七年级下册期末综合测试题
- 格式:docx
- 大小:35.89 KB
- 文档页数:15
人教版七年级数学下册期末综合素质评价一、选择题(每题3分,共30分)1.【2022·株洲】在0,13,-1,2这四个数中,最小的数是( )A .0 B.13 C .-1 D. 22.在平面直角坐标系中,点A (2,-3)在第几象限?( )A .一B .二C .三D .四3.下列调查中,适宜采用全面调查方式的是( )A .了解一批圆珠笔的使用寿命B .了解全国七年级学生的身高情况C .考察人们保护海洋的意识D .检查一枚用于发射卫星的运载火箭的各零部件4.【2022·郴州】如图,直线a ∥b ,且直线a ,b 被直线c ,d 所截,则下列条件不能..判定直线c ∥d 的是( )A .∠3=∠4B .∠1+∠5=180°C .∠1=∠2D .∠1=∠45.下列命题中,是假命题的是( )A .邻补角一定互补B .平移不改变图形的形状和大小C .两条直线被第三条直线所截,同位角相等D .相等的角不一定是对顶角6.【2022·乌鲁木齐十三中模拟】已知⎩⎨⎧x =2,y =1是方程组⎩⎨⎧ax +by =5,bx +ay =1的解,则a -b 的值是( )A .-1B .2C .3D .47.与3+24最接近的整数是( )A .6B .7C .8D .98.【2022·杭州】已知a ,b ,c ,d 是实数,若a >b ,c =d ,则( )A .a +c >b +dB .a +b >c +dC .a +c >b -dD .a +b >c -d9.某次数学测验,抽取部分同学的成绩(得分为整数)整理制成频数分布直方图,如图所示.根据图示信息,下列描述不正确...的是( )A .共抽取了50人B .90分以上的有12人C .80分以上的所占的百分比是60%D .60.5~70.5分这一分数段的频数是1210.不等式组⎩⎪⎨⎪⎧x -13-12x <-1,4(x -1)≤2(x -a )有 3.个.整数解,则a 的取值范围是( ) A .-6≤a <-5 B .-6<a ≤-5 C .-6<a <-5 D .-6≤a ≤-5 二、填空题(每题3分,共24分)11.如图,在正方形网格中,三角形DEF 是由三角形ABC 平移得到的,则点C向右移动了___________________________格.(第11题) (第16题) (第18题)12.【教材P 130习题T 4变式】【2022·大庆】满足不等式组⎩⎨⎧2x -5≤0,x -1>0的整数解是________.13.【2022·深圳】某工厂一共有1 200人,为选拔人才,提出了一些选拔的条件,并进行了抽样调查,从中抽出400人,发现有300人是符合条件的,那么估计该工厂1 200人中符合选拔条件的人数为________.14.【教材P57习题T6改编】比较大小:5-15________15(填“>”“<”或“=”).15.计算:14+0.01-|3-8|=________.16.【2021·恩施州】如图,已知AE∥BC,∠BAC=100°,∠DAE=50°,则∠C =________.17.已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,则A的成本是________元,B的成本是________元.18.【新考法题】如图,在平面内取一个定点O,叫做极点,引一条射线O X,叫做极轴,再选定一个单位长度和角度的正方向(通常取逆时针方向).对于平面内任何一点M,用ρ表示线段OM的长度,θ表示从O X到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对(ρ,θ)就叫做点M的极坐标.若ON⊥O X,且点N到极点O的距离为4个单位长度,则点N的极坐标可表示为__________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.【2022·连云港】解不等式2x-1>3x-12,并把它的解集在数轴上表示出来.20.【2022·天津南开中学模拟】已知(2x+5y+4)2+|3x-4y-17|=0,求4x-2y的平方根.21.如图,BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H,∠GFH+∠BHC=180°.求证:∠1=∠2.22.【2022·绍兴】双减政策实施后,学校为了解八年级学生每日完成书面作业所需时长x(单位:小时)的情况,在全校范围内随机抽取了部分八年级学生进行调查,并将所收集的数据分组整理,绘制了如下所示的不完整的统计图表.请根据图表信息解答下列问题:(1)求统计表中m,n的值.(2)已知该校八年级学生有800人,试估计该校八年级学生中每日完成书面作业所需时长x满足0.5<x≤1.5的共有多少人.23.【教材P79习题T8变式】如图,平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a,b)是三角形ABC的边AC上任意一点,三角形ABC经过平移后得到三角形A1B1C1,点P的对应点为P1(a+6,b-2).(1)直接写出点C1的坐标;(2)在图中画出三角形A1B1C1;(3)求三角形AOA1的面积.24.【2022·邵阳】2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会吉祥物“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11 400元,请分别求出购进“冰墩墩”摆件和挂件的数量.(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2 900元,求购进的“冰墩墩”挂件不能超过多少个.25.【探究应用题】如图①,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,l4和l1,l2分别交于C,D两点,点P在线段AB上(点P和A,B两点不重合),∠ACP=∠1,∠BDP=∠2,∠CPD=∠3.(1)若∠1=22°,∠2=33°,则∠3=________.(2)试找出∠1,∠2,∠3之间的数量关系,并说明理由.(3)应用(2)中的结论解答下面的问题:如图②,点A在B的北偏东40°的方向上,在C的北偏西45°的方向上,求∠BAC的度数.(4)如果点P在直线l3上且在线段AB外侧运动(点P和A,B两点不重合),其他条件不变,试探究∠1,∠2,∠3之间的关系.答案一、1.C 2.D 3.D 4.C 5.C 6.D 7.C 8.A 9.D 10.B 二、11.5 12.x =2 13.900 14.> 15.-75 16.30° 17.300;200 18.(4,90°)点要点:本题题干较长,看似困难,实则简单.可以转化为“方位角+距离”表示法求解,即“定原点、定方向、定角度、定位置”. 