第18讲 期中复习
- 格式:doc
- 大小:315.50 KB
- 文档页数:4
第18讲 物质的分离、提纯与转换知识点1:物质的分离与提纯物质的分离是通过适当的方法,把混合物中的各种物质彼此分开,并且恢复到各种物质原来存在的状态,分别得到纯净物;而物质的提纯是通过适当的方法把混入某物质里的少量杂质除去,以便获得相对纯净的物质,又称除杂。
1.分离和提纯的原则: (1)提纯方法应简单易行。
(2)操作过程中尽量不使被提纯的物质损失(不减)。
(3)除去杂质的同时不能引入新的杂质(不增)。
(4)最好能生成被提纯的物质(转化)。
2.主要方法:(1)CO 2(CO):通过灼热的(2)CO(CO 2):通过足量的溶液(3)H 2(水蒸气):通过或的固体(4)CuO(Cu):在空气中(或氧气流中)混合物 (5)Cu(Fe):加入足量的,过滤(6)Cu(CuO):加入足量的,过滤(7)FeSO 4(CuSO 4):加入足量的,过滤(8)NaCl(Na 2CO 3):加入足量的,蒸发 (9)NaCl(Na 2SO 4):加入适量的溶液,过滤(10)NaCl(NaOH):加入足量的,蒸发(11)NaOH(Na 2CO 3):加入适量的溶液,过滤(12)NaCl(CuSO 4):加入适量的溶液,过滤 (13)NaNO 3(NaCl):加入适量的溶液,过滤(14)NaCl(KNO 3): (15)KNO 3(NaCl):结晶(16)CO 2(水蒸气):通过 知识点2:气体净化(除杂)1.除杂试剂的选用:首先必须考虑制备气体的性质,使所选试剂不与主要气体反应,然后依据杂质气体的性质予以确定。
(1)酸雾或酸性气体(如用盐酸制氢气时产生的HCl 气体)可用等碱溶液或饱和碳酸钠溶液除去。
(2)水蒸气可用、或等除去。
(3)碱性气体可用溶液除去。
2.除杂装置的选用:(1)除杂试剂为液体时,选用洗气瓶,气体应“进出”。
(2)除杂试剂为固体时,选用干燥管(球形或U),气体是“进出”。
(3)需要通过加热与固体试剂发生化学反应除去的气体,常采用硬质玻璃管和酒精灯。
圆和扇形是初中数学六年级第四章的内容,同学们需要学会用圆的周长、面积、弧长和扇形面积公式进行简单的计算,并体会近似与精确的数学思想.难点是圆的组合图形的面积计算,同学们需要灵活运用各个基本图形面积的计算方法,并能看出组合图形是由哪些基本图形组成,从而进行相关的计算.基本内容注意点4.1 圆的周长 1、圆的周长公式及应用. 4.2 弧长 1、弧长公式及应用. 4.3 圆的面积 1、圆的面积公式及应用. 4.4 扇形的面积1、扇形的面积公式及应用;2、*圆的组合图形的面积计算.【例1】 圆的周长是这个圆半径的( )倍A .6B .2πC .3.14D .6.28 【难度】★ 【答案】B【解析】圆的周长公式2l r π=,所以周长是半径的2π倍. 【总结】考查圆的周长与半径的关系.例题解析圆和扇形章节复习内容分析知识精讲2 / 16【例2】 同一个圆里,直径与半径的比是______. 【难度】★ 【答案】2:1.【解析】直径是半径的两倍,所以比是2:1. 【总结】考查同一个圆的直径与半径的关系.【例3】 要画一个周长为18.84厘米的圆,它的半径应取______厘米. 【难度】★ 【答案】3.【解析】18.84 3.1423÷÷=厘米. 【总结】考查圆的周长公式的应用.【例4】 如果圆的半径缩小到它的13,那么圆的周长缩小到原来的______.【难度】★ 【答案】13.【解析】由2l r π=可知圆的周长与半径成正比,所以周长也缩小到原来的13.【总结】考查圆的周长的计算.【例5】 如果圆上一条弧长占圆周长的15,那么这条弧所对的圆心角占圆的周角的______.【难度】★ 【答案】72︒. 【解析】由180n r l π=可知,弧长与圆心角成正比,故圆心角为:1360725⨯=. 【总结】考查弧长公式的运用.【例6】 圆心角为45°的扇形,如果拼成一个圆,需要这样的扇形至少____个. 【难度】★ 【答案】8.【解析】360458÷=. 【总结】考查扇形与圆的关系.【例7】 下列叙述中正确的个数是( ) (1)弧的长度只取决于弧所在圆的半径大小; (2)两条弧的长度相等,则它们所对的圆心角相等;(3)圆心角扩大3倍,而圆的半径缩小13,那么原来的弧长不变.A .0B .1C .2D .3【难度】★ 【答案】B 【解析】由180n rl π=,可知弧长取决于圆心角和半径,所以(1)、(2)都错,弧长与半径 和圆心角都成正比,所以(3)对.【总结】考查对弧长公式的理解及决定弧长的量.【例8】 一个扇形的面积是它所在圆面积的79,这个扇形的圆心角是______度. 【难度】★ 【答案】280. 【解析】因为213602n S r lr π==扇形,所以°°73602809n =⨯=. 【总结】考查扇形的面积与圆心角的关系.4 / 16【例9】 一个圆的周长为9.42厘米,那么这个圆的面积是______平方厘米. 【答案】27.065cm .【解析】9.42 3.142 1.5r cm =÷÷=半径,所以面积为:23.14 1.5 1.57.065cm ⨯⨯=. 【总结】考查圆的周长与面积的计算.【例10】 把一根长314厘米的细钢丝绕在一个圆筒上,正好绕10周,这个圆筒的半径是( )A .5B .10C .20D .3.14【答案】A【解析】31410 3.1425÷÷÷=.【总结】考查圆的周长在实际问题中的应用.【例11】 在一个边长为8厘米的正方形内画一个最大的圆,这个圆的周长是______厘米. 【答案】8π.【解析】圆的直径等于正方形的边长,所以周长是8d ππ=. 【总结】考查圆的周长的计算.【例12】 有一个直径是8厘米的半圆形铁片,这个铁片的周长是______厘米. 【答案】20.56cm .【解析】28 3.1482820.56d cm π÷+=⨯÷+=.【总结】考查半圆的周长,半圆的周长等于半圆加上直径的长..【例13】 一个环形纸板,内圆半径是3厘米,外圆直径是10厘米,这个环形纸板的面积是______平方厘米.【答案】16π.【解析】外圆半径是5厘米,故圆环面积为:225316ππ-=()平方厘米. 【总结】考查圆环的面积的计算,大圆面积减去小圆面积.【例14】 下列说法正确的是( ) A .扇形是圆的一部分,圆的一部分是扇形 B .圆中任意画两条半径,一定能构成两个扇形 C .如果圆的面积扩大9倍,那么圆的直径扩大9倍D .在所有扇形中,圆半径大的面积大【答案】B【解析】圆的一部分不一定是扇形;圆的面积扩大9倍,直径扩大3倍;扇形的面积与圆心角和半径都有关.【总结】考查圆和扇形的关系及圆的面积与直径的关系.【例15】 已知大扇形的面积是小扇形面积的94倍,如果它们的圆心角相等,那么小扇形的半径是大扇形半径的______.【答案】23. 【解析】扇形的面积与半径的平方成正比,所以小扇形的半径是大扇形半径的23. 【总结】考查扇形的面积与半径的关系.【例16】 已知扇形的弧长是9.42厘米,圆心角是270°,那么这个扇形的面积是______平方厘米【答案】237.68cm .【解析】扇形的半径为:9.42180270 3.142cm ⨯÷÷=, 故扇形的面积为:22703.1429.42360⨯⨯=2cm . 【总结】考查扇形的弧长与扇形的面积的计算,注意公式的准确运用.【例17】 图中的三角形是等边三角形,阴影部分是一个扇形,6 / 16甲乙平方厘米.【答案】152π平方厘米. 【解析】23001533602S ππ=⨯⨯=阴影平方厘米. 【总结】考查扇形的面积,注意本题中圆心角度数为300°.【例18】 .下面两个图形中,其中正方形的面积相等,那么阴影部分面积大小关系是( ) A .甲 > 乙 B .甲 < 乙C .甲 = 乙D .无法比较【答案】C【解析】乙的四个扇形恰好组成一个圆. 【总结】本题主要考查对阴影部分的面积的计算.【例19】 要画一个面积是3.14平方厘米的圆,圆规两脚之间的距离要取______厘米. 【答案】1.【解析】圆规两脚间的距离就是圆的半径,2 3.14 3.1411r r =÷==,所以厘米. 【总结】考查利用圆的面积求圆的半径.【例20】 在周长为24厘米的正方形纸片上剪去一个最大的圆,则剩余部分的周长是______厘米,面积是______平方厘米.(结果保留π).【答案】42.84;7.74.