中考数学试题分类汇编:三角形和角平分线(含解析)
- 格式:doc
- 大小:208.50 KB
- 文档页数:15
中考数学复习三角形的边与角中考真题专项练习一.选择题(共16小题)1.(2019•徐州)下列长度的三条线段,能组成三角形的是( )A.2,2,4B.5,6,12C.5,7,2D.6,8,10【分析】根据三角形两边之和大于第三边可以判断各个选项中的三天线段是否能组成三角形,本题得以解决.【解答】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.2.(2019•淮安)下列长度的3根小木棒不能搭成三角形的是( )A.2cm,3cm,4cm B.1cm,2cm,3cmC.3cm,4cm,5cm D.4cm,5cm,6cm【分析】看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:A、2+3>4,能构成三角形,不合题意;B、1+2=3,不能构成三角形,符合题意;C、4+3>5,能构成三角形,不合题意;D、4+5>6,能构成三角形,不合题意.故选:B.3.(2019•毕节市)在下列长度的三条线段中,不能组成三角形的是( )A.2cm,3cm,4cm B.3cm,6cm,6cmC.2cm,2cm,6cm D.5cm,6cm,7cm【分析】根据三角形任意两边的和大于第三边,进行分析判断.【解答】解:A、2+3>4,能组成三角形;B、3+6>6,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形.故选:C.4.(2019•扬州)已知n是正整数,若一个三角形的3边长分别是n+2、n+8、3n,则满足条件的n的值有( )A.4个B.5个C.6个D.7个【分析】分两种情况讨论::①若n+2<n+8≤3n,②若n+2<3n≤n+8,分别依据三角形三边关系进行求解即可.【解答】解:①若n+2<n+8≤3n,则,解得,即4≤n<10,∴正整数n有6个:4,5,6,7,8,9;②若n+2<3n≤n+8,则,解得,即2<n≤4,∴正整数n有2个:3和4;综上所述,满足条件的n的值有7个,故选:D.5.(2019•台州)下列长度的三条线段,能组成三角形的是( )A.3,4,8B.5,6,10C.5,5,11D.5,6,11【分析】根据三角形的三边关系即可求【解答】解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.6.(2019•自贡)已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为( )A.7B.8C.9D.10【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长.【解答】解:设第三边为x,根据三角形的三边关系,得:4﹣1<x<4+1,即3<x<5,∵x为整数,∴x的值为4.三角形的周长为1+4+4=9.故选:C.7.(2019•金华)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是( )A.1B.2C.3D.8【分析】根据三角形三边关系定理得出5﹣3<a<5+3,求出即可.【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,即符合的只有3,故选:C.8.(2019•大庆)如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是( )A.15°B.30°C.45°D.60°【分析】根据角平分线的定义得到∠EBM=∠ABC、∠ECM=∠ACM,根据三角形的外角性质计算即可.【解答】解:∵BE是∠ABC的平分线,∴∠EBM=∠ABC,∵CE是外角∠ACM的平分线,∴∠ECM=∠ACM,则∠BEC=∠ECM﹣∠EBM=×(∠ACM﹣∠ABC)=∠A=30°,故选:B.9.(2019•百色)三角形的内角和等于( )A.90°B.180°C.270°D.360°【分析】根据三角形的内角和定理进行解答便可.【解答】解:因为三角形的内角和等于180度,故选:B.10.(2019•赤峰)如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A =35°,∠D=15°,则∠ACB的度数为( )A.65°B.70°C.75°D.85°【分析】根据三角形外角与内角的关系及三角形内角和定理解答.【解答】解:∵DE⊥AB,∠A=35°∴∠AFE=∠CFD=55°,∴∠ACB=∠D+∠CFD=15°+55°=70°.故选:B.11.(2019•广西)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为( )A.60°B.65°C.75°D.85°【分析】利用三角形外角性质(三角形的一个外角等于不相邻的两个内角和)解题或利用三角形内角和解题皆可.【解答】解:如图:∵∠BCA=60°,∠DCE=45°,∴∠2=180°﹣60°﹣45°=75°,∵HF∥BC,∴∠1=∠2=75°,故选:C.12.(2019•眉山)如图,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠C的度数是( )A.50°B.60°C.70°D.80°【分析】由∠B=30°,∠ADC=70°,利用外角的性质求出∠BAD,再利用AD平分∠BAC,求出∠BAC,再利用三角形的内角和,即可求出∠C的度数.【解答】解:∵∠B=30°,∠ADC=70°∴∠BAD=∠ADC﹣∠B=70°﹣30°=40°∵AD平分∠BAC∴∠BAC=2∠BAD=80°∴∠C=180°﹣∠B﹣∠BAC=180°﹣30°﹣80°=70°故选:C.13.(2019•绍兴)如图,墙上钉着三根木条a,b,C,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是( )A.5°B.10°C.30°D.70°【分析】根据对顶角相等求出∠3,根据三角形内角和定理计算,得到答案.【解答】解:∠3=∠2=100°,∴木条a,b所在直线所夹的锐角=180°﹣100°﹣70°=10°,故选:B.14.(2019•杭州)在△ABC中,若一个内角等于另外两个内角的差,则( )A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,把∠C=∠A+∠B代入求出∠C即可.【解答】解:∵∠A+∠B+∠C=180°,∠A=∠C﹣∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:D.15.(2019•青岛)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为( )A.35°B.40°C.45°D.50°【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【解答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°﹣17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°﹣∠ABC﹣∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°﹣50°=45°,故选:C.16.(2019•枣庄)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A.45°B.60°C.75°D.85°【分析】先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB 可得答案.【解答】解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选:C.二.填空题(共2小题)17.(2019•南京)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是 4<BC≤ .【分析】作△ABC的外接圆,求出当∠BAC=90°时,BC是直径最长=;当∠BAC =∠ABC时,△ABC是等边三角形,BC=AC=AB=4,而∠BAC>∠ABC,即可得出答案.【解答】解:作△ABC的外接圆,如图所示:∵∠BAC>∠ABC,AB=4,当∠BAC=90°时,BC是直径最长,∵∠C=60°,∴∠ABC=30°,∴BC=2AC,AB=AC=4,∴AC=,∴BC=;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,∵∠BAC>∠ABC,∴BC长的取值范围是4<BC≤;故答案为:4<BC≤.18.(2019•哈尔滨)在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为 60°或10 度.【分析】当△ACD为直角三角形时,存在两种情况:∠ADC=90°或∠ACD=90°,根据三角形的内角和定理可得结论.【解答】解:分两种情况:①如图1,当∠ADC=90°时,∵∠B=30°,∴∠BCD=90°﹣30°=60°;②如图2,当∠ACD=90°时,∵∠A=50°,∠B=30°,∴∠ACB=180°﹣30°﹣50°=100°,∴∠BCD=100°﹣90°=10°,综上,则∠BCD的度数为60°或10°;故答案为:60°或10;。
专题4.2 三角形一、单选题1.【四川省眉山市2018年中考数学试题】将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A.45° B.60° C.75° D.85°【答案】C【解析】分析:先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.详解:如图,点睛:本题主要考查三角形的外角的性质,解题的关键是掌握三角形的内角和定理和三角形外角的性质.2.【山东省聊城市2018年中考数学试卷】如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是()A. B. C. D.【答案】A【解析】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.详解:点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键. 3.【台湾省2018年中考数学试卷】如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A. 115 B. 120 C. 125 D. 130【答案】C【解析】分析:根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.详解:∵三角形ACD为正三角形,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC≌△DEA,∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选:C.点睛:此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质得出△ABC与△AED全等.4.【湖北省襄阳市2018年中考数学试卷】如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3cm,△ABD的周长为13cm,则△ABC 的周长为()A. 16cm B. 19cm C. 22cm D. 25cm【答案】B【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.5.【湖北省黄石市2018年中考数学试卷】如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75° B.80° C.85° D.90°【答案】A点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.6.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙【答案】B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.【山东省淄博市2018年中考数学试题】如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC 交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A. 4 B. 6 C. D. 8【答案】B【解析】分析:根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.详解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故选:B.点睛:本题考查30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8.【四川省达州市2018年中考数学试题】如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30° B.35° C.40° D.45°【答案】B点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.9.【湖北省荆门市2018年中考数学试卷】如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A. B. C. 1 D. 2【答案】C【详解】连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为到等腰直角三角形,∴AC=BC=AB=,∠A=∠B=45°,∵O为AB的中点,∴OC⊥AB,OC平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC==1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,【点睛】本题考查了等腰直角三角形的判定与性质、梯形的中位线、点运动的轨迹,通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹是解题的关键.10.【河北省2018年中考数学试卷】尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【答案】D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.11.【山东省东营市2018年中考数学试题】如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④ B.②④ C.①②③ D.①③④【答案】A点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.12.【浙江省台州市2018年中考数学试题】如图,等边三角形ABC边长是定值,点O是它的外心,过点O 任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值【答案】DB、根据△DOF≌△GOF≌△GOE,得DF=GF=GE,所以△ADF≌△B'GF≌△CGE,可得结论;C、根据S四边形FOEC=S△OCF+S△OCE,依次换成面积相等的三角形,可得结论为:S△AOC=S△ABC(定值),可作判断;D、方法同C,将S四边形OGB'F=S△OAC-S△OFG,根据S△OFG=•FG•OH,FG变化,故△OFG的面积变化,从而四边形OGB'F 的面积也变化,可作判断.详解:A、连接OA、OC,∵点O是等边三角形ABC的外心,∴AO平分∠BAC,∴点O到AB、AC的距离相等,由折叠得:DO平分∠BDB',∴点O到AB、DB'的距离相等,∴点O到DB'、AC的距离相等,∴FO平分∠DFG,∠DFO=∠OFG=(∠FAD+∠ADF),由折叠得:∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌△B'GF≌△CGE,∴B'G=AD,∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=S△ABC(定值),故选项C正确;点睛:本题考查了等边三角形的性质、三角形全等的性质和判定、角平分线的性质和判定、三角形和四边形面积及周长的确定以及折叠的性质,有难度,本题全等的三角形比较多,要注意利用数形结合,并熟练掌握三角形全等的判定,还要熟练掌握角平分线的逆定理的运用,证明FO平分∠DFG是本题的关键,13.【浙江省台州市2018年中考数学试题】如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()A. B. 1 C. D.【答案】B【解析】分析:只要证明BE=BC即可解决问题;详解:∵由题意可知CF是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=3,∵AB=2,∴AE=BE-AB=1,故选:B.点睛:本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.14.【河北省2018年中考数学试卷】已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C【答案】B【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.二、填空题15.【吉林省长春市2018年中考数学试卷】如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为_____度.【答案】37【点睛】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.16.【山东省东营市2018年中考数学试题】如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是_____.【答案】15【解析】分析:作DQ⊥AC,由角平分线的性质知DB=DQ=3,再根据三角形的面积公式计算可得.详解:如图,过点D作DQ⊥AC于点Q,由作图知CP是∠ACB的平分线,∵∠B=90°,BD=3,∴DB=DQ=3,∵AC=10,∴S△ACD=•AC•DQ=×10×3=15,故答案为:15.点睛:本题主要考查作图-基本作图,解题的关键是掌握角平分线的尺规作图及角平分线的性质.17.【黑龙江省哈尔滨市2018年中考数学试题】在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为_____.【答案】130°或90°.【解析】分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.点睛:本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.18.【江苏省徐州巿2018年中考数学试卷】如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于_____cm.【答案】7【解析】【分析】根据勾股定理,可得BC的长,根据翻折的性质,可得AE与CE的关系,根据三角形的周长公式,可得答案.【详解】在Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,由勾股定理,得BC==4,由翻折的性质,得CE=AE,△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7,故答案为:7.【点睛】本题考查了翻折的性质、勾股定理等,利用翻折的性质得出CE与AE的关系是解题的关键.19.【湖南省邵阳市2018年中考数学试卷】如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是_____.【答案】【点睛】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键.20.【湖北省襄阳市2018年中考数学试卷】已知CD是△ABC的边AB上的高,若CD=,AD=1,AB=2AC,则BC的长为_____.【答案】或【解析】【分析】分两种情况:△ABC是锐角三角形,△ABC是钝角三角形,分别画出符合条件的图形,然后分别根据勾股定理计算AC和BC即可.【详解】分两种情况:当是锐角三角形,如图1,当是钝角三角形,如图2,同理得:AC=2,AB=4,∴BC=;综上所述,BC的长为或,故答案为:或.【点睛】本题考查了三角形的高、勾股定理的应用,在直角三角形中常利用勾股定理计算线段的长,要熟练掌握,运用分类讨论思想进行解答是关键.21.【2018年湖南省湘潭市中考数学试卷】如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD=_________.【答案】30°点睛:考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.22.【广西壮族自治区桂林市2018年中考数学试题】如图,在ΔABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是__________【答案】3【解析】分析:由已知条件,利用三角形的内角和定理及角平分线的性质得到各角的度数,根据等腰三角形的定义及等角对等边得出答案.详解:∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3个等腰三角形.故答案为:3.点睛:本题考查了等腰三角形的判定与性质及三角形内角和定理;求得角的度数是正确解答本题的关键.23.【江苏省泰州市2018年中考数学试题】已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.【答案】5点睛:此题主要是考查了三角形的三边关系,同时注意整数这一条件.24.【江苏省淮安市2018年中考数学试题】如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是_____.【答案】【解析】分析:连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;详解:连接AD.点睛:本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.三、解答题25.【浙江省杭州市临安市2018年中考数学试卷】阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.【答案】(1)C;(2)没有考虑a=b的情况;(3)△ABC是等腰三角形或直角三角形.【解析】【分析】(1)根据题目中的书写步骤可以解答本题;(2)根据题目中B到C可知没有考虑a=b的情况;(3)根据题意可以写出正确的结论.【点睛】本题考查因式分解的应用、勾股定理的逆定理,解答本题的关键是明确题意,写出相应的结论,注意考虑问题要全面.26.【湖北省武汉市2018年中考数学试卷】如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.【答案】证明见解析.【解析】【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【详解】∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中,∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.27.【广西壮族自治区桂林市2018年中考数学试题】如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:ΔABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【答案】(1)证明见解析;(2)37°【解析】分析:(1)先证明AC=DF,再运用SSS证明△ABC≌△DEF;(2)根据三角形内角和定理可求∠ACB=37°,由(1)知∠F=∠ACB,从而可得结论.点睛:本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.28.【陕西省2018年中考数学试题】如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.【答案】证明见解析.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键. 29.【浙江省台州市2018年中考数学试题】如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD=CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若AC=2,CE=1,求△CGF的面积.【答案】(1)证明见解析;(2)证明见解析;(3)S△CFG=.【解析】分析:(1)直接判断出△ACE≌△BCD即可得出结论;(2)先判断出∠BCF=∠CBF,进而得出∠BCF=∠CAE,即可得出结论;(3)先求出BD=3,进而求出CF=,同理:EG=,再利用等面积法求出ME,进而求出GM,最后用面积公式即可得出结论.详解:(1)在△ACE和△BCD中,,∴△ACE≌△BCD,∴∠CAE=∠CBD;(2)如图2,(3)如图3,∵AC=2,∴BC=AC=2,∵CE=1,∴CD=CE=1,在Rt△BCD中,根据勾股定理得,BD==3,∵点F是BD中点,∴CF=DF=BD=,同理:EG=AE=,连接EF,过点F作FH⊥BC,∵∠ACB=90°,点F是BD的中点,∴FH=CD=,∴S△CEF=CE•FH=×1×=,点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,三角形的中位线定理,三角形的面积公式,勾股定理,作出辅助线求出△CFG的边CF上的是解本题的关键.30.【湖北省荆门市2018年中考数学试卷】如图,在Rt△ABC中,(M2,N2),∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若BC=,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.【答案】(1)证明见解析;(2)BH+EH的最小值为3.【解析】【分析】(1)只要证明△DEB是等边三角形,再根据SAS即可证明;(2)如图,作点E关于直线AC点E',连接BE'交AC于点H.则点H即为符合条件的点.(2)如图,作点E关于直线AC点E',连接BE'交AC于点H,则点H即为符合条件的点,由作图可知:EH=HE',AE'=AE,∠E'AC=∠BAC=30°,∴∠EAE'=60°,∴△EAE'为等边三角形,∴E E'=EA=AB,∴∠AE'B=90°,在Rt△ABC中,∠BAC=30°,BC=,∴AB=2,A E'=AE=,∴B E'= =3,∴BH+EH的最小值为3.【点睛】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,轴对称中的最短路径问题、勾股定理等,熟练掌握相关的性质与判定定理、利用轴对称添加辅助线确定最短路径问题是解题的关键. 31.【山东省淄博市2018年中考数学试题】(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是__________;位置关系是__________.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.【答案】(1)MG=NG; MG⊥NG;(2)成立,MG=NG,MG⊥NG;(3)答案见解析详解:(1)连接BE,CD相交于H,如图1,∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=90°∴∠CAD=∠BAE,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,(2)连接CD,BE,相交于H,如图2,同(1)的方法得,MG=NG,MG⊥NG;(3)连接EB,DC并延长相交于点H,如图3.同(1)的方法得,MG=NG,同(1)的方法得,△ABE≌△ADC,∴∠AEB=∠ACD,∴∠CEH+∠ECH=∠AEH﹣∠AEC+180°﹣∠ACD﹣∠ACE=∠ACD﹣45°+180°﹣∠ACD﹣45°=90°,∴∠DHE=90°,同(1)的方法得,MG⊥NG.∴△GMN是等腰直角三角形.点睛:此题是三角形综合题,主要考查等腰直角三角形的性质,全等三角形的判定和性质,平行线的判定和性质,三角形的中位线定理,正确作出辅助线用类比的思想解决问题是解本题的关键.32.【黑龙江省哈尔滨市2018年中考数学试题】已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.【答案】(1)证明见解析;(2)△ACD、△ABE、△BCE、△BHG.(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF 【解析】分析:即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△ADC=2a2=2S△ADE,证△ADE≌△BGE 得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,从而得出答案.(2)设DE=a,则AE=2DE=2a,EG=DE=a,∴S△ADE=AE×DE=×2a×a=a2,∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,则S△ADC=AC•DE=•(2a+2a)•a=2a2=2S△ADE;点睛:本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.。