三、19.解:去分母,得4x -2>3x -1.移项,得4x -3x >-1+2. 合并同类项,得x >1.这个不等式的解集在数轴上表示如图所示.20.解:由题意得⎩⎨⎧2x +5y +4=0,3x -4y -17=0,解得⎩⎨⎧x =3,y =-2.∴4x -2y =16=4. ∴4x -2y 的平方根为±2.21.证明:∵∠BHC =∠FHD ,∠GFH +∠BHC =180°,∴∠GFH +∠FHD =180°. ∴FG ∥BD .∴∠1=∠ABD . ∵BD 平分∠ABC , ∴∠2=∠ABD . ∴∠1=∠2.22.解:(1)被调查的总人数为15÷15%=100(人),∴m =100×60%=60,n =100-15-60-5=20.(2)∵当0.5<x ≤1.5时,在被调查的100人中有60+20=80(人),∴估计在该校八年级学生800人中,每日完成书面作业所需时长x 满足0.5<x ≤1.5的共有800×80100=640(人).23.解:(1)点C 1的坐标为(4,-2).(2)三角形A 1B 1C 1如图所示.(3)如图,S 三角形AOA 1=6×3-12×3×3-12×3×1-12×6×2=18-92-32-6=6. 24.解:(1)设购进“冰墩墩”摆件x 个,“冰墩墩”挂件y 个.根据题意,得⎩⎨⎧x +y =180,80x +50y =11 400,解得⎩⎨⎧x =80,y =100.答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.(2)设购进“冰墩墩”挂件m 个,则购进“冰墩墩”摆件(180-m )个. 根据题意,得(60-50)m +(100-80)(180-m )≥2 900,解得m ≤70. 答:购进的“冰墩墩”挂件不能超过70个. 25.解:(1)55°(2)∠1+∠2=∠3.理由如下: ∵l 1∥l 2,∴∠1+∠PCD +∠PDC +∠2=180°.在三角形PCD 中,∠3+∠PCD +∠PDC =180°, ∴∠1+∠2=∠3.(3)由(2)可知∠BAC =∠DBA +∠ACE =40°+45°=85°.(4)当点P 在线段BA 的延长线上时,如图①所示,过P 作PF ∥l 1,交l 4于F ,则∠1=∠FPC . ∵l 1∥l 2, ∴PF ∥l 2. ∴∠2=∠FPD .∵∠3=∠FPD-∠FPC,∴∠3=∠2-∠1.当点P在线段AB的延长线上时,如图②所示,过P作PG∥l2,交l4于G,则∠2=∠GPD.∵l1∥l2,∴PG∥l1.∴∠1=∠CPG.∵∠3=∠CPG-∠GPD,∴∠3=∠1-∠2.。
人教版七年级下册数学期末综合复习卷(含答案)一、选择题1.如图所示,B 与2∠是一对( )A .同位角B .内错角C .同旁内角D .对顶角 2.在下列现象中,属于平移的是( ).A .荡秋千运动B .月亮绕地球运动C .操场上红旗的飘动D .教室可移动黑板的左右移动3.如图,小手盖住的点的坐标可能为( )A .()5,4B .()3,4-C .()2,3-D .()4,5-- 4.给出下列 4 个命题:①不是对顶角的两个角不相等;②三角形最大内角不小于 60°;③多边形的外角和小于内角和;④平行于同一直线的两条直线平行.其中真命题的个数是 ( )A .1B .2C .3D .45.如图,点E 在CA 延长线上,DE 、AB 交于F ,且BDE AEF ∠=∠,B C ∠=∠,EFA 比FDC ∠的余角小10︒,P 为线段DC 上一动点,Q 为PC 上一点,且满足FQP QFP ∠=∠,FM 为EFP ∠的平分线.则下列结论:①//AB CD ;②FQ 平分AFP ∠;③140B E ∠+∠=︒;④QFM ∠的角度为定值.其中正确结论的个数有( )A .1个B .2个C .3个D .4个6.下列说法正确的是( )A .0的立方根是0B .0.25的算术平方根是-0.5C .-1000的立方根是10D .49的算术平方根是237.如图,//a b ,160∠=︒,则2∠的大小是( )A .60︒B .80︒C .100︒D .120︒8.如图,在平面直角坐标系中,点A 从原点O 出发,按A →A 1→A 2→A 3→A 4→A 5…依次不断移动,每次移动1个单位长度,则A 2021的坐标为( )A .(673,﹣1)B .(673,1)C .(674,﹣1)D .(674,1)九、填空题9.已知1x -=8,则x 的值是________________.十、填空题10.点P (﹣2,3)关于x 轴的对称点的坐标是_____.十一、填空题11.如图,已知△ABC 是锐角三角形,BE 、CF 分别为∠ABC 与∠ACB 的角平分线,BE 、CF 相交于点O ,若∠A=50°,则∠BOC=_______.十二、填空题12.如图,//AB CD ,点F 在CD 上,点A 在EF 上,则132∠+∠-∠的度数等于______.十三、填空题13.将长方形纸带沿EF 折叠(如图1)交BF 于点G ,再将四边形EDCF 沿BF 折叠,得到四边形GFC D '',EF 与GD '交于点O (如图2),最后将四边形GFC D ''沿直线AE 折叠(如图3),使得A 、E 、Q 、H 四点在同一条直线上,且D ''恰好落在BF 上若在折叠的过程中,//''EG QD ,且226∠=︒,则1∠=________.十四、填空题14.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.十五、填空题15.如图,直角坐标系中A 、B 两点的坐标分别为()3,1-,()2,1,则该坐标系内点C 的坐标为__________.十六、填空题16.如图所示,动点P 在平面直角坐标系中,按箭头所示方向呈台阶状移动,第一次从原点运动到点(0,1),第二次接着运动到点(1,1),第三次接着运动到点(1,2),…,按这样的运动规律,经过2021次运动后,动点P 的坐标是________.十七、解答题17.(1)计算:34|22|89-+-; (2)解方程组:1312223x y x y ⎧-=-⎪⎨⎪+=⎩. 十八、解答题18.求下列各式中的x 值:(1)(x ﹣1)2=4;(2)(2x +1)3+64=0;(3)x 3﹣3=38. 十九、解答题19.已知,如图所示,BCE ,AFE 是直线,AB //CD ,∠1=∠2,∠3=∠4.求证:AD //BE证明:∵AB //CD (已知)∴∠4=∠ ( )∵∠3=∠4(已知)∴∠3=∠ ( )∵∠1=∠2(已知)∴∠1+∠CAF =∠2+∠CAF ( )即:∠ =∠ .∴∠3=∠ .∴AD //BE ( )二十、解答题20.如图,在平面直角坐标系中,Rt ABC ∆的三个顶点的坐标分别是()3,2A -,()0,4B ,()0,2C .(1)求出ABC 的面积;(2)平移ABC ,若点A 的对应点2A 的坐标为()0,2-,画出平移后对应的222A B C △,写出2B 坐标.