【解析】剩余部分的周长是正方形的周长加上圆的周长,剩余部分的面积是正方形面积减去圆的面积,而最大圆的直径为正方形的边长,因为正方形的周长为24厘米,故边长为6厘米,即636d r C d ππ====圆,,故厘米,24C =正方形厘米,所以剩余部分周长为:62418.842442.84π+=+=厘米,面积为226633697.74r πππ=⨯-⨯=-=平方厘米.【总结】考查圆的周长与面积的计算,注意正方形中剪出的最大圆的直径即为正方形的边长.【例21】 如图,阴影部分周长相同的有( )A .1个B .2个C .3个D .4个【答案】D【解析】阴影部分的周长都等于大半圆的长加小半圆的长,每个图中都只有一个大半圆, 所有的小半圆周长也相等,所以四个阴影部分周长都相等,故选D . 【总结】考查阴影部分的周长的计算.【例22】 如图,正方形中,分别以两个对角顶点为圆心,以正方形的边长6为半径画弧,形成树叶形的图案(阴影部分),求树叶形图案的周长.【答案】18.84.【解析】树叶形的周长是半径为6的半圆的周长,所以618.84C r ππ===.【总结】考查阴影部分的周长的计算,注意认真分析图形的特征.【例23】 扇形的面积是314平方厘米,扇形所在的圆的面积是1256平方厘米,这个扇形的圆心角是多少度?【答案】90︒.【解析】扇形的面积与圆心角成正比,所以314360901256⨯=︒. 【总结】考查扇形的面积与圆心角的关系.8 / 16ABCD A B CD【例24】 如图,AB = BC = CD = 2厘米,分别求出大、中、小圆的周长和面积. 【答案】642C C C πππ===小大中厘米,厘米,厘米;94S S S πππ===小大中平方厘米,平方厘米,平方厘米.【解析】64C d C d ππππ====大大中中厘米,厘米, 2C d ππ==小小厘米,2r S ππ==小小平方厘米,22r 9r 4S S ππππ====大大中中平方厘米,平方厘米.【总结】考查圆的周长和面积的计算.【例25】 如图,四边形ABCD 是长方形,AB = 12 cm ,求图中阴影部分的面积. 【答案】28.26cm 2. 【解析】6AD BC cm ==, 212672cm S S =⨯==长半圆,226218cm ππ⨯÷=,()()211367218928.26cm 22ABD S S S S ππ=--=--==△阴影长半圆. 【总结】考查阴影部分面积的计算,注意用规则图形的面积去表示不规则图形的面积.【例26】 一辆自行车轮胎的外直径是0.7米,如果车轮每分钟转90周,40分钟能行多远?通过一座567米的大桥需要多少分钟?(π取3)【答案】76503米,分.【解析】40分钟能行:30.790407560⨯⨯⨯=米,需要时间:5671893÷=分. 【总结】考查圆的周长的在实际问题中的应用.【例27】 在长19厘米,宽9厘米的长方形纸片中,剪半径都是1.5厘米的小圆,共可剪出小圆多少个?剪去这些小圆后,剩下的边角料的总面积是多少?.【答案】43.83平方厘米.【解析】9 1.523÷⨯=(), 19 1.5261÷⨯=(),所以可剪出3618⨯=个圆,剩下的面积是:219918 1.517140.543.83ππ⨯-⨯⨯=-=平方厘米. 【总结】考查长方形中剪出圆的问题,注意认真分析.【例28】 四个半径为2厘米的圆围成的图形中,求阴影部分的面积和周长.【答案】3.44平方厘米,12.56厘米.【解析】面积:2442164 3.44ππ⨯-⨯=-=平方厘米; 周长:222412.56r πππ=⨯⨯==厘米.【例29】 如图,圆的周长为6.28厘米,圆的面积与长方形的面积正好相等,图中阴影部分的周长是______厘米.【难度】★★★ 【答案】7.85厘米.【解析】圆的半径为:6.28 3.1421÷÷=厘米,则2r 3.14S S π===圆长方形平方厘米,故长方形的长为:3.141 3.14÷=厘米,所以阴影部分的周长为:()3.1412 6.28427.85cm +⨯+÷-=厘米.【总结】考查阴影部分的周长的计算,注意此周长包含了四分之一的弧长和三条线段长.【例30】 两个连在一起的皮带轮,其中一个轮子直径是3 dm ,当它旋转7周时,另一个轮子转了5周,则另一个轮子的半径是______dm .10 / 16拥有2台拥有1台20% 其他 【难度】★★★ 【答案】4.2.【解析】由题意,可得另一个轮子的半径为:375 4.2⨯÷=dm . 【总结】本题中要找到两个轮子转动的距离的关系,然后再计算即可.【例31】 将一个圆沿半径剪开,再拼成一个近似长方形,已知这个长方形的周长是41.4厘米,那么,这个圆的周长和面积各是多少?【难度】★★★【答案】31.4厘米,78.5平方厘米.【解析】圆的半径为:41.42 3.1415÷÷+=()厘米,故圆的周长为:2 3.14531.4⨯⨯=厘米,圆的面积为:3.145578.5⨯⨯=平方厘米.【总结】考查圆的周长与面积的计算.【例32】 在一次对某小区500户家庭拥有电视机的数量的调查中,调查结果如图所示,根据图中所给的信息回答问题:(1)家中拥有一台电视机的家庭有几户?(2)如果拥有一台电视机的家庭数正好是拥有2台电视机的家庭数的27,那么拥有2台电视机的家庭有几户?(3)图中的“其他”的扇形的圆心角是几度?【难度】★★★【答案】(1)100户;(2)350户;(3)36. 【解析】(1)()50020%100⨯=户;(2)21003507÷=(户); (3)()35050070%360120%70%36÷=⨯--=︒,.【总结】考查有关扇形图的简单计算.【作业1】 若一弧的长是它所在圆的周长的15,则此弧所对的圆心角是______度. 【难度】★【答案】72.【解析】弧长与圆心角成正比,1360725⨯=. 【总结】考查弧长与圆心角的关系.【作业2】 如果一条弧所对的圆心角缩小为原来的14,所在圆的半径扩大为原来的3倍,那么所得的新弧长与原来的弧长之比是______.【难度】★【答案】3:4.【解析】180n l r π=,弧长与圆心角、半径成正比,所以比为3:4. 【总结】考查弧长与圆心角和半径的关系.【作业3】 甲圆与乙圆的半径之比是 2 : 3,则甲与乙的直径之比是______,周长之比是______,面积之比是______.【难度】★【答案】2:3,2:3,4:9.【解析】半径比等于直径比等于周长比,面积比等于半径比的平方.【总结】考查圆中各个基本量之间的关系.课后作业12 / 16【作业4】 下列说法正确的个数是( )(1)半径越大,圆的面积越大;(2)半径越大,所对的弧越长;(3)弧是圆上两点间的一条线段;(4)圆心角相等,它们所对的弧长也相等. A .1个 B .2个 C .3个 D .4个【答案】A【解析】2S r π=,圆的面积只与半径有关,(1)√;180n l r π=弧长与半径和圆心角都有关系;(2)×; (3)×; (4)×,弧长与半径和圆心角都有关.【总结】考查弧长的影响因素.【作业5】 求下列各圆的周长和面积:(1)r = 3,C =______,S =______;(2)d = 8,C =______,S =______; (3)l = 5,n = 72°,S =______.【答案】(1)C = 9.42,S = 28.26;(2)C = 25.12,S = 50.24; (3)S = 49.76. 【解析】222360n C r S r S r πππ===,,. 【总结】考查圆的周长与面积的计算.【作业6】 求下列弧的弧长:(1)r = 4,n = 90°,l =______;(2)d = 9,n = 120°l =______; (3)C = 20,n = 175°l =______.【答案】(1)6.28;(2)9.42;(3)9.72.【解析】(1)9042180180n l r πππ==⨯==6.28,(2)91209239.4221802r d l ππ=÷==⨯==,; (3)10175101759.72218018C r l ππππ===⨯=≈,. 【总结】考查弧长的计算.【作业7】 在长是6厘米,宽是4厘米的长方形内剪一个最大的圆,则圆的面积是______平方厘米【答案】12.56.【解析】圆的直径等于4厘米,2412.56S r ππ===平方厘米.【总结】考查圆的面积的计算.