问题解的存在唯一性的充分条件,并给出了两个例子.【期刊名称】《四川大学学报(自然科学版)》【年(卷),期】2018(055)004【总页数】5页(P683-687)【关键词】Hadamard分数阶导数;分数阶微分方程;边值条件;存在唯一性【作者】张海燕;李耀红【作者单位】宿州学院数学与统计学院,宿州234000;宿州学院数学与统计学院,宿州234000【正文语种】中文【中图分类】O177.911 引言近年来,分数阶微分理论在黏弹性材料力学、工程问题建模、系统控制、分形几何和分形动力学等应用领域建模中得到广泛应用.由于分数阶模型描述的过程信息比整数阶微分方程更精确,分数阶微积分理论近来受到了广泛关注[1-3].虽然出现了许多分数阶微分方程边值问题解的存在性的结果[4-10],但是绝大部分研究工作都是基于Riemann-Liouville或Caputo分数阶微分方程边值问题,对Hadamard分数阶微分方程边值问题的研究则相对较少.其原因也许是Hadamard分数阶定义及计算较复杂,且与其他类型的分数阶微分之间的关联还未完全明确,因而很多现有的非线性分析计算方法不能通过简单平移进行使用.总之,对Hadamard分数阶微分方程进行深入研究很有必要.最近,文献[11]在无穷区间研究了一类Hadamard分数阶微分方程的正解,文献[12]对一类耦合的Hadamard分数阶微分方程组解的存在性进行了研究.受上述文献及其参考文献启发,本文考虑如下Hadamard分数阶微分方程边值问题(1)解的存在唯一性充分条件,这里为为Hadamard分数阶导数,为γ阶Hadamard分数阶积分,f:[1,e]×R2→R是一个连续函数.和文献[11,12]比较,方程(1)中的非线性项中含有Hadamard分数阶导数,同时具有更一般的非线性增长条件,因而在应用上更方便.2 预备知识定义2.1[1] 函数g:[1,+∞)→R的α阶Hadamard分数阶积分定义为定义2.2[1] 函数g:[1,+∞)→R的α阶Hadamard分数阶导数定义为其中n=[α]+1.引理2.3[1] 若α>0,u∈C[1,e]∩L[1,e],则有c2(lnt)α-2-…-cn(lnt)α-n,其中ci∈R,i=1,2,…,n,n如定义2.2所述.引理2.4 如果y(t)∈C([1,e],R)且1<α≤2,则分数阶微分方程(2)有唯一解(3)其中证明由引理2.3可知,Hadamard分数阶微分方程(2)的一般解为(4)利用边值条件u(1)=0,则有c2=0.又由条件知[y(t)+c1(lnt)α-1](η)=则c1=K[y(η)-y(e)].将c1,c2代入(4)式即得(3)式.引理得证.引理2.5(Leray-Schauder选择原理[13]) 设E是实Banach空间,D是E中有界凸集,T:D→D是一个全连续算子,则T在D中必具有不动点.引理2.6(Banach压缩映射原理[13]) 设D是Banach空间E的闭子集,F:D→D 是一个严格的压缩映射,即对任意x,y∈D,|Fx-Fy|≤k|x-y|成立,其中0<k<1,则F在E中有唯一不动点.3 主要结果记X={u|u∈C([1,e],R)且u∈C([1,e],R)},则X在范数下是一个Banach空间.结合引理2.4,定义算子T:X→X如下:Tu(t)=显然,Hadamard分数阶微分方程边值问题(1)有解当且仅当算子T在X中有不动点.为方便,记定理3.1 若f:[1,e]×R2→R是一个连续函数,且存在实常数μi>0(i=0,1,2)使得|f(t,x,y)|<μ0+μ1|x|σ1+μ2|y|σ2,1<t<e,0<σi<1,i=1,2(5)成立,则Hadamard分数阶微分方程边值问题(1)在X中至少存在一个解.证明首先构造一个有界凸闭集.令Ωl={u(t)|u(t)∈X,‖u‖X≤l,t∈[1,e]},这里的显然Ωl是Banach空间X中的有界凸闭集.接着,由Hadamard分数阶导数定义及(5)式,对任意u∈Ωl有|Tu(t)|≤μ1lσ1+μ2lσ2)≤μ1lσ1+μ2lσ2)=M(μ0+μ1lσ1+μ2lσ2) (6)同时,由定义2.2有μ1lσ1+μ2lσ2)=(7)因此‖Tu‖ X=故算子T:Ωl→Ωl.最后,我们分三步证明T是Ωl上的一个全连续算子.第一步,由于算子T:Ωl→Ωl且f是一个连续函数,因此算子T在Ωl上连续. 第二步,∀u∈Ωl,|f(t,u(t),u(t))|≤L=(μ0+μ1lσ1+μ2lσ2).于是,类似于(6)式和(7)式有即TΩl⊂Ωl.故算子T在Ωl上是一致有界的.第三步,∀u∈Ωl,|f(t,u(t),u(t))|≤L=(μ0+μ1lσ1+μ2lσ2).故由第二步知T:Ωl→Ωl.接着,令t1,t2∈[1,e](t1<t2).于是|(Tu)(t2)-(Tu)(t1)|≤KL|(lnt2)α-1-(lnt1)α-1|×另一方面,类似地有|Tu(t2)-Tu(t1)|≤因此,当t2→t1时,有|(Tu)(t2)-(Tu)(t1)|→0,|Tu(t2)-Tu(t1)|→0,即‖(Tu)(t2)-(Tu)(t1)‖X→0,从而T在Ωl上是等度连续的.结合以上三步的结果,由Arzela-Ascoli's定理知算子T在Ωl上是全连续的.综上所述,由引理2.5可知,算子T在Ωl中至少存在一个不动点,即Hadamard分数阶微分方程边值问题(1)在X中至少存在一个解.证毕.注1 当σi=1或σi>1(i=1,2)时,用类似方法在一定条件下也可得到定理3.1的结论.定理3.2 若f:[1,e]×R2→R是一个连续函数且满足下面Lipschitz条件:|f(t,x2,y2)-f(t,x1,y1)|<λ(|x2-x1|+|y2-y1|),1<t<e,λ>0,xi,yi∈R,i=1,2(8)且Nλ<1,则Hadamard分数阶微分方程边值问题(1)在X中存在唯一解.证明令其中取Ωr={u(t)|u(t)∈X,‖u‖X≤r,t∈[1,e]}.则TΩr⊂Ωr.事实上,由u∈Ωr可知|f(t,u(t),u(t))|≤|f(t,u(t),u(t))-f(t,0,0)|+|f(t,0,0)|≤λ(|u(t)|+|u(t)|)|+r′≤λ‖u(t)‖X+r′≤λr+r′.于是由(6)式和(7)式有‖Tu‖≤M(λr+r′),因而N(λr+r′)≤r,即TΩr⊂Ωr.接着我们证明算子T是压缩映射.对ui∈Ωr,i=1,2,t∈[1,e],有|Tu2(t)-Tu1(t)|≤|f(s,u2(s),u2(s))-Mλ(|u2(s)-u1(s)|+|u2(s)-u1(s)|)≤Mλ‖u2-u1‖X,及|Tu2(t)-Tu1(t)|≤因此,‖Tu2-Tu1‖X≤Nλ‖u2-u1‖X.注意到Nλ<1,则T是一个压缩映射.因而由引理2.6知算子T在Ωr中有唯一不动点,即Hadamard分数阶微分方程边值问题(1)在X中存在唯一解.证毕.例3.3 考虑Hadamard分数阶微分方程积分边值问题(9)这里于是取显然,定理3.1条件满足.