二十一、解答题21.如图①,将由5个边长为1的小正方形拼成的图形沿虚线剪开,将剪开后的图形拼成如图②所示的大正方形,设图②所示的大正方形的边长为a .(1)求a 的值;(2)若a 的整数部分为m ,小数部分为n ,试求式子2m a an -+的值.二十二、解答题22.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:2=1.414,3=1.732,5=2.236)二十三、解答题23.如图1,已知直线m ∥n ,AB 是一个平面镜,光线从直线m 上的点O 射出,在平面镜AB 上经点P 反射后,到达直线n 上的点Q .我们称OP 为入射光线,PQ 为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB .(1)如图1,若∠OPQ =82°,求∠OPA 的度数;(2)如图2,若∠AOP =43°,∠BQP =49°,求∠OPA 的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m 和n 上,另一块在两直线之间,四块平面镜构成四边形ABCD ,光线从点O 以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ 和∠ORQ 的数量关系,并说明理由. 二十四、解答题24.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E ,F 点,且90ACB ∠=︒.(1)将直角ABC 如图1位置摆放,如果56AOG ∠=︒,则CEF ∠=________; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ∠+∠=︒,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由;(3)将直角ABC 如图3位置摆放,若135GOC ∠=︒,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究,POQ OPQ ∠∠与PQF ∠的数量关系,请直接写出结论.二十五、解答题25.在△ABC 中,射线AG 平分∠BAC 交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作DE ∥AC 交AB 于点E .(1)如图1,点D在线段CG上运动时,DF平分∠EDB①若∠BAC=100°,∠C=30°,则∠AFD=;若∠B=40°,则∠AFD=;②试探究∠AFD与∠B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由【参考答案】一、选择题1.B解析:B【分析】根据“同位角、内错角、同旁内角”的意义进行判断即可.【详解】解:∠B与∠2是直线DE和直线BC被直线AB所截得到的内错角,故选:B.【点睛】本题考查“同位角、内错角、同旁内角”的意义,理解和掌握“同位角、内错角、同旁内角”的特征是正确判断的前提.2.D【分析】根据平移的性质依次判断,即可得到答案.【详解】A、荡秋千运动是旋转,故本选项错误;B、月亮绕地球运动是旋转,故本选项错误;C、操场上红旗的飘动不是平移,故本选项错误;D、教室解析:D【分析】根据平移的性质依次判断,即可得到答案.【详解】A、荡秋千运动是旋转,故本选项错误;B 、月亮绕地球运动是旋转,故本选项错误;C 、操场上红旗的飘动不是平移,故本选项错误;D 、教室可移动黑板的左右移动是平移,故本选项正确.故选:D .【点睛】本题考查了平移的知识;解题的关键是熟练掌握平移性质,从而完成求解.3.C【分析】根据各象限内点的坐标特征判断即可.【详解】由图可知,小手盖住的点在第四象限,∴点的横坐标为正数,纵坐标为负数,∴(2,-3)符合.其余都不符合故选:C .【点睛】本题考查了各象限内点的坐标特征,熟记各象限内点的坐标特征是解题的关键. 4.B【分析】①举反例说明即可,②利用三角形内角和定理判断即可,③举反例说明即可,④根据平行线的判定方法判断即可.【详解】解:①如:两直线平行同位角相等,所以不是对顶角的两个角不相等,错误,; ②若三角形最大内角小于60°,则三角形内角和小于180°,所以三角形最大内角不小于60°,正确;③如:三角形的外角和大于内角和,所以多边形的外角和小于内角和,错误; ④平行于同一直线的两条直线平行,正确.故选:B .【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.要指出一个命题是假命题,只要能够举出一个例子,使它具备命题的条件,而不符合命题的结论就可以了,这样的例子叫做反例. 5.D【分析】①由BDE AEF ∠=∠可得AE ∥BD ,进而得到B EAF ∠=∠,结合B C ∠=∠即可得到结论;②由//AB CD 得出AFQ FQP ∠=∠,结合FQP QFP ∠=∠即可得解;③由平行线的性质和内角和定理判断即可;④根据角平分线的性质求解即可;【详解】∵BDE AEF ∠=∠,∴AE ∥BD ,∴B EAF ∠=∠,∵B C ∠=∠,∴EAF C ∠=∠,∴//AB CD ,结论①正确;∵//AB CD ,∴AFQ FQP ∠=∠,∵FQP QFP ∠=∠,∴AFQ QFP ∠=∠,∴FQ 平分AFP ∠,结论②正确;∵//AB CD ,∴EFA FDC ∠=∠,∵EFA 比FDC ∠的余角小10︒,∴40EFA ∠=︒,∵B EAF ∠=∠,180EFA E EAF ∠+∠+∠=︒,∴180140B E EFA ∠+∠=︒-∠=︒,结论③正确;∵FM 为EFP ∠的平分线, ∴111222MFP EFP EFA AFP ∠=∠=∠+∠, ∵AFQ QFP ∠=∠, ∴12QFP AFP ∠=∠, ∴1202QFM MFP QFP EFA ∠=∠-∠=∠=︒,结论④正确; 故正确的结论是①②③④;故答案选D .【点睛】本题主要考查了平行线的判定与性质、余角和补角的性质,准确分析计算是解题的关键. 6.A【分析】根据算术平方根以及立方根的概念逐一进行凑数即可得.【详解】A .0的立方根是0,正确,符合题意;B .0.25的算术平方根是0.5,故B 选项错误,不符合题意;C .-1000的立方根是-10,故C 选项错误,不符合题意;D .49的算术平方根是23,故D 选项错误,不符合题意, 故选A .【点睛】本题考查了算术平方根、立方根,熟练掌握相关概念以及求解方法是解题的关键.7.D【分析】根据同位角相等,两直线平行即可求解.【详解】解:如图:a b,∠1=60°,因为//所以∠3=∠1=60°.因为∠2+∠3=180°,所以∠2=180°-60°=120°.故选:D.