专题9:三角形一、选择题1.(2017天津第2题)060cos 的值等于( )A 3B .1C .22D .21 【答案】D. 【解析】试题分析:根据特殊角的三角函数值可得060cos =21,故选D. 2.(2017天津第9题)如图,将ABC ∆绕点B 顺时针旋转060得DBE ∆,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .E ABD ∠=∠B .C CBE ∠=∠ C. BC AD // D .BC AD = 【答案】C.3. (2017天津第11题)如图,在ABC ∆中,AC AB =,CE AD ,是ABC ∆的两条中线,P 是AD 上一个动点,则下列线段的长度等于EP BP +最小值的是( )A .BCB .CE C. AD D .AC 【答案】B. 【解析】试题分析:在ABC ∆中,AC AB =,AD 是ABC ∆的中线,可得点B 和点D 关于直线AD 对称,连结CE ,交AD 于点P ,此时EP BP +最小,为EC 的长,故选B.4. (2017湖南长沙第5题)一个三角形三个内角的度数之比为1:2:3,则这个三角形一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 【答案】B 【解析】试题分析:根据三角形的内角和为180°,可知最大角为90°,因式这个三角形是直角三角形. 故选:B. 考点:直角三角形5.(2017山东滨州第7题)如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且BD =BA ,则tan ∠DAC 的值为( )A .2+3B .23C .3+3D .33【答案】A.6.(2017山东滨州第8题)如图,在△ABC 中,AB =AC ,D 为BC 上一点,且DA =DC ,BD =BA ,则∠B 的大小为( )A.40°B.36°C.80°D.25°【答案】B.【解析】设∠B=x,因AB=AC,根据等腰三角形的性质可得∠B=∠C=x,因AD=CD,根据等腰三角形的性质可得∠DAC=∠C=x,因BD=BA,根据等腰三角形的性质和三角形外角的性质可得∠BAD=∠ADB=2x,在△ABD中,根据三角形的内角和定理可得x+2x+2x=180°,解得x=36°,即∠B=36°,故选B.8. (2017山东滨州第11题)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA,OB相交于M、N两点,则以下结论:(1)PM=PN恒成立,(2)OM+ON的值不变,(3)四边形PMON的面积不变,(4)MN的长不变,其中正确的个数为()A.4 B.3 C.2 D.1PAONBM【答案】B.9. (2017山东日照第4题)在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.AB CD【答案】B .试题分析:在Rt △ABC 中,根据勾股定理求得BC=12,所以sinA=1213BC AB =,故选B . 考点:锐角三角函数的定义.10. (2017江苏宿迁第8题)如图,在Rt C ∆AB 中,C 90∠=o ,C 6A =cm ,C 2B =cm .点P 在边C A 上,从点A 向点C 移动,点Q 在边C B 上,从点C 向点B 移动,若点P 、Q 均以1cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接Q P ,则线段Q P 的最小值是 A .20cm B .18cm C.25cm D .32cm【答案】C.11. (2017山东菏泽第5题)如图,将t ABC ∆R 绕直角顶点C 顺时针旋转90o ,得到''A B C ∆,连接'AA ,若125∠=o ,则'BAA ∠的度数是( )A .55oB .60o C.65o D .70o 【答案】C.【解析】试题分析:根据旋转的性质可得∠BAC=∠B 'A 'C,AC=CA ', ∠A 'CA=90°,即可得△ACA '是等腰直角三角形,∴所以∠BAC=∠B 'A 'C=45°-25°,即可得'BAA ∠=65o ,故选C.12. (2017浙江金华第3题)下列各组数中,不可能成为一个三角形三边长的是( ) A .2,3,4 B .5,7,7 C .5,6,12 D .10,8,6 【答案】C. 【解析】试题分析:根据三角形的三边关系:三角形任意两边的和大于第三边,可得:选项A ,2+3>4,能组成三角形;选项B ,5+7>7,能组成三角形;选项C ,5+6<12,不能组成三角形;选项D ,6+8>10,能组成三角形,故选C.13. (2017浙江湖州第3题)如图,已知在Rt C ∆AB 中,C 90∠=o ,5AB =,C 3B =,则cos B 的值是( ) A .35 B .45 C .34 D .43【答案】A 【解析】试题分析:根据根据余弦的意义cosB=B ∠的邻边斜边,可得conB=BC AB =35.故选:A 考点:余弦14. (2017浙江舟山第2题)长度分别为2,7,x 的三条线段能组成一个三角形,x 的值可以是( ) A .4 B .5 C .6 D .9 【答案】C. 【解析】试题分析:根据三角形的两边之大于第三边,两边这差小于第三边,可得7-2<x<2+7,即5<x<9,所以x 可以取6.故选C.考点:三角形的三边关系.15. (2017浙江金华第4题)在t ABC ∆R 中,90,5,3C AB BC ∠===o,则tan A 的值是( ) A .34 B .43 C.35 D .45【答案】A. 【解析】试题分析:在△ABC 中,∠C=90°,AB=5,BC=3, 根据勾股定理可求得AC=4, 所以tanA=34BC AC =,故选A.16. (2017浙江台州第5题)如图,点P 是AOB ∠平分线OC 上一点,PD OB ⊥,垂足为D .若2PD =,则点P 到边OA 的距离是 ( )A .1B . 2 C. 3 D .4 【答案】B 【解析】试题分析:过P 作PE ⊥OA 于点E ,根据角平分线上的点到角两边的距离相等即可得到PE=PD.从而得出点P 到OA 的距离是2cm. 故选:B.考点:角平分线的性质17. (2017浙江湖州第6题)如图,已知在Rt C ∆AB 中,C 90∠=o ,C C A =B ,6AB =,点P 是Rt C ∆AB 的重心,则点P 到AB 所在直线的距离等于( ) A .1 B .2 C.32D .2【答案】A考点:1、三角形的重心,2、等腰直角三角形,3、相似三角形的判定与性质18. (2017浙江台州第8题)如图,已知等腰三角形,ABC AB AC =,若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A .AE EC =B .AE BE = C. EBC BAC ∠=∠D .EBC ABE ∠=∠ 【答案】C 【解析】试题分析:根据AB=AC,BE=BC ,可以得出∠ABC=∠C,∠BEC=∠C,从而得出∠ABC=∠BEC,∠A=∠EBC. 故选:C.考点:1、三角形的外角性质,2、等腰三角形的性质19. (2017浙江湖州第9题)七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )【答案】C 【解析】试题分析:根据勾股定理,可判断边长之间的关系,可知构不成C 图案,能构成A 、B 、D 图案. 故选:C 考点:勾股定理 二、填空题1.(2017北京第13题)如图,在ABC ∆中,M N 、分别为,AC BC 的中点.若1CMN S ∆=,则ABNM S =四边形 .【答案】3.考点:相似三角形的性质.2.(2017福建第12题)如图,ABC ∆中,,D E 分别是,AB AC 的中点,连线DE ,若3DE =,则线段BC 的长等于 .【答案】6【解析】∵E 、F 分别是AB 、AC 的中点,∴BC=2EF=6.3.(2017河南第15题)如图,在Rt ABC ∆中,90A ∠=︒,AB AC =,21BC =+,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MBC ∆为直角三角形,则BM 的长为 .【答案】1或21+. 【解析】试题分析:在Rt ABC ∆中,90A ∠=︒,AB AC =,可得∠B=∠C=45°,由折叠可知,BM='MB ,若使'MBC ∆为直角三角形,分两种情况:①0'90MB C ∠=,由∠C=45°可得'MB ='CB ,设BM=x ,则'MB ='CB =x ,MC=2x ,所以x+2x =21BC =+,解得x=1,即BM=1;②0'90B MC ∠=,此时点B 和点C 重合,BM=12122BC +=.所以BM 的长为1或212+. 考点:折叠(翻折变换).4.(2017广东广州第14题)如图7,Rt ABC ∆中,01590,15,tan 8C BC A ∠===,则AB = .【答案】17 【解析】试题分析:因为1515,tan 8BC BC A AC ===,所以,AC =8,由勾股定理,得:AB =17. 考点: 正切的定义.5.(2017山东临沂第16题)已知AB CD ∥,AD 与BC 相交于点O .若23BO OC =,10AD =,则AO = .【答案】4 【解析】试题分析:根据平行线分线段成比例定理,由AB ∥CD 可得BO OAOC OD=,然后根据AD=10,可知OD=10-OA ,代入可得2103BO OA OC OA ==-,解得OA=4. 故答案为:4考点:平行线分线段成比例定理6.(2017四川泸州第16题)在ABC ∆中,已知BD 和CE 分别是边,AC AB 上的中线,且BD CE ⊥,垂足为O ,若2,4OD cm OE cm ==,则线段AO 的长为 cm . 【答案】5【解析】试题分析:如图,由BD 和CE 分别是边,AC AB 上的中线,可得DE ∥BC ,且12DE OD OE BC OB OC === , 因BD CE ⊥,2,4OD cm OE cm ==,根据勾股定理可得5,又因12DE OD OE BC OB OC ===,可得5AO 并延长AO 交BC 于点M ,由BD 和CE 分别是边,AC AB 上的中线交于点M ,可知AM 也是△ABC 的边BC 上的中线,在Rt △BOC 中,根据斜边的中线等于斜边的一半可得OM= 125三角形重心的性质可得57. (2017江苏宿迁第12题)如图,在C ∆AB 中,C 90∠A B =o ,点D 、E 、F 分别是AB 、C B 、C A 的中点.若CD 2=,则线段F E的长是 .【答案】2. 【解析】试题分析:因在C ∆AB 中,C 90∠A B =o ,点D 是AB 的中点,CD 2=,根据直角三角形中斜边的中线等于斜边的一半可得AB=4,又因,点E 、F 分别是C B 、C A 的中点,根据三角形的中位线定理可得EF=12AB=2. 8. (2017江苏苏州第17题)如图,在一笔直的沿湖道路l 上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60o 的方向,在码头B 北偏西45o 的方向,C 4A =km .游客小张准备从观光岛屿C 乘船沿C A 回到码头A 或沿C B 回到码头B ,设开往码头A 、B 的游船速度分别为1v 、2v ,若回到A 、B 所用时间相等,则12v v = (结果保留根号).2【解析】试题分析:作CD AB ⊥ ,垂足为D6302AC CAB CD =∠=︒∴=Q ,,在Rt BCD ∆ 中,45CBD ∠=︒ ,22BC ∴=Q 开往码头A 、B 的游船速度分别为1v 、2v ,若回到A 、B 所用时间相等, ∴12v v =222=D.考点:特殊角三角函数的应用 .9. (2017浙江湖州第14题)如图,已知在C ∆AB 中,C AB =A .以AB 为直径作半圆O ,交C B 于点D .若C 40∠BA =o ,则»D A的度数是 度.【答案】140考点:圆周角定理10. (2017湖南湘潭第14题)如图,在ABC ∆中,D E 、分别是边AB AC 、的中点,则ADE ∆与ABC ∆的面积比:ADE ABC S S ∆∆= .【答案】41【解析】试题分析:已知D E 、分别是边AB AC 、的中点,即可得DE 是三角形的中位线,所以DE ∥BC,即可判定ADE ∆∽ABC ∆,根据相似三角形的性质可得:ADE ABCS S ∆∆=412122=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛AB AD .11. (2017湖南湘潭第15题)如图,在Rt ABC ∆中,90C ∠=°,BD 平分ABC ∠交AC 于点D ,DE 垂直平分AB ,垂足为E 点,请任意写出一组相等的线段 .【答案】BC=BE 或DC=DE【解析】试题分析:已知90C ∠=°,BD 平分ABC ∠,DE 垂直平分AB ,利用角平分线性质定理可知DC=DE ;根据已知条件易证BCD ∆≌BED ∆,根据全等三角形的性质可得BC=BE.12. (2017浙江舟山第16题)一副含030和045的三角板ABC 和DEF 叠合在一起,边BC 与EF 重合,cm EF BC 12==(如图1),点G 为边)(EF BC 的中点,边FD 与AB 相交于点H ,现将三角板DEF 绕点G 按顺时针方向旋转(如图2),在CGF ∠从00到060的变化过程中,观察点H 的位置变化,点H 相应移动的路径长为 (结果保留根号).【答案】123-18. 【解析】试题分析:如图2和图3,在 ∠ C G F 从 0 ° 到 60 ° 的变化过程中,点H 先向AB 方向移,在往BA 方向移,直到H 与F 重合(下面证明此时∠CGF=60度),此时BH 的值最大,如图3,当F 与H 重合时,连接CF ,因为BG=CG=GF ,所以∠BFC=90度,∵∠B=30度,∴∠BFC=60度,由CG=GF 可得∠CGF=60度.∵BC=12cm ,所以BF=3BC=63;如图2,当GH ⊥DF 时,GH 有最小值,则BH 有最小值,且GF//AB ,连接DG ,交AB 于点K ,则DG ⊥AB ,∵DG=FG ,∴∠DGH=45度,则KG=KH=22GH=22×(12×62)=3,BK=3KG=33,则BH=BK+KH=33+3则点H运动的总路程为63-(33+3)+[12(3-1)-(33+3)]=123-18(cm ).考点:旋转的性质. 三、解答题1.(2017北京第19题)如图,在ABC ∆中,0,36AB AC A =∠=,BD 平分ABC ∠交AC 于点D . 求证:AD BC =.【答案】见解析. 【解析】考点:等腰三角形性质.2. (2017北京第28题)在等腰直角ABC ∆中,090ACB ∠=,P 是线段BC 上一动点(与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M . (1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示). (2)用等式表示线段MB 与PQ 之间的数量关系,并证明.考点:全等三角形判定,等腰三角形性质 .3. (2017天津第22题)如图,一艘海轮位于灯塔P 的北偏东064方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东045方向上的B 处,求BP 和BA 的长(结果取整数). 参考数据:05.264tan ,44.064cos ,90.064sin 0≈≈≈,2取414.1.【答案】BP=153;BA=161. 【解析】试题分析:如图,过点P 作PC ⊥AB ,垂足为C ,由题意可知,∠A=64°,∠B=45°,PA=120,在Rt △APC 中,求得PC 、AC 的长;在Rt △BPC 中,求得BP 、BC 的长,即可得BA 的长. 试题解析:如图,过点P 作PCAB ,垂足为C , 由题意可知,∠A=64°,∠B=45°,PA=120, 在Rt △APC 中,sin ∠A=,cos PC ACA PA PA=, ∴PC=PA ·sin ∠A=120×sin64°, AC=PA ×cos ∠A=120×cos64°, 在Rt △BPC 中,sin ∠B=,tan PC PC B BP BC=,∴BP=0 120sin64153sin sin452PCB⨯=≈≈BC=0120sin64tan tan45PC PCPCB===⨯∴BA=BC+AC=120×sin64°+120×cos64°≈120×0.90+120×0.44≈161.答:BP的长约有153海里,BA的长约有161海里.4.(2017福建第18题)如图,点,,,B EC F在一条直线上,,,AB DEAC DF BE CF===.求证:A D∠=∠.【答案】证明见解析.【解析】试题分析:利用SSS证明△ABC与△DEF全等即可得.试题解析:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中AB DEAC DFBC EF=⎧⎪=⎨⎪=⎩,∴△ABC≌△D EF(SSS),∴∠A=∠D.5. (2017福建第19题)如图,ABC∆中,90,BAC AD BC∠=⊥o,垂足为D.求作ABC∠的平分线,分别交,AD AD 于P ,Q 两点;并证明AP AQ =.(要求:尺规作图,保留作图痕迹,不写作法)【答案】作图见解析;证明见解析. 【解析】6. (2017河南第19题)如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C .此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45︒方向,B 船测得渔船C 在其南偏东53︒方向.已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:4sin 535︒≈,3cos535︒≈,4tan 533︒≈,2 1.41≈)【答案】C 船至少要等待0.94小时才能得到救援. 【解析】试题分析:过点C作CD AB⊥交AB的延长线于点D,可得∠CDA=90°,根据题意可知∠CDA=45°,设CD=x,则AD=CD=x,在Rt△BDC中,根据三角函数求得CD、BC的长,在Rt△ADC中,求得AC的长,再分别计算出B船到达C船处约需时间和A船到达C船处约需时间,比较即可求解.试题解析:过点C作CD AB⊥交AB的延长线于点D,则∠CDA=90°已知∠CDA=45°,设CD=x,则AD=CD=x∴BD=AD-AB=x-5在Rt△BDC中,CD=BD·tan53°,即x=(x-5)·tan53°∴455tan533204tan53113x⨯=≈=--∴BC=0042025sin53sin535CD x=≈÷=∴B船到达C船处约需时间:25÷25=1(小时)在Rt△ADC中,AC=2x≈1.41×20=28.2∴A船到达C船处约需时间:28.2÷30=0.94(小时)而0.94<1,所以C船至少要等待0.94小时才能得到救援.考点:解直角三角形的应用.7. (2017河南第22题)如图1,在Rt ABC∆中,90A∠=︒,AB AC=,点D,E分别在边AB,AC上,AD AE=,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把ADE∆绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断PMN∆的形状,并说明理由;(3)拓展延伸把ADE ∆绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PMN ∆面积的最大值. 【答案】(1)PM=PN ,PM PN ⊥;(2)等腰直角三角形,理由详见解析;(3)492. 【解析】试题分析:(1)已知 点M ,P ,N 分别为DE ,DC ,BC 的中点,根据三角形的中位线定理可得11,22PM EC PN BD ==,//PM EC ,//PN BD ,根据平行线的性质可得∠DPM=∠DCE ,∠NPD=∠ADC ,在Rt ABC ∆中,90A ∠=︒,AB AC =,AD AE =,可得BD=EC ,∠DCE+∠ADC=90°,即可得PM=PN ,∠DPM+∠NPD=90°,即PM PN ⊥;(2)PMN ∆是等腰直角三角形,根据旋转的性质易证△BAD ≌△CAE ,即可得BD=CE ,∠ABD=∠ACE ,根据三角形的中位线定理及平行线的性质(方法可类比(1)的方法)可得PM=PN, ∠MPD=∠ECD ,∠PNC=∠DBC ,所以∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD ,∠DPN=∠PNC+∠PCN =∠DBC+∠PCN ,即可得∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,即△PMN 为等腰直角三角形;(3)把ADE ∆绕点A 旋转到如图的位置,此时PN=12(AD+AB)=7, PM=12(AE+AC)=7,且PN 、PM 的值最长,由(2)可知PM=PN ,PM PN ⊥,所以PMN ∆面积的最大值为1497722⨯⨯= .试题解析:(1)PM=PN ,PM PN ⊥; (2)等腰直角三角形,理由如下: 由旋转可得∠BAD=∠CAE , 又AB=AC,AD=AE ∴△BAD ≌△CAE ∴BD=CE ,∠ABD=∠ACE ,∵点M ,P 分别为DE ,DC 的中点 ∴PM 是△DCE 的中位线∴PM=12CE ,且//PM CE , 同理可证PN=12BD ,且//PN BD ∴PM=PN, ∠MPD=∠ECD ,∠PNC=∠DBC ,∴∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD ,∠DPN=∠PNC+∠PCN =∠DBC+∠PCN ,∴∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,即△PMN 为等腰直角三角形.(3)492. 考点: 旋转和三角形的综合题.8. (2017广东广州第18题)如图10,点,E F 在AB 上,,,AD BC A B AE BF =∠=∠=.求证:ADF BCE ∆≅∆ .【答案】详见解析【解析】试题分析:先将AE BF =转化为AF =BE ,再利用SAS 证明两个三角形全等试题解析:证明:因为AE =BF ,所以,AE +EF =BF +EF ,即AF =BE ,在△ADF 和△BCE 中,AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩所以,ADF BCE ∆≅∆考点:用SAS 证明两三角形全等9. (2017广东广州第20题) 如图12,在Rt ABC ∆中,0090,30,3B A AC ∠=∠==(1)利用尺规作线段AC 的垂直平分线DE ,垂足为E ,交AB 于点D ;(保留作图痕迹,不写作法)(2)若ADE ∆的周长为a ,先化简()()211T a a a =+--,再求T 的值.【答案】(1)详见解析;(2)3310+【解析】试题分析:(1)尺规作图——作线段的垂直平分线;(2)化简求值,利用三角函数求其余两边的长度。