因此由定理3.1知Hadamard分数阶微分方程边值问题(9)在X中至少存在一个解.例3.4 考虑Hadamard分数阶微分方程积分边值问题(10)这里则于是|f(t,x2,y2)-f(t,x1,y1)|<取λ=1/30,则Nλ<1.显然,定理3.2条件满足.因此由定理3.2知Hadamard分数阶微分方程边值问题(10)在X中存在唯一解.参考文献:【相关文献】[1] Kilbas A A,Srivastava H M,Trujillo J J.Theory and applications of fractional differential equations[M].Amsterdam: Else vier, 2006.[2] Zhou Y,Wang J R,Zhang L.Basic theory of fractional differential equations[M].Singapore: World Scientific Pre ss, 2016.[3] 陈文,孙洪广,李西成,等.力学与工程问题的分数阶导数建模[M].北京: 科学出版社, 2012.[4] Cui Y J.Uniqueness of solution for boundary value problems for fractional differential equations[J].Appl Math Lett, 2016, 51: 48.[5] Zhang X Q.Positive solutions for a class of singular fractional differential equation wi th infinite-point boundary value conditions[J].Appl Math Lett,2015, 39: 22.[6] Zhang H Y,Li Y H,Lu W.Existence and uniqueness of solutions for a coupled system of nonlinear fractional d ifferential equations with fractional integral boundary conditions [J].J Nonlinear Sci Appl,2016, 9: 2434.[7] Wang G T.Explicit iteration and unbounded solutions for fractional integral boundary value problem on an infinite interval [J].Appl Math Lett, 2015, 47: 1.[8] Hamani S,Henderson J.Boundary value problems for fractional differential inclusions with nonlocal c onditions [J].Mediterr J Math, 2016, 13: 967.[9] 张海燕,李耀红.一类高分数阶微分方程积分边值问题的正解[J].四川大学学报:自然科学版,2016,53: 512.[10] 张立新,杨玉洁,贾敬文.一类Caputo分数阶微分方程积分边值问题的正解[J].四川大学学报:自然科学版, 2017, 54: 1169.[11] Qiao Y,Zhou Z F.Positive solutions for a class of Hadamard fractional differential equations on the Infinite interval [J].Math Appl, 2017, 30: 589.[12] Ahmad B,Ntouyas S.A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations [J].Fract Calc Appl Anal, 2014, 17: 348.[13] Deimling,K.Nonlinear functional analysis[M].Berlin: Springer, 1985.。
线性代数中的广义特征值问题与奇异值问题在线性代数学科中,广义特征值问题和奇异值问题都是重要的概念和研究领域。
它们在数学、物理学、工程学等众多领域都有广泛的应用。
本文将介绍广义特征值问题和奇异值问题的概念、性质以及应用,并探讨它们在实际问题中的重要性。
一、广义特征值问题广义特征值问题是指在给定线性变换下,寻找一个非零向量,使得该向量在变换后与原向量之间存在一个非零比例。
换句话说,我们要找到一个向量和一个数,满足一个齐次线性方程组的解。
广义特征值问题可以表示为Ax = λBx,其中A和B是已知的两个矩阵,x是未知的非零向量,λ是未知的数。
广义特征值问题在许多实际问题中有着重要的应用。
例如,在物理学中,广义特征值问题与量子力学的研究密切相关。
在工程学中,广义特征值问题用于分析结构的振动频率和振动模态等问题。
此外,广义特征值问题还在信号处理、图像处理等领域中被广泛应用。
二、奇异值问题奇异值问题是指矩阵分解的一种形式,它将一个任意形状的矩阵分解为三个矩阵的乘积:A = UΣV^T。
在这个分解中,U和V是正交矩阵,Σ是一个对角线上有奇异值的矩阵。
奇异值问题是线性代数中的核心问题之一,也是许多其他重要问题的基础。
奇异值问题在数据处理和模型分析中扮演着重要角色。
例如,在图像处理中,奇异值分解可以用于压缩图像和去噪图像。
在统计学中,奇异值问题可以用于主成分分析和线性回归等问题。
此外,奇异值问题还在机器学习、信号处理等领域中被广泛应用。
三、广义特征值问题与奇异值问题的关系广义特征值问题和奇异值问题在某种程度上是相关的。
事实上,当矩阵A和B都是对称矩阵时,广义特征值问题可以归结为奇异值问题。
此外,广义特征值问题和奇异值问题都可以通过特征分解和奇异值分解的方法来求解。
广义特征值问题和奇异值问题在理论和应用上都有深入的研究。
它们的解法和性质对于解决实际问题具有重要意义。
通过研究广义特征值问题和奇异值问题,我们可以深入了解和应用线性代数在科学和工程领域中的实际应用。