【点睛】本题考查的是平行线的判定定理,掌握同位角相等,两直线平行是解题的关键.8.C【分析】根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),A5(2,﹣1),A6(2,0),A7解析:C【分析】根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),A5(2,﹣1),A6(2,0),A7(2,1),…,点A坐标运动规律可以看作每移动6次一个循环,每个循环向右移动2个单位,则2021÷6=336…5,所以,前336次循环运动点A共向右运动336×2=672个单位,且在x轴上,再运动5次即向右移动2个单位,向下移动一个单位,则A2021的坐标是(674,﹣1).故选:C.【点睛】本题考查了平面直角坐标系点的规律,找到规律是解题的关键.九、填空题9.65【解析】【分析】根据算术平方根的定义确定x-1的值,解方程即可.【详解】∵=8∴x-1=64x=65故答案为65【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是关键解析:65【解析】【分析】根据算术平方根的定义确定x-1的值,解方程即可.【详解】∵8∴x-1=64x=65故答案为65【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是关键.十、填空题10.(﹣2,﹣3)【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.【详解】点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为解析:(﹣2,﹣3)【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.【详解】点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为(﹣2,﹣3).【点睛】本题考查关于x轴对称的点的坐标的特点,可记住要点或画图得到.十一、填空题11.115°【详解】因为∠A=50°,∴∠ABC+∠ACB=180°−∠A=180°−50°=130°,∵BE、CF分别为∠ABC与∠ACB的角平分线,∴∠OBC=∠ABC,∠OCB=∠ACB解析:115°【详解】因为∠A=50°,∴∠ABC+∠ACB=180°−∠A=180°−50°=130°,∵BE、CF分别为∠ABC与∠ACB的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)= 12×130°=65°,在△OBC中,∠BOC=180°−(∠OBC+∠OCB)=180°−65°=115°十二、填空题12.180°【分析】根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案【详解】解:∵AB∥解析:180°【分析】根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案【详解】解:∵AB∥CD,∴∠1=∠AFD,∵∠EFC=180°-∠EFD,∠ECF=180°-∠3,∠2+∠ECF+∠EFC=180°,∴∠2+360°-∠1-∠3=180°,∴∠1+∠3-∠2=180°,故答案为:180°【点睛】本题主要考查了三角形内角和定理,平行线的性质,补角的定义,解题的关键在于能够熟练掌握相关知识进行求解十三、填空题13.32°【分析】连接EQ ,根据A 、E 、Q 、H 在同一直线上得到,,根据得到,从而求得,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ ,∵A 、E 、Q 、H 在同一直线上∴∥∴∵∥解析:32°【分析】连接EQ ,根据A 、E 、Q 、H 在同一直线上得到EQ GD ''∥,=QEG EGB ∠∠,根据EG QD ''∥得到=QD G EGB ''∠∠,从而求得=QEG QD G ''∠∠,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ ,∵A 、E 、Q 、H 在同一直线上∴EQ ∥GD ''∴=QEG EGB ∠∠∵EG ∥QD ''=QD G EGB ''∠∠∴=QEG QD G ''∠∠∵226∠=︒,QD C ''''∠=90°∴=QEG QD G ''∠∠=180°-90°-26°=64°由折叠的性质可知:1=QEO ∠∠ ∴1=2QEG ∠1∠=32°故答案为:32°.【点睛】本题主要考查了平行线的性质,折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.十四、填空题14.、、、.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【详解】解:∵y =3x +2,如果直接输出结果,则3x +2=161,解得:x =53;如果两次才输出结果:则x =(53-2)÷3=17;如果三次才输出结果:则x =(17-2)÷3=5;如果四次才输出结果:则x =(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.十五、填空题15.【分析】首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.【详解】解:点C 的坐标为(-1,3),故答案为:(-1,3).【点睛】此题主要考查了点的坐标,关键是正解析:()1,3-【分析】首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.【详解】解:点C 的坐标为(-1,3),故答案为:(-1,3).【点睛】此题主要考查了点的坐标,关键是正确建立坐标系.十六、填空题16.(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四解析:(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四次运动到点(2,2);第五次运动到点(2,3),第六次运动到点(3,3),…,当n 为奇数时,第n 次运动到点(12n -,12n +), 当n 为偶数时,第n 次运动到点(2n ,2n ), 所以经过2021次运动后,动点P 的坐标是(1010,1011),故答案为:(1010,1011).【点睛】本题主要考查了点坐标的变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到每个对应点的坐标.十七、解答题17.(1);(2).【解析】【分析】(1)原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果;(2)先把方程组中的分式方程化为不含分母的方程,再用加减消元法求出方程组的解即可;【解析:(1)232)11x y =⎧⎨=⎩. 