2019中考数学试题分类汇编:考点19 三角形和角平分线一.选择题(共16小题)1.(2019•柳州)如图,图中直角三角形共有()A.1个B.2个C.3个D.4个【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.2.(2019•贵阳)如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是()A.线段DE B.线段BE C.线段EF D.线段FG【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【解答】解:根据三角形中线的定义知线段BE是△ABC的中线,故选:B.3.(2019•河北)下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【解答】解:三角形具有稳定性.故选:A.4.(2019•长沙)下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm【分析】结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.5.(2019•福建)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.6.(2019•常德)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.11【分析】根据三角形的三边关系可得7﹣3<x<7+3,再解即可.【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,4<x<10,故选:C.7.(2019•昆明)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为()A.90° B.95° C.100°D.120°【分析】依据CO=AO,∠AOC=130°,即可得到∠CAO=25°,再根据∠AOB=70°,即可得出∠CDO=∠CAO+∠AOB=25°+70°=95°.【解答】解:∵CO=AO,∠AOC=130°,∴∠CAO=25°,又∵∠AOB=70°,∴∠CDO=∠CAO+∠AOB=25°+70°=95°,故选:B.8.(2019•长春)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44° B.40° C.39° D.38°【分析】根据三角形内角和得出∠ACB,利用角平分线得出∠DCB,再利用平行线的性质解答即可.【解答】解:∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选:C.9.(2019•黄石)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75° B.80° C.85° D.90°【分析】依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.【解答】解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.10.(2019•聊城)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+β D.γ=180°﹣α﹣β【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【解答】解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选:A.11.(2019•广西)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40° B.45° C.50° D.55°【分析】根据三角形外角性质求出∠ACD,根据角平分线定义求出即可.【解答】解:∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°,∵CE平分∠ACD,∴∠ECD=∠ACD=50°,故选:C.12.(2019•眉山)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45° B.60° C.75° D.85°【分析】先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.【解答】解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选:C.13.(2019•宿迁)如图,点D在△ABC边AB的延长线上,DE∥BC.若∠A=35°,∠C=24°,则∠D的度数是()A.24° B.59° C.60° D.69°【分析】根据三角形外角性质求出∠DBC,根据平行线的性质得出即可.【解答】解:∵∠A=35°,∠C=24°,∴∠DBC=∠A+∠C=59°,∵DE∥BC,∴∠D=∠DBC=59°,故选:B.14.(2019•大庆)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30° B.35° C.45° D.60°【分析】作MN⊥AD于N,根据平行线的性质求出∠DAB,根据角平分线的判定定理得到∠MAB=∠DAB,计算即可.【解答】解:作MN⊥AD于N,∵∠B=∠C=90°,∴AB∥CD,∴∠DAB=180°﹣∠ADC=70°,∵DM平分∠ADC,MN⊥AD,MC⊥CD,∴MN=MC,∵M是BC的中点,∴MC=MB,∴MN=MB,又MN⊥AD,MB⊥AB,∴∠MAB=∠DAB=35°,故选:B.15.(2019•常德)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A.6 B.5 C.4 D.3【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形的性质解答.【解答】解:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.16.(2019•黄冈)如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50° B.70° C.75° D.80°【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠DAC=70°,故选:B.二.填空题(共8小题)17.(2019•绵阳)如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于O点,则AB= .【分析】利用三角形中线定义得到BD=2,AE=,且可判定点O为△ABC的重心,所以AO=2OD,OB=2OE,利用勾股定理得到BO2+OD2=4,OE2+AO2=,等量代换得到BO2+AO2=4, BO2+AO2=,把两式相加得到BO2+AO2=5,然后再利用勾股定理可计算出AB的长.【解答】解:∵AD、BE为AC,BC边上的中线,∴BD=BC=2,AE=AC=,点O为△ABC的重心,∴AO=2OD,OB=2OE,∵BE⊥AD,∴BO2+OD2=BD2=4,OE2+AO2=AE2=,∴BO2+AO2=4, BO2+AO2=,∴BO2+AO2=,∴BO2+AO2=5,∴AB==.故答案为.18.(2019•泰州)已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为 5 .【分析】根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,求得第三边的取值范围,再进一步根据第三边是整数求解.【解答】解:根据三角形的三边关系,得第三边>4,而<6.又第三条边长为整数,则第三边是5.19.(2019•白银)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c= 7 .【分析】根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.【解答】解:∵a,b满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴6<c<8,又∵c为奇数,∴c=7,故答案是:7.20.(2019•永州)一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC= 75°.【分析】根据三角板的性质以及三角形内角和定理计算即可;【解答】解:∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°﹣∠CEA﹣∠BAE=75°,∴∠BDC=∠ADE=75°,故答案为75°.21.(2019•滨州)在△ABC中,若∠A=30°,∠B=50°,则∠C= 100°.【分析】直接利用三角形内角和定理进而得出答案.【解答】解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°22.(2019•德州)如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA的距离为 3 .【分析】过C作CF⊥AO,根据勾股定理可得CM的长,再根据角的平分线上的点到角的两边的距离相等可得CF=CM,进而可得答案.【解答】解:过C作CF⊥AO,∵OC为∠AOB的平分线,CM⊥OB,∴CM=CF,∵OC=5,OM=4,∴CM=3,∴CF=3,故答案为:3.23.(2019•广安)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF= 2 .【分析】作EH⊥OA于H,根据角平分线的性质求出EH,根据直角三角形的性质求出EF,根据等腰三角形的性质解答.【解答】解:作EH⊥OA于H,∵∠AOE=∠BOE=15°,EC⊥OB,EH⊥OA,∴EH=EC=1,∠AOB=30°,∵EF∥OB,∴∠EFH=∠AOB=30°,∠FEO=∠BOE,∴EF=2EH=2,∠FEO=∠FOE,∴OF=EF=2,故答案为:2.24.(2019•南充)如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 24 度.【分析】根据线段的垂直平分线的性质得到EA=EC,得到∠EAC=∠C,根据角平分线的定义、三角形内角和定理计算即可.【解答】解:∵DE是AC的垂直平分线,∴EA=EC,∴∠EAC=∠C,∴∠FAC=∠EAC+19°,∵AF平分∠BAC,∴∠FAB=∠EAC+19°,∵∠B+∠BAC+∠C=180°,∴70°+2(∠C+19°)+∠C=180°,解得,∠C=24°,故答案为:24.三.解答题(共2小题)25.(2019•淄博)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.【分析】过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.【解答】证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.26.(2019•宜昌)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.【分析】(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=∠CBD=65°;(2)先根据三角形外角的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.。
中考数学三角形的边与角真题归类(附答案)以下是查字典数学网为您推荐的中考数学三角形的边与角真题归类(附答案),希望本篇文章对您学习有所帮助。
中考数学三角形的边与角真题归类(附答案)一.选择题1. (2019荆门)已知:直线l1∥l2,一块含30角的直角三角板如图所示放置,1=25,则2等于()A. 30B. 35C. 40D. 45解析:∵3是△ADG的外角,A+1=30+25=55,∵l1∥l2,4=55,∵EFC=90,EFC=90﹣55=35,2=35.故选B.2.(2019中考)如图,在△ABC中,C=70,沿图中虚线截去C,则2=【 B 】A.360B.250C.180D.1403.(2019连云港)如图,将三角尺的直角顶点放在直线a上,a∥b,1=50,2=60,则3的度数为()A. 50B. 60C. 70D. 80考点:平行线的性质;三角形内角和定理。
分析:先根据三角形内角和定理求出4的度数,由对顶角的性质可得出5的度数,再由平行线的性质得出结论即可. 解答:解:∵△BCD中,1=50,2=60,4=1801-2=180-50-60=70,4.(2019深圳)如图所示,一个60o角的三角形纸片,剪去这个600角后,得到一个四边形,则么的度数为【】A. 120OB. 180O.C. 240OD. 3000【答案】C。
【考点】三角形内角和定理,平角定义。
【分析】如图,根据三角形内角和定理,得4+600=1800,又根据平角定义,3=1800,4=1800,1800-1+1800-2+600=1800。
2=240O。
故选C。
5.(2019聊城)将一副三角板按如图所示摆放,图中的度数是()A.75B.90C.105D.120考点:三角形的外角性质;三角形内角和定理。
专题:探究型。
分析:先根据直角三角形的性质得出BAE及E的度数,再由三角形内角和定理及对顶角的性质即可得出结论.解答:解:∵图中是一副直角三角板,BAE=45,E=30,6.(2019毕节)如图,△ABC的三个顶点分别在直线a、b上,且a∥b,若1=120,2=80,则3的度数是( )A.40B.60C.80D.120解析:根据平行线性质求出ABC,根据三角形的外角性质得出1-ABC,代入即可得出答案.7.(2019十堰)如图,直线BD∥EF,AE与BD交于点C,若ABC=30,BAC=75,则CEF的大小为( D )A.60B.75C.90D.105【考点】平行线的性质;三角形内角和定理.【专题】探究型.【分析】先根据三角形外角的性质求出1的度数,再由平行线的性质即可得出结论.【解答】解:∵1是△ABC的外角,ABC=30,BAC=75,ABC+BAC=30+75=105,∵直线BD∥EF,CEF=1=105.故选D.【点评】本题考查的是平行线的性质及三角形外角的性质,熟知两直线平行,同位角相等是解答此题的关键.8.(2019梅州)如图,在折纸活动中,小明制作了一张△ABC 纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A重合,若A=75,则2=()A.150B.210C.105D.75考点:三角形内角和定理;翻折变换(折叠问题)。
2021年全国各地中考数学真题分类汇编(通用版)三角形(三)参考答案与试题解析一.选择题(共5小题)1.(2021•贵港)如图,在正方形ABCD中,E,F是对角线AC上的两点,且EF=2AE=2CF,连接DE并延长交AB于点M,连接DF并延长交BC于点N,连接MN,则=()A.B.C.1D.解:设AB=AD=BC=CD=3a,∵四边形ABCD是正方形,∴∠DAE=∠DCF=45°,∠DAM=∠DCN=90°,在△DAE和△DCF中,,∴△DAE≌△DCF(SAS),∴∠ADE=∠CDF,在△DAM和△DCN中,,∴△DAM≌△DCN(ASA),∴AM=CN,∵AB=BC,∴BM=BN,∵CN∥AD,∴==,∴CN=AM=a,BM=BN=2a,∴===,故选:A.2.(2021•云南)在△ABC中,∠ABC=90°.若AC=100,sin A=,则AB的长是()A.B.C.60D.80解:∵AC=100,sin A=,∴BC=60,∴AB==80,故选:D.3.(2021•贵港)如图,在△ABC中,∠ABC=90°,AB=8,BC=12,D为AC边上的一个动点,连接BD,E为BD上的一个动点,连接AE,CE,当∠ABD=∠BCE时,线段AE的最小值是()A.3B.4C.5D.6解:如图,取BC的中点T,连接AT,ET.∵∠ABC=90°,∴∠ABD+∠CBD=90°,∵∠ABD=∠BCE,∴∠CBD+∠BCE=90°,∴∠CEB=90°,∵CT=TB=6,∴ET=BC=6,AT===10,∵AE≥AT﹣ET,∴AE≥4,∴AE的最小值为4,故选:B.4.(2021•毕节市)如图,拦水坝的横断面为梯形ABCD,其中AD∥BC,∠ABC=45°,∠DCB=30°,斜坡AB长8m,则斜坡CD的长为()A.6m B.8m C.4m D.8m解:过A作AE⊥BC于E,过D作DF⊥BC于F,∴AE∥DF,∵AD∥BC,∴AE=DF,在Rt△ABE中,AE=AB sin45°=4,在Rt△DCF中,∵∠DCB=30°,∴DF=CD,∴CD=2DF=2×4=8,故选:B.5.(2021•铜仁市)如图,在Rt△ABC中,∠C=90°,AB=10,BC=8,按下列步骤作图:步骤1:以点A为圆心,小于AC的长为半径作弧分别交AC、AB于点D、E.步骤2:分别以点D、E为圆心,大于DE的长为半径作弧,两弧交于点M.步骤3:作射线AM交BC于点F.则AF的长为()A.6B.3C.4D.6解:由作法得AF平分∠BAC,过F点作FH⊥AB于H,如图,∵AF平分∠BAC,FH⊥AB,FC⊥AC,∴FH=FC,在△ABC中,∵∠C=90°,AB=10,BC=8,∴AC==6,设CF=x,则FH=x,∵S△ABF+S△ACF=S△ABC,∴×10•x+×6•x=×6×8,解得x=3,在Rt△ACF中,AF===3.故选:B.二.填空题(共9小题)6.(2021•海南)如图,△ABC的顶点B、C的坐标分别是(1,0)、(0,),且∠ABC=90°,∠A=30°,则顶点A的坐标是(4,).解:过点A作AG⊥x轴,交x轴于点G.∵B、C的坐标分别是(1,0)、(0,),∴OC=,OB=1,∴BC==2.∵∠ABC=90°,∠BAC=30°,∴AB====2.∵∠ABG+∠CBO=90°,∠BCO+∠CBO=90°,∴∠ABG=∠BCO.∴sin∠ABG===,cos∠ABG===,∴AG=,BG=3.∴OG=1+3=4,∴顶点A的坐标是(4,).故答案为:(4,).7.(2021•江西)如图,在边长为6的正六边形ABCDEF中,连接BE,CF,其中点M,N分别为BE和CF上的动点.若以M,N,D为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为9或10或18.解:连接DF,DB,BF.则△DBF是等边三角形.设BE交DF于J.∵六边形ABCDEF是正六边形,∴由对称性可知,DF⊥BE,∠JEF=60°,EF=ED=6,∴FJ=DJ=EF•sin60°=6×=9,∴DF=18,∴当点M与B重合,点N与F重合时,满足条件,∴△DMN的边长为18,如图,当点N在OC上,点M在OE上时,等边△DMN的边长的最大值为6≈10.39,最小值为9,∴△DMN的边长为整数时,边长为10或9,综上所述,等边△DMN的边长为9或10或18.故答案为:9或10或18.8.(2021•桂林)如图,在△ABC中,点D,E分别是AB,AC的中点,若DE=4,则BC=8.解:∵D、E分别是AB、AC的中点.∴DE是△ABC的中位线,∴BC=2DE,∵DE=4,∴BC=2×4=8.故答案是:8.9.(2021•梧州)某市跨江大桥即将竣工,某学生做了一个平面示意图(如图),点A到桥的距离是40米,测得∠A=83°,则大桥BC的长度是326米.(结果精确到1米)(参考数据:sin83°≈0.99,cos83°≈0.12,tan83°≈8.14)解:由题意,在Rt△ABC中,∵AC=40,∠A=83°,tan A=,∴BC=tan A•AC≈8.14×40=325.6≈326(米).故答案为:326.10.(2021•广西)如图,从楼顶A处看楼下荷塘C处的俯角为45°,看楼下荷塘D处的俯角为60°,已知楼高AB为30米,则荷塘的宽CD为(30﹣10)米(结果保留根号).解:由题意可得,∠ADB=60°,∠ACB=45°,AB=30m,在Rt△ABC中,∵∠ACB=45°,∴AB=BC,在Rt△ABD中,∵∠ADB=60°,∴BD=AB=10(m),∴CD=BC﹣BD=(30﹣10)m,故答案为:(30﹣10).11.(2021•云南)如图,在△ABC中,点D,E分别是BC,AC的中点,AD与BE相交于点F.若BF=6,则BE的长是9.解:如图,在△ABC中,点D,E分别是BC,AC的中点,∴DE∥AB,且DE=AB,∴==,∵BF=6,∴EF=3.∴BE=BF+EF=9.故答案为:9.12.(2021•毕节市)学习投影后,小华利用灯光下自己的影子长度来测量一路灯的高度.如图,身高1.7m的小明从路灯灯泡A的正下方点B处,沿着平直的道路走8m到达点D处,测得影子DE长是2m,则路灯灯泡A离地面的高度AB为8.5m.解:∵AB⊥BE,CD⊥BE,∴AB∥CD,∴△ECD∽△EAB,∴=,∴=,解得:AB=8.5,答:路灯灯泡A离地面的高度AB为8.5米,故答案为:8.5.13.(2021•黔东南州)已知在平面直角坐标系中,△AOB的顶点分别为点A(2,1)、点B(2,0)、点O(0,0),若以原点O为位似中心,相似比为2,将△AOB放大,则点A的对应点的坐标为(4,2)或(﹣4,﹣2).解:如图,观察图象可知,点A的对应点的坐标为(4,2)或(﹣4,﹣2).故答案为:(4,2)或(﹣4,﹣2).14.(2021•贵阳)在综合实践课上,老师要求同学用正方形纸片剪出正三角形且正三角形的顶点都在正方形边上.小红利用两张边长为2的正方形纸片,按要求剪出了一个面积最大的正三角形和一个面积最小的正三角形.则这两个正三角形的边长分别是2﹣2,2.解:如图,设△GEF为正方形ABCD的一个内接正三角形,作正△GEF的高EK,连接KA,KD,∵∠EKG=∠EDG=90°,∴E、K、D、G四点共圆,∴∠KDE=∠KGE=60°,同理∠KAE=60°,∴△KAD是一个正三角形,则K必为一个定点,∵正三角形面积取决于它的边长,∴当FG⊥AB,边长FG最小,面积也最小,此时边长等于正方形边长为2,当FG过B点时,即F'与点B重合时,边长最大,面积也最大,此时作KH⊥BC于H,由等边三角形的性质可知,K为FG的中点,∵KH∥CD,∴KH为三角形F'CG'的中位线,∴CG'=2HK=2(EH﹣EK)=2(2﹣2×sin60°)=4﹣2,∴F'G'====2﹣2,故答案为:2﹣2,2.三.解答题(共12小题)15.(2021•海南)如图,在某信号塔AB的正前方有一斜坡CD,坡角∠CDK=30°,斜坡的顶端C 与塔底B的距离BC=8米,小明在斜坡上的点E处测得塔顶A的仰角∠AEN=60°,CE=4米,且BC∥NE∥KD,AB⊥BC(点A,B,C,D,E,K,N在同一平面内).(1)填空:∠BCD=150度,∠AEC=30度;(2)求信号塔的高度AB(结果保留根号).解:(1)∵BC∥DK,∴∠BCD+∠D=180°,又∵∠D=30°,∴∠BCD=180°﹣30°=150°,∵NE∥KD,∴∠CEN=∠D=30°,又∵∠AEN=60°,∴∠ACE=∠AEN﹣∠CEN=60°﹣30°=30°,故答案为:150,30;(2)如图,过点C作CG⊥EN,垂足为G,延长AB交EN于点F,在Rt△CEG中,∵∠CEG=30°,CE=4m,∴CG=CE=2(m)=BF,∴EG=CG=2(m),设AB=x,则AF=(x+2)m,EF=BC+EG=(8+2)m,在Rt△AEF中,∵∠AEN=60°,∴AF=EF,即x+2=(8+2),x=(4+8)m,即信号塔的高度AB为(4+8)m.16.(2021•桂林)如图,在平行四边形ABCD中,点O是对角线BD的中点,EF过点O,交AB于点E,交CD于点F.(1)求证:∠1=∠2;(2)求证:△DOF≌△BOE.证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠1=∠2;(2)∵点O是BD的中点,∴OD=OB,在△DOF和△BOE中,,∴△DOF≌△BOE(AAS).17.(2021•贵港)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知△ABC,且AB>AC.(1)在AB边上求作点D,使DB=DC;(2)在AC边上求作点E,使△ADE∽△ACB.解:(1)如图,点D即为所求.(2)如图,点E即为所求.18.(2021•梧州)如图,在正方形ABCD中,点E,F分别为边BC,CD上的点,且AE⊥BF于点P,G为AD的中点,连接GP,过点P作PH⊥GP交AB于点H,连接GH.(1)求证:BE=CF;(2)若AB=6,BE=BC,求GH的长.(1)证明:∵AE⊥BF,∠ABE=90°,∴∠EAB+∠ABF=90°,∠ABF+∠CBF=90°,∴∠EAB=∠CBF,在△ABE与△BCF中,,∴△ABE≌△BCF(ASA),∴BE=CF;∵tan∠EAB=,∵BE=BC,∴=3,∵G为AD的中点,∴AG=3,∴HB=1,∴AH=5,∴GH==.19.(2021•贵港)已知在△ABC中,O为BC边的中点,连接AO,将△AOC绕点O顺时针方向旋转(旋转角为钝角),得到△EOF,连接AE,CF.(1)如图1,当∠BAC=90°且AB=AC时,则AE与CF满足的数量关系是AE=CF;(2)如图2,当∠BAC=90°且AB≠AC时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图3,延长AO到点D,使OD=OA,连接DE,当AO=CF=5,BC=6时,求DE的长.解:(1)结论:AE=CF.理由:如图1中,∵AB=AC,∠BAC=90°,OC=OB,∴OA=OC=OB,AO⊥BC,∵∠AOC=∠EOF=90°,∴∠AOE=∠COF,∵OA=OC,OE=OF,∴△AOE≌△COF(SAS),∴AE=CF.(2)结论成立.理由:如图2中,∵∠BAC=90°,OC=OB,∴OA=OC=OB,∵∠AOC=∠EOF,∴∠AOE=∠COF,∵OA=OC,OE=OF,∴△AOE≌△COF(SAS),∴AE=CF.(3)如图3中,由旋转的性质可知OE=OA,∵OA=OD,∴OE=OA=OD=5,∴∠AED=90°,∵OA=OE,OC=OF,∠AOE=∠COF,∴=,∴△AOE∽△COF,∴=,∵CF=OA=5,∴=,∴AE=,∴DE===.20.(2021•广西)如图,四边形ABCD中,AB∥CD,∠B=∠D,连接AC.(1)求证:△ABC≌△CDA;(2)尺规作图:过点C作AB的垂线,垂足为E(不要求写作法,保留作图痕迹);(3)在(2)的条件下,已知四边形ABCD的面积为20,AB=5,求CE的长.(1)证明:∵AB∥CD,∴∠ACD=∠CAB,在△ABC和△CDA中,,∴△ABC≌△CDA(AAS);(2)解:过点C作AB的垂线,垂足为E,如图:21.(2021•铜仁市)如图,AB交CD于点O,在△AOC与△BOD中,有下列三个条件:①OC=OD,②AC=BD,③∠A=∠B.请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法).(1)你选的条件为①、③,结论为②;(2)证明你的结论.(1)解:由AAS,选的条件是:①,③,结论是②,故答案为:①,③,②(答案不唯一);(2)证明:在△AOC和△BOD中,,∴△AOC≌△BOD(AAS),∴AC=BD.22.(2021•云南)如图,在四边形ABCD中,AD=BC,AC=BD,AC与BD相交于点E.求证:∠DAC=∠CBD.证明:在△DCA和△DCB中,,∴△CDA≌△DCB(SSS),∴∠DAC=∠CBD.23.(2021•贵阳)如图,在矩形ABCD中,点M在DC上,AM=AB,且BN⊥AM,垂足为N.(1)求证:△ABN≌△MAD;(2)若AD=2,AN=4,求四边形BCMN的面积.(1)证明:在矩形ABCD中,∠D=90°,DC∥AB,∴∠BAN=∠AMD,∵BN⊥AM,∴∠BNA=90°,在△ABN和△MAD中,,∴△ABN≌△MAD(AAS);(2)解:∵△ABN≌△MAD,∴BN=AD,∵AD=2,∴BN=2,又∵AN=4,在Rt△ABN中,AB===2,∴S矩形ABCD=2×2=4,S△ABN=S△MAD=×2×4=4,∴S四边形BCMN=S矩形ABCD﹣S△ABN﹣S△MAD=4﹣8.24.(2021•铜仁市)如图,在一座山的前方有一栋住宅,已知山高AB=120m,楼高CD=99m,某天上午9时太阳光线从山顶点A处照射到住宅的点E外.在点A处测得点E的俯角∠EAM=45°,上午10时太阳光线从山顶点A处照射到住宅点F处,在点A处测得点F的俯角∠F AM=60°,已知每层楼的高度为3m,EF=40m,问:以当天测量数据为依据,不考虑季节天气变化,至少要买该住宅的第几层楼,才能使上午10时太阳光线照射到该层楼的外墙?(≈1.73)解:根据题意可知:四边形ABDM是矩形,∴AB=MD=120m,在Rt△AME中,ME=AM tan45°=AM,在Rt△AMF中,MF=AM tan60°=AM,∵EF=MF﹣ME=40m,∴AM﹣AM=40,∴AM≈54.8(m),∴MF≈54.8×1.73≈94.80(m),∴DF=120﹣94.80=25.2(m),25.2÷3≈8.4,∴至少要买该住宅的第9层楼,才能使上午10时太阳光线照射到该层楼的外墙.答:至少要买该住宅的第9层楼,才能使上午10时太阳光线照射到该层楼的外墙.25.(2021•贵阳)随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量广场B,C两点之间的距离.如图所示,小星站在广场的B处遥控无人机,无人机在A处距离地面的飞行高度是41.6m,此时从无人机测得广场C处的俯角为63°,他抬头仰视无人机时,仰角为α,若小星的身高BE=1.6m,EA=50m(点A,E,B,C在同一平面内).(1)求仰角α的正弦值;(2)求B,C两点之间的距离(结果精确到1m).(sin63°≈0.89,cos63°≈0.45,tan63°≈1.96,sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)解:(1)如图,过A点作AD⊥BC于D,过E点作EF⊥AD于F,∵∠EBD=∠FDB=∠DFE=90°,∴四边形BDFE为矩形,∴EF=BD,DF=BE=1.6m,∴AF=AD﹣DF=41.6﹣1.6=40(m),在Rt△AEF中,sin∠AEF===,即sinα=.答:仰角α的正弦值为;(2)在Rt△AEF中,EF===30(m),在Rt△ACD中,∠ACD=63°,AD=41.6,∵tan∠ACD=,∴CD==≈21.22(m),∴BC=BD+CD=30+21.22≈51(m).答:B,C两点之间的距离约为51m.26.(2021•江西)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直.量得胳膊MN=28cm,MB=42cm,肘关节M与枪身端点A之间的水平宽度为25.3cm(即MP的长度),枪身BA=8.5cm.(1)求∠ABC的度数;(2)测温时规定枪身端点A与额头距离范围为3~5cm.在图2中,若测得∠BMN=68.6°,小红与测温员之间距离为50cm.问此时枪身端点A与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据:sin66.4°≈0.92,cos66.4°≈0.40,sin23.6°≈0.40,≈1.414)解:(1)过点B作BH⊥MP,垂足为H,过点M作MI⊥FG,垂足为I,过点P作PK⊥DE,垂足为K,∵MP=25.3cm,BA=HP=8.5cm,∴MH=MP﹣HP=25.3﹣8.5=16.8(cm),在Rt△BMH中,cos∠BMH===0.4,∴∠BMH=66.4°,∵AB∥MP,∴∠BMH+∠ABC=180°,∴∠ABC=180°﹣66.4°=113.6°;(2)∵∠BMN=68.6°,∠BMH=66.4°,∴∠NMI=180°﹣∠BMN﹣∠BMH=180°﹣68.6°﹣66.4°=45°,∵MN=28cm,∴cos45°==,∴MI≈19.80cm,∵KI=50cm,∴PK=KI﹣MI﹣MP=50﹣19.80﹣25.3=4.90≈5.0(cm),∴此时枪身端点A与小红额头的距离是在规定范围内.。