【作业8】 用一根长为37.68厘米的铅丝围成一个圆,圆的面积是______平方厘米.【答案】113.04平方厘米.【解析】237.68 3.142636113.04r S r ππ=÷÷====厘米,平方厘米.【总结】本题中铁丝的总长度就是所围成的圆的周长,从而算出半径和面积.【作业9】 一个圆环形纸片,外环半径6厘米,内环半径5厘米,这个圆环的面积是______平方厘米,周长是______厘米.【答案】34.54;69.08.【解析】221236251134.54S r r πππππ=-=-==圆环平方厘米;()1222269.08C r r ππ=+==圆环厘米.【总结】考查圆环的面积与周长的计算.【作业10】 已知一个扇形的半径是6厘米,圆心角是120°,则此扇形的周长是______厘米.【答案】24.56厘米. 【解析】1202261241224.56180180n C l r r r πππ=+=+=⨯+=+=扇厘米. 【总结】考查扇形周长的计算,注意扇形的周长还要包含两条半径的长.14 / 16A BO【作业11】 扇形的半径是6分米,扇形的弧长是4π分米,这段弧所对的圆心角是______度,这个扇形的面积是______平方分米.(结果保留π) 【答案】120,12π.【解析】180********l n r πππ⨯===,212012360S r ππ==平方分米. 【总结】考查扇形的圆心角和面积的计算.【作业12】 一个时钟的时针长5厘米,它从上午8点到下午4点,时针针尖走过的距离是( ).A .203πB .103πC .60πD .30π 【答案】203π. 【解析】2402051801803n l r πππ==⨯=. 【总结】考查弧长在计算时针所走过的路程中的计算.【作业13】 已知一条弧长等于1,它的半径为R ,这条弧所对的圆心角增加1°,则它的弧长增加( )A .1nB .180Rπ C .180R π D .1360【答案】B【解析】由弧长公式1800n R l π=可知,当圆心角增加1°时,弧长则增加180R π. 【总结】考查对弧长公式中每个量的理解.【作业14】 如图,半径r = 12,60AOB ∠=︒,求这个图形的周长.【答案】86.8厘米.【解析】30012122202486.8180C ππ=⨯+⨯=+=厘米. 【总结】此图的周长包含了弧长和两条半径的长.A B CAB C D ABCD【作业15】 如图,正方形ABCD 的边长为4,求阴影部分的面积和周长.【答案】面积为16,周长为18.84.【解析】阴影部分的面积是正方形的面积加上圆的面积,再减去扇形的面积;阴影部分的周长则是三段弧的长的和.故2244441624S ππ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭阴影, 12242618.844C r R πππππ=+⨯=+==阴影. 【总结】考查阴影部分的面积和周长的计算,认真分析阴影图形的特征.【作业16】 如图,四边形ABCD 是长方形,AB = 10 cm ,BC = 6 cm ,求阴影部分的周长.【答案】33.12厘米.【解析】()121026448833.124C πππ=⨯+⨯++=+=厘米. 【总结】考查阴影部分周长的计算,注意包含了每一段弧和线段的长.【作业17】 如图,一个边长是1厘米的等边三角形,将它沿直线作顺时针方向翻动,到达图示中最右边三角形的位置,点B 所经过的路程是______厘米.(结果保留π)【难度】★★★【答案】2π.16 / 16 A B CD【解析】分析整个运动过程,可知B 经过的路程恰好为一个圆周,所以B 所经过的路程 是22r ππ=.【总结】考查图形在翻转过程中,图形上每个一点的运动轨迹,综合性较强,教师要带领学 生共同分析.【作业18】 如图所示,已知正方形ABCD 的边长为3.2厘米,在这个正方形中有个半径为0.4厘米的圆沿着它的四条边滚动一周,求圆滚动时扫过的面积.(保留π)【难度】★★★【答案】7.040.16π+.【解析】经过分析可知圆扫过的面积为,大正方形的面积减去 中间空白处的小正方形的面积再减去四个弯角的面积.一个弯角的面积是:210.40.40.40.160.044ππ⨯-⨯⨯=-, 则4个弯角的面积是:(0.160.04)40.640.16ππ-⨯=-, 而中间空白部分的正方形的面积是:(3.20.80.8)(3.20.80.8) 1.6 1.6 2.56--⨯--=⨯=, 故圆扫过的面积为:3.2 3.2 2.56(0.640.16)7.040.16ππ⨯---=+.【总结】本题综合性较强,主要是要分析清楚圆在滚动时扫过的面积的状态.。
讲义一、多姿多彩的图形考点·方法·破译1.会识常见的几何图形,并了解它们的名称.2.会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图,会判断简单物体的三视图,以根据三视图描述基本几何体或实物原型.3.了解基本几何体与其三视图、展开图之间的关系.经典·考题·赏析【例1】根据下图回答问题(1)请说出①~⑥中几何体的名称,并简要叙述它们的一些特征.(2)将①~⑥中的几何体分类.【解法指导】认识几何体,以直观观察为主,一般特征也以观察者获得的形象加以表述即可.但对几何体尽可能地进行深入观察,全方位发现每个几何体的特征,从而逐步揭示其本质.解:(1) ①圆柱:特征如,两个底面是圆的几何体.②圆锥:特征如,像锥体,且底面是圆.③正方形:特征如,所有面都是正方形.④长方体:特征如,其侧面均为长方形.⑤棱柱:特征如,底面为多边形,侧面为长方形.⑥球:特征如,圆的实体.(2) ①③④⑤为一类,它们都是柱体.②是一类,它是锥体.⑥是一类,它是球体.【变式题组】01.(黄冈)下图四个几何体分别为长方体、圆柱体、球、三棱柱,这四个几何体中有三个从某个角度看到的图形都是一种几何图形,则另一个几何体是( )02. (宜昌)下列物体的形状类似于球体的是( )A .茶杯B .羽毛球C .乒乓球D .白炽灯泡 03. (广东茂名)用平面去截下列几何体,截面的形状不可能是圆的几何体是( )A .球B .圆锥C .圆锥D .正方体 04. (武汉)如图,立方体各面上的数字是连续的整数,如果相对的两个面上的两个数的和都相等,那么这三对数的总和是( ) A .76 B .78 C .80 D .81【例2】 (深圳)如图所示,仔细观察图中的两个物体,则它的俯视图是( )A .B .C .D .【解法指导】 注意结合立体图形的形状并注意从某一方向看到图形的对应关系,抓住其主要特征,同时要分清不同视图的异同.故选择A .【变式题组】01.(重庆)由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是( )A .B .C .D .02.(昆明)如图,这个几何体从上面看到的平面图形是( )03.(沈阳)如图所示,圆柱从上面看到的图形是图中的( )04.(成都)如图是由一些完全相同的小立方块搭成的几何体从正面、左面、上面看到的图形,那么搭成这个几何体所用的小立方块的个数是( ) A .3个 B .6个 C .7个 D .8个正面151411从正面看从左面看从上面看【例3】(湛江)将如右图所示的Rt△ABC绕直角边BC旋转一周,所得几何体从左面看到的是( )【解法指导】以直角三角形的直角边AC、BC为旋转轴得到的都是圆锥,故选择A.【变式题组】01.(广州)将右图所示的直角梯形绕直线l旋转一周,得到的立体图形是( )02.(南京)若一个棱柱有12个顶点,则在下列说法正确的为( )A.这个棱柱有5个侧面B.这个棱柱有5条侧棱C.这个棱柱的底面是六边形D.这个棱柱的是一个12棱柱03.(安徽)四棱柱的顶点数、棱数、面数分别为( )A.8,12,6B.8,10,6C.6,8,12D.8,6,12【例4】(福建泉州)观察下列图形,其中不是正方体的展开图的为( )A.B.C.D.【解法指导】学习立体图形的展开图,要养成动手实验的好习惯,动手折一下往往会一目了然,故本题选择D.【变式题组】01.(武汉)一个无盖的正方体盒子的平面展开图可以是下图中的( )A.只有图①B.图①、图②C.图②、图③D.图①、图③①②③02.(唐山)如图所示的是一个由白纸拼成的立体图形,但有两面刷上黑色,将该立体图形展开后应该是( )A.B.C.D.03.