奇异分数阶微分方程边值问题正解的唯一性周文学;刘旭【摘要】By the means of the Green’s function, the boundary value problem of fractional dif-ferential equation can be reduced to the equivalent integral equation. Recently, this method is applied successfully to discuss the existence of the solution to boundary value problem of nonlinear fractional differential equation. This article investigates the uniqueness of positive solutions for a singular nonlinear boundary value problem of differential equations of fractional order. Our analysis relies on the fixed point theorem in partially ordered sets and the reduction of the considered problem to the equivalent of integral equations.%应用Green函数将分数阶微分方程边值问题可转化为等价的积分方程。
近来此方法被应用于讨论非线性分数阶微分方程边值问题解的存在性。
本文讨论奇异非线性分数阶微分方程边值问题正解的唯一性。
应用Green函数将其转化为等价的积分方程,利用偏序集上的不动点定理证明正解的唯一性。
【期刊名称】《工程数学学报》【年(卷),期】2014(000)002【总页数】10页(P300-309)【关键词】边值问题;奇异分数阶微分方程;Riemann-Liouville分数阶导数;唯一性;偏序集【作者】周文学;刘旭【作者单位】兰州交通大学数学系,兰州 730070; 复旦大学数学科学学院,上海200433;兰州交通大学数学系,兰州 730070【正文语种】中文【中图分类】O175.81 IntroductionThis paper is mainly concerned with the uniqueness of a positive solution for the singular nonlinear fractional differential equation boundary value problemwhere 3<α≤4 is a real number,is the standard Riemann-Liouville dif f erentiation,and f:(0,1]×[0,+∞)→ [0,+∞)with(i.e.,f is singular at t=0).In the last few years,fractional dif f erential equations(in short FDEs)have been studied extensively.The motivation for those works stems from both the development of the theory of fractional calculus itself and the applications of such constructions in various sciences such asphysics,mechanics,chemistry,engineering,and so on.For an extensive collection of such results,we refer the readers to the monographs by Kilbas et al[1],Miller and Ross[2],Oldham and Spanier[3],Podlubny[4]and Samko et al[5].Some basic theory for the initial value problems of FDE involving Riemann-Liouville dif f erential operator has been discussed by Lakshmikantham[6-8],Babakhani and Daftardar-Gejji[9-11],and Bai[12],and so on.Also,there aresome papers which deal with the existence and multiplicity of solutions(or positive solution)for nonlinear FDE of BVPs by using techniques of nonlinear analysis(fixed-point theorems,Leray-Shauder theory,topological degree theory,etc.),see[13–21]and the references therein.Delbosco and Rodino[21]considered the existence of a solution for the nonlinear fractional dif f erential equationwhere 0<α<1 andf:[0,a]×R→R,0<a≤ +∞ is a given continuous function in(0,a)×R.They obtained results for solutions by using the Schauder fixed point theorem and the Banach contraction principle.Qiu and Bai[21]considered the existence of a positive solution to boundary-value problems of the nonlinear fractional dif f erential equationwhereis the Caputo fractional derivative,andf:(0,1]×[0,+∞)→[0,+∞)with(i.e.,f is singular at t=0).They obtained the existence of positive solutions by means of Guo-Krasnosel’skii fixed point theorem and nonlinear alternative of Leray-Schauder type in acone.In[21]the uniqueness of the solution is not treated.From the above works,we can see a fact,although the fractional boundary value problems have been investigated by some authors.To the best of our knowledge,there have been few papers which deal with