2021年全国各地中考数学真题分类汇编(通用版)三角形(二)参考答案与试题解析一.选择题(共3小题)1.(2021•长春)如图是净月潭国家森林公园一段索道的示意图.已知A、B两点间的距离为30米,∠A=α,则缆车从A点到达B点,上升的高度(BC的长)为()A.30sinα米B.米C.30cosα米D.米解:由图可知,在△ABC中,AC⊥BC,∴sinα==,∴BC=30sinα米.故选:A.2.(2021•陕西)在菱形ABCD中,∠ABC=60°,连接AC、BD,则的值为()A.B.C.D.解:设AC与BD交于点O,∵四边形ABCD是菱形,∴AO=CO,BO=DO,AC⊥BD,∠ABD=∠ABC=30°,∵tan∠ABD=,∴,故选:D.3.(2021•长春)在△ABC中,∠BAC=90°,AB≠AC.用无刻度的直尺和圆规在BC边上找一点D,使△ACD为等腰三角形.下列作法不正确的是()A.B.C.D.解:A、由作图可知AD是△ABC的角平分线,推不出△ADC是等腰三角形,本选项符合题意.B、由作图可知CA=CD,△ADC是等腰三角形,本选项不符合题意.C、由作图可知DA=CD,△ADC是等腰三角形,本选项不符合题意.D、由作图可知BD=CD,推出AD=DC=BD,△ADC是等腰三角形,本选项不符合题意.故选:A.二.填空题(共7小题)4.(2021•吉林)如图,为了测量山坡的护坡石坝高,把一根长为4.5m的竹竿AC斜靠在石坝旁,量出竿上AD长为1m时,它离地面的高度DE为0.6m,则坝高CF为 2.7m.解:如图,过C作CF⊥AB于F,则DE∥CF,∴,即,解得CF=2.7,故答案为:2.7.5.(2021•长春)如图,在平面直角坐标系中,等腰直角三角形AOB的斜边OA在y轴上,OA=2,点B在第一象限.标记点B的位置后,将△AOB沿x轴正方向平移至△A1O1B1的位置,使A1O1经过点B,再标记点B1的位置,继续平移至△A2O2B2的位置,使A2O2经过点B1,此时点B2的坐标为(3,1).解:如图所示,过点B作BP⊥y轴于点P,∵△ABO是等腰直角三角形,OA=2,∴AP=OP=1,∠AOB=45°,∴△BPO是等腰直角三角形,∴BP=PO=1,由题意知点B2的坐标为(3,1),故答案为:(3,1).6.(2021•吉林)如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2.以点C为圆心,CB长为半径画弧,分别交AC,AB于点D,E,则图中阴影部分的面积为π﹣(结果保留π).解:连接CE,∵∠A=30°,∴∠B=90°﹣∠A=60°,∵CE=CB,∴△CBE为等边三角形,∴∠ECB=60°,BE=BC=2,∴S扇形CBE==π∵S△BCE=BC2=,∴阴影部分的面积为π﹣.故答案为:π﹣.7.(2021•丹东)已知:到三角形3个顶点距离之和最小的点称为该三角形的费马点.如果△ABC 是锐角(或直角)三角形,则其费马点P是三角形内一点,且满足∠APB=∠BPC=∠CP A=120°.(例如:等边三角形的费马点是其三条高的交点).若AB=AC=,BC=2,P为△ABC的费马点,则P A+PB+PC=5;若AB=2,BC=2,AC=4,P为△ABC的费马点,则P A+PB+PC=2.解:如图,过A作AD⊥BC,垂足为D,过B,C分别作∠DBP=∠DCP=30°,则PB=PC,P为△ABC的费马点,∵AB=AC=,BC=2,∴,∴,∴PD=1,∴,∴,∴P A+PB+PC=5;②如图:∵AB=2,BC=2,AC=4,∴AB2+BC2=16,BC2=16,∴AB2+BC2=AC2∠ABC=90°,∵,∴∠BAC=30°,将△APC绕点A逆时针旋转60°,由旋转可得:△APC≌△AP'C',∴AP'=AP,PC=P'C',AC=AC',∠CAC'=∠P AP'=60°,∴△APP′是等边三角形,∴∠BAC'=90°,∵P为△ABC的费马点,即B,P,P',C'四点共线时候,P A+PB+PC=BC',∴P A+PB+PC=BP+PP'+P'C'=BC'==,故答案为:5,.8.(2021•山西)太原地铁2号线是山西省第一条开通运营的地铁线路,于2020年12月26日开通,如图是该地铁某站扶梯的示意图,扶梯AB的坡度i=5:12(i为铅直高度与水平宽度的比).王老师乘扶梯从扶梯底端A以0.5米/秒的速度用时40秒到达扶梯顶端B,则王老师上升的铅直高度BC为米.解:由题意得:∠ACB=90°,AB=0.5×40=20(米),∵扶梯AB的坡度i=5:12=,∴设BC=5a米,则AC=12a米,由勾股定理得:(5a)2+(12a)2=202,解得:a=(负值已舍去),∴BC=(米),故答案为:.9.(2021•本溪)如图,由边长为1的小正方形组成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C和点D,则tan∠ADC=.解:∵AB为直径,∴∠ACB=90°,在Rt△ABC中,tan∠ABC==,∵∠ADC=∠ABC,∴tan∠ADC=.故答案为.10.(2021•山西)如图,在△ABC中,点D是AB边上的一点,且AD=3BD,连接CD并取CD的中点E,连接BE,若∠ACD=∠BED=45°,且CD=6,则AB的长为4.解:如图,取AD中点F,连接EF,过点D作DG⊥EF于G,DH⊥BE于H,设BD=a,∴AD=3BD=3a,AB=4a,∵点E为CD中点,点F为AD中点,CD=6,∴DF=a,EF∥AC,DE=3,∴∠FED=∠ACD=45°,∵∠BED=45°,∴∠FED=∠BED,∠FEB=90°,∵DG⊥EF,DH⊥BE,∴四边形EHDG是矩形,DG=DH,∴四边形DGEH是正方形,∴DE=DG=3,DH∥EF,∴DG=DH=3,三.解答题(共12小题)11.(2021•吉林)如图,点D在AB上,E在AC上,AB=AC,∠B=∠C,求证:AD=AE.证明:在△ABE与△ACD中,,∴△ACD≌△ABE(ASA),∴AD=AE(全等三角形的对应边相等).12.(2021•丹东)如图,一架无人机在空中A处观测到山顶B的仰角为36.87°,山顶B在水中的倒影C的俯角为63.44°,此时无人机距水面的距离AD=50米,求点B到水面距离BM的高度.(参考数据:sin36.87°≈0.60,cos36.87°≈0.80,tan36.87°≈0.75,sin63.44°≈0.89,cos63.44°≈0.45,tan63.44°≈2.00)解:过点A作AH⊥BM交于点H,由题意可得:AD=HM=50米,设BM=x米,则MC=BM=x米∵BH=BM﹣HM∴BH=(x﹣50)米,∴在Rt△ABH中,∵HC=HM+MC∴HC=(50+x)米,在Rt△AHC中,,∴,解得x=110,即BM=110米,答:点B到水面距离BM的高度约为110米.13.(2021•陕西)如图,BD∥AC,BD=BC,点E在BC上,且BE=AC.求证:∠D=∠ABC.证明:∵BD∥AC,∴∠ACB=∠EBD,在△ABC和△EDB中,,∴△ABC≌△EDB(SAS),∴∠ABC=∠D.14.(2021•吉林)图①、图2均是4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A,点B均在格点上,在给定的网格中按要求画图,所画图形的顶点均在格点上.(1)在图①中,以点A,B,C为顶点画一个等腰三角形;(2)在图②中,以点A,B,D,E为顶点画一个面积为3的平行四边形.解:(1)如图①中,△ABC即为所求(答案不唯一).(2)如图②中,四边形ABDE即为所求.15.(2021•大连)如图,点A,D,B,E在一条直线上,AD=BE,AC=DF,AC∥DF.求证:BC =EF.证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE,∵AC∥DF,∴∠A=∠EDF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF.16.(2021•山西)某公园为引导游客观光游览公园的景点,在主要路口设置了导览指示牌,某校“综合与实践”活动小组想要测量此指示牌的高度,他们绘制了该指示牌支架侧面的截面图如图所示,并测得AB=100cm,BC=80cm,∠ABC=120°,∠BCD=75°,四边形DEFG为矩形,且DE=5cm.请帮助该小组求出指示牌最高点A到地面EF的距离(结果精确到0.1cm.参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,≈1.41).解:过点A作AH⊥EF于点H,交直线DG于点M,过点B作BN⊥DG于点N,BP⊥AH于点P,则四边形BNMP和四边形DEHM均为矩形,如图所示:∴PM=BN,MH=DE=5cm,∴BP∥DG,∴∠CBP=∠BCD=75°,∴∠ABP=∠ABC﹣∠CBP=120°﹣75°=45°,在Rt△ABP中,∠APB=90°,sin45°=,∴AP=AB•sin45°=100×=50cm,在Rt△BCN中,∠BNC=90°,sin75°=,∴BN=BC•sin75°≈80×0.97=77.6cm,∴PM=BN=77.6cm,∴AH=AP+PM+MH=5077.6+5≈153.1cm.答:指示牌最高点A到地面EF的距离约为153.1cm.17.(2021•营口)小张早起在一条东西走向的笔直马路上晨跑,他在A处时,D处学校和E处图书馆都在他的东北方向,当小张沿正东方向跑了600m到达B处时,E处图书馆在他的北偏东15°方向,然后他由B处继续向正东方向跑600m到达C处,此时D处学校在他的北偏西63.4°方向,求D处学校和E处图书馆之间的距离.(结果保留整数)(参考数据:sin63.4°≈0.9,cos63.4°≈0.4,tan63.4°≈2.0,≈1.4,≈1.7,≈2.4)解:过D作DM⊥AC于M,设MD=x,在Rt△MAD中,∠MAD=45°,∴△ADM是等腰直角三角形,∴AM=MD=x,∴AD=x,在Rt△MCD中,∠MDC=63.4°,∴MC≈2MD=2x,∵AC=600+600=1200,∴x+2x=1200,解得:x=400,∴MD=400m,∴AD=MD=400,过B作BN⊥AE于N,∵∠EAB=45°,∠EBC=75°,∴∠E=30°,在Rt△ABN中,∠NAB=45°,AB=600,∴BN=AN=AB=300,∴DN=AD﹣AN=400﹣300=100,在Rt△NBE中,∠E=30°,∴NE=BN=×300=300,∴DE=NE﹣DN=300﹣100≈580(m),即临D处学校和E处图书馆之间的距离是580m.18.(2021•大连)如图,建筑物BC上有一旗杆AB,从与BC相距20m的D处观测旗杆顶部A的仰角为57°,观测旗杆底部B的仰角为50°,求旗杆AB的高度(结果取整数).(参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192;sin57°≈0.839,cos57°≈0.545,tan57°≈1.540)解:在Rt△BCD中,tan∠BDC=,∴BC=CD•tan∠BDC=20×tan50°≈20×1.192=23.84(m),在Rt△ACD中,tan∠ADC=,∴AC=CD•tan∠ADC=20×tan57°≈20×1.540=30.8(m),∴AB=AC﹣BC=30.8﹣23.84≈7(m).答:旗杆AB的高度约为7m.19.(2021•陕西)一座吊桥的钢索立柱AD两侧各有若干条斜拉的钢索,大致如图所示.小明和小亮想用测量知识测较长钢索AB的长度.他们测得∠ABD为30°,由于B、D两点间的距离不易测得,通过探究和测量,发现∠ACD恰好为45°,点B与点C之间的距离约为16m.已知B、C、D共线,AD⊥BD.求钢索AB的长度.(结果保留根号)解:在△ADC中,设AD=x,∵AD⊥BD,∠ACD=45°,∴CD=AD=x,在△ADB中,AD⊥BD,∠ABD=30°,∴AD=BD•tan30°,即x=(16+x),解得:x=8+8,∴AB=2AD=2×(8)=16,∴钢索AB的长度约为(16)m.20.(2021•本溪)如图,某地政府为解决当地农户网络销售农特产品物流不畅问题,计划打通一条东西方向的隧道AB.无人机从点A的正上方点C,沿正东方向以8m/s的速度飞行15s到达点D,测得A的俯角为60°,然后以同样的速度沿正东方向又飞行50s到达点E,测得点B的俯角为37°.(1)求无人机的高度AC(结果保留根号);(2)求AB的长度(结果精确到1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)解:(1)由题意,CD=8×15=120(m),在Rt△ACD中,tan∠ADC=,∴AC=CD•tan∠ADC=CD•tan60°=120×=120(m),答:无人机的高度AC是120米;21.(2021•吉林)数学小组研究如下问题:长春市的纬度约为北纬44°,求北纬44°纬线的长度,小组成员查阅了相关资料,得到三条信息:(1)在地球仪上,与南,北极距离相等的大圆圈,叫赤道,所有与赤道平行的圆圈叫纬线;(2)如图,⊙O是经过南、北极的圆,地球半径OA约为6400km.弦BC∥OA,过点O作OK⊥BC于点K,连接OB.若∠AOB=44°,则以BK为半径的圆的周长是北纬44°纬线的长度;(3)参考数据:π取3,sin44°=0.69,cos44°=0.72.小组成员给出了如下解答,请你补充完整:解:因为BC∥OA,∠AOB=44°,所以∠B=∠AOB=44°(两直线平行,内错角相等)(填推理依据),因为OK⊥BC,所以∠BKO=90°,在Rt△BOK中,OB=OA=6400.BK=OB×cos B(填“sin B”或“cos B”).所以北纬44°的纬线长C=2π•BK.=2×3×6400×0.72(填相应的三角形函数值)≈27648(km)(结果取整数).解:因为BC∥OA,∠AOB=44°,所以∠B=∠AOB=44°(两直线平行,内错角相等)(填推理依据),因为OK⊥BC,所以∠BKO=90°,在Rt△BOK中,OB=OA=6400.BK=OB×cos B(填“sin B”或“cos B”).所以北纬44°的纬线长C=2π•BK.=2×3×6400×0.72(填相应的三角形函数值)≈27648(km)(结果取整数).故答案为:两直线平行,内错角相等;cos B;0.72;27648.22.(2021•山西)阅读与思考请阅读下列科普材料,并完成相应的任务.图算法图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系:F=C+32得出,当C=10时,F=50.但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种利用特制的线条进行计算的方法就是图算法.再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?我们可以利用公式求得R的值,也可以设计一种图算法直接得出结果:我们先来画出一个120°的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性.任务:(1)请根据以上材料简要说明图算法的优越性;(2)请用以下两种方法验证第二个例子中图算法的正确性:①用公式计算:当R1=7.5,R2=5时,R的值为多少;②如图,在△AOB中,∠AOB=120°,OC是△AOB的角平分线,OA=7.5,OB=5,用你所学的几何知识求线段OC的长.解:(1)图算法方便、直观,不用公式计算即可得出结果;(答案不唯一).(2)①当R1=7.5,R2=5时,,∴R=3.②过点A作AM∥CO,交BO的延长线于点M,如图∵OC是∠AOB的角平分线,∴∠COB=∠COA=∠AOB=×120°=60°.∵AM∥CO,∴∠MAO=∠AOC=60°,∠M=∠COB=60°.∴∠MAO=∠M=60°.∴OA=OM.∴△OAM为等边三角形.∴OM=OA=AM=7.5.∵AM∥CO,∴△BCO∽△BAM.∴.∴.∴OC=3.综上,通过计算验证第二个例子中图算法是正确的.。
中考数学专题练习-三角形的角平分线、中线和高(含解析)一、单选题1.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形2.已知AD是△ABC的中线,且△ABD比△ACD的周长大3cm,则AB与AC的差为()A. 2cmB. 3cmC. 4cmD. 6cm3.钝角三角形的高线在三角形外的数目有()A. 3B. 2C. 1D. 04.三角形的三条中线的交点的位置为()A. 一定在三角形内B. 一定在三角形外C. 可能在三角形内,也可能在三角形外D. 可能在三角形的一条边上5.三角形的重心是()A. 三角形三条边上中线的交点B. 三角形三条边上高线的交点C. 三角形三条边垂直平分线的交点D. 三角形三条内角平分线的交点6.如图,△ABC中BC边上的高为()A. AEB. BFC. ADD. CF7.下列说法正确的是()A. 三角形的中线就是过顶点平分对边的直线B. 三角形的三条角平分线的交点有可能在三角形外部C. 三角形的三条高线的交点必在三角形内部D. 以上说法都错8.三角形的角平分线是()A. 射线B. 直线C. 线段D. 线段或射线9.三角形一边上的中线把原三角形分成两个()A. 形状相同的三角形B. 面积相等的三角形C. 直角三角形D. 周长相等的三角形10.如图,在△ABC中,BD,CE分别为AC,AB边上的中线,BD⊥CE,若BD=4,CE=6,则△ABC 的面积为()A. 12B. 24C. 16D. 3211.下列说法错误的是().A. 锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B. 钝角三角形有两条高线在三角形外部C. 直角三角形只有一条高线D. 任意三角形都有三条高线、三条中线、三条角平分线12.如图,,垂足为D,,下列说法正确的是()A. 射线AC是的角平分线B. 直线BD是的边AD上的高C. 线段AC是的中线D. 线段AD是的边BC上的高13.在下图中,正确画出AC边上高的是( )A. B.C. D.14.如图,△ABC的角平分线AD、中线BE相交于点O,则①AO是△ABE的角平分线;②BO 是△ABD的中线;③DE是△ADC的中线;④ED是△EBC的角平分线的结论中正确的有()A. 1 个B. 2个C. 3个D. 4个15.如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是()A. AC是△ABC的高B. DE是△BCD的高C. DE是△ABE的高D. AD是△ACD的高16.三角形的角平分线、中线和高()A. 都是线段B. 都是射线C. 都是直线D. 不都是线段17.如图,在△ABC中,CD⊥AB于点D,则CD是△ABC()A. BC边上的高B. AB边上的高C. AC边上的高D. 以上都不对18.如图,下面的四个图形中,线段BE是△ABC的高的图是()A. B. C. D.二、填空题19.AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,△ABD与△ACD的周长之差为________cm.20.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是________度.21.如图所示,在△ABC中,∠1=∠2,G是AD的中点,延长BG交AC于点E,F为AB上一点,CF⊥AD交AD于点H.①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH为△ACD的边AD上的高;④AH是△ACF的角平分线和高线,其中判断正确的有________.22.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B=________23.如图,AD,BE,CF是△ABC的三条中线,则AB=2________,BD=________,AE=________.24.如图,在△ABC中,点D、E、F分别是线段BC、AD、CE的中点,且,则________cm2.25.一个等腰但不等边的三角形,它的角平分线、高、中线的总条数为________ 条.三、解答题26.如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为13cm,求AC的长.27.在△ABC中,AB=15,AC=13,BC边上高AD=12,试求△ABC周长。
一、选择题1. (2021贵州遵义第6题)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为()A.45°B.30°C.20°D.15°【答案】D.考点:平行线的性质..2. (2021贵州遵义第10题)如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是()A.4.5 B.5 C.5.5 D.6【答案】A.考点:三角形中位线定理;三角形的面积.3. (2021贵州遵义第12题)如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为()A.11 B.12 C.13 D.14【答案】C.【解析】试题分析:∵AD是∠BAC的平分线,AB=11,AC=15,∴1115 BD ABCD AC==,∵E是BC中点,∴11151321515 CECA+==,∵EF∥AD,.∴1315 CF CECA CD==,∴CF=1315CA=13.故选C.考点:平行线的性质;角平分线的性质..4. (2021湖南株洲第5题)如图,在△ABC中,∠BAC=x°,∠B=2x°,∠C=3x°,则∠BAD=()A.145°B.150°C.155°D.160°【答案】B.考点:三角形内角和定理.5. (2021湖南株洲第10题)如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.2D.2【答案】D.【解析】试题分析:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF =∠3+∠DFQ =45°,∴∠QEF =∠DFQ ,∵∠2=∠3, ∴△DQF ∽△FQE ,∴12DQ FQ DF FQ QE EF ===, ∵DQ =1,∴FQ =2,EQ =2,∴EQ +FQ =2+2, 故选D. .考点:旋转的性质;平行线的判定与性质;等腰直角三角形.6. (2021内蒙古通辽第7题)志远要在报纸上刊登广告,一块cm cm 510⨯的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费( ) A .540元 B .1080元 C.1620元 D .1800元 【答案】C考点:相似三角形的应用7. (2021郴州第8题)小明把一副45,30的直角三角板如图摆放,其中00090,45,30C F A D ∠=∠=∠=∠=,则αβ∠+∠等于 ( )A .0180 B .0210 C .0360 D .0270【答案】B .【解析】试题分析:∵∠α=∠1+∠D ,∠β=∠4+∠F ,∴∠α+∠β=∠1+∠D +∠4+∠F =∠2+∠D +∠3+∠F =∠2+∠3+30°+90°=210°,故选B .考点:三角形的外角的性质. .8. (2021广西百色第10题)如图,在距离铁轨200米处的B 处,观察由南宁开往百色的“和谐号”动车,当动车车头在A 处时,恰好位于B 处的北偏东60︒方向上,10秒钟后,动车车头到达C 处,恰好位于B 处西北方向上,则这时段动车的平均速度是( )米/秒.A .20(31)+B .20(31)- C. 200 D .300 【答案】A考点:1.解直角三角形的应用﹣方向角问题;2.勾股定理的应用.9. (2021哈尔滨第8题)在Rt ABC △中,90C ∠°,4AB ,1AC ,则cos B 的值为( ) A.154B.14C.1515D.41717【答案】A 【解析】试题分析:∵在Rt △ABC 中,∠C =90°,AB =4,AC =1,∴BC =2241- =15,则cosB =BCAB=154,故选A .考点:锐角三角函数的定义.10. (2021哈尔滨第9题)如图,在ABC △中,,D E 分别为,AB AC 边上的点,DE BC ∥,点F 为BC 边上一点,连接AF 交DE 于点E ,则下列结论中一定正确的是( )A.ADAEAB ECB.AC AEGF BDC.BD CEAD AED.AG ACAF EC【答案】C考点:相似三角形的判定与性质.11. (2021黑龙江绥化第6题)如图, A B C '''∆是ABC ∆在点O 为位似中心经过位似变换得到的,若A B C '''∆的面积与ABC ∆的面积比是4:9,则:OB OB '为( )A.2:3B.3:2C.4:5D.4:9【答案】A考点:位似变换.12. (2021黑龙江绥化第9题)某楼梯的侧面如图所示,已测得BC的长约为3.5米,BCA约为29,则该楼梯的高度AB可表示为()A.3.5sin29米B.3.5cos29米C.3.5tan29米D.3.5 cos29米【答案】A 【解析】试题分析:在Rt△ABC中,∵sin∠ACB=ABBC,∴AB=BCsin∠ACB=3.5sin29°,故选A..考点:解直角三角形的应用﹣坡度坡角问题.13. (2021湖南张家界第5题)如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC的周长是()A .6B .12C .18D .24 【答案】B . 【解析】试题分析:∵D 、E 分别是AB 、AC 的中点,∴AD =12AB ,AE =12AC ,DE =12BC ,∴△ABC 的周长=AB +AC +BC =2AD +2AE +2DE =2(AD +AE +DE )=2×6=12.故选B .. 考点:相似三角形的判定与性质;三角形中位线定理.14. (2021辽宁大连第8题)如图,在ABC ∆中,090=∠ACB ,AB CD ⊥,垂足为D ,点E 是AB 的中点,a DE CD ==,则AB 的长为( )A .a 2B .a 22 C. a 3 D .a 334 【答案】B.考点:直角三角形斜边上的中线.15. (2021海南第13题)已知△ABC 的三边长分别为4、4、6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条. A .3B .4C .5D .6【答案】B.考点:等腰三角形的性质.16. (2021河池第9题)三角形的下列线段中,能将三角形分成面积相等的两部分是() A .中线 B .角平分线 C.高 D .中位线 【答案】A. 【解析】试题分析:根据等底等高的三角形的面积相等解答. ∵三角形的中线把三角形分成两个等底同高的三角形, ∴三角形的中线将三角形的面积分成相等两部分. 故选A .考点:三角形的面积;三角形的角平分线、中线和高.17. (2021河池第12题)已知等边ABC ∆的边长为12,D 是AB 上的动点,过D 作AC DE ⊥于点E ,过E 作BC EF ⊥于点F ,过F 作AB FG ⊥于点G .当G 与D 重合时,AD 的长是() A .3 B .4 C. 8 D .9 【答案】B. 【解析】试题分析:设AD =x ,根据等边三角形的性质得到∠A =∠B =∠C =60°,由垂直的定义得到∠ADF =∠DEB =∠EFC =90°,解直角三角形即可得到结论.. 设AD =x ,∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°, ∵DE ⊥AC 于点E ,EF ⊥BC 于点F ,FG ⊥AB ,∴∠ADF =∠DEB =∠EFC =90°,∴AF =2x ,∴CF =12﹣2x , ∴CE =2CF =24﹣4x ,∴BE =12﹣CE =4x ﹣12,∴BD =2BE =8x ﹣24,∵AD+BD=AB,∴x+8x﹣24=12,∴x=4,∴AD=4.