(陕西)下面四个图形中,经过折叠能围成如图只有三个面上印有图案的正方体盒的是( )A.B.C.D.04.(北京)如图所示是三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的展开图,那么这个展开图是( )A.B.C.D.【例5】(山西)一个画家有14个边长为1米的正方体,他在地面上把它们摆成如右图的形状,然后他把露出的表面涂上颜色,那么被涂上颜色的总面积为( )A.19平方米B.21平方米C.33平方米D.34平方米【解法指导】本题把涂上颜色的面积一块一块加起来计算很麻烦,应从整体角度出发,把立体转化为平面,观察题图所给的几何体,从前、后、左、右四个方向都只能看到6个1×1的正方形,从上面看可以看到一个3×3的大正方形轮廓,所以被涂上颜色的总面积应为4×6×1×1+3×3×1×1=33(平方米),故选C.【变式题组】01.(宜宾)如图是由若干个大小相同的小正方体堆砌而成的几何体.那么其三种视图中面积最小的是( )A.正视图B.左视图C.俯视图D.三种一样02.(益阳)将一个底面直径为2 cm,高为2 cm的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图的面积为( )A.2πcm2B.3πcm2C.4πcm2D.5πcm203.(青岛)一个大长方体是由四个完全一样的小长方体拼成的,如果每个小长方体的长、宽、高分别是3,1,1那么这个大长方体的表面积可能有______种不同的值,其中最小值为______.【例6】(巴中)李明为好友制作一个(右图)正方形礼品盒,六个面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )【解法指导】 本例主要考查立方体的展开图中对面、邻面的分布规律,可动手折叠发现答案,故应选择C .【变式题组】01.(资阳)已知一个正方体的每一面都填有唯一一个数字,且各相对面上所填的数互为倒数,若这个正方 体的平面展开图如右图所示,则A 、B 的值分别是( )A .13,12B . 13,1C .12,13D .1,1302.(南宁)在下图中添加一个小正方形,使该图经过折叠后能围成一个四棱柱,不同的添法共有( )A .7种B .4种C .3种D .2种03.(沈阳)将一张长与宽的比为2:1的长方形纸片按如图①、②所示的方式对折后,然后沿图③中的虚线裁剪,得到图④,最后将图④的纸片再展开铺平,则所得到的图案是( )【例7】 (第21届江苏省竞赛题)设5 cm ×4 cm ×3 cm 长方体的一个表面展开图的周长为n cm ,则n 的最 小值是______.【解法指导】 把展开图的周长用相应的代数式表示.长方体的展开图的周长为8c +4b +2a .故周长最小值为8×3+4×4+2×5=50,故填50 cm .【变式题组】01.(广州)将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,如图现有一个边长为4厘米,宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体 积分别是多大?02.(南京)如图是几个小立方块所搭成的几何体.从上面看图形,小正方形中的数字表示该位置的小立方块的个数,那么是这个几何体从正面看的图形的是( )A .B .C .D .03.(烟台)如图①是由若干个小正方体所搭成的几何体, ②是①从上面看到的图形,则①从左面看到的图 形是( )1122BA 3121①②A .B .C .D .演练巩固 反馈提高01.(连云港)水平位置的下列几何体,从正面看的图形不是长方形的是( )02.(邯郸)有一个外观为圆柱形的物体,它的内部构造从外部看不到,当分别用一组平面沿水平方向(自上而下)和竖直方向(自左而右)截这个物体时(如图),得到了如图所示的(1)、(2)两组形状不同的截面,则 这个物体的内部构造是( ) A .空心圆柱 B .空心圆锥 C .空心球 D .空心半球03.(唐山)将如图所示图形折叠成立方体后,下面四个选项正确的是( )04.(河南)由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是( )A .B .C .D .05.(湖州)一个正方体的表面展开图如图所示,则原正方体中的“★”所在面的对面所标的字是( ) A .上 B .海 C .世 D .博21231★会博世海上006.(芜湖)一个几何体的三视图如图所示,那么这个几何体是( )A .B .C .D .07.(安徽)如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是( )08.(哈尔滨)如下图所示的某一几何体的三视图,则这个几何体是( )A .圆柱B .圆锥C .正方体D .球 正视图 左视图 俯视图09.(泰州)如图是一个几何体的三视图,根据图中提供的数据(单位: cm )可求得这个几何体的体积为( ) A .2 cm 2 B .4 cm 2 C .6 cm 2 D .8 cm 2 主视图 左视图 俯视图10.如图所示是无盖长方体盒子的表面展开图(重叠部分不计)则盒子的容积为( )A .4B .6C .12D .1511.(宜黄)宜黄素有“华南虎之乡”的美誉,将“华南虎之乡美”六个字填写在一个正方体的六个面上,其平 面展开图如图所示,那么在该正方体中,和“虎”字相对的字是______.12.(黄冈)如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是______.主视图左视图俯视图121211美乡之虎南华13.设有一个边长为1的正三角形,记作A1,将A1的每条边三等分,在中间的线段上向外作正三角形,去掉中间的线段后所得到的图形记作A2;将A2的每条边三等分,重复上述过程,所得到的图形记作A3,现将A3的每条边三等分,重复上述过程,所得到的图形记作A4,则A4的周长是多少?14.(温州)由3个相同的小立方块搭成的几何体如图所示,请画出它的主视图和俯视图.主视方向15.一个五棱柱如图,它的底面边长都是4厘米,侧棱长6厘米,回答下列问题.(1)这个五棱柱一共有多少个面?它们分别是什么形状?哪些面的形状、面积完全相同?(2)这个五棱柱一共有多少条棱?它们的长度分别是多少?02.(北京)根据下列语句画出图形⑴直线AB 经过点C ;⑵经过点M 、N 的射线NM ; ⑶经过点O 的两条直线m 、n ;⑷经过三点E 、F 、G 中的每两点画直线. 03.(温州)如图A 、B 、C 表示3个村庄,它们被三条河隔开,现在打算在每两个村庄之间都修一条笔直公路,则一共需架多少座桥?请你在图上用字母标明桥的位置.【例3】已知:线段AB =10cm ,M 为AB 的中点,在AB 所在直线上有一点P ,N 为AP 的中点,若MN =1.5cm ,求AP 的长.【解法指导】题中已说明P 在AB 所在直线上,即说明P 点可能在线段AB 上,也可能在AB 的延长线上(不可能在BA 的延长线上),故应分类讨论.解:⑴如图①,当点P 在线段AB 上时,点N 在点M 的左侧,则AP =2AN =2(AM -MN )=2(12AB -MN )=2×(5-1.5)=7(cm );⑵当点P 在线段AB 的延长线上时,N 点在M 点的右侧如图②,则AP =2AN =2(AM +MN )=2(12AB+MN )=2×(5+1.5)=13(cm );所以AP 的长为7cm 或13cm【变式题组】 01.(昆明)已知A 、B 、C 为直线l 上的三点,线段AB =9cm ,BC =1cm ,那么A 、C 两点间的距离是( )A .8cmB .9cmC .10cmD .8cm 或10cm 02.(十堰)如图C 、D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3cmB .6cmC .11cmD .14cm 03.(青海)已知线段AB ,C 是AB 的中点,D 是BC 的中点,下面等式不正确的是( )A .CD =AB -BDB .CD =AD -BCC .CD =12AB -BDD .CD =13ABA .B .C .D .bb b bMQNMQNMQN aaaaN Q M①P N M BA ②A N M PB ABDC【例4】往返于甲、乙两地的客车,中途停靠三个站,问: ⑴要有多少种不同的票价? ⑵要准备多少种车票?