【解析】【分析】(1)原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果;(2)先把方程组中的分式方程化为不含分母的方程,再用加减消元法求出方程组的解即可;【详解】(1)解:原式=222233-= (2)原方程组可化为:32(1)23(2)x y x y -=-⎧⎨+=⎩ , (1)×2−(2)得:−7y =−7,解得:y =1;把y =1代入(1)得:x−3×1=−2,解得:x =1,故方程组的解为:11x y =⎧⎨=⎩ ; 【点睛】本题考查了实数的运算以及解二元一次方程组,熟知掌握实数运算法则及解一元二次方程的加减消元法和代入消元法是解答此题的关键.十八、解答题18.(1)x =3或x =﹣1;(2)x =﹣2.5;(3)x =1.5.【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答.(3)先移项,系数化为1,再开平方法进行解答【详解】解:(解析:(1)x=3或x=﹣1;(2)x=﹣2.5;(3)x=1.5.【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答.(3)先移项,系数化为1,再开平方法进行解答【详解】解:(1)开方得:x﹣1=2或x﹣1=﹣2,解得:x=3或x=﹣1;(2)方程整理得:(2x+1)3=﹣64,开立方得:2x+1=﹣4,解得:x=﹣2.5;(3)方程整理得:x3=278,开立方得:x=1.5.【点睛】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.十九、解答题19.FAB;两直线平行,同位角相等;FAB;等量代换;等式的性质;FAB;CAD; CAD;内错角相等,两直线平行【分析】根据平行线的性质求出∠4=∠BAF=∠3,求出∠DAC=∠BAF,推出∠3=解析:FAB;两直线平行,同位角相等;FAB;等量代换;等式的性质;FAB;CAD; CAD;内错角相等,两直线平行【分析】根据平行线的性质求出∠4=∠BAF=∠3,求出∠DAC=∠BAF,推出∠3=∠BAF,根据平行线的判定推出即可.【详解】证明:∵AB//CD(已知)∴∠4=∠FAB(两直线平行,同位角相等)∵∠3=∠4(已知)∴∠3=∠FAB(等量代换)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等式的性质)即:∠FAB=∠CAD∴∠3=∠CAD∴AD //BE (内错角相等,两直线平行)故填:BAF ,两直线平行,同位角相等,BAF ,等量代换,DAC ,DAC ,内错角相等,两直线平行.【点睛】本题考查了平行线的性质和判定的应用,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然. 二十、解答题20.(1)3;(2)B2(3,0),画图见解析【分析】(1)先求出AC ,BC 的长,然后根据三角形面积公式求解即可;(2)先根据A 和A2的坐标,确定平移方式,然后求出B2,C2的坐标,然后描点,顺次解析:(1)3;(2)B 2(3,0),画图见解析【分析】(1)先求出AC ,BC 的长,然后根据三角形面积公式求解即可;(2)先根据A 和A 2的坐标,确定平移方式,然后求出B 2,C 2的坐标,然后描点,顺次连接即可得到答案【详解】解:(1)∵在平面直角坐标系中,Rt ABC ∆的三个顶点的坐标分别是()3,2A -,()0,4B ,()0,2C ,∴AC =3,BC =2, ∴1=32ABC S AC BC =△; (2)∵A (-3,2),A 2(0,-2),∴A 2是由A 向右平移3个单位得到的,向下平移4个单位长度得到的,∴B 2,C 2的坐标分别为(3,0),(3,-2),如图所示,即为所求.【点睛】本题主要考查了坐标与图形,三角形面积,根据点的坐标确定平移方式,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握相关知识进行求解.二十一、解答题21.(1);(2)1【分析】(1)分析图形得到大正方形的面积,从而得到边长a;(2)估算出a的范围,得到整数部分和小数部分,代入计算即可.【详解】解:(1)由题意可得:,∵a>0,∴;解析:(152)1【分析】(1)分析图形得到大正方形的面积,从而得到边长a;(2)估算出a的范围,得到整数部分和小数部分,代入计算即可.【详解】解:(1)由题意可得:25a=,∵a>0,∴5a=(2)∵459,∴253<<,∴m=2,n2,∴2m a an-+=)222=))222=+-45=1【点睛】本题考查了算术平方根的应用,无理数的估算,解题的关键是能估算出的范围.二十二、解答题22.(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1)根据正方形的面积公式求出的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3解析:(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3x•2x=18,求出长方形的长和宽和5比较即可得出答案.试题解析:(1)∵正方形的面积是 25 平方分米,∴正方形工料的边长是 5 分米;(2)设长方形的长宽分别为 3x 分米、2x 分米,则3x•2x=18,x2=3,x1,x2=5,,即这块正方形工料不合格.二十三、解答题23.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QPB.可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QP B.可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ.【详解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×12=(180°-82°)×12=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×12=(180°-92°)×1244°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.二十四、解答题24.(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a,则CP//a//b,根据平行线的性质求解.(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠N解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a,则CP//a//b,根据平行线的性质求解.