故选B.考点:等边三角形的性质;含30度角的直角三角形. .18. (2021贵州六盘水第12题)三角形的两边,a b的夹角为60°且满足方程23240x x,则第三边长的长是( )A.6B.22C.23D.32【答案】考点:一元二次方程;勾股定理.二、填空题1. (2021湖南株洲第11题)如图示在△ABC中∠B=.【答案】25°. 【解析】试题分析:∵∠C =90°,∴∠B =90°﹣∠A =90°﹣65°=25°; 故答案为:25°..考点:直角三角形的性质.2. (2021湖北咸宁第16题)如图,在ACB Rt ∆中,30,2=∠=BAC BC ,斜边AB 的两个端点分别在相互垂直的射线ON OM ,上滑动,下列结论: ①若O C 、两点关于AB 对称,则32=OA ; ②O C 、两点距离的最大值为4; ③若AB 平分CO ,则CO AB ⊥; ④斜边AB 的中点D 运动路径的长为2π. 其中正确的是 .【答案】①②③.④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的14,则:902180π⨯=π.所以④不正确;综上所述,本题正确的有:①②③;考点:三角形综合题..3. (2021湖南常德第14题)如图,已知Rt△ABE中∠A=90°,∠B=60°,BE=10,D是线段AE上的一动点,过D作CD交BE于C,并使得∠CDE=30°,则CD长度的取值范围是.【答案】0≤CD ≤5. 【解析】试题分析:当点D 与点E 重合时,CD =0,当点D 与点A 重合时,∵∠A =90°,∠B =60°,∴∠E =30°,∴∠CDE =∠E ,∠CDB =∠B ,∴CE =CD ,CD =CB ,∴CD =12BE =5,∴0≤CD ≤5,故答案为:0≤CD ≤5. 考点:含30度角的直角三角形;直角三角形斜边上的中线..4. (2021黑龙江齐齐哈尔第17题)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD 是ABC ∆的“和谐分割线”,ACD ∆为等腰三角形,CBD ∆和ABC ∆相似,46A ∠=︒,则ACB ∠的度数为 .【答案】113°或92°.考点:1.相似三角形的性质;2.等腰三角形的性质.5. (2021黑龙江齐齐哈尔第19题)如图,在平面直角坐标系中,等腰直角三角形12OA A 的直角边1OA 在y轴的正半轴上,且1121OA A A ==,以2OA 为直角边作第二个等腰直角三角形23OA A ,以3OA 为直角边作第三个等腰直角三角形20172018OA A ,则点2017A 的坐标为 .【答案】(0,(2)2016)或(0,21008).考点:规律型:点的坐标.6. (2021黑龙江绥化第20题)在等腰ABC ∆中,AD BC ⊥交直线BC 于点D ,若12AD BC =,则ABC ∆的顶角的度数为 . 【答案】30°或150°或90°.. 【解析】试题分析:①BC 为腰, ∵AD ⊥BC 于点D ,AD =12BC ,∴∠ACD =30°, 如图1,AD 在△ABC 内部时,顶角∠C =30°,如图2,AD 在△ABC 外部时,顶角∠ACB =180°﹣30°=150°,②BC 为底,如图3, ∵AD ⊥BC 于点D ,AD =12BC ,∴AD =BD =CD ,∴∠B =∠BAD ,∠C =∠CAD ,∴∠BAD +∠CAD =12×180°=90°, ∴顶角∠BAC =90°,综上所述,等腰三角形ABC 的顶角度数为30°或150°或90°..考点:1.含30度角的直角三角形;2.等腰三角形的性质.7. (2021黑龙江绥化第21题)如图,顺次连接腰长为2 的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n 个小三角形的面积为 .【答案】2n-112考点:1.三角形中位线定理;2.等腰直角三角形.8. (2021上海第15题)如图,已知AB ∥CD ,CD =2AB ,AD 、BC 相交于点E ,设AE a = ,BE b =,那么向量CD 用向量a 、b 表示为 .【答案】2b a +考点:1.平面向量;2.平行线的性质9. (2021辽宁大连第15题)如图,一艘海轮位于灯塔P 的北偏东060方向,距离灯塔nmile 86的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东045方向上的B 处.此时,B 处与灯塔P 的距离约为 nmile .(结果取整数,参考数据:4.12,7.13≈≈)【答案】102. 【解析】试题分析:根据题意得出∠MPA =∠PAD =60°,从而知PD =AP •sin ∠PAD =433,由∠BPD =∠PBD =45°根据BP =sin PDB∠,即可求出即可..考点:解直角三角形的应用﹣方向角问题;勾股定理的应用.三、解答题1. (2021湖南株洲第22题)如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.【答案】①.证明见解析;②证明见解析. .【解析】试题分析:①由正方形ABCD与等腰直角三角形DEF,得到两对边相等,一对直角相等,利用SAS即可得证;考点:相似三角形的判定;全等三角形的判定与性质;等腰直角三角形;正方形的性质.2. (2021湖南株洲第23题)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=23,无人机的飞行高度AH为5003米,桥的长度为1255米.①求点H到桥左端点P的距离;②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度A B.【答案】①求点H到桥左端点P的距离为250米;②无人机的长度AB为5米.考点:解直角三角形的应用﹣仰角俯角问题.3. (2021郴州第19题)已知ABC ∆中,ABC ACB ∠=∠,点,D E 分别为边,AB AC 的中点,求证:BE CD =.【答案】详见解析. 【解析】试题分析:由∠ABC =∠ACB 可得AB =AC ,又点D 、E 分别是AB 、AC 的中点.得到AD =AE ,通过△ABE ≌△ACD ,即可得到结果.考点:全等三角形的判定及性质.4. (2021郴州第22题)如图所示,C城市在A城市正东方向,现计划在,A C两城市间修建一条高速铁路60方向上,在线段AC上距A城市(即线段AC),经测量,森林保护区的中心P在城市A的北偏东030方向上,已知森林保护区是以点P为圆心,100km为半径的圆形区域,120km的B处测得P在北偏东0请问计划修建的这条高速铁路是否穿越保护区,为什么?)(参考数据:3 1.732【答案】这条高速公路不会穿越保护区,理由详见解析.【解析】试题分析:作PH⊥AC于H.求出PH与100比较即可解决问题.试题解析:结论;不会.理由如下:作PH⊥AC于H.考点:解直角三角形的应用.5. (2021郴州第26题)如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1/cm s 的速度运动,当D 不与点A 重合是,将ACD ∆绕点C 逆时针方向旋转060得到BCE ∆,连接DE .(1)求证:CDE ∆是等边三角形;(2)当610t <<时,的BDE ∆周长是否存在最小值?若存在,求出BDE ∆的最小周长;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以,,D E B 为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.【答案】(1)详见解析;(2)存在,23+4;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD3,∴△BDE的最小周长=CD3;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,③当6<t <10s 时,由∠DBE =120°>90°,∴此时不存在;④当t >10s 时,由旋转的性质可知,∠DBE =60°,又由(1)知∠CDE =60°,∴∠BDE =∠CDE +∠BDC =60°+∠BDC ,而∠BDC >0°,∴∠BDE >60°,∴只能∠BDE =90°,从而∠BCD =30°,∴BD =BC =4,∴OD =14cm ,∴t =14÷1=14s ,综上所述:当t =2或14s 时,以D 、E 、B 为顶点的三角形是直角三角形.考点:旋转与三角形的综合题.6. (2021湖北咸宁第18题) 如图,点F C E B ,,,在一条直线上,FC BE DE AC DF AB ===,,.⑴求证:DFE ABC ∆≅∆;⑵连接BD AF ,,求证:四边形ABDF 是平行四边形.【答案】详见解析.考点:全等三角形的判定与性质;平行四边形的判定.7. (2021湖南常德第24题)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC =0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,3≈1.732,2≈1.414)【答案】3.05.考点:解直角三角形的应用.8. (2021湖南常德第26题)如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD =4DC ,取AB 的中点G ,连接CG 交AD 于M ,求证:①GM =2MC ;②AG 2=AF •A C .【答案】(1)证明见解析;(2)①证明见解析;②证明见解析.考点:相似三角形的判定与性质;全等三角形的判定与性质;和差倍分.9. (2021哈尔滨第24题)已知:ACB △和DCE △都是等腰直角三角形,90ACB DCE ∠∠°,连接AE ,BD 交于点O ,AE 与DC 交于点M ,BD 与AC 交于点N .(1)如图1,求证:AE BD ; (2)如图2,若AC DC ,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【答案】(1)证明见解析;(2)△ACB ≌△DCE (SAS ),△EMC ≌△BCN (ASA ),△AON ≌△DOM (AAS ),△AOB ≌△DOE (HL )考点:1.全等三角形的判定与性质;2.等腰直角三角形.10. (2021黑龙江齐齐哈尔第23题)如图,在ABC ∆中,AD BC ⊥于D ,BD AD =,DG DC =,E ,F 分别是BG ,AC 的中点.(1)求证:DE DF =,DE DF ⊥;(2)连接EF ,若10AC =,求EF 的长.【答案】(1)证明见解析;(2)EF =52 .考点:1.全等三角形的判定与性质;2.勾股定理.11. (2021湖北孝感第18题)如图,已知,,AB CD AE BD CF BD =⊥⊥ ,垂足分别为,,E F BF DE = .求证AB CD .【答案】证明见解析【解析】试题分析:根据全等三角形的判定与性质,可得∠B =∠D ,根据平行线的判定,可得答案.试题解析:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵BF=DE,∴BF+EF=DE+EF,∴BE=DF.在Rt△AFB和Rt△CFD中,AB CDBE DF=⎧⎨=⎩,∴Rt△AFB≌Rt△CFD(HL),∴∠B=∠D,∴AB∥C D.考点:全等三角形的判定与性质.12. (2021内蒙古呼和浩特第18题)如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.(1)求证:BD CE=;(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点.当ABC∆的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.【答案(1)证明见解析;(2)四边形DEMN是正方形.(2)四边形DEMN是正方形,理由:∵E、D分别是AB、AC的中点,∴AE=12AB,AD=12AC,ED是△ABC的中位线,∴ED∥BC,ED=12BC,∵点M、N分别为线段BO和CO中点,∴OM=BM,ON=CN,MN是△OBC的中位线,∴MN∥BC,MN=12 BC,∴ED∥MN,ED=MN,∴四边形EDNM是平行四边形,由(1)知BD=CE,又∵OE=ON,OD=OM,OM=BM,ON=CN,∴DM=EN,∴四边形EDNM是矩形,在△BDC与△CEB中,BE CDCE BDBC CB=⎧⎪=⎨⎪=⎩,∴△BDC≌△CEB,∴∠BCE=∠CBD,∴OB=OC,∵△ABC的重心到顶点A的距离与底边长相等,∴O到BC的距离=12BC,∴BD⊥CE,∴四边形DEMN是正方形.考点:1.全等三角形的判定与性质;2.三角形的重心;3.等腰三角形的性质.13.(2021内蒙古呼和浩特第22题)如图,地面上小山的两侧有A,B两地,为了测量A,B两地的距离,让一热气球从小山西侧A地出发沿与AB成30︒角的方向,以每分钟40m的速度直线飞行,10分钟后到达C处,此时热气球上的人测得CB与AB成70︒角,请你用测得的数据求A,B两地的距离AB长.(结果用含非特殊角的三角函数和根式表示即可)【答案】A,B两地的距离AB长为200(3﹣tan20°)米.在直角△BCM中,∵tan20°=BMCM,∴BM=200tan20°,∴AB =AM ﹣BM =2003﹣200tan 20°=200(3﹣tan 20°),因此A ,B 两地的距离AB 长为200(3﹣tan 20°)米.考点:解直角三角形的应用.14. (2021青海西宁第24题)如图,建设“幸福西宁”,打造“绿色发展样板城市”.美丽的湟水河宛如一条玉带穿城而过,已形成“水清、流畅、岸绿、景美”的生态环境新格局.在数学课外实践活动中,小亮在海湖新区自行车绿道北段AC 上的,A B 两点分别对南岸的体育中心D 进行测量,分别没得0030,60,200DAC DBC AB ∠=∠==米,求体育中心D 到湟水河北岸AC 的距离约为多少米(精确到1米,3 1.732≈)?【答案】体育中心D 到湟水河北岸AC 的距离约为173米.在直角△BHD 中,sin 60°=32002DH DH BD ==,∴DH =1003≈100×1.732≈173.答:体育中心D到湟水河北岸AC的距离约为173米.考点:解直角三角形的应用.15. (2021上海第21题)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥B C.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.【答案】(1)sinB=21313;(2)DE =5.考点:1.解直角三角形的应用;2.平行线分线段成比例定理.16. (2021湖南张家界第19题)位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD 和底座CD 两部分组成.如图,在Rt △ABC 中,∠ABC =70.5°,在Rt △DBC 中,∠DBC =45°,且CD =2.3米,求像体AD 的高度(最后结果精确到0.1米,参考数据:sin 70.5°≈0.943,cos 70.5°≈0.334,tan 70.5°≈2.824)【答案】4.2m .考点:解直角三角形的应用.17. (2021辽宁大连第24题)如图,在ABC ∆中,090=∠C ,4,3==BC AC ,点E D ,分别在BC AC ,上(点D 与点C A ,不重合),且A DEC ∠=∠.将DCE ∆绕点D 逆时针旋转090得到''E DC ∆.当''E DC ∆的斜边、直角边与AB 分别相交于点Q P ,(点P 与点Q 不重合)时,设y PQ x CD ==,.(1)求证:DEC ADP ∠=∠;(2)求y 关于x 的函数解析式,并直接写出自变量x 的取值范围.【答案】(1)见解析;(2)5512(3),627255612.12257x xyx x⎧-+<<⎪⎪=⎨⎛⎫⎪-<≤⎪⎪⎝⎭⎩(2)解:如图1中,当C′E′与AB相交于Q时,即61257x<≤时,过P作MN∥DC′,设∠B=α∴MN⊥AC,四边形DC′MN是矩形,∴PM=PQ•cosα=45y,PN=43×12(3﹣x),∴23(3﹣x)+45y=x,∴255122y x=-,考点:旋转的性质;函数关系式;矩形的判定与性质;解直角三角形.18. (2021辽宁大连第25题)如图1,四边形ABCD 的对角线BD AC ,相交于点O ,OD OB =,m AD AB OA OC =+=,,n BC =,ACB ADB ABD ∠=∠+∠.(1)填空:BAD ∠与ACB ∠的数量关系为 ;(2)求nm 的值; (3)将ACD ∆沿CD 翻折,得到CD A '∆(如图2),连接'BA ,与CD 相交于点P .若215+=CD ,求PC 的长.【答案】(1)∠BAD +∠ACB =180°;(2)512;(3)1.考点:相似三角形的判定和性质;解一元二次方程;三角形的内角和定理.19. (2021海南第22题)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度B C.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【答案】水坝原来的高度为12米..考点:解直角三角形的应用,坡度.20. (2021新疆乌鲁木齐第21题)一艘渔船位于港口A的北偏东60方向,距离港口20海里B处,它沿北偏西37方向航行至C处突然出现故障,在C处等待救援,,B C之间的距离为10海里,救援船从港口A≈≈≈,结果取整数)出发20分钟到达C处,求救援的艇的航行速度.(sin370.6,cos370.8,3 1.732【答案】救援的艇的航行速度大约是64海里/小时.【解析】∵cos 37°=EB BC, ∴EB =BC •cos 37°≈0.8×10=8海里,EF =AD =17.32海里,∴FC =EF ﹣CE =11.32海里,AF =ED =EB +BD =18海里,在Rt △AFC 中,AC =22221811.32AF FC +=+≈21.26海里, 21.26×3≈64海里/小时.答:救援的艇的航行速度大约是64海里/小时.考点:解直角三角形的应用﹣方向角问题。
2022年数学中考试题汇编三角形一、选择题(本大题共30小题,共90.0分)1.(2022·广西壮族自治区玉林市·历年真题)请你量一量如图△ABC中BC边上的高的长度,下列最接近的是( )A. 0.5cmB. 0.7cmC. 1.5cmD. 2cm2.(2022·浙江省杭州市·历年真题)如图,CD⊥AB于点D,已知∠ABC是钝角,则( )A. 线段CD是△ABC的AC边上的高线B. 线段CD是△ABC的AB边上的高线C. 线段AD是△ABC的BC边上的高线D. 线段AD是△ABC的AC边上的高线3.(2022·湖南省张家界市·历年真题)如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC=√3,则△AOB与△BOC的面积之和为( )A. √34B. √32C. 3√34D. √34.(2022·广西壮族自治区桂林市·历年真题)如图,在△ABC中,∠B=22.5°,∠C=45°,若AC=2,则△ABC的面积是( )A. 3+√2B. 1+√2C. 2√2D. 2+√225.(2022·浙江省湖州市·历年真题)如图,已知在锐角△ABC中,AB=AC,AD是△ABC的角平分线,E是AD上一点,连结EB,EC.若∠EBC=45°,BC=6,则△EBC的面积是( )A. 12B. 9C. 6D. 3√26.(2022·湖南省永州市·历年真题)下列多边形具有稳定性的是( )A. B.C. D.7.(2022·江苏省·历年真题)已知三角形的两边长分别为4cm和10cm,则该三角形的第三边的长度可能是( )A. 5cmB. 6cmC. 8cmD. 15cm8.(2022·河北省·历年真题)题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥2,乙答:d=1.6,丙答:d=√2,则正确的是( )A. 只有甲答的对B. 甲、丙答案合在一起才完整C. 甲、乙答案合在一起才完整D. 三人答案合在一起才完整9.(2022·河北省·历年真题)平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是( )A. 1B. 2C. 7D. 810.(2022·江苏省宿迁市·历年真题)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是( )A. 8cmB. 13cmC. 8cm或13cmD. 11cm或13cm11.(2022·江苏省·历年真题)如图,将直尺与30°角的三角尺叠放在一起,若∠2=70°,则∠1的大小是( )A. 45°B. 50°C. 55°D. 40°12.(2022·浙江省金华市·历年真题)如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO≌△DCO的依据是( )A. SSSB. SASC. AASD. HL13.(2022·四川省成都市·历年真题)如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC//DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是( )A. BC=DEB. AE=DBC. ∠A=∠DEFD. ∠ABC=∠D14.(2022·北京市·历年真题)如图,点E,点F在直线AC上,AF=CE,AD=CB,下列条件中不能推断△ADF≌△CBE的是( )A. ∠D=∠BB. ∠A=∠CC. BE=DFD. AD//BC15.(2022·广西壮族自治区梧州市·历年真题)如图,在△ABC中,AB=AC,AD是△ABC的角平分线,过点D分别作DE⊥AB,DF⊥AC,垂足分别是点E,F,则下列结论错误的是( )A. ∠ADC=90°B. DE=DFC. AD=BCD. BD=CD16.(2022·江苏省扬州市·历年真题)如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为△ABC,提供下列各组元素的数据,配出来的玻璃不一定符合要求的是( )A. AB,BC,CAB. AB,BC,∠BC. AB,AC,∠BD. ∠A,∠B,BC17.(2022·湖北省恩施土家族苗族自治州·历年真题)如图,在矩形ABCD中,连接BD,分别以B、D为圆心,大于1BD的长为半径画弧,两弧交于P、Q两点,作直线PQ,2分别与AD、BC交于点M、N,连接BM、DN.若AD=4,AB=2.则四边形MBND的周长为( )B. 5C. 10D. 20A. 5218.(2022·湖南省长沙市·历年真题)如图,在△ABC中,按以下步骤作图:AB的长为半径画弧,19.①分别过点A、B为圆心,大于12两弧交于P、Q两点;20.②作直线PQ交AB于点D;21.③以点D为圆心,AD长为半径画弧交PQ于点M,连接AM、BM.22.若AB=2√2,则AM的长为( )A. 4B. 2C. √3D. √223.(2022·湖北省荆州市·历年真题)如图,直线l1//l2,AB=AC,∠BAC=40°,则∠1+∠2的度数是( )A. 60°B. 70°C. 80°D. 90°24.(2022·黑龙江省鹤岗市·历年真题)如图,△ABC中,AB=AC,AD平分∠BAC与BC相交于点D,点E是AB的中点,点F是DC的中点,连接EF交AD于点P.若△ABC的面积是24,PD=1.5,则PE的长是( )A. 2.5B. 2C. 3.5D. 325.(2022·安徽省·历年真题)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP长的最小值是( )A. 3√32B. 5√32C. 3√3D. 7√3226.(2022·海南省·历年真题)如图,直线m//n,△ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若∠1=140°,则∠2的度数是( )A. 80°B. 100°C. 120°D. 140°27.(2022·广西壮族自治区贺州市·历年真题)如图,在Rt△ABC中,∠C=90°,∠B=56°,则∠A的度数为( )A. 34°B. 44°C. 124°D. 134°28.(2022·广西壮族自治区百色市·历年真题)活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等.如已知△ABC中,∠A=30°,AC=3,∠A所对的边为√3,满足已知条件的三角形有两个(我们发现其中如图的△ABC是一个直角三角形),则满足已知条件的三角形的第三边长为( )A. 2√3B. 2√3−3C. 2√3或√3D. 2√3或2√3−329.(2022·浙江省宁波市·历年真题)如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为( )A. 2√2B. 3C. 2√3D. 430.(2022·广西壮族自治区贵港市·历年真题)如图,在4×4网格正方形中,每个小正方形的边长为1,顶点为格点,若△ABC的顶点均是格点,则cos∠BAC的值是( )A. √55B. √105C. 2√55D. 4531.(2022·贵州省贵阳市·历年真题)如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形.若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是( )A. 4B. 8C. 12D. 1632.(2022·湖北省·历年真题)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A. √3,2,√5B. 1,√2,√3C. 13,14,15D. 4,,5,633.(2022·湖北省鄂州市·历年真题)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC= BD=4cm,则这种铁球的直径为( )A. 10cmB. 15cmC. 20cmD. 24cm34.(2022·浙江省金华市·历年真题)如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是( )A. B.C. D.二、填空题(本大题共10小题,共30.0分)35.(2022·江苏省常州市·历年真题)如图,在△ABC中,E是中线AD的中点.若△AEC的面积是1,则△ABD的面积是______.36.(2022·江苏省·历年真题)已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为__________.37.(2022·黑龙江省哈尔滨市·历年真题)在△ABC中,AD为边BC上的高,∠ABC=30°,∠CAD=20°,则∠BAC是______度.38.(2022·湖北省咸宁市·历年真题)如图,已知AB//DE,AB=DE,请你添加一个条件______,使△ABC≌△DEF.39.(2022·湖南省株洲市·历年真题)如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON⊥BC于点N,若OM=ON,则∠ABO=______度.40.(2022·北京市·历年真题)如图,在△ABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则S△ACD=______.41.(2022·浙江省绍兴市·历年真题)如图,在△ABC中,∠ABC=40°,∠BAC=80°,以点A为圆心,AC长为半径作弧,交射线BA于点D,连结CD,则∠BCD的度数是______.42.(2022·北京市·历年真题)如图,△ABC是等边三角形,AE=BD,AD与CE交于点F,则∠CFD的度数是______ .43.(2022·广西壮族自治区梧州市·历年真题)如图,在△ABC中,∠ACB=90°,点D,E分别是AB,AC边上的中点,连接CD,DE.如果AB=5m,BC=3m,那么CD+DE的长是______m.44.(2022·贵州省贵阳市·历年真题)如图,在四边形ABCD中,对角线AC,BD相交于点E,AC=BC=6cm,∠ACB=∠ADB=90°.