【解法指导】首先要能把这个实际问题抽象成一个数学问题,把车站和三个停方点当作一条直线上的五个点,票价视路程的长短而变化,实际上就是要找出图中有多少条不同的线段.因为不同的线段就是不同的票价,故求有多少种票价即求有多少条线段,而要求有多少种车票即是求有多少条射线.解:因为图中有10 条不同的线段,故票价有10种;有20条不同的射线,故应准备20种车票. 【变式题组】 01.(河南)如图从A 到C 地,可供选择的方案是走水路、走陆路、走空中、从A 到B 有2条水路、2条陆路;从B 地到C 地有3条陆路可供选择;走空中从A 不经B 地直接到达C 地,则从A 地到C 地可供选择的方案有( )A .20种B .8种C .5种D .13种02.(海南)如图,在菱形ABCD 中,E 、F 、G 、H 分别是菱形四边的中点,连接EG 与FH 交于点O ,则图中的菱形共有( )A .4个B .5个C .6个D .7个 3.(佛山实验区)A 车站到B 车站之间还有3个车站,那么从A 车站到B 车站方向发出的车辆,一共有多少种不同的车票( ) A .8 B .9 C .10 D .11【例5】如图,B 、C 两点把线段AD 分成2∶3∶4的三部分,M 是AD 的中点,CD =8,求MC 的长.【解法指导】由AB ∶BC ∶CD =2∶3∶4,可设AB =2x ,CD =3x ,CD =4x ,由CD =4x =8,而求得x 的值,进而求出MC 的长.解:设AB =2x ,由AB ∶BC ∶CD =2∶3∶4,得CD =4x ,CD =3x ,AD =(2+3+4)x =9x ,∵CD =8,∴x =2,∴AD =9x =18,∵M 是AD 的中点,∴MC =MD -CD =12AD -CD =12×18-8=1【变式题组】01.(河北)如图,长度为12cm 的线段AB 的中点为M ,C 点将线段MB 分MC ∶CB =1∶2,则线段AC 的长度为( )A .2cmB .8cmC .6cmD .4cm02.(随州)已知线段AB =16cm ,点C 在线段AB 上,且BC =13AC ,M 为BC 的中点,则AM 的长为________.03.(黄冈)已知线段AB =12cm ,直线AB 上有一点C ,且BC =6cm ,M 是线段AC 的中点,求线段AM 的长.【例6】如图⑴,一只昆虫要从正方体的一个顶点A 爬行相距它最远的另一个顶点B ,哪条路径最短?说明理由.EDCBADCBAMCBAO HG FAB C DE【解法指导】解答此类题的方法是将立方体展开,再根据两点之间,线段量短. 解:将立方体展开成如图⑵,由两点之间线段最短知线段AB 即为最短路线. 【变式题组】 01.(天津)下列直线的说法错误的是( )A .经过一点可以画无数条直线B .经过两点可以画一条直线C .一条直线上只有两个点D .两条直线至多只有一个公共点 02.(湘潭)如图所示,从A 地到B 地有多条道路,一般地,人们会走中间的直路,而不会走其他的曲折的路线,这是因为( ) A .两点之间线段最短 B .两直线相交只有一个交点 C .两点确定一条直线 D .垂线段最短【例7】(第五局“华罗庚金杯”赛试题)摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃饭,由于堵车,中午才赶到一个小镇,只行驶了原计划的三分之一,过了小镇,汽车赶了400千米,傍晚才停下来休息,司机说,再走从C 市到这里路程的二分之一就到达目的地了,问A 、B 两市相距多少千米?【解法指导】条件中只有路程,而没有给出时间与速度,所以可以画出线段表示各段路程,借助图形思考它们之间的关系.解:设小镇为D ,傍晚汽车在E 休息,则AD =12DC ,EB =12CE ,AD +EB =12DE =200,∴AB =AD +EB +DE =200+400=600.答:A 、B 两市相距600千米. 【变式题组】 01.(哈尔滨)已知点O 在直线AB 上,且线段OA 的长度为4cm ,线段OB 的长度为6cm ,E 、F 分别为线段OA 、OB 的中点,则线段EF 的长度为____cm . 02.(银川)AB 、AC 是同一条直线上的两条线段,M 是线段AB 的中点,N 是线段AC 的中点,线段BC 与MN 的大小有什么关系?请说明理由. 03.(河南)如图,线段AB =4,点O 是线段AB 上一点,C 、D 分别是线段OA 、OB 的中点,小明据此很轻松地求得CD =2,但他在反思的过程突发奇想:若点O 运动到AB 的延长线上,原有的结论“CD =2”是否仍成立?请帮小明画出图形并说明理由.图(2)图(1)BAB AEDCBAODCBA演练巩固 反馈提高01.当AB =5cm ,BC =3cm 时,A 、C 两点间的距离是( )A .无法确定B .2cmC .8cmD .7cm 02.下列说法正确的是( )A .延长直线AB B .延长线段ABC . 延长射线ABD .延长线段AB 03.若P A +PB =AB ,则( )A .P 点一定在线段AB 上 B .P 点一定在线段AB 外C .P 点一定在AB 的延长线上D .P 点一定在线段BA 的延长线上 04.(内江)已知点C 是线段AB 上的一点,下列说法中不能说明点C 是线段AB 的中点是( )A .AC =BCB .AC =12ABC .AC +BC =ABD .2AC =AB05.如图,已知线段AD >BC ,则线段AC 与BD 的关系是( )A .AC >BDB .AC =BD C .AC <BD D .不能确定 06.(黄冈)某公司员工分别在A 、B 、C 三个住宅区,A 区有30人,B 区有15人,C 区有10人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,那么它有位置应在( )A .A 区B .B 区C .C 区D .A 、B 两区之间 07.(广州)线段AB =4cm ,在直线AB 上截取BC =1cm ,则AC =________.08.(云南)延长线段AB 到点C ,使BC =13AB ,D 为AC 的中点,且DC =6cm ,则AB 的长是________cm .09.在直线l 上任取一点A ,截取AB =16cm ,再截取AC =40cm ,求AB 的中点D 与AC 的中点E 的距离.10.线段AB 上有两点M 、N ,点M 将AB 分成2∶3两部分,点N 将AB 分成4∶1两部分,且MN =3cm ,求AM 、NB 的长.11.如图,C 是线段AB 上一点,D 是线段BC 的中点,已知图中所有线段长度之和为23,线段AC 与线段CB的长度都是正整数,则线段AC 的长度是多少?12.如图B 、C 两点把线段AD 分成2∶3∶4的三部分,M 是AD 的中点,CD =8,求MC 的长.13.指出图中的射线(以O 为端点)和线段.ABCDACDBM ABCD14.判断下列语句是否正确:⑴直线l 有两个端点A 、B ; ⑵延长射线OA 到C ;⑶已知A 、B 两点,经过A 、B 两点只有一条线段.15.已知A 、B 、C 三点:⑴AB =10cm ,AC =15cm ,BC =5cm ;⑵AB =5.2cm ,AC =9cm ,BC =3.8cm ;⑴AB=3.2cm ,AC =1.5cm ,BC =4.5cm .A 、B 、C 三点是否在一条直线上?3、角考点•方法•破译1.进一步认识角,会比较角的大小,会计算角度的和差,认识度、分、秒,会进行简单的换算. 2.了解角平分线及其性质,了角余角、补角,知道等角的余角相等,等角的补角相等.经典•考题•赏析例1:如图AOE 是直线,图中小于平角的角共有( )A .7个B .9个C .8个D .10个【解法指导】公共端点的两条射线组成的图形叫做角,数角注意抓住概念,表示角用大写字母表示或希腊字母及数字表示,故选择B .【变式题组】01.在下图中一共有几个角?它们应如何表示.02.下列语句正确的是( )A .从同一点引出的两条射线组成的图形叫做角B .两条直线相交组成的图形叫做角C .从同一点引出的两条线段组成的图形叫做角D .两条线段相交组成的图形叫做角 03.关于平角和周角的说法正确的是( )A .平角是一条直线B .周角是一条射线C .反向延长射线OA ,就是成一个平角D .