theproblem(1)and(2)for nonlinear singular fractional dif f erential equation.Motivated by all the works above,in this paper we discuss the problem(1)and(2).Using a fixed point theorem in partially ordered sets,we will give the uniqueness of a positive solution for the singular nonlinearfractional dif f erential equation boundary value problem(1)and(2).The paper is organized as follows.In section 2,we give some preliminary results that will be used in the proof of the main results.In section 3,we establish the uniqueness of a positive solution for the singular nonlinear fractional dif f erential equation boundary value problem(1)and(2).In the end,we illustrate a simple use of the main result.2 Preliminaries and lemmasFor the convenience of the reader,we present here the necessary def i nitions from fractional calculus theory.These def i nitions can be found in the recent literature such as[1,4,15].Def i nition 2.1[1,4]The Riemann-Liouville fractional integral of order α>0 of a function f:(0,+∞)→Ris given byprovided that the right side is poi ntwise def i ned on(0,+∞),where Γ is the gamma function.Def i nition 2.2[1,4]The Riemann-Liouville fractional derivative of order α>0 of a continuous function f:(0,+∞)→Ris given byprovided that the right side is pointwise def i ned on(0,+∞).Here n=[α]+1 and[α]denotes the integer part of α.Lemma 2.1[15]Let α >0.If we assume u ∈ C(0,1)∩L(0,1),then the fractional dif f erential equation hasas unique solutions,where N is the smallest integer greater than or equalto α.Lemma 2.2[15]Assume that h∈C(0,1)∩L(0,1)with a fractional derivative of order α >0 that belongs to C(0,1)∩ L(0,1).Thenfor some Ci∈ R,i=1,2,···,N,where N is the smallest integer greater than or equal to α.In the following,we present the Green’s function a boundary value problem of the FDEs.Lemma 2.3 Let h∈C[0,1]and 3<α≤4,then the unique solution ofis given bywhere G(t,s)is the Green’s function given byRemark 2.1 G(t,s)>0 for t,s∈(0,1).The following two lemmas are fundamental in the proofs of our main result.Lemma 2.4[22]Let(E,≤)be a partially ordered set,and suppose that there exists a metric d in E,such that(E,d)is a complete metric space.Assume that E satisf i es(7).Let f:E→E be a nondecreasing mapping such thatwhere φ :[0,+∞)→ [0,+∞)is continuous and nondecreasing function,suc h that φ is positive in(0,+∞),φ(0)=0 andIf there exists x0∈ E withx0≤f(x0),then f has a fixed point.If we consider that(E,≤)satisf i es the following conditionThen we have the following result.Lemma 2.5[22]Adding condition(9)to the hypotheses of Lemma 2.4,we obtain uniqueness of the fixed point of f.3 Main resultsIn this section,we establish the uniqueness of a positive solution for the problem(1)and(2).Theorem 3.1 Let 0<σ<1,3<α≤4,F:(0,1]→[0,+∞)is continuous,andSuppose that tσF(t)is continuous funct ion on[0,1].Then the functionis continuous on[0,1].Proof By the continuity of tσF(t)and It is easy to check that H(0)=0.The proof is divided