若BE=2AD,则△ABE的面积是______cm2,∠AEB=______度.三、解答题(本大题共6小题,共48.0分)45.(2022·江苏省南通市·历年真题)如图,AC和BD相交于点O,OA=OC,OB=OD.46.(1)求证:∠A=∠C;47.(2)求证:AB//CD.48.(2022·内蒙古自治区赤峰市·历年真题)如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.49.(1)作BC的垂直平分线,分别交AB、BC于点D、H;50.(要求:尺规作图,不写作法,保留作图痕迹)51.(2)在(1)的条件下,连接CD,求△BCD的周长.52.(2022·山西省·历年真题)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24m到达点F,测得点E 处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,√3≈1.73).53.54.(2022·黑龙江省鹤岗市·历年真题)△ABC和△ADE都是等边三角形.55.(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有PA+PB=PC(或PA+PC=PB)成立(不需证明);56.(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;57.(3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.58.59.(2022·浙江省杭州市·历年真题)如图,在Rt△ACB中,∠ACB=90°,点M为边AB的中点,点E在线段AM上,EF⊥AC于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.60.(1)求证:CE=CM.61.(2)若AB=4,求线段FC的长.62.(2022·北京市·历年真题)在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.63.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;64.(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.65.1.【答案】D【解析】解:过点A作AD⊥BC于D,用刻度尺测量AD的长度,更接近2cm,故选:D.过点A作AD⊥BC于D,用刻度尺测量AD即可.本题考查的是三角形的高的概念,从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.2.【答案】B【解析】解:A、线段CD是△ABC的AB边上的高线,故本选项说法错误,不符合题意;B、线段CD是△ABC的AB边上的高线,本选项说法正确,符合题意;C、线段AD不是△ABC的边上高线,故本选项说法错误,不符合题意;D、线段AD不是△ABC的边上高线,故本选项说法错误,不符合题意;故选:B.根据三角形的高的概念判断即可.本题考查的是三角形的高的概念,从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.3.【答案】C【解析】解:将△AOB绕点B顺时针旋转60°得△BCD,连接OD,∴OB=OD,∠BOD=60°,CD=OA=2,∴△BOD是等边三角形,∴OD=OB=1,∵OD2+OC2=12+(√3)2=4,CD2=22=4,∴OD2+OC2=CD2,∴∠DOC=90°,∴△AOB与△BOC的面积之和为S△BOC+S△BCD=S△BOD+S△COD=√34×12+12×1×√3=3√34,故选:C.将△AOB绕点B顺时针旋转60°得△BCD,连接OD,可得△BOD是等边三角形,再利用勾股定理的逆定理可得∠COD=90°,从而解决问题.本题主要考查了等边三角形的判定与性质,勾股定理的逆定理,旋转的性质等知识,利用旋转将△AOB与△BOC的面积之和转化为S△BOC+S△BCD,是解题的关键.4.【答案】D【解析】解:如图,过点A作AD⊥AC于A,交BC于D,过点A作AE⊥BC于E,∵∠C=45°,∴△ADC是等腰直角三角形,∴AD=AC=2,∠ADC=45°,CD=√2AC=2√2,∵∠ADC=∠B+∠BAD,∠B=22.5°,∴∠DAB=22.5°,∴∠B=∠DAB,∴AD=BD=2,∵AD=AC,AE⊥CD,∴DE=CE,∴AE=12CD=√2,∴△ABC的面积=12⋅BC⋅AE=12×√2×(2+2√2)=2+√2.故选:D.如图,过点A作AD⊥AC于A,交BC于D,过点A作AE⊥BC于E,先证明△ADC是等腰直角三角形,得AD=AC=2,∠ADC=45°,CD=√2AC=2√2,再证明AD=BD,计算AE和BC的长,根据三角形的面积公式可解答.本题考查的是勾股定理,等腰直角三角形的性质,三角形的面积,熟知掌握等腰三角形的性质是解本题的关键.5.【答案】B【解析】解:∵AB=AC,AD是△ABC的角平分线,∴BD=CD=12BC=3,AD⊥BC,在Rt△EBD中,∠EBC=45°,∴ED=BD=3,∴S△EBC=12BC⋅ED=12×6×3=9,故选:B.根据等腰三角形的性质得到BD=CD=3,AD⊥BC,根据等腰直角三角形的性质求出ED,根据三角形的面积公式计算,得到答案.本题考查的是等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.6.【答案】D【解析】解:三角形具有稳定性,其它多边形不具有稳定性,故选:D.根据三角形具有稳定性即可得出答案.本题考查了三角形的稳定性,掌握三角形具有稳定性是解题的关键.7.【答案】C【解析】【分析】本题考查了三角形三边关系,已知三角形的两边长分别为4cm和10cm,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围即可解答.【解答】解:设第三边长为xcm,则由三角形三边关系定理得10−4<x<10+4,即6<x<14.因此,本题的第三边应满足6<x<14,只有C符合题意,故选C.8.【答案】B【解析】解:由题意知,当CA⊥BA或CA>BC时,能作出唯一一个△ABC,①当CA⊥BA时,∵∠B=45°,BC=2,=√2,∴AC=BC⋅sin45°=2×√22即此时d=√2,②当CA=BC时,∵∠B=45°,BC=2,∴此时AC=2,即d>2,综上,当d=√2或d>2时能作出唯一一个△ABC,故选:B.由题意知,当CA⊥BA或CA>BC时,能作出唯一一个△ABC,分这两种情况求解即可.本题主要考查三角形的三边关系及等腰直角三角形的知识,熟练掌握等腰直角三角形的性质及三角形的三边关系是解题的关键.9.【答案】C【解析】解:∵平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形,∴1+d+1+1>5且1+5+1+1>d,∴d的取值范围为:2<d<8,∴则d可能是7.故选:C.利用凸五边形的特征,根据两点之间线段最短求得d的取值范围,利用此范围即可得出结论.本题主要考查了组成凸五边形的条件,利用两点之间线段最短得到d的取值范围是解题的关键.10.【答案】D【解析】解:当3cm是腰长时,3,3,5能组成三角形,当5cm是腰长时,5,5,3能够组成三角形.则三角形的周长为11cm或13cm.故选:D.题目给出等腰三角形有两条边长为3cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.11.【答案】B【解析】【分析】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.根据平角的定义和平行线的性质即可得到结论.【解答】解:如图:由题意得:∠4=180°−90°−30°=60°,∵AB//CD,∴∠3=∠2=70°,∴∠1=180°−∠3−∠4=180°−70°−60°=50°.故选:B.12.【答案】B【解析】解:在△AOB和△DOC中,{OA=OD∠ADB=∠DOC OB=OC,∴△AOB≌△DOC(SAS),故选:B.根据题目中的条件和全等三角形的判定方法,可以得到判定△ABO≌△DCO的依据.本题考查全等三角形的判定,解答本题的关键是明确题意,写出△AOB和△DOC全等的证明过程.13.【答案】B【解析】解:∵AC//DF,∴∠A=∠D,∵AC=DF,∴当添加∠C=∠F时,可根据“ASA”判定△ABC≌△DEF;当添加∠ABC=∠DEF时,可根据“AAS”判定△ABC≌△DEF;当添加AB=DE时,即AE=BD,可根据“SAS”判定△ABC≌△DEF.故选:B.先根据平行线的性质得到∠A=∠D,加上AC=DF,则可根据全等三角形的判定方法对各选项进行判断.本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的根据,选用哪一种方法,取决于题目中的已知条件.14.【答案】A【解析】解:A、SSA不能判定三角形全等,本选项符合题意.B、根据SAS,可以推出△ADF≌△CBE,本选项不符合题意.C、根据SSS,可以推出△ADF≌△CBE,本选项不符合题意.D、根据SAS,可以推出△ADF≌△CBE,本选项不符合题意.故选:A.根据全等三角形的判定方法,一一判断即可.本题考查全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.15.【答案】C【解析】解:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,BD=CD,∠B=∠C,∴∠ADC=90°,在△BDE和△CDF中,{∠B=∠C∠BED=∠CFD BD=CD,∴△BDE≌△CDF(AAS),∴DE=DF,故选:C.由等腰三角形的性质可得AD⊥BC,BD=CD,∠B=∠C,由“AAS”可证△BDE≌△CDF,可得DE=DF.本题考查了全等三角形的判定和性质,等腰三角形的性质,掌握等腰三角形的性质是解题的关键.16.【答案】C【解析】解:A.利用三角形三边对应相等,两三角形全等,三角形形状确定,故此选项不合题意;B.利用三角形两边、且夹角对应相等,两三角形全等,三角形形状确定,故此选项不合题意;C.AB,AC,∠B,无法确定三角形的形状,故此选项符合题意;D.根据∠A,∠B,BC,三角形形状确定,故此选项不合题意;故选:C.直接利用全等三角形的判定方法分析得出答案.此题主要考查了全等三角形的应用,正确掌握全等三角形的判定方法是解题关键.17.【答案】C【解析】解:由作图过程可得:PQ为BD的垂直平分线,∴BM=MD,BN=ND.设PQ与BD交于点O,如图,则BO=DO.∵四边形ABCD是矩形,∴AD//BC,∴∠MDO=∠NBO,∠DMO=∠BNO,在△MDO和△NBO中,{∠MDO=∠NBO ∠DMO=∠BNO OD=OB,∴△MDO≌△NBO(AAS),∴DM=BN,∴四边形BNDM为平行四边形,∵BM=MD,∴四边形MBND为菱形,∴四边形MBND的周长=4BM.设MB=x,则MD=BM=x,∴AM=AD−DM=4−x,在Rt△ABM中,∵AB2+AM2=BM2,∴22+(4−x)2=x2,解得:x=52,∴四边形MBND的周长=4BM=10.故选:C.利用作图过程可得PQ为BD的垂直平分线,利用垂直平分线的性质和全等三角形的判定与性质证明四边形MBND为菱形,利用勾股定理求得BM,则结论可得.本题主要考查了基本作图,作线段的垂直平分线,矩形的性质,线段垂直平分线的性质,菱形的判定与性质,勾股定理,全等三角形的判定与性质,判定四边形MBND为菱形是解题的关键.18.【答案】B【解析】解:由作图可知,PQ是AB的垂直平分线,∴AM=BM,∵以点D为圆心,AD长为半径画弧交PQ于点M,∴DA=DM=DB,∴∠DAM=∠DMA,∠DBM=∠DMB,∵∠DAM+∠DMA+∠DBM+∠DMB=180°,∴2∠DMA+2∠DMB=180°,∴∠DMA+∠DMB=90°,即∠AMB=90°,∴△AMB是等腰直角三角形,∴AM=√22AB=√22×2√2=2,故选:B.证明△AMB是等腰直角三角形,即可得到答案.本题考查尺规作图中的相关计算问题,解题的关键是根据作图证明△AMB是等腰直角三角形.19.【答案】B【解析】解:过点C作CD//l1,如图,∵l1//l2,∴l1//l2//CD,∴∠1=∠BCD,∠2=∠ACD,∴∠1+∠2=∠BCD+∠ACD=∠ACB,∵AB=AC,∴∠ACB=∠ABC,∵∠BAC=40°,∴∠ACB=12(180°−∠BAC)=70°,∴∠1+∠2=70°.故选:B.过点C作CD//l1,利用平行线的性质可得∠1+∠2=∠ACB,再由等腰三角形的性质可得∠ACB=∠ABC,从而可求解.本题主要考查等腰三角形的性质,平行线的性质,解答的关键是由平行线的性质得∠1+∠2=∠ACB.20.【答案】A【解析】解:如图,过点E作EG⊥AD于G,∵AB=AC,AD平分∠BA C,∴AD⊥BC,BD=CD,∴∠PDF=∠EGP=90°,EG//BC,∵点E是AB的中点,∴G是AD的中点,BD,∴EG=12∵F是CD的中点,CD,∴DF=12∴EG=DF,∵∠EPG=∠DPF,∴△EGP≌△FDP(AAS),∴PG=PD=1.5,∴AD=2DG=6,∵△ABC的面积是24,⋅BC⋅AD=24,∴12∴BC=48÷6=8,BC=2,∴DF=14∴EG=DF=2,由勾股定理得:PE=√22+1.52=2.5.故选:A.如图,过点E作EG⊥AD于G,证明△EGP≌△FDP,得PG=PD=1.5,由三角形中位线定理可得AD的长,由三角形ABC的面积是24,得BC的长,最后由勾股定理可得结论.本题考查了等腰三角形的性质,三角形的中位线定理,全等三角形的性质和判定,三角形的面积等知识,作辅助线构建全等三角形是解本题的关键.21.【答案】B【解析】解:如图,不妨假设点P在AB的左侧,∵S△PAB+S△ABC=S△PBC+S△PAC,∴S1+S0=S2+S3,∵S1+S2+S3=2S0,∴S1+S1+S0=2S,∴S1=12S0,∵△ABC是等边三角形,边长为6,∴S0=√34×62=9√3,∴S1=9√32,过点P作AB的平行线PM,连接CO延长CO交AB于点R,交PM于点T.∵△PAB的面积是定值,∴点P的运动轨迹是直线PM,∵O是△ABC的中心,∴CT⊥AB,CT⊥PM,∴12⋅AB⋅RT=9√32,CR=3√3,OR=√3,∴RT=3√32,∴OT=OR+TR=5√32,∵OP≥OT,∴OP的最小值为5√32,故选:B.如图,不妨假设点P在AB的左侧,证明△PAB的面积是定值,过点P作AB的平行线PM,连接CO延长CO交AB于点R,交PM于点T.因为△PAB的面积是定值,推出点P的运动轨迹是直线PM,求出OT的值,可得结论.本题考查等边三角形的性质,解直角三角形,三角形的面积等知识,解题的关键是证明△PAB的面积是定值.22.【答案】B【解析】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°.在△ADE中,∵∠1=∠A+∠AEF=140°,∴∠AEF=140°−60°=80°,∴∠DEB=∠AEF=80°,∵m//n,∴∠2+∠DEB=180°,∴∠2=180°−80°=100°,故选:B.先根据等边三角形的性质可得∠A=∠B=∠C=60°,由三角形外角的性质可得∠AEF的度数,由平行线的性质可得同旁内角互补,可得结论.本题主要考查了等边三角形的性质,平行线的性质,三角形外角的性质,题目比较基础,熟练掌握性质是解题的关键.23.【答案】A【解析】解:在Rt△ABC中,∠C=90°,则∠B+∠A=90°,∵∠B=56°,∴∠A=90°−56°=34°,故选:A.根据直角三角形的两锐角互余计算即可.本题考查的是直角三角形的性质,掌握直角三角形的两锐角互余是解题的关键.24.【答案】C【解析】解:如图,CD=CB,作CH⊥AB于H,∴DH=BH,∵∠A=30°,∴CH=12AC=32,AH=√3CH=32√3,在Rt△CBH中,由勾股定理得BH=√BC2−CH2=√3−94=√32,∴AB=AH+BH=3√32+√32=2√3,AD=AH−DH=3√32−√32=√3,故选:C.根据题意知,CD=CB,作CH⊥AB于H,再利用含30°角的直角三角形的性质可得CH,AH的长,再利用勾股定理求出BH,从而得出答案.本题主要考查了勾股定理,含30°角的直角三角形的性质等知识,理解题意,求出BH的长是解题的关键.25.【答案】D【解析】解:∵D为斜边AC的中点,F为CE中点,DF=2,∴AE=2DF=4,∵AE=AD,∴AD=4,在Rt△ABC中,D为斜边AC的中点,∴BD=12AC=AD=4,故选:D.根据三角形中位线可以求得AE的长,再根据AE=AD,可以得到AD的长,然后根据直角三角形斜边上的中线和斜边的关系,可以求得BD的长.本题考查直角三角线斜边上的中线和斜边的关系、三角形的中位线,解答本题的关键是求出AD的长.26.【答案】C【解析】解:延长AC到D,连接BD,如图:∵AD2=20,BD2=5,AB2=25,∴AD2+BD2=AB2,∴∠ADB=90°,∴cos∠BAC =AD AB =√20√25=2√55, 故选:C . 延长AC 到D ,连接BD ,由网格可得AD 2+BD 2=AB 2,即得∠ADB =90°,可求出答案. 本题考查网格中的锐角三角函数,解题的关键是作辅助线,构造直角三角形.27.【答案】B【解析】解:由题意可得, 大正方形的边长为:√12+32=√10,则小正方形的面积为:(√10)2−12×1×3×4=10−6=4,∴小正方形的边长为√4=2,∴小正方形的周长为:2×4=8,故选:B .根据题意和题目中的数据,可以计算出大正方形的边长,然后即可计算出小正方形的面积,从而可以求得小正方形的边长,然后即可得到小正方形的周长.本题考查勾股定理的证明,解答本题的关键是明确题意,利用数形结合的思想解答. 28.【答案】B【解析】【分析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则就不是.【解答】 解:A 、(√3)2+22≠(√5)2,不能构成直角三角形,故错误;B 、12+(√2)2=(√3)2,能构成直角三角形,故正确;C 、(14)2+(15)2≠(13)2,不能构成直角三角形,故错误; D 、42+52≠62,不能构成直角三角形,故错误.故选B . 29.【答案】C【解析】解:如图,连接OE,交AB于点F,连接OA,∵AC⊥CD、BD⊥CD,∴AC//BD,∵AC=BD=4cm,∴四边形ACDB是平行四边形,∴四边形ACDB是矩形,∴AB//CD,AB=CD=16cm,∵CD切⊙O于点E,∴OE⊥CD,∴OE⊥AB,∴四边形EFBD是矩形,AF=12AB=12×16=8(cm),∴EF=BD=4cm,设⊙O的半径为r cm,则OA=r cm,OF=OE−EF=(r−4)cm,在Rt△AOF中,OA2=AF2+OF2,∴r2=82+(r−4)2,解得:r=10,∴这种铁球的直径为20cm,故选:C.连接OE,交AB于点F,连接OA,∵AC⊥CD、BD⊥CD,由矩形的判断方法得出四边形ACDB是矩形,得出AB//CD,AB=CD=16cm,由切线的性质得出OE⊥CD,得出OE⊥AB,得出四边形EFBD是矩形,AF=12AB=12×16=8(cm),进而得出EF=BD=4cm,设⊙O的半径为r cm,则OA=rcm,OF=OE−EF=(r−4)cm,由勾股定理得出方程r2=82+(r−4)2,解方程即可求出半径,继而求出这种铁球的直径.本题考查了垂径定理的应用,勾股定理的应用,掌握矩形的判定与性质,平行四边形的判定与性质,切线的性质,垂径定理,勾股定理是解决问题的关键.30.【答案】C【解析】解:将圆柱侧面沿AC“剪开”,侧面展开图为矩形,∵圆柱的底面直径为AB,∴点B是展开图的一边的中点,∵蚂蚁爬行的最近路线为线段,∵C选项符合题意,故选:C.利用圆柱的侧面展开图是矩形,而点B是展开图的一边的中点,再利用蚂蚁爬行的最近路线为线段可以得出结论.本题主要考查了圆柱的侧面展开图,最短路径问题,掌握两点之间线段最短是解题的关键.31.【答案】2【解析】解:∵E是AD的中点,∴CE是△ACD的中线,∴S△ACD=2S△AEC,∵△AEC的面积是1,∴S△ACD=2S△AEC=2,∵AD是△ABC的中线,∴S△ABD=S△ACD=2.故答案为:2.由题意可得CE是△ACD的中线,则有S△ACD=2S△AEC=2,再由AD是△ABC的中线,则有S△ABD=S△ACD,即得解.本题主要考查三角形的面积,解答的关键是明确三角形的中线把原三角形分成面积相等的两部分.32.【答案】5【解析】【分析】本题考查的知识点是三角形的三边关系,首先利用两边之和大于第三边,两边之差小于第三边,得到第三边的范围,再在范围内取整数即可得到答案.【解答】解:设第三边为c,根据三角形的三边关系得:5−1<c<5+1,即4<c<6.又∵第三边长为整数,∵第三边的长是5.故答案为5.33.【答案】80或40【解析】解:当△ABC为锐角三角形时,如图,∠BAD=180°−∠B−∠ADB=180°−30°−90°=60°,∠BAC=∠BAD+∠CAD=60°+20°=80°;当△ABC为钝角三角形时,如图,∠BAD=180°−∠B−∠ADB=180°−30°−90°=60°,∠BAC=∠BAD−∠CAD=60°−20°=40°.综上所述,∠BAC=80°或40°.故答案为:80或40.分两种情况:△ABC为锐角三角形或钝角三角形,然后利用三角形内角和定理即可作答.本题主要考查三角形内角和定理,注意到分类讨论是解题关键.34.【答案】∠A=∠D【解析】解:添加条件:∠A=∠D.∵AB//DE,∴∠B=∠DEC,在△ABC和△DEF中,{∠A=∠DAB=DE∠B=∠DEC,∴△ABC≌△DEF(ASA),故答案为:∠A=∠D.(答案不唯一)添加条件:∠A=∠D,根据ASA即可证明△ABC≌△DEF.本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.35.【答案】15【解析】【分析】本题考查了全等三角形的判定和性质,熟练掌握判定直角三角形全等特有的方法(HL)是解题的关键.根据OM⊥AB,ON⊥BC,可知∠OMB=∠ONB=90°,从而可证Rt△OMB ≌Rt△ONB(HL),根据全等三角形的性质可得∠OBM=∠OBN,即可求出∠ABO的度数.【解答】解:∵OM⊥AB,ON⊥BC,∴∠OMB=∠ONB=90°,在Rt△OMB和Rt△ONB中,{OM=ONOB=OB,∴Rt△OMB≌Rt△ONB(HL),∴∠OBM=∠OBN,∵∠ABC=30°,∴∠ABO=15°.36.【答案】1【解析】解:过D点作DH⊥AC于H,如图,∵AD平分∠BAC,DE⊥AB,DH⊥AC,∴DE=DH=1,×2×1=1.∴S△ACD=12故答案为:1.过D点作DH⊥AC于H,如图,根据角平分线的性质得到DE=DH=1,然后根据三角形面积公式计算.本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.37.【答案】10°或100°【解析】解:如图,点D即为所求;在△ABC中,∠ABC=40°,∠BAC=80°,∴∠ACB=180°−40°−80°=60°,由作图可知:AC=AD,∴∠ACD=∠AD C=12(180°−80°)=50°,∴∠BCD=∠ACB−∠ACD=60°−50°=10°;由作图可知:AC=AD′,∴∠ACD′=∠AD′C,∵∠ACD′+∠AD′C=∠BAC=80°,∴∠AD′C=40°,∴∠BCD′=180°−∠ABC−∠AD′C=180°−40°−40°=100°.综上所述:∠BCD的度数是10°或100°.故答案为:10°或100°.分两种情况画图,由作图可知得AC=AD,根据等腰三角形的性质和三角形内角和定理解答即可.本题考查了作图−复杂作图,三角形内角和定理,等腰三角形的判定与性质,解决本题的关键是掌握基本作图方法.38.【答案】60°【解析】解:∵△ABC为等边三角形,∴∠CAE=∠ABD=60°,AC=BA.在△ACE和△BAD中,{AC=BA∠CAE=∠ABD AE=BD,∴△ACE≌△BAD(SAS),∴∠ACE=∠BAD.∵∠CFD=∠C AF+ACF,∠BAD+∠CAF=∠ACF+∠CAF=60°,。
2019年浙江省中考数学分类汇编专题三角形部分(解析版)一、单选题1.下列长度的三条线段,能组成三角形的是()A. 3,4,8B. 5,6,10C. 5,5,11D. 5,6,11【答案】B【考点】三角形三边关系【解析】【解答】解:A.∵3+4<8,故不能组成三角形,A不符合题意;B.∵5+6>10,故能组成三角形,B符合题意;C.∵5+5<11,故不能组成三角形,C不符合题意;D.∵5+6=11,故不能组成三角形,D不符合题意;故答案为:B.【分析】三角形三边的关系:两边之和大于第三边,两边之差小于第三边,依此即可得出答案.2.已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A. 60°B. 65°C. 70°D. 75°【答案】C【考点】平行线的性质,三角形的外角性质【解析】【解答】解:设直线n与AB的交点为E。
∵∠AED是△BED的一个外角,∴∠AED=∠B+∠1,∵∠B=45°,∠1=25°,∴∠AED=45°+25°=70°∵m∥n,∴∠2=∠AED=70°。
故答案为:C。
【分析】设直线n与AB的交点为E。
由三角形的一个外角等于和它不相邻的两个内角的和可得∠AED=∠B+∠1,再根据两直线平行内错角相等可得∠2=∠AED可求解。
3.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A. 1B. 2C. 3D. 8【答案】C【考点】三角形三边关系【解析】【解答】解:∵三角形三边长分别为:a,3,5,∴a的取值范围为:2<a<8,∴a的所有可能取值为:3,4,5,6,7.故答案为:C.【分析】三角形三边的关系:两边之和大于第三边,两边之差小于第三边,由此得出a的取值范围,从而可得答案.4.如图,墙上钉着三根木条,a,b,c,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是()A. 5°B. 10°C. 30°D. 70°【答案】B【考点】三角形内角和定理【解析】【解答】解:如图,∵∠2=∠3=100°,∠1=70°∴a、b两直线所夹的锐角为:180°-∠1-∠3=180°-70°-100°=10°故答案为:B【分析】根据对顶角相等,可求出∠3的度数,再利用三角形内角和定理就可求出a、b两直线所夹的锐角的度数。