两个锐角的和不一定小于平角A B CO例2:38.33°可化为()A.38°30′3〃B.38°33'C.38°30′30″〃D.38°19′48″〃【解法指导】注意度、分、秒是60进制的,把度转化成分要乘60,把分转化成秒要乘60;反之把秒化成分要除以60,把分化成度要除以60,把秒化成度要除以3600,故选择D.【变式题组】01.把下列各角化成用度表示的角:⑴15°24′36″〃⑵36°59′96″〃⑶50°65′60″〃02.⑴3.76°=度分秒⑵3.76°=分秒⑶钟表在8:30时,分针与时针的夹角为度.03.计算:⑴23°45′36+66°14′24″;⑵180°-98°24′30″;〃⑶15°50′42″×3;⑷88°14′48″÷4例3:若∠α的余角与∠α的补角的和是平角则∠α=.【解法指导】两个角的和等于90°叫做余角,两个角的和等于180°叫做互补,同角或等角的余角相等,同角或等角的补角相等.解:根据题意得90°-∠α+180°-∠α=180°,所以∠α=45°【变式题组】01.如图所示,那么∠2与12(∠1-∠2)之间的关系是()A.互补B.互余C.和为45° D.和为22.5°02.55°角的余角是()A.55° B.45° C.35° D.125°03.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:∠90°-∠β;∠∠α-90°;∠12(∠α+∠β)∠12(∠α-∠β)()A.4个B.3个C.2个D.1个例4:如图,点O是直线AB上的点,OC平分∠AOD,∠BOD=30°,则∠AOC=.【解法指导】注意找出图中角的和、差、倍、分关系,图中有∠AOD+∠BOD=180°,∠AOD=2∠AOC.解:因为∠AOD=180°-∠BOD=180°-30°=150°,又因为OC平分∠AOD,所以∠AOC=12∠AOD=12×150°=75°.【变式题组】01.如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOD等于()A.20° B.40° C.50° D.80°02.如图直线a,b相交于点O,若∠1=40°,则∠2等于()A.50° B.60° C.140° D.160°03.一束光线垂直照射水平地面,在地面上放一个平面镜,欲使这束光线经过平面镜反射后成水平光线,则平面镜与地面所成锐角的度数为()A.45° B.60° C.75° D.80°例5:如图是一块手表早点9时20分的时针、分针位置关系示意图,此时时针和分针所成的角的度数是()A.160° B.180° C.120° D.150°【解法指导】角此类问题可结合题意画出相应刻度的示意图,并准确地把握时针、分针的旋转一圈12小时,则它1小时转的角度为360°×112=30°,1分钟转过的角度为30°×160=0.5°,分针转一圈是1个小时,分针每分钟转过的角度为360°×160=6°.故选择A.【变式题组】01.钟表上12时15分,时针与分针的夹角为()A.90° B.82.5° C.67.5° D.60°02.由2点15分到2点30分,时钟的分针转过的角度是.例6:考点办公室设在校园中心O点,带队老师休息室A位于O点的北偏东45°,某考室B位于O点南偏东60°,请在图中画出射线OA,OB,并计算∠AOB的度数.【解法指导】此类问题紧扣方位角的概念作出射线OA,OB是关键.解:如图,以O为顶点,正北方向线为始边向东旋转45°,得OA,以O为顶点,正南方向线为始边向东旋转60°,得OB,则∠AOB=180°-(45°+60°)=75°.【变式题组】01.如图所示,某测绘装置有一枚指针,原来指向南偏西50°,把这枚指针按顺时针旋转14周.⑴指针所指方向为;⑵图中互余的角有对,与∠BOC互补的角是.02.轮船航行到C处时,观察到小岛B的方向是北偏西35°,同时从B观察到轮船C的方向是()A.南偏西35° B.北偏西35° C.南偏东35° D.南偏东55°03.如图下列说法不正确的是()A.OA的方向是东偏北30° B.OB的方向是西偏北60°C.OC的方向是西偏南15° D.OD的方向是西南方向例7:如图,O是直线AB上一点,∠AOD=120°,∠AOC=90°,OE平分∠BOD,则图中彼此互补的角共有对.【解法指导】彼此互补的角只要满足一定的数量关系即可,而与位置无关,从计算相应角的度数入手,故共有6对.【变式题组】01.如图所示,A、O、B在一条直线上,∠AOC=12∠BOC+30°,OE平分∠BOC,则∠BOE=.02.如图,已知∠AOB∶∠BOC∶∠COD=3∶2∶4,∠AOD=108°,求∠AOB、∠BOC、∠COD的度数.03.如图,已知∠AOB+∠AOC=180°,OP、OQ分别平分∠AOB、∠AOC,且∠POQ=50°,求∠AOB、∠AOC的度数.演练巩固反馈提高01.已知∠α=35°,则∠α的余角是()A.55° B.45° C.145° D.135°02.如图直线l1与l2相交于点O,OM∠l1,若∠α=44°,则∠β等于()A.56° B.46° C.45° D.44°03.把一张长方形的纸片按图的方位折叠,EM、FM为折痕,折叠后的C点落在MB'的延长线上,则∠EMF 的度数是()A.85° B.90° C.95° D.100°04.书店、学校、食堂在同一个平面上,分别用A、B、C表示,书店在学校的北偏西30°,食堂在学校的南偏东15°,则平面图上的∠ABC应是()A.65° B.35° C.165° D.135°05.如果∠α=3∠β,∠α=2∠θ,则必有()A.∠β=12∠θ B.∠β=23∠θC.∠β=13∠θ D.∠β=34∠θ06.某校初一年级在下午3:00开展“阳光体育”活动,下午3:00这一时刻,时针上分针与时针所夹角等于°.07.已知∠AOB=30°,又自∠AOB的顶点O引射线OC,若∠AOC:∠AOB=4:3,那么∠BOC等于()A.10° B.40° C.45° D.70°或10°08.已知∠AOB=120°,OC在它的内部,且把∠AOB分成1:3,那么∠AOC的度数是()A.40° B.40°或80° C.30° D.30°或90°09.⑴如图所示,已知∠AOB是直角,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;⑵如果⑴中∠AOB=α,其他条件不变,求∠MON的度数;⑶你从⑴⑵的结果中,能发现什么规律?10.如图,已知OB、OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD.⑴若∠AOD=70°,∠MON=50°,求∠BOC的大小;⑵若∠AOD=α,∠MON=β,求∠BOC的大小.(用字母α、β的式子表示)11.如图所示,已知∠AOE=100°,∠DOF=80°,OE平分∠DOC,OF平分∠AOC,求∠EOF的度数.12.如图所示,O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线.⑴求∠DOE的度数;⑵若只将射线OC的位置改变,其他条件不变,那么∠DOE的度数会改变吗?13.如图,根据图回答下列问题:⑴∠AOC是哪两个角的和;⑵∠AOB是哪两个角的差.14.如图,∠1=∠2=∠3=∠4,根据图形回答问题:⑴图中哪些角是∠2的2倍;⑵图中哪些角是∠3的3倍;⑶图中哪些角是∠AOD的12倍;⑷射线OC是哪个角的三等分线.15.如图直线AB与CD相交于点O,那么∠1=∠2吗?试说明理由.。
►第18讲看图写话(讲义)目录一复习目标掌握目标及备考方向二考情分析看图写话中考考情分析三看图写话的考向1.看图写话的时态和语态、常考的句型解构、常考的简单句和复合句2.掌握简单有效的解题策略和正确的解题步骤3.提升必考题型归纳四真题感悟中考看图写话经典考题精选【复习目标】1.看图写话的时态和语态、常考的句型解构、常考的简单句和复合句2.掌握简单有效的解题策略和正确的解题步骤【考情分析】看图写话命题规律看图写话解题技巧看图写话以图画作为材料,培养学生的观赏、想象和表达能力,是丰富语言积累的好方法,也是写作的第一步。
内容主要包括写人、记事、写景、写物。
下面总结归纳该题型的解题步骤技巧:1.图文结合、审清题意。
看图写话,看图是基础,看图时应先从整体入手,初步感知图画的主要内容,即弄清时间、地点、有什么或者是什么人在干什么。