(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠NEF=∠ACP+∠PCB=90°.(3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解.【详解】解:(1)如图,作CP//a,∵a//b,CP//a,∴CP//a//b,∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,∴∠BCP=180°-∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°-∠CEF=90°,∴∠CEF=180°-90°+∠AOG=146°.(2)∠AOG+∠NEF=90°.理由如下:如图,作CP//a,则CP//a//b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∵∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°.(3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ =∠OPN +∠NPQ =∠GOP +∠PQF ,∵∠GOC =∠GOP +∠POQ =135°,∴∠GOP =135°-∠POQ ,∴∠OPQ =135°-∠POQ +∠PQF .如图,当点P 在GF 延长线上时,作PN //a ,连接PQ ,OP ,则PN //a //b ,∴∠GOP =∠OPN ,∠PQF =∠NPQ ,∵∠OPN =∠OPQ +∠QPN ,∴∠GOP =∠OPQ +∠PQF ,∴135°-∠POQ =∠OPQ +∠PQF .【点睛】本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解.二十五、解答题25.(1)①115°;110°;②;理由见解析;(2);理由见解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②1902AFD B ∠=︒+∠;理由见解析;(2)1902AFD B ∠=︒-∠;理由见解析 【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出12BAG BAC ∠=∠,12FDG EDB ∠=∠,由三角形的外角性质即可得出结果;②由①得:∠EDB=∠C ,1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=∠B+∠BAG ,再由三角形的外角性质即可得出结论; (2)由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠,由三角形的外角性质和三角形内角和定理即可得出结论.【详解】(1)①若∠BAC=100°,∠C=30°,则∠B=180°-100°-30°=50°,∵DE ∥AC ,∴∠EDB=∠C=30°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,则∠BAC+∠C=180°-40°=140°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ 1401402=︒+⨯︒ 4070110=︒+︒=︒故答案为:115°;110°; ②1902AFD B ∠=︒+∠; 理由如下:由①得:∠EDB=∠C ,12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ ()11802B B =∠+︒-∠ 1902B =︒+∠; (2)如图2所示:1902AFD B ∠=︒-∠;理由如下: 由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠, ∵∠AHF=∠B+∠BDH ,∴∠AFD=180°-∠BAG-∠AHF11802BAC B BDH =︒-∠-∠-∠1118022BAC B C =︒-∠-∠-∠ ()11802B BAC C =︒-∠-∠+∠ ()11801802B B =︒-∠-︒-∠ 1180902B B =︒-∠-︒+∠ 1902B =︒-∠. 【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.。
初中七年级生物(下册)期末综合能力测试卷及答案考试说明:本试卷五个大题,满分100分,时间90分钟。
题序一二三四五总分得分一、选择题(共25个小题,每题2分,共50分)1、克隆羊“多莉”长相与提供细胞核的母羊相像,这一实例说明了细胞核()A.能合成有机物B.控制着生物的遗传C.能控制物质进出D.可将光能转变成化学能2、在制作人的口腔上皮细胞、洋葱鳞片叶表皮细胞临时装片时,在载玻片上分别滴加的液体和它们染色共用的液体依次是()A.碘液、清水、清水B.生理盐水、清水、碘液C.清水、生理盐水、碘液D.碘液、生理盐水、碘液3、在根瘤菌与大豆的共生中,根瘤菌的作用是()A.固氮 B.提供二氧化碳 C.提供水分 D.提供有机物4、下列关于细菌、真菌和病毒的说法完全正确的一组是()①细菌、真菌和病毒都有遗传物质②细菌、真菌和病毒都能独立生活③酵母菌既可以用来制面包发馒头又可用来酿酒④所有的病毒对人类都是有害的A.①②B.②④C.①③D.①④5、为了促进儿童骨骼的发育,除了给儿童多补充含钙、磷多的食物,还应补充( ) A.维生素 A B.维生素 B C.维生素 C D.维生素 D6、动物的结构与功能相适应。
下列说法错误的是()A.河蚌的贝壳,可以保护柔软的身体 B.鲤鱼的鳃,利于在水中呼吸C.蜥蜴体表的鳞片,可减少水分散失 D.蜜蜂的外骨骼,适于飞行生活7、大豆、玉米种子萌发时所需要的养料分别来自()A.子叶、胚乳B.胚芽、胚根C.胚根、子叶D.胚轴、胚芽8、现实中有许多实例能说明生物既能适应环境,也能影响环境。
下列实例中能体现生物影响环境的是()A.北方多种树木入冬会自动落叶B.仙人掌的叶变成刺C.部分宠物犬进入盛夏脱毛D.城市绿化改变了空气质量9、下列消化液中,不能消化蛋白质的是()A.唾液B.胃液C.肠液D.胰液10、下列器官中,不属于组成人体呼吸道的器官是()①口腔②鼻③咽④喉⑤气管⑥支气管⑦肺A.②③B.③④C.⑤⑥D.①⑦11、淀粉、蛋白质和脂肪分别在人体什么部位开始被化学性消化?()A.口腔、口腔、胃 B.胃、胃、胃C.口腔、胃、小肠 D.口腔、胃、胃12、若人体血糖长期较高,可能分泌不足的激素是()A.性激素 B.胰岛素 C.甲状腺激素 D.生长激素13、农谚曰:“清明前后,种瓜点豆”。