考点20 等腰三角形、等边三角形和直角三角形一.选择题(共5小题)1.(2018•湖州)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20° B.35° C.40° D.70°【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.【解答】解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选:B.2.(2018•宿迁)若实数m、n满足等式|m﹣2|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是( )A.12 B.10 C.8 D.6【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.【解答】解:∵|m﹣2|+=0,∴m﹣2=0,n﹣4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=10.故选:B.3.(2018•扬州)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.4.(2018•淄博)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC 于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4 B.6 C. D.8【分析】根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.【解答】解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故选:B.5.(2018•黄冈)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2 B.3 C.4 D.2【分析】根据直角三角形的性质得出AE=CE=5,进而得出DE=3,利用勾股定理解答即可.【解答】解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=5,∴AE=CE=5,∵AD=2,∴DE=3,∵CD为AB边上的高,∴在Rt△CDE中,CD=,故选:C.二.填空题(共12小题)6.(2018•成都)等腰三角形的一个底角为50°,则它的顶角的度数为80°.【分析】本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.【解答】解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故填80°.7.(2018•长春)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为37 度.【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=37°.【解答】解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=37°.故答案为:37.8.(2018•哈尔滨)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD 为直角三角形,则∠ADC的度数为130°或90°.【分析】根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC 的度数.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.9.(2018•吉林)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值",记作k,若k=,则该等腰三角形的顶角为36 度.【分析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.【解答】解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36.10.(2018•淮安)若一个等腰三角形的顶角等于50°,则它的底角等于65 °.【分析】利用等腰三角形的性质及三角形内角和定理直接求得答案.【解答】解:∵等腰三角形的顶角等于50°,又∵等腰三角形的底角相等,∴底角等于(180°﹣50°)×=65°.故答案为:65.11.(2018•娄底)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF= 6 cm.【分析】先利用HL证明Rt△ADB≌Rt△ADC,得出S△ABC=2S△ABD=2×AB•DE=AB•DE=3AB,又S△=AC•BF,将AC=AB代入即可求出BF.ABC【解答】解:在Rt△ADB与Rt△ADC中,,∴Rt△ADB≌Rt△ADC,∴S△ABC=2S△ABD=2×AB•DE=AB•DE=3AB,∵S△ABC=AC•BF,∴AC•BF=3AB,∵AC=AB,∴BF=3,∴BF=6.故答案为6.12.(2018•桂林)如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是 3 .【分析】首先根据已知条件分别计算图中每一个三角形每个角的度数,然后根据等腰三角形的判定:等角对等边解答,做题时要注意,从最明显的找起,由易到难,不重不漏.【解答】解:∵AB=AC,∠A=36°∴△ABC是等腰三角形,∠ABC=∠ACB==72°,BD平分∠ABC,∴∠EBD=∠DBC=36°,∴在△ABD中,∠A=∠ABD=36°,AD=BD,△ABD是等腰三角形,在△ABC中,∠C=∠ABC=72°,AB=AC,△ABC是等腰三角形,在△BDC中,∠C=∠BDC=72°,BD=BC,△BDC是等腰三角形,所以共有3个等腰三角形.故答案为:313.(2018•徐州)边长为a的正三角形的面积等于.【分析】根据正三角形的性质求解.【解答】解:过点A作AD⊥BC于点D,∵AD⊥BC∴BD=CD=a,∴AD==a,面积则是:a•a=a2.14.(2018•黑龙江)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n= ()n.【分析】由AB1为边长为2的等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出第一个等边三角形AB1C1的面积,同理求出第二个等边三角形AB2C2的面积,依此类推,得到第n个等边三角形AB n C n的面积.【解答】解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1=,∴第一个等边三角形AB1C1的面积为×()2=()1;∵等边三角形AB1C1的边长为,AB2⊥B1C1,∴B1B2=,AB1=,根据勾股定理得:AB2=,∴第二个等边三角形AB2C2的面积为×()2=()2;依此类推,第n个等边三角形AB n C n的面积为()n.故答案为:()n.15.(2018•湘潭)如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD= 30°.【分析】根据等腰三角形的三线合一的性质和等边三角形三个内角相等的性质填空.【解答】解:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.又点D是边BC的中点,∴∠BAD=∠BAC=30°.故答案是:30°.16.(2018•天津)如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为.【分析】直接利用三角形中位线定理进而得出DE=2,且DE∥AC,再利用勾股定理以及直角三角形的性质得出EG以及DG的长.【解答】解:连接DE,∵在边长为4的等边△ABC中,D,E分别为AB,BC的中点,∴DE是△ABC的中位线,∴DE=2,且DE∥AC,BD=BE=EC=2,∵EF⊥AC于点F,∠C=60°,∴∠FEC=30°,∠DEF=∠EFC=90°,∴FC=EC=1,故EF==,∵G为EF的中点,∴EG=,∴DG==.故答案为:.17.(2018•福建)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.三.解答题(共2小题)18.(2018•绍兴)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.【分析】(1)由于等腰三角形的顶角和底角没有明确,因此要分类讨论;(2)分两种情况:①90≤x<180;②0<x<90,结合三角形内角和定理求解即可.【解答】解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=50°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×80°=20°;若∠A为底角,∠B为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.19.(2018•徐州)(A类)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.【分析】(A类)连接AC,由AB=AC、AD=CD知∠BAC=∠BCA、∠DAC=∠DCA,两等式相加即可得;(B类)由以上过程反之即可得.【解答】证明:(A类)连接AC,∵AB=AC,AD=CD,∴∠BAC=∠BCA,∠DAC=∠DCA,∴∠BAC+∠DAC=∠BCA+∠DCA,即∠A=∠C;(B类)∵AB=AC,∴∠BAC=∠BCA,又∵∠A=∠C,即∠BAC+∠DAC=∠BCA+∠DCA,∴∠DAC=∠DCA,∴AD=CD.。
C. D.浙江省温州市2018年中考数学试卷C..如图,已知,添加以下条件,不能判定的是(A. B. C. D.)作线段,分别以为圆心以长为半径作弧两弧的交点为;)以为圆心仍以长为半径作弧交的延长线于点;)连接A. B.点是的外心 D.BD=AB=ABAC=CD,=AB、C.如图,点,分别在线段,上,与相交于点,已知,现添加以下哪个条件仍不能判定(A. B. C. D..已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹A. B.C. D.∴弦为.在中,,于,平分交于,则下列结论一定成立的是(A. B. C. D.如图,,且.、是上两点,,.若,,,则A. B. C. D..如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大A. C. D.【来源】陕西省2018【答案】证明见解析..如图,中,,小聪同学利用直尺和圆规完成了如下操作:①作的平分线交于点;②作边的垂直平分线,与相交于点;③连接,.)线段,,之间的数量关系是)若,求的度数);(ADB=,年中考数学试卷BC=,cos ADB= cos∠ABE=cos ADB==AC=AB=3BC=CD= AB=3本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三.如图,在四边形中,∥,=2,为的中点,请仅用无刻度的直尺分别按下列要求画图.在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化,当点在菱形内部或边上时,连接,与的数量关系是,与的位置)当点在菱形外部时,,当点在线段的延长线上时,连接,若,求四边形的面积) .,,∴,是等边三角形,∴,∵,∴,===,的面积是 .在中,,为的中点,,垂足分别为点,且.求证:是CE=∴,FC==,CE==.MC=BD EM=BDCM=ME=BD=DM DE=EM=DM,等腰三角形中,,求的度数(答案:)等腰三角形中,,求的度数(答案:或或)等腰三角形中,,求的度数)后,小敏发现,的度数不同,得到的度数的个数也可能不同如果在等腰三角形中,设,当有三个不同的度数时,请你探索的取值范围)或或;()当且,有三个不同的度数)分为顶角和为底角,两种情况进行讨论)分①当时,②当时,两种情况进行讨论.在中,,平分,平分,相交于点,且,则__________【答案】EF=,∴AE=,即+2-aa=,CH=FH=,AC=AE+EH+HC=,故答案为:.是正方形,和都是直角,且点三点共线,,则阴影部分的.等腰三角形的一个底角为,则它的顶角的度数为【答案】的网格中,的顶点,,均在格点上)的大小为)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度的直尺,画出点,并简要说明点的位置是如何找到的(不要求;)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求AC=,BC=,AB=,的等边中,,分别为,的中点,于点,为的中点,连接,则的长为【答案】分析:连接.如图,在中,用直尺和圆规作、的垂直平分线,分别交、于点、,连接.,则__________.【答案】.如图,五边形是正五边形,若,则__________交于点,根据得到∠根据五边形是正五边形得到∠交于点∵,∵五边形是正五边形,.如图,为的平分线.,..则点到射线的距离为.等腰三角形中,顶角为,点在以为圆心,长为半径的圆上,且,则的度【答案】或,此时正方形的边长为时,正方形。
2021年全国各地中考数学真题类汇编(湖北专版)三角形答案与试题解析一.选择题(共7小题)1.(黄石)如图,在Rt△ABC中,∠ACB=90°,按以下步骤作图:①以B为圆心,任意长为半径作弧,分别交BA、BC于M、N两点;②分别以M、N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作射线BP,交边AC于D点.若AB=10,BC=6,则线段CD的长为( )A.3B.C.D.解:由作法得BD平分∠ABC,过D点作DE⊥AB于E,如图,则DE=DC,在Rt△ABC中,AC===8,∵S△ABD+S△BCD=S△ABC,∴•DE×10+•CD×6=×6×8,即5CD+3CD=24,∴CD=3.故选:A.2.(襄阳)我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭(jiā)生其中,出水一尺.引葭赴岸,适与岸齐.问水深几何.”(丈、尺是长度单位,1丈=10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度是多少?则水深为( )A.10尺B.11尺C.12尺D.13尺解:设水深为h尺,则芦苇长为(h+1)尺,根据勾股定理,得(h+1)2﹣h2=(10÷2)2,解得h=12,∴水深为12尺,故选:C.3.(鄂州)筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2.已知圆心O在水面上方,且⊙O被水面截得的弦AB长为6米,⊙O半径长为4米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是( )A.1米B.(4﹣)米C.2米D.(4+)米解:连接OC交AB于D,连接OA,∵点C为运行轨道的最低点,∴OC⊥AB,∴AD=AB=3(米),在Rt△OAD中,OD===(米),∴点C到弦AB所在直线的距离CD=OC﹣OD=(4﹣)米,故选:B.4.(十堰)如图,小明利用一个锐角是30°的三角板测操场旗杆的高度,已知他与旗杆之间的水平距离BC为15m,AB为1.5m(即小明的眼睛与地面的距离),那么旗杆的高度是( )A.(15+)m B.5m C.15m D.(5+)m解:由题意可得,四边形ABCD是矩形,BC=15m,AB=1.5m,∴BC=AD=15m,AB=CD=1.5m,在Rt△ADE中,∠EAD=30°,AD=15m,∴DE=AD•tan∠EAD=15×=5(m),∴CE=CD+DE=(5+1.5)(m).故选:D.5.(恩施州)如图,在4×4的正方形网格中,每个小正方形的边长都为1,E为BD与正方形网格线的交点,下列结论正确的是( )A.CE≠BD B.△ABC≌△CBD C.AC=CD D.∠ABC=∠CBD解:由图可得,BC==2,CD==,BD==5,∴BC2+CD2=(2)2+()2=25=BD2,∴△BCD是直角三角形,∵EF∥GD,∴△BFE∽△BGD,∴,即,解得EF=1.5,∴CE=CF﹣EF=4﹣1.5=2.5,∴=,故选项A错误;由图可知,显然△ABC和△CBD不全等,故选项B错误;∵AC=2,CD=,∴AC≠CD,故选项C错误;∵tan∠ABC==,tan∠==,∴∠ABC=∠CBD,故选项D正确;故选:D.6.(随州)如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为α时,梯子顶端靠在墙面上的点A处,底端落在水平地面的点B处,现将梯子底端向墙面靠近,使梯子与地面所成角为β,已知sinα=cosβ=,则梯子顶端上升了( )A.1米B.1.5米C.2米D.2.5米解:如图所示,在Rt△ABC中,AC=sinα×AB==6(米);在Rt△DEC中,DC=cosβ×DE==6(米),EC===8(米);∴AE=EC﹣AC=8﹣6=2(米).故选:C.7.(宜昌)如图,△ABC的顶点是正方形网格的格点,则cos∠ABC的值为( )A.B.C.D.解:法一、如图,在Rt△ABD中,∠ADB=90°,AD=BD=3,∴AB===3,∴cos∠ABC===.故选:B.法二、在Rt△ABD中,∠ADB=90°,AD=BD=3,∴∠ABD=∠BAD=45°,∴cos∠ABC=cos45°=.故选:B.二.填空题(共5小题)8.(黄石)如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=5米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为45°,则电线杆AB的高度约为 10.5 米.(参考数据:≈1.414,≈1.732,结果按四舍五入保留一位小数)解:延长AD交BC的延长线于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4米,∴DF=2米,CF=(米),由题意得∠E=45°,∴EF=DF=2米,∴BE=BC+CF+EF=5+2+2=(7+2)米,∴AB=BE=7+2≈10.5(米),故答案为10.5.9.(湖北)如图,某活动小组利用无人机航拍校园,已知无人机的飞行速度为3m/s,从A处沿水平方向飞行至B处需10s.同时在地面C处分别测得A处的仰角为75°,B处的仰角为30°,则这架无人机的飞行高度大约是 20 m(≈1.732,结果保留整数).解:过A点作AH⊥BC于H,过B点作BD垂直于过C点的水平线,垂足为D,如图,根据题意得∠ACD=75°,∠BCH=30°,AB=3×10=30m,∵AB∥CD,∴∠ABH=∠BCD=30°,在Rt△ABH中,AH=AB=15m,∵tan∠ABH=,∴BH===15,∵∠ACH=∠ACD﹣∠BCD=75°﹣30°=45°,∴CH=AH=15m,∴BC=BH+CH=(15+15)m,在Rt△BCD中,∵∠BCD=30°,∴BD=BC=≈20(m).答:这架无人机的飞行高度大约是20m.故答案为20.10.(恩施州)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD等于1寸,锯道AB长1尺,问圆形木材的直径是多少?(1尺=10寸)答:圆材直径 26 寸.解:过圆心O作OC⊥AB于点C,延长OC交圆于点D,连接OA,如图:∵OC⊥AB,∴AC=BC=AB,.则CD=1寸,AC=BC=AB=5寸.设圆的半径为x寸,则OC=(x﹣1)寸.在Rt△OAC中,由勾股定理得:52+(x﹣1)2=x2,解得:x=13.∴圆材直径为2×13=26(寸).故26.11.(随州)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,BC=,将△ABC绕点A逆时针旋转角α(0°<α<180°)得到△AB′C′,并使点C′落在AB边上,则点B所经过的路径长为 π .(结果保留π)解:在Rt△ABC中,∠C=90°,∠ABC=30°,BC=,∴∠BAC=60°,cos∠ABC=,∴AB=2,∵将△ABC绕点A逆时针旋转角α(0°<α<180°)得到△AB′C′,∴∠BAB'=∠BAC=60°,∴点B所经过的路径长==π,故π.12.(荆州)如图1是一台手机支架,图2是其侧面示意图,AB,BC可分别绕点A,B转动,测量知BC=8cm,AB=16cm.当AB,BC转动到∠BAE=60°,∠ABC=50°时,点C到AE的距离为 6.3 cm.(结果保留小数点后一位,参考数据:sin70°≈0.94,≈1.73)解:如图,过点B、C分别作AE的垂线,垂足分别为M、N,过点C作CD⊥BM,垂足为D,在Rt△ABM中,∵∠BAE=60°,AB=16,∴BM=sin60°•AB=×16=8(cm),∠ABM=90°﹣60°=30°,故6.3.三.解答题(共10小题)13.(黄石)如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.(1)证明:∵CF∥AB,∴∠ADF=∠F,∠A=∠ECF.在△ADE和△CFE中,,∴△ADE≌△CFE(AAS).(2)∵△ADE≌△CFE,∴AD=CF=4.∴BD=AB﹣AD=5﹣4=1.14.(湖北)已知△ABC和△CDE都为正三角形,点B,C,D在同一直线上,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)如图1,当BC=CD时,作△ABC的中线BF;(2)如图2,当BC≠CD时,作△ABC的中线BG.解:(1)如图1中,线段BF即为所求.(2)如图2中,线段BG即为所求.15.(襄阳)如图,建筑物BC上有一旗杆AB,从与BC相距20m的D处观测旗杆顶部A的仰角为52°,观测旗杆底部B的仰角为45°,求旗杆AB的高度(结果保留小数点后一位.参考数据:sin52°≈0.79,cos52°≈0.62,tan52°≈1.28,≈1.41).解:在Rt△BCD中,∵tan∠BDC=,∴BC=CD•tan∠BDC=20×tan45°=20(m),在Rt△ACD中,∵tan∠ADC=,∴AC=CD•tan∠ADC=20×tan52°≈20×1.28=25.6(m),∴AB=AC﹣BC=5.6(m).答:旗杆AB的度约为5.6m.16.(荆门)如图,点E是正方形ABCD的边BC上的动点,∠AEF=90°,且EF=AE,FH⊥BH.(1)求证:BE=CH;(2)若AB=3,BE=x,用x表示DF的长.(1)证明:∵正方形ABCD,∴∠B=90°,AB=BC,∵FH⊥BH,∴∠H=90°=∠B,∠F=90°﹣∠FEH,∵∠AEF=90°,∴∠AEB=90°﹣∠FEH,∴∠AEB=∠F,在△ABE和△EHF中,,∴△ABE≌△EHF(AAS),∴EH=AB=BC,BE=FH,∴EH﹣EC=BC﹣EC,即CH=BE;(2)连接DF,过F作FP⊥CD于P,如图:∵∠H=∠DCH=∠FPC=90°,∴四边形PCHF是矩形,由(1)知:BE=FH=CH,∴四边形PCHF是正方形,∴PF=CP=CH=BE=x,∵DC=AB=3,∴DP=DC﹣CP=3﹣x,Rt△DPF中,DF=,∴DF==.17.(鄂州)在全民健身运动中,骑行运动颇受市民青睐.一市民骑自行车由A地出发,途经B地去往C地,如图.当他由A地出发时,发现他的北偏东45°方向有一信号发射塔P.他由A地沿正东方向骑行4km到达B地,此时发现信号塔P在他的北偏东15°方向,然后他由B地沿北偏东75°方向骑行12km到达C地.(1)求A地与信号发射塔P之间的距离;(2)求C地与信号发射塔P之间的距离.(计算结果保留根号)解:(1)依题意知:∠PAB=45°,∠PBG=15°,∠GBC=75°,过点B作BD⊥AP于D点,∵∠DAB=45°,,∴AD=BD=4,∵∠ABD=∠GBD=45°,∠GBP=15°,∴∠PBD=60°,∵BD=4,∴,∴PA=(4+4)(km);(2)∵∠PBD=60°,BD=4,∴PB=8,过点P作PE⊥BC于E,∵∠PBG=15°,∠GBC=75°,∴∠PBE=60°,∵PB=8,∴BE=4,,∵BC=12,∴CE=8,∴PC=4(km).18.(十堰)如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交DE于点F,连接AE、CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.解:(1)证明:如图,在△ABC中,点D是AC的中点,∴AD=DC,∵AF∥BC,∴∠FAD=∠ECD,∠AFD=∠CED,∴△AFD≌△CED(AAS),∴AF=EC,∴四边形AECF是平行四边形,又EF⊥AC,点D是AC的中点,即EF垂直平分AC,∴AF=FC,∴平行四边形AECF是菱形.(2)如图,过点A作AG⊥BC于点G,由(1)知四边形AECF是菱形,又CF=2,∠FAC=30°,∴AF∥EC,AE=CF=2,∠FAE=2∠FAC=60°,∴∠AEB=∠FAE=60°,∵AG⊥BC,∴∠AGB=∠AGE=90°,∴∠GAE=30°,∴GE=AE=1,AG=GE=,∵∠B=45°,∴∠GAB=∠B=45°,∴BG=AG=,∴AB=BG=.19.(随州)如图,在菱形ABCD中,E,F是对角线AC上的两点,且AE=CF.(1)求证:△ABE≌△CDF;(2)证明四边形BEDF是菱形.证明:(1)∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)如图,连接BD,交AC于O,∵四边形ABCD是菱形,∴BD⊥AC,AO=CO,BO=DO,∵AE=CF,∴EO=FO,∴四边形BEDF是平行四边形,又∵BD⊥EF,∴平行四边形BEDF是菱形.20.(宜昌)如图,在△ABC中,∠B=40°,∠C=50°.(1)通过观察尺规作图的痕迹,可以发现直线DF是线段AB的 垂直平分线 ,射线AE是∠DAC的 角平分线 ;(2)在(1)所作的图中,求∠DAE的度数.解:(1)通过观察尺规作图的痕迹,可以发现直线DF是线段AB的垂直平分线,射线AE是∠DAC的角平分线.故垂直平分线,角平分线.(2)∵DF垂直平分线段AB,∴DA=DB,∴∠BAD=B=40°,∵∠B=40°,∠C=50°,∴∠BAC=90°,∴∠CAD=50°,∵AE平分∠CAD,∴∠DAE=∠CAD=25°.21.(恩施州)乡村振兴使人民有更舒适的居住条件,更优美的生活环境,如图是怡佳新村中的两栋居民楼,小明在甲居民楼的楼顶D处观测乙居民楼楼底B处的俯角是30°,观测乙居民楼楼顶C处的仰角为15°,已知甲居民楼的高为10m,求乙居民楼的高.(参考数据:≈1.414,≈1.732,结果精确到0.1m)解:作DE⊥BC于E,CF⊥BD于F,在Rt△BED中,BE=AD=10m,∠EDB=30°,∴∠EBD=60°,BD=2BE=20m,在Rt△CBF中,∠CBF=60°,∴BF=BC,CF=BC,在Rt△CDF中,∠CDF=45°,∴DF=CF=BC,∵BD=BF+DF,∴BC+BC=20,∴BC=≈14.6(m),答:乙居民楼的高约为14.6m.22.(荆门)某海域有一小岛P,在以P为圆心,半径r为10(3+)海里的圆形海域内有暗礁.一海监船自西向东航行,它在A处测得小岛P位于北偏东60°的方向上,当海监船行驶20海里后到达B处,此时观测小岛P位于B处北偏东45°方向上.(1)求A,P之间的距离AP;(2)若海监船由B处继续向东航行是否有触礁危险?请说明理由.如果有触礁危险,那么海监船由B处开始沿南偏东至多多少度的方向航行能安全通过这一海域?(2)因为PC﹣10(3+)=10+10﹣30﹣10=10(+1)(﹣)<0,所以有触礁的危险;设海监船无触礁危险的新航线为射线BD,作PE⊥BD,垂足为E,当P到BD的距离PE=10(3+)海里时,有sin∠PBE===,∴∠PBD=60°,∴∠CBD=60°﹣45°=15°,90°﹣15°=75°即海监船由B处开始沿南偏东至多75°的方向航行能安全通过这一海域.。