然后结合所给提示词,初步确定图画所传达的意思。
2.组织语言,构建句子。
在熟练掌握简单的五种基本句型、there be句型、祈使句、感叹句、主从复合句等基础上确定句子结构,然后根据句子结构先表达句子主干部分,再考虑在句子相应位置添加定语、状语等修饰看图写话题型是给出五幅图画,并给出1—2个单词或短语,要求学生结合所给图画和词汇提示写出一个符合图意、句式结构正确的句子。
这一题型句型结构多样,但均较为基础、涉及简单句的五种基本句型、there be句型、祈使句、感叹句、主从复合句等,并结合时态、语态进行考查。
成分。
3.明确时态、语态及词形变化。
根据图文信息判断用哪种时态和语态,同时注意单词的词形变化,如:第三人称单数、名词的单复数、人称代词的主宾格、谓语动词等。
4.图文对照、细审文字、检查修正。
写完全句后,要重新审读一遍,进行修改(语法、用词、拼写、标点等)和加工润色。
特别要注意三点:一是不要漏掉应表达的内容;二是所写内容要符合英语表达习惯,不可根据语法生造句子;三是检查所写句子是否有语法和词汇的错误。
经典诵读中级班第十八讲教案一、复习上次课内容1、唐诗:唐诗:《绝句》唐•杜甫2、《弟子规》第四篇谨(六)原文:执虚器,如执盈。
入虚室,如有人。
事勿忙,忙多错。
勿畏难,勿轻略。
二、学习新课1、论语:八佾篇(共二十六章)第三3.26子曰:“居上不宽,为礼不敬,临丧不哀,吾何以观之栽!”注释:宽:宽宏大度。
临丧:参加丧礼(葬礼)。
译文:孔子说:“居上位而不宽宏大度,举行礼仪时不恭敬,参加丧礼时不表示哀悼,对此我如何能看得下去呢?”引文:《人性的完美》从古至今,人们都在追求人性的完美,孔子也不例外。
然而什么是完美的人性?通过怎样的学习能达到自己人性的完美?在这里,孔老夫子给我们做出了朴实而实际的回答。
当一个人手中握有一定的权利时,会作出一些决定,比如安排工作、人员调动、工资、奖金的分配等等。
作为一个领头人,你是否能不计前嫌,公平地对待下属?你是否能从实际出发宽宏地对待下属的缺点错误?你是否能以公正的态度,对下属作出评价?一个领导者如果做不到胸怀坦白、宽宏大度,就不足以服众。
慢慢地就会失去人心,得不到大家的支持和拥护,也就是如今流行的一句话:没有亲和力。
其实作为一个普通人,同样需要包容他人。
同伴之间相处是否和谐,很大程度上取决于每个人是否具有宽广的胸怀。
一个人的朋友越多,说明他能够宽厚地对待他人,具有亲和力。
在举行仪式或比较重要的场合里,每个人都必须保持恭敬的态度。
例如师生间的问好行礼、给长辈拜寿、祭奠先祖、参加聚会等等,这时候你的言行代表着你所具有的修养和教养。
如果你身边的好朋友受伤了,你会怎样?你在电视里看到地震灾区的小朋友受伤甚至死亡时你会怎样?家里的亲人去世了你会怎样?每个人的本性都是向善的,正常人遇到这些事,都会心生悲悯,充满同情之心。
所以孔子举了三个方面常见的事例,告诉我们要成为具有完美人性的人,所具备的最合理、最普通的标准。
2、《千字文》杜稿钟隶,漆书壁经。
府罗将相,路夹槐卿。
杜:东汉人杜度。
2023年中考数学一轮复习备考第18讲等腰三角形与直角三角形考点清单考点1 等腰三角形的性质与判定性质(1)两底角相等,即∠B=∠C(等边对等角);(2)两腰相等,即AB=AC;(3)是轴对称图形,有一条对称轴,即AD所在的直线;(4)“三线合一”(即顶角的①、底边上的中线和底边上的高互相重合)判定(1)两边相等的三角形是等腰三角形;(2)②相等的三角形是等腰三角形(等角对等边)周长、面积周长:C=a+2b;面积:S=③(其中a是底边长,b是腰长,h是底边上的高)【易错警示】等腰三角形中的分类讨论:(1)当顶角和底角不确定时,需要分类讨论,且需要用三角形内角和定理检验;(2)当腰长和底边长不确定时,需要分类讨论,且需要用三角形三边关系检验.考点2 等边三角形的性质与判定性质(1)等边三角形的三条边相等,即AB=BC=AC;(2)等边三角形的三个内角相等且每一个角都等于④,即∠B=∠C=∠BAC=60°;(3)等边三角形是轴对称图形,有⑤条对称轴;(4)等边三角形“三线合一”;(5)等边三角形的内心、外心重合判定(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是⑥的等腰三角形是等边三角形周长、面积周长:C=3a;面积:S=12ah=34a2(h=32a)(其中a是边长,h是任一边上的高)考点3 直角三角形的性质与判定性质(1)两锐角之和等于90°,即∠A+∠B=90°;(2)斜边上的中线等于斜边的⑦;(3)30°角所对的直角边等于斜边的⑧;(4)勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么⑨;【拓展】在直角三角形中,如果一条直角边长等于斜边长的一半,那么这条直角边所对的锐角等于⑩;外接圆半径R=c2,内切圆半径r=12(a+b-c)判定(1)有一个角为⑪的三角形是直角三角形;(2)有两个角互余的三角形是直角三角形;(3)勾股定理的逆定理:如果三角形的三边长a,b,c满足⑫,那么这个三角形是直角三角形;【拓展】一条边上的中线等于这条边的一半的三角形是直角三角形周长、面积周长:C=a+b+c;面积:S△ABC=12ab=12ch(其中a,b分别为两个直角边长,c为斜边长,h为斜边上的高)考点4 等腰直角三角形的性质与判定性质(1)两直角边相等,即AC=BC;(2)两锐角相等且都等于45°;(3)是轴对称图形,有一条对称轴,即CD所在的直线;(4)“三线合一”判定(1)顶角为⑬的等腰三角形是等腰直角三角形;(2)有两个角为⑭的三角形是等腰直角三角形;(3)有一个角为⑮的直角三角形是等腰直角三角形;(4)两直角边相等的直角三角形是等腰直角三角形周长、面积 周长:C =2a +c ;面积:S =12a 2=12ch =22ah (其中a 为直角边长,c 为斜边长,h 为斜边上的高)强 化 演 练基础练1.如图,在Rt △ABC 中,∠ACB =90°,AC =BC ,过点C 作 CD ⊥AB ,垂足为D ,E 为BC 的中点,AE 与CD 交于点F .若DF 的长为23,则AE 的长为( )A .2B .2C .5D .2 52.已知a ,b 是等腰三角形的两边长,且a ,b 满足2a -3b +5+(2a +3b -13)2=0,则此等腰三角形的周长为( )A .8B .6或8C .7D .7或83.如图,在等腰三角形ABC 中,AB =AC =5,BC =8,AD ⊥AC 交BC 于点D ,则AD 的值为( )A .125B .154C .5D .2034.如图,AD 是等边三角形ABC 的中线,AE =AD ,则∠EDC 的度数为( )A .30°B .20°C .25°D .15°5.如图是“人字形”钢架,其中斜梁AB =AC ,顶角∠BAC =120°,跨度BC =10 m ,AD 为支柱(即底边BC 上的中线),两根支撑架DE ⊥AB ,DF ⊥AC ,则DE +DF 等于( )A .10 mB .5 mC .2.5 mD .9.5 m6.如图,在△ABC 中,AB =BC ,由图中的尺规作图痕迹得到的射线BD 与AC 交于点E ,点F 为BC 的中点,连接EF .若BE =AC =2,则△CEF 的周长为( )A .3+1B .5+3C .5+1D .47.如图,在4×4的正方形网格中有两个格点A ,B ,连接AB ,在网格中再找一个格点C , 使得△ABC 是等腰直角三角形,满足条件的格点C 的个数是( )A .2B .3C .4D .58.如图,在△ABC 中AC =BC ,点D 和E 分别在AB 和AC 上,且AD =AE .连接DE ,过点A 作AH ⊥BC 于点H ,交DE 于点F .若∠C =40°,则∠AFE 的度数为( )A .60°B .65°C .75°D .80°9.如图,在△ABC 中,点O 是角平分线AD ,BE 的交点.若AB =AC =10,BC =12,则tan ∠OBD 的值是( )A .12B .2C .63D .6410.如图,在Rt △ABC 中,CD 为斜边AB 上的中线.若CD =2,则AB = .11.如图,在△ABC 中,AB =AC =2,P 是BC 上任意一点,PE ⊥AB 于点E ,PF ⊥AC 于点F .