into three case:Case 3.1 t0=0,∀t∈(0,1].Since tσF(t)is continuous in[0,1],there exists a constant M>0,suchtha t|tσF(t)|≤ M,t∈ [0,1].Hencewhere B(·,·)denotes the beta function.Case 3.2 t0∈(0,1),∀t∈(t0,1].Case 3.3 t0∈(0,1],∀t∈[0,t0).The proof is similar to that of Case 3.2,so weomit it.From the above,for ϵ>0,t,t0 ∈ [0,1],there exists δ>0 such that|t− t0|< δ,w e have|H(t)− H(t0)|< ϵ.Thus,the functionis continuous on[0,1].Let Banach space E=C[0,1]be endowed with the norm ∥u∥=maxt∈[0,1]|u(t)|.Note that this space can be equipped with a partial order given byIt is easy to check that(E,≤)with the classic metri c given bysatisf i es condition(8)of Lemma 2.4.Moreover,for x,y∈E,as the function max{x,y}is continuous in[0,1],(E,≤)satisf i es condition(9).Theorem 3.2 Let 0<σ<1,3<α≤4,f:(0,1]×[0,+∞)→ [0,+∞)iscontinuous,andtσf(t,u)is continuous function on[0,1]× [0,+∞).Assume that there existssuch that for u,v∈[0,+∞)with u≥v and t∈[0,1],where ϕ:[0,+∞)→ [0,+∞)is continuous andnondecreasing,φ(u)=u−ϕ(u)satisf i es:(a): φ:[0,+∞)→[0,+∞)and nondecreasing;(b):φ(0)=0;(c): φ is positive in(0,+∞).Then the problem(1)and(2)has an unique positive solution.Proof Def i ne the cone K⊂E byNote that,as K is a closed subset of E,K is a complete metric space. Suppose that u is a solution of boundary value problem(1)and(2).ThenDef i ne an operator A:K→E as followsBy Theore m 3.1,Au ∈ E.Moreover,in view of Remark 2.1 and as tσf(t,u)≥ 0 for(t,u)∈[0,1]×[0,+∞),by hypothesis,we getSo,A(K)⊂K.Firstly,the operator A is nondecreasing.By hypothesis,for u≥v,thenBesides,for u≥v,by(12),we obtainAs the function ϕ(u)is nondecreasing,then for u ≥ v,we getBy last inequality,we havePut φ(u)=u−ϕ(u).Obviously,φ :[0,+∞)→ [0,+∞)iscontinuous,nondecreasing,positive in(0,+∞),φ(0)=0.Thus,for u≥v,we getFinally,take into account that for the zero function,0≤A0,by Lemma 2.4,our problem(1)and(2)has at least one nonnegative solution.Moreover,this solution is unique,since(K,≤)satisf i es condition(9)and Lemma 2.5.This completes the proof.In the sequel,we present an example which illustrates Theorem 3.2.4 An exampleExample 4.1 Consider the fractional dif f erential equation(this example is inspired in[21])In this case,Note that f is continuous in(0,1]×[0,+∞)andMoreover,for u≥v and t∈[0,1],we haveBecause g(x)=ln(x+2)is nondecreasing on[0,+∞),andNote thatSince all the conditions of Theorem 3.2 are satisf i ed,theproblem(16)and(17)has an unique positive solution.References:[1]Kilbas A A,et al.Theory and Applications of Fractional Dif f erential Equations[M].Amsterdam:Elsevier Science,2006[2]Miller K S,et al.An Introduction to the Fractional Calculus and Dif f erential Equations[M].New York:John Wiley&Sons,1993[3]Oldham K B,et al.The Fractional Calculus[M].London:Academic Press,1974[4]Podlubny I.Fractional Dif f erential Equation[M].San Diego:Academic Press,1999[5]Samko S G,et al.Fractional Integrals and Derivatives,Theory and Applications[M].Yverdon:Gordon and Breach,1993[6]Lakshmikantham