三角形的边与角(命题的有关知识)一.选择题(2018•江苏宿迁•3分)如图,点D在△ABC的边AB的延长线上,DE∥BC,若∠A=35°,∠C=24°,则∠D 的度数是()A. 24°B. 59°C. 60°D. 69°【答案】B【分析】根据三角形外角性质得∠DBC=∠A+∠C,再由平行线性质得∠D=∠DBC.【详解】∵∠A=35°,∠C=24°,∴∠DBC=∠A+∠C=35°+24°=59°,又∵DE∥BC,∴∠D=∠DBC=59°,故选B.【点睛】本题考查了平行线的性质,三角形外角的性质,熟练掌握相关的性质是解题的关键.2.(2018•江苏宿迁•3分)若实数m、n满足,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A. 12B. 10C. 8D. 6【答案】B【分析】根据绝对值和二次根式的非负性得m、n的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.【详解】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去,②若腰为4,底为2,则周长为:4+4+2=10,故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质,根据非负数的性质求出m、n的值是解题的关键.3.(2018•江苏苏州•3分)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为()A.3 B.4 C.2 D.3【分析】取BC的中点G,连接EG,根据三角形的中位线定理得:EG=4,设CD=x,则EF=BC=2x,证明四边形EGDF是平行四边形,可得DF=EG=4.【解答】解:取BC的中点G,连接EG,∵E是AC的中点,∴EG是△ABC的中位线,∴EG=AB==4,设CD=x,则EF=BC=2x,∴BG=CG=x,∴EF=2x=DG,∵EF∥CD,∴四边形EGDF是平行四边形,∴DF=EG=4,故选:B.【点评】本题考查了平行四边形的判定和性质、三角形中位线定理,作辅助线构建三角形的中位线是本题的关键.4.(2018•山东聊城市•3分)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115°C.120°D.125°【分析】直接延长FE交DC于点N,利用平行线的性质得出∠BCD=∠DNF=95°,再利用三角形外角的性质得出答案.【解答】解:延长FE交DC于点N,∵直线AB∥EF,∴∠BCD=∠DNF=95°,∵∠CDE=25°,∴∠DEF=95°+25°=120°.故选:C.【点评】此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.6.(2018•山东聊城市•3分)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+β D.γ=180°﹣α﹣β【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【解答】解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选:A.【点评】本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.7. (2018•杭州•3分)如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则()A. B.C. D.【答案】A【考点】三角形内角和定理,矩形的性质【解析】【解答】解:∵矩形ABCD∴∠PAB+∠PAD=90°即∠PAB=90°-∠PAB∵∠PAB=80°∴∠PAB+∠PBA=180°-80°=100°∴90°-∠PAB+∠PBA=100°即∠PBA-∠PAB=10°①同理可得:∠PDC-∠PCB=180°-50°-90°=40°②由②-①得:∠PDC-∠PCB-(∠PBA-∠PAB)=30°∴故答案为:A【分析】根据矩形的性质,可得出∠PAB=90°-∠PAB,再根据三角形内角和定理可得出∠PAB+∠PBA=100°,从而可得出∠PBA-∠PAB=10°①;同理可证得∠PDC-∠PCB=40°②,再将②-①,可得出答案。
(2022•广东中考)如图,在△ABC 中,BC =4,点D ,E 分别为AB ,AC 的中点,则DE =( )A .14B .12C .1D .2【解析】选D .因为点D ,E 分别为AB ,AC 的中点,BC =4,所以DE 是△ABC 的中位线,所以DE =12BC =12×4=2.(2022•南充中考)如图,在Rt △ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,DE ∥AB ,交AC 于点E ,DF ⊥AB 于点F ,DE =5,DF =3,则下列结论错误的是( )A .BF =1B .DC =3 C .AE =5D .AC =9【解析】选A .因为AD 平分∠BAC ,∠C =90°,DF ⊥AB , 所以∠1=∠2,DC =FD ,∠C =∠DFB =90°,因为DE ∥AB ,所以∠2=∠3,所以∠1=∠3,所以AE =DE , 因为DE =5,DF =3,所以AE =5,CD =3,故选项B 、C 正确; 所以CE =√DE 2−CD 2=4,所以AC =AE +EC =5+4=9,故选项D 正确; 因为DE ∥AB ,∠DFB =90°, 所以∠EDF =∠DFB =90°, 所以∠CDF +∠FDB =90°, 因为∠CDF +∠DEC =90°, 所以∠DEC =∠FDB , 因为∠C =∠DFB ,CD =FD , 所以△ECD ≌△DFB (AAS ), 所以CE =BF =4,故选项A 错误;(2022•德阳中考)如图,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 边上的中点,则下列结论一定正确的是( )A .四边形EFGH 是矩形B .四边形EFGH 的内角和小于四边形ABCD 的内角和C .四边形EFGH 的周长等于四边形ABCD 的对角线长度之和 D .四边形EFGH 的面积等于四边形ABCD 的面积的14【解析】选C .A .如图,连接AC ,BD ,在四边形ABCD 中,因为点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 边上的中点,所以EH ∥BD ,EH =12BD ,FG ∥BD ,FG =12BD ,所以EH ∥FG ,EH =FG ,所以四边形EFGH 是平行四边形,故A 选项错误;B .因为四边形EFGH 的内角和等于360°,四边形ABCD 的内角和等于360°,故B 选项错误;C .因为点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 边上的中点,所以EH =12BD ,FG =12BD ,所以EH +FG =BD , 同理:EF +HG =AC ,所以四边形EFGH 的周长等于四边形ABCD 的对角线长度之和,故C 选项正确; D .四边形EFGH 的面积不等于四边形ABCD 的面积的14,故D 选项错误.A .12B .9C .6D .3√2【解析】选B .因为AB =AC ,AD 是△ABC 的角平分线,所以BD =CD =12BC =3,AD ⊥BC ,在Rt △EBD 中,∠EBC =45°, 所以ED =BD =3,所以S △EBC =12BC •ED =12×6×3=9(2022•河北中考)如图,将△ABC 折叠,使AC 边落在AB 边上,展开后得到折痕l ,则l 是△ABC 的( )A .中线B .中位线C .高线D .角平分线【解析】选D .由已知可得,∠1=∠2,则l 为△ABC 的角平分线.2101(2022•宜昌中考)如图,在△ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若AB =7,AC =12,BC =6,则△ABD 的周长为( )A .25B .22C .19D .18【解析】选C .由题意可得,MN 垂直平分BC ,所以DB =DC , 因为△ABD 的周长是AB +BD +AD ,所以AB +BD +AD =AB +DC +AD =AB +AC , 因为AB =7,AC =12,所以AB +AC =19,所以△ABD 的周长是19.A .△ABC 是等边三角形B .AB ⊥CDC .AH =BHD .∠ACD =45°【解析】选ABC .由作法得CD 垂直平分AB ,AC =BC =AB ,所以△ABC 为等边三角形,AB ⊥CD ,AH =BH ,所以A 、B 、C 选项符合题意; 所以∠ACD =12∠ACB =30°.所以D 选项不符合题意(2022•眉山中考)在△ABC 中,AB =4,BC =6,AC =8,点D ,E ,F 分别为边AB ,AC ,BC 的中点,则△DEF 的周长为( ) A .9B .12C .14D .16【解析】选A.如图,点E ,F 分别为各边的中点, 所以DE 、EF 、DF 是△ABC 的中位线,所以DE =12BC =3,EF =12AB =2,DF =12AC =4, 所以△DEF 的周长=3+2+4=9(2022•毕节中考)在△ABC 中,用尺规作图,分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N .作直线MN 交AC 于点D ,交BC 于点E ,连接AE .则下列结论不一定正确的是( )A .AB =AE B .AD =CDC .AE =CED .∠ADE =∠CDE 【解析】选A .由作图可知,MN 垂直平分线段AC , 所以AD =DC ,EA =EC ,∠ADE =∠CDE =90°, 故选项B ,C ,D 正确.②作直线PQ 交AB 于点D ;③以点D 为圆心,AD 长为半径画弧交PQ 于点M ,连接AM 、BM . 若AB =2√2,则AM 的长为( )A .4B .2C .√3D .√2【解析】选B .由作图可知,PQ 是AB 的垂直平分线,所以AM =BM , 因为以点D 为圆心,AD 长为半径画弧交PQ 于点M ,所以DA =DM =DB , 所以∠DAM =∠DMA ,∠DBM =∠DMB ,因为∠DAM +∠DMA +∠DBM +∠DMB =180°,所以2∠DMA +2∠DMB =180°, 所以∠DMA +∠DMB =90°,即∠AMB =90°,所以△AMB 是等腰直角三角形,所以AM =√22AB =√22×2√2=2.(2022•怀化中考)如图,△ABC 中,点D 、E 分别是AB 、AC 的中点,若S △ADE =2,则S △ABC = 8 .【解析】因为D ,E 分别是AB ,AC 的中点, 所以DE :BC =1:2,DE ∥BC , 所以△ADE ∽△ABC , 所以S △ADE S △ABC =(DE BC)2=14,即2S △ABC=14,所以S △ABC =8. 答案:8(2022•株洲中考)如图所示,点O 在一块直角三角板ABC 上(其中∠ABC =30°),OM ⊥AB 于点M ,ON ⊥BC 于点N ,若OM =ON ,则∠ABO = 15 度.【解析】方法一:因为OM ⊥AB ,ON ⊥BC ,OM =ON , 所以点O 在∠ABC 的平分线上,(2022•扬州中考)“做数学”可以帮助我们积累数学活动经验.如图,已知三角形纸片ABC,第1次折叠使点B落在BC边上的点B′处,折痕AD交BC于点D;第2次折叠使点A落在点D处,折痕MN交AB′于点P.若BC=12,则MP+MN=6.【解析】如图2,由折叠得:AM=MD,MN⊥AD,AD⊥BC,所以GN∥BC,所以AG=BG,所以GN是△ABC的中位线,所以GN=12BC=12×12=6,因为PM=GM,所以MP+MN=GM+MN=GN=6.答案:61【解析】设MN 交BC 于D ,连接EC ,如图:由作图可知:MN 是线段BC 的垂直平分线, 所以BE =CE =4, 所以∠ECB =∠B =45°, 所以∠AEC =∠ECB +∠B =90°, 在Rt △ACE 中,AE =√AC 2−CE 2=√52−42=3, 所以AB =AE +BE =3+4=7, 答案:7.(2022•达州中考)如图,在Rt △ABC 中,∠C =90°,∠B =20°,分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧分别相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则∠CAD 的度数为 50° .【解析】因为∠C =90°,∠B =20°, 所以∠CAB =90°﹣∠B =90°﹣20°=70°, 由作图可知,MN 垂直平分线段AB , 所以DA =DB ,所以∠DAB =∠B =20°,所以∠CAD =∠CAB ﹣∠DAB =70°﹣20°=50°, 答案:50°【解析】因为CD =AD ,CE =EB ,所以DE 是△ABC 的中位线,所以AB =2DE , 因为DE =10m ,所以AB =20m , 答案:20.(2022•苏州中考)如图,在平行四边形ABCD 中,AB ⊥AC ,AB =3,AC =4,分别以A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,过M ,N 两点作直线,与BC 交于点E ,与AD 交于点F ,连接AE ,CF ,则四边形AECF 的周长为 10 .【解析】因为AB ⊥AC ,AB =3,AC =4, 所以BC =√AB 2+AC 2=5,由作图可知,MN 是线段AC 的垂直平分线, 所以EC =EA ,AF =CF ,所以∠EAC =∠ACE , 因为∠B +∠ACB =∠BAE +∠CAE =90°, 所以∠B =∠BAE ,所以AE =BE , 所以AE =CE =12BC =2.5, 因为四边形ABCD 是平行四边形,所以AD =BC =5,CD =AB =3,∠ACD =∠BAC =90°, 同理证得AF =CF =2.5,所以四边形AECF 的周长=EC +EA +AF +CF =10, 答案:10(2022•衡阳中考)如图,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径作圆弧,两弧相交于点M 和点N ,作直线MN 交CB 于点D ,连接AD .若AC =8,BC =15,则△ACD 的周长为 23 .【解析】根据作图过程可知:MN 是线段AB 的垂直平分线,(2022•台州中考)如图,在△ABC中,∠ACB=90°,D,E,F分别为AB,BC,CA的中点.若EF的长为10,则CD的长为10 .【解析】因为E,F分别为BC,CA的中点,所以EF是△ABC的中位线,所以EF=12AB,所以AB=2EF=20,在Rt△ABC中,∠ACB=90°,D为AB中点,AB=20,所以CD=12AB=10,答案:10(2022•福建中考)如图,在△ABC中,D,E分别是AB,AC的中点.若BC=12,则DE的长为6.【解析】因为D,E分别是AB,AC的中点,所以DE为△ABC的中位线,所以DE=12BC=12×12=6.答案:6.(2022•荆州中考)如图,在Rt△ABC中,∠ACB=90°,通过尺规作图得到的直线MN分别交AB,AC于D,E,连接CD.若CE=13AE=1,则CD=√6.【解析】如图,连接BE,因为CE=13AE=1,所以AE=3,AC=4,而根据作图可知MN为AB的垂直平分线,所以AE=BE=3,在Rt△ECB中,BC=√BE2−CE2=2√2,所以AB=√AC2+BC2=2√6,因为CD 为直角三角形ABC 斜边上的中线,所以CD =12AB =√6. 答案:√6.(2022•梧州中考)如图,在△ABC 中,∠ACB =90°,点D ,E 分别是AB ,AC 边上的中点,连接CD ,DE .如果AB =5m ,BC =3m ,那么CD +DE 的长是 4 m .【解析】因为点D ,E 分别是AB ,AC 边上的中点,所以DE 是△ABC 的中位线,所以DE =12BC , 因为BC =3m ,所以DE =1.5m ,因为∠ACB =90°,所以CD =12AB , 因为AB =5m ,所以CD =2.5m ,所以CD +DE =2.5+1.5=4(m ). 答案:4.(2022·牡丹江中考)在Rt △ABC 中,∠C =90°,AD 平分∠CAB ,AC =6,BC =8,CD = 3 .【解析】如图,过点D 作DE ⊥AB 于E , 因为∠C =90°,AC =6,BC =8, 所以AB =√AC 2+BC 2=√62+82=10, 因为AD 平分∠CAB , 所以CD =DE ,所以S △ABC =12AC •CD +12AB •DE =12AC •BC , 即12×6•CD +12×10•CD =12×6×8,解得CD =3.答案:3(2022•吉林中考)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,点E 是边AD 的中点,点F 在对角线AC 上,且AF =14AC ,连接EF .若AC =10,则EF = 52 .【解析】在矩形ABCD 中,AO =OC =12AC ,AC =BD =10,因为AF =14AC ,所以AF =12AO ,所以点F 为AO 中点,所以EF 为△AOD 的中位线,所以EF =12OD =14BD =52.答案:52(2022•广东中考)如图,已知∠AOC =∠BOC ,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E .求证:△OPD ≌△OPE .【证明】因为∠AOC =∠BOC ,PD ⊥OA ,PE ⊥OB ,所以PD =PE ,在Rt △OPD 和Rt △OPE 中,{OP =OP PD =PE,所以Rt △OPD ≌Rt △OPE (HL ). (2022•赤峰中考)如图,已知Rt △ABC 中,∠ACB =90°,AB =8,BC =5.(1)作BC 的垂直平分线,分别交AB 、BC 于点D 、H ;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD ,求△BCD 的周长.【解析】(1)如图,DH 为所作;。
考点:三角形和角平分线一.选择题(共16小题)1.(2018•柳州)如图,图中直角三角形共有()A.1个B.2个C.3个D.4个【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.2.(2018•贵阳)如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC 的中线,则该线段是()A.线段DE B.线段BE C.线段EF D.线段FG【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【解答】解:根据三角形中线的定义知线段BE是△ABC的中线,故选:B.3.(2018•河北)下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【解答】解:三角形具有稳定性.故选:A.4.(2018•长沙)下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm 【分析】结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.5.(2018•福建)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.6.(2018•常德)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.11【分析】根据三角形的三边关系可得7﹣3<x<7+3,再解即可.【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,4<x<10,故选:C.7.(2018•昆明)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为()A.90° B.95° C.100°D.120°【分析】依据CO=AO,∠AOC=130°,即可得到∠CAO=25°,再根据∠AOB=70°,即可得出∠CDO=∠CAO+∠AOB=25°+70°=95°.【解答】解:∵CO=AO,∠AOC=130°,∴∠CAO=25°,又∵∠AOB=70°,∴∠CDO=∠CAO+∠AOB=25°+70°=95°,故选:B.8.(2018•长春)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC 于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44° B.40° C.39° D.38°【分析】根据三角形内角和得出∠ACB,利用角平分线得出∠DCB,再利用平行线的性质解答即可.【解答】解:∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选:C.9.(2018•黄石)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75° B.80° C.85° D.90°【分析】依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE 平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.【解答】解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.10.(2018•聊城)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+β D.γ=180°﹣α﹣β【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【解答】解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选:A.11.(2018•广西)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40° B.45° C.50° D.55°【分析】根据三角形外角性质求出∠ACD,根据角平分线定义求出即可.【解答】解:∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°,∵CE平分∠ACD,∴∠ECD=∠ACD=50°,故选:C.12.(2018•眉山)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45° B.60° C.75° D.85°【分析】先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.【解答】解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选:C.13.(2018•宿迁)如图,点D在△ABC边AB的延长线上,DE∥BC.若∠A=35°,∠C=24°,则∠D的度数是()A.24° B.59° C.60° D.69°【分析】根据三角形外角性质求出∠DBC,根据平行线的性质得出即可.【解答】解:∵∠A=35°,∠C=24°,∴∠DBC=∠A+∠C=59°,∵DE∥BC,∴∠D=∠DBC=59°,故选:B.14.(2018•大庆)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30° B.35° C.45° D.60°【分析】作MN⊥AD于N,根据平行线的性质求出∠DAB,根据角平分线的判定定理得到∠MAB=∠DAB,计算即可.【解答】解:作MN⊥AD于N,∵∠B=∠C=90°,∴AB∥CD,∴∠DAB=180°﹣∠ADC=70°,∵DM平分∠ADC,MN⊥AD,MC⊥CD,∴MN=MC,∵M是BC的中点,∴MC=MB,∴MN=MB,又MN⊥AD,MB⊥AB,∴∠MAB=∠DAB=35°,故选:B.15.(2018•常德)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A.6 B.5 C.4 D.3【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形的性质解答.【解答】解:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.16.(2018•黄冈)如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50° B.70° C.75° D.80°【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠DAC=70°,故选:B.二.填空题(共8小题)17.(2018•绵阳)如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于O点,则AB= .【分析】利用三角形中线定义得到BD=2,AE=,且可判定点O为△ABC的重心,所以AO=2OD,OB=2OE,利用勾股定理得到BO2+OD2=4,OE2+AO2=,等量代换得到BO2+AO2=4, BO2+AO2=,把两式相加得到BO2+AO2=5,然后再利用勾股定理可计算出AB的长.【解答】解:∵AD、BE为AC,BC边上的中线,∴BD=BC=2,AE=AC=,点O为△ABC的重心,∴AO=2OD,OB=2OE,∵BE⊥AD,∴BO2+OD2=BD2=4,OE2+AO2=AE2=,∴BO2+AO2=4, BO2+AO2=,∴BO2+AO2=,∴BO2+AO2=5,∴AB==.故答案为.18.(2018•泰州)已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为 5 .【分析】根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,求得第三边的取值范围,再进一步根据第三边是整数求解.【解答】解:根据三角形的三边关系,得第三边>4,而<6.又第三条边长为整数,则第三边是5.19.(2018•白银)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c= 7 .【分析】根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.【解答】解:∵a,b满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴6<c<8,又∵c为奇数,∴c=7,故答案是:7.20.(2018•永州)一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC= 75°.【分析】根据三角板的性质以及三角形内角和定理计算即可;【解答】解:∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°﹣∠CEA﹣∠BAE=75°,∴∠BDC=∠ADE=75°,故答案为75°.21.(2018•滨州)在△ABC中,若∠A=30°,∠B=50°,则∠C= 100°.【分析】直接利用三角形内角和定理进而得出答案.【解答】解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°22.(2018•德州)如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA 的距离为 3 .【分析】过C作CF⊥AO,根据勾股定理可得CM的长,再根据角的平分线上的点到角的两边的距离相等可得CF=CM,进而可得答案.【解答】解:过C作CF⊥AO,∵OC为∠AOB的平分线,CM⊥OB,∴CM=CF,∵OC=5,OM=4,∴CM=3,∴CF=3,故答案为:3.23.(2018•广安)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF= 2 .【分析】作EH⊥OA于H,根据角平分线的性质求出EH,根据直角三角形的性质求出EF,根据等腰三角形的性质解答.【解答】解:作EH⊥OA于H,∵∠AOE=∠BOE=15°,EC⊥OB,EH⊥OA,∴EH=EC=1,∠AOB=30°,∵EF∥OB,∴∠EFH=∠AOB=30°,∠FEO=∠BOE,∴EF=2EH=2,∠FEO=∠FOE,∴OF=EF=2,故答案为:2.24.(2018•南充)如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 24 度.【分析】根据线段的垂直平分线的性质得到EA=EC,得到∠EAC=∠C,根据角平分线的定义、三角形内角和定理计算即可.【解答】解:∵DE是AC的垂直平分线,∴EA=EC,∴∠EAC=∠C,∴∠FAC=∠EAC+19°,∵AF平分∠BAC,∴∠FAB=∠EAC+19°,∵∠B+∠BAC+∠C=180°,∴70°+2(∠C+19°)+∠C=180°,解得,∠C=24°,故答案为:24.三.解答题(共2小题)25.(2018•淄博)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.【分析】过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.【解答】证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.26.(2018•宜昌)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.【分析】(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=∠CBD=65°;(2)先根据三角形外角的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CB D=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.。