2022—2023年人教版七年级数学(下册)期末综合检测卷及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若m >n ,则下列不等式正确的是( )A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n2.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒5.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣16.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b 7.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( ) A .m >2 B .m ≥2 C .m ≥2且m ≠3 D .m >2且m ≠38.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .709.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .x ≥11B .11≤x <23C .11<x ≤23D .x ≤2310.如图,已知直线a ∥b ,则∠1、∠2、∠3的关系是( )A .∠1+∠2+∠3=360°B .∠1+∠2﹣∠3=180°C .∠1﹣∠2+∠3=180°D .∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________.3.已知M =x 2-3x -2,N =2x 2-3x -1,则M ______N .(填“<”“>”或“=”)4.方程()()()()32521841x x x x +--+-=的解是_________.5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解方程组:3416 5633 x yx y+=⎧⎨-=⎩2.马虎同学在解方程13123x mm---=时,不小心把等式左边m前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m2﹣2m+1的值.3.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.4.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的14;(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的1 45.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?6.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、D6、A7、C8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、150°3、<4、3x=.5、±46、±3三、解答题(本大题共6小题,共72分)1、612 xy=⎧⎪⎨=-⎪⎩2、0.3、(1) C(5,﹣4);(2)90°;(3)略4、(1) 4s;(2) 9s;(3) t=323s或16s5、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;6、(1)A种商品的单价为16元、B种商品的单价为4元;(2)有两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件。
七年级下册语文期末综合检测卷一、单选题(共5小题)1.下列加点字注音完全正确的一项是()A.殷红(yān)揩桌子(kāi)仰之弥高(mí)忧心忡忡(chōnɡ)B.狂澜(nán)嗥鸣(háo)诲人不倦(huì)悲天悯人(mǐnɡ)C.污秽(huì)燕山(yàn)忍俊不禁(jīn)血气方刚(xiě)D.震悚(sǒnɡ)愧怍(zuò)海市蜃楼(shèn)如释重负(sì)2.下列词语书写有误的一项是()A.奠基绞肉字帖群蚁排衙B.镐头云鬓响午大庭广众C.商酌修葺鸿儒风餐露宿D.孱头猥琐鲁莽心有灵犀3.下列句子中加点成语的使用有误的一项是()A.考场上静悄悄的,一片小心翼翼的景象,大家都埋头努力解答着试题。
B.漫天大雪封住了他们的眼睛,使他们每走一步都忧心忡忡。
C.中国梦是和平、发展、合作、共赢的梦,与各国人民的美好梦想息息相通。
D.做完这份工作,他精疲力竭地躺在床上,再也爬不起来了。
4.根据语境,下面横线上填入的句子排列恰当的一项是()我带着孩子们,隐身在走廊的玻璃门里,悄悄观望。
____。
①翅子一展,大麻雀划了一道斜线,飞回篱墙上,目不转睛地,望着那饕餮吞食的小囚徒。
②只见一只大麻雀,果然勇敢地自篱墙上跳了下来,口里衔着一条小小白虫,两只细细小腿,像雨线般在地上轻盈跳动。
③它的头向这边歪一歪,小麻雀的头向那边斜一斜,正好一下两喙相接,那条白虫遂落进那张饥饿的小嘴巴里。
④及至四顾无人,“唰”的一声,飞跃到小麻雀跟前。
A.③①②④B.③②①④C.②③④①D.②④③①5.下列有关文学常识表述有误的一项是()A.《伟大的悲剧》的作者茨威格是奥地利作家,代表作有长篇传记《三位大师》等。
B.《孙权劝学》选自《资治通鉴》。
《资治通鉴》是司马光主持编纂的一部编年体通史。
C.唐代诗人中,“初唐四杰”是指王勃、杨炯、卢照邻、骆宾王,“小李杜”是指李商隐、杜牧。
2023年人教版七年级物理(下册)期末综合能力测试卷及答案(时间:60分钟分数:100分)班级:姓名:分数:一、选择题(每题3分,共45分)1、如图所示的实验,不能说明大气压存在的是()A.瓶吞鸡蛋B.皮碗对吸C.纸托水杯D.橡皮膜凸出2、下列物态变化中,属于汽化现象的是()A.春天,冰雪消融B.夏天,晾在室内的湿衣服变干C.秋天,早晨草木上露珠的形成 D.冬天,湖面的水结成冰3、甲、乙两只盛有100℃水的容器,用细玻璃管相通,如图所示。