若S △ABC =1,则PE +PF = .12.如图,在Rt△ABC中,∠C=90°,AF=EF.若∠CFE=72°,则∠B=.13.如图,EA=EB=EC,∠AEB=70°,则∠ACB=°.14.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于点D,E为垂足,连接CD.若BD=1,则AC的长是 .15.如图,在△ABC中,∠ABC的平分线BD交AC边于点D,AE⊥BC于点E.已知∠ABC=60°,∠C =45°.(1)求证:AB=BD;(2)若AE=3,求△ABC的面积.16.如图,在△ABC中,AD⊥BC,垂足为D,BD=CD,延长BC至点E,使得CE=CA,连接AE.(1)求证:∠B=∠ACB;(2)若AB=5,AD=4,求△ABE的周长和面积.强化练17.如图,在等边三角形ABC中,AB=10,E为AC的中点,点F,G为AB边上的动点,且FG=5,则EF+CG的最小值是()A.57 B.5 6 C.53+5 D.1518.如图,在△ABC中,AD和BE是高,∠ABE=45°,F是AB的中点,AD与FE,BE分别交于点G,H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC·AD=2AE2;④S△ABC=4S△ADF.其中正确的有()A.1个B.2个C.3个D.4个提升练19.七巧板是大家熟悉的一种益智类玩具,用七巧板能拼出许多有趣的图案.小聪同学将一个直角边长为20 cm的等腰直角三角形纸板,切割七块,正好制成一副七巧板,则图中阴影部分的面积为cm2.20.如图,在△ABC中,AB=AC=6,∠BAC=120°,P是BC上的动点,Q是AC上的动点(Q不与A,C重合).(1)线段P A的最小值为;(2)当△ABP 为直角三角形,△PCQ 也为直角三角形时,CQ 的长度为 .参 考 答 案考点清单①两角 ②两角 ③12ah ④60° ⑤三 ⑥60° ⑦一半 ⑧一半 ⑨a 2+b 2=c 2 ⑩30° ⑪90° ⑫a 2+b 2=c 2 ⑬90° ⑭45° ⑮45°强化演练1. C2. D3. B4. D5. B6. C7. B8. C9. A 10. 4 11. 1 12. 54° 13. 35 14. 2 3 15. (1)证明:∵BD 平分∠ABC ,∠ABC =60°,∴∠DBC =12∠ABC =30°. ∵∠C =45°,∴∠ADB =∠DBC +∠C =75°,∠BAC =180°-∠ABC -∠C =75°,∴∠BAC =∠ADB ,∴AB =BD .(2)解:在Rt △ABE 中,∵∠ABC =60°,AE =3,∴BE =AE tan ∠ABC = 3. 在Rt △AEC 中,∵∠C =45°,AE =3,∴EC =AE tan C =3,∴BC =3+3,∴S △ABC =12BC ·AE =9+332.16. (1)证明:在△ADB 和△ADC 中,⎩⎪⎨⎪⎧AD =AD ,∠ADB =∠ADC ,BD =CD ,∴△ADB ≌△ADC (SAS),∴∠B =∠ACB .(2)解:在Rt △ADB 中,∵AB =5,AD =4,∴BD =AB 2-AD 2=52-42=3,∴BD =CD =3,AC =AB =CE =5,∴BE =2BD +CE =2×3+5=11,DE =CD +CE =8. 在Rt △ADE 中,由勾股定理,得AE =AD 2+DE 2=42+82=45,∴C △ABE =AB +BE +AE =5+11+45=16+45,S △ABE =12BE ·AD =12×11×4=22.17. A 18. D 19.25420. (1)3 (2)4.5或4或3。
第十八讲 初二期中复习
一、选择题
1、如图1,施工工地的水平地面上,有三根外径都是1米的水泥管摞在一起,则其最高点到地面的距离是( )
A.2
B.221+
C.231+
D.2
31+ 2、下列说法正确的有( )个
① 对角线互相平分的四边形是平行四边形 ② 对角线相等的四边形是矩形
③ 对角线互相垂直的四边形是菱形 ④ 对角线互相垂直且相等的平行四边形是正方形 ⑤ 对角线相等的平行四边形是矩形
A.1个
B. 2个
C. 3个
D. 5个
3、 四边形ABCD 中,AC 、BD 交于点O,则下列条件能判断四边形是正方形的有( ) ①AC⊥BD,AO=CO=BO=DO ②AB=CD=AD=BC ,AC=BD ③AO=BO=CO=DO ④AD AB A =︒=∠,90 ⑤AB∥CD,AB=BC=CD A. 2个 B. 3个 C.4个 D.5个
4、在①平行四边形,②矩形,③菱形,④正方形中,能找到一点,使该点到各顶点的距离相等的图形是( )
A.①②
B.②③
C. ②④
D.③④ 5、. 在下列各数中:-0.333…,
4, 5, π-, 3π, 3.1415, 2.010101…(相邻两个1之间有
1个0),76.0123456…(小数部分由相继的正整数组成). 无理数有( ) A.3个 B.4个 C. 5个 D. 6个 6、若规定误差小于1, 那么60的估算值为( ) A. 3 B. 7 C. 8 D. 7或8 7、下列平方根中, 已经化简的是( ) A.
3
1
B. 20
C. 22
D. 121
8、下列说法中正确的有( ) ①2±都是8的立方根,②x x
=3
3
,③81的立方根是3,④283=--
A 1个
B 2个
C 3个
D 4个
图1
9、下列四个图形中,不能通过基本图形平移得到的是( )
10、四边形ABCD
中,
AB =3、BC =4、CD =13、DA =12、∠CBA =90º,那么它的面积为( )
A 、32、
B 、36、
C 、39、
D 、42 11、化简:20042003
2323)()
(+-得( )
A 、-1
B 、23-
C 、23+
D 、23--
12、平行四边形的一条边长是10,则两条对角线的长可以是( )
A 、4或8
B 、6或8
C 、8或10
D 、10或12 二、填空题 13、
=-24)( ;29)(-的平方根是 ; 33125
01
).(
-的立方根是 。
14、已知0<a ,则化简=2
a。
15、用长4cm,宽3cm 的邮票300枚不重不漏摆成一个正方形,这个正方形的边长等于________cm 。
16、大于5-
且小于3的所有整数是_______________。
17、比较大小:5-
______6-;143._______π;
213-______ 2
1。
18、a 、b 为实数,且02132=+++-)(b a ,则=+b a 。
19、以下是四个四边形的四个内角的度数之比,它们分别是①1∶3∶3∶1、②1∶3∶1∶3、
③3∶3∶1∶1、④3∶1∶1∶3,其中能判定为平行四边形的是 。
(填序号) 20、菱形的周长为20cm ,两邻角之比为1:2,则较短的对角线长为 cm 。
21、如图2,梯形ABCD 中,DC//AB ,∠D=90°AD=4cm,AC=5cm,
218cm S ABCD =梯形,那么AB=_________.
D C B
A A B
C
D 图2
三、解答题 22、化简与计算
(1)
21
01.036813
-+-. (2)25
520-+ .
(3) a
a a a a a 1
)113(2-∙
+--,其中22-=a
23、如图3,在
ABCD 中,O 是对角线AC 的中点,过点O 作AC 的垂线与边AD 、BC
分别交于E 、F 。
四边形AFCE 是菱形吗?请说明理由。
24、已知:如图4所示,ΔABC 为直角三角形,且∠C=90º,点D 是AB 的中点。
试画出将Δ
ABC 绕点D 按顺时针方向旋转90º的图形。
图3
C
A
B
D O
图4
25、如图5,已知四边形ABCD 是矩形,P 、Q 是直线AC 上的一点,且AP=CQ ,那么四边形PBQD
是平行四边形吗?试说明理由.
26、如图所示折叠长方形的一边AD ,点D 落在BC 边的点F
处,已知AB =8cm ,BC =10cm,求EC 的长。
27、如图6,已知等腰梯形ABCD 中,AD//BC ,AC ⊥BD ,AD+BC=10,DE ⊥BC 于E.求DE 的长.
(提示:平移BD ,使得A 点到D 点的位置)
A
B C
D P
Q
图5
A B
C
D
E
图6
B
A
D E C
F。