V,et al.Basic theory of fractional dif f erential equations[J].Nonlinear Analysis:TheoryMethods&Applications,2008,69(8):2677-2682[7]Lakshmikantham V,et al.General uniqueness and monotone iterative technique for fractional dif f erential equations[J].Applied Mathematics Letters,2008,21(8):828-834[8]Lakshmikantham V.Theory of fractional functional dif f erential equations[J].Nonlinear Analysis:TheoryMethods&Applications,2008,69(10):3337-3343[9]Babakhani A,et al.Existence of positive solutions of nonlinear fractional dif f erential equations[J].Journal of Mathematical Analysis and Applications,2003,278(2):434-442[10]Babakhani A,et al.Existence of positive solutions for N-term non-autonomous fractional dif f erential equations[J].Positivity,2005,9(2):193-206[11]Babakhani A,et al.Existence of positive solutions for multi-term non-autonomous fractional dif f erential equations with polynomial coefficients[J].Electronic Journal of Dif f erentialEquations,2006,2006(129):1-12[12]Bai C Z.Positive solutions for nonlinear fractional dif f erential equations with coefficient that changes sign[J].Nonlinear Analysis:Theory Methods&Applications,2006,64(4):677-685[13]Agarwal R P,et al.Boundary value problems for fractional dif f erential equation[J].Advanced Studies in ContemporaryMathematics,2008,16(2):181-196[14]Ahmad B,et al.Existence results for nonlinear boundary value problems of fractional integrodif f erential equations with integral boundary conditions[J].Boundary Value Problems,2009,708576:1-11[15]Bai Z B,et al.Positive solutions for boundary value problem of nonlinear fractional dif f erential equation[J].Journal of Mathematical Analysis and Applications,2005,311(2):495-505[16]Xu X J,et al.Multiple positive solutions for the boundary value problem of a nonlinear fractional dif f erential equation[J].Nonlinear Analysis:Theory Methods&Applications,2009,71(10):4676-4688[17]Zhang S Q.Positive solutions for boundary-value problems of nonlinear fractional dif f erential equations[J].Electronic Journal of Dif f erential Equations,2006,2006(36):1-12[18]Zhou W X,et al.Existence of solutions for fractional dif f erential equations with multi-point boundary conditions[J].Communications in Nonlinear Science and Numerical Simulation,2012,17(3):1142-1148[19]Zhou W X,et al.Multiple positive solutions for nonlinear semipositone fractional dif f erential equations[J].Discrete Dynamics in Nature and Society,2012,850871:1-10[20]Delbosco D,et al.Existence and uniqueness for a nonlinear fractional diff erential equation[J].Journal of Mathematical Analysis and Applications,1996,204(2):609-625[21]Qiu T T,et al.Existence of positive solutions for singular fractional dif f erential equations[J].Electronic Journal of Dif f erentialEquations,2008,2008(146):1-9[22]Harjani J,et al.Fixed point theorems for weakly contractive mappings in partially ordered sets[J].Nonlinear Analysis:TheoryMethods&Applications,2009,71(7-8):3403-3410。