如果不考虑水因蒸发而造成的损失,则当水温冷却到20℃时()A.甲、乙中水的质量均各自保持不变 B.甲中水的质量将略有增大C.乙中水的质量将略有增大 D.以上三种情况都有可能出现4、下面的语句都蕴含着深刻的哲理,如果从物理学角度来解读,也别有生趣,其中分析不正确的是()A.“只要功夫深,铁棒磨成针”,此过程中铁棒的质量减小B.“蜡炬成灰泪始干”,蜡烛燃烧时的体积减小C.“锲而不舍,金石可镂”,镂后金石的密度不变D.“人往高处走,水往低处流”,水流的过程中密度减小5、在湖边看到了平静湖水中的“鱼”和“在水中飞翔的鸟”,看的是()A.“鱼”是光的反射形成的虚像,“鸟”是光的折射形成的虚像B.“鱼”是光的折射形成的虚像,“鸟”是光的反射形成的虚像C.“鱼”和“鸟”都是光的反射形成的虚像D.“鱼”和“鸟”都是光的折射形成的虚像6、如图所示是探究光的反射规律的实验装置,为了探究反射光线与入射光线之间的关系,实验时应进行的操作是()A.沿ON向后折转板F B.沿ON向后折转板EC.改变光线OB与ON的夹角 D.改变光线AO与ON的夹角7、下列有关光的现象中,正确的说法是()A.阳光下,微风吹拂的河面,波光粼粼,这里蕴含着光的反射现象B.汽车在夜间行驶时,应打开驾驶室里的电灯C.人在照镜子时,总是靠近镜子去看,其原因是靠近时,平面镜所成的像会变大D.在暗室里,为了能从镜子中看清自己的脸部,应把手电筒正对镜子照射8、图所示的磁体两极间磁感线的画法正确的是()A.B.C.D.9、一辆汽车沿平直的公路向西快速行驶,一个人沿该公路的人行道向西散步,以人为参照物汽车的运动时()A.向西运动 B.向东运动 C.静止不动 D.无法确定10、有一天,雨、露、冰、雪四姐妹在一起争论自己的出生由来,谁也不认同谁。
数学七年级下册 期末试卷综合测试卷(word 含答案)一、选择题1.如图,1∠的同位角是( )A .2∠B .3∠C .4∠D .5∠2.下列各组图形可以通过平移互相得到的是( ) A .B .C .D .3.如图,小手盖住的点的坐标可能为( )A .()5,4B .()3,4-C .()2,3-D .()4,5--4.下列说法中,错误的个数为( ).①两条不相交的直线叫做平行线;②过一点有且只有一条直线与已知直线平行;③在同一平面内不平行的两条线段一定相交;④两条直线与第三条直线相交,那么这两条直线也相交. A .1个B .2个C .3个D .4个5.一副直角三角板如图放置,其中∠F =∠ACB =90°,∠D =45°,∠B =60°,AB //DC ,则∠CAE 的度数为( )A .25°B .20°C .15°D .10° 6.下列计算正确的是( )A 2(3)3-=-B 366=±C 393=D .382-7.如图,AB ∥CD ,将一块三角板(∠E =30°)按如图所示方式摆放,若∠EFH =25°,求∠HGD 的度数( )A .25°B .30°C .55°D .60°8.如图,()11,0A ,()21,1A ,()31,1A -,()41,1A --,()52,1A -…按此规律,点2022A 的坐标为( )A .()505,505B .()506,505-C .()506,506D .()506,506-二、填空题9.425⨯=______.10.已知点()12P m -,与点()1,2Q 关于y 轴对称,那么m =________. 11.如图,△ABC 中∠BAC =60°,将△ACD 沿AD 折叠,使得点C 落在AB 上的点C ′处,连接C ′D 与C ′C ,∠ACB 的角平分线交AD 于点E ;如果BC ′=DC ′;那么下列结论:①∠1=∠2;②AD 垂直平分C ′C ;③∠B =3∠BCC ′;④DC ∥EC ;其中正确的是:________;(只填写序号)12.如图,∠ABC 与∠DEF 的边BC 与DE 相交于点G ,且BA //DE ,BC //EF ,如果∠B =54°,那么∠E =__________.13.如图,将四边形纸片ABCD 沿MN 折叠,点A 、D 分别落在点A 1、D 1处.若∠1+∠2=130°,则∠B +∠C =___°.14.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.15.已知点P 的坐标(3-a ,3a -1),且点P 到两坐标轴的距离相等,则点P 的坐标是_______________.16.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0),…,按这样的规律,则点A 2021的坐标为 ____________.三、解答题17.计算(每小题4分)(1323(3)29()--(2)2335(3)20203|2|8(1)---. (44﹣2 | + ( -1 )201718.已知a +b =5,ab =2,求下列各式的值. (1)a 2+b 2; (2)(a ﹣b )2. 19.填空并完成以下过程:已知:点P 在直线CD 上,∠BAP +∠APD =180°,∠1=∠2. 请你说明:∠E =∠F .解:∵∠BAP +∠APD=180°,(_______)∴AB∥_______,(___________)∴∠BAP=________,(__________)又∵∠1=∠2,(已知)∠3=________-∠1,∠4=_______-∠2,∴∠3=________,(等式的性质)∴AE∥PF,(____________)∴∠E=∠F.(___________)20.已知:如图,把△ABC向上平移4个单位长度,再向右平移3个单位长度,得到△A′B′C′,(1)画出△A′B′C′,写出A′、B′、C′的坐标;(2)点P在y轴上,且S△BCP=4S△ABC,直接写出点P的坐标.21.23|49|7a b aa-+-+=0,求实数a、b b的整数部分和小数部分.二十二、解答题22.已知在44⨯的正方形网格中,每个小正方形的边长为1.(1)计算图①中正方形ABCD的面积与边长.(2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数8和8-.二十三、解答题23.直线AB∥CD,点P为平面内一点,连接AP,CP.(1)如图①,点P在直线AB,CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC的度数;(2)如图②,点P在直线AB,CD之间,∠BAP与∠DCP的角平分线相交于K,写出∠AKC与∠APC之间的数量关系,并说明理由;(3)如图③,点P在直线CD下方,当∠BAK=23∠BAP,∠DCK=23∠DCP时,写出∠AKC与∠APC之间的数量关系,并说明理由.24.如图,两个形状,大小完全相同的含有30°、60°的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.(1)①如图1,∠DPC=度.②我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD不动,三角板PAC从图示位置开始每秒10°逆时针旋转一周(0°<旋转<360°),问旋转时间t为多少时,这两个三角形是“孪生三角形”.(2)如图3,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速2°/秒,在两个三角板旋转过程中,(PC转到与PM重合时,两三角板都停止转动).设两个三角板旋转时间为t秒,以下两个结论:①CPDBPN∠∠为定值;②∠BPN+∠CPD为定值,请选择你认为对的结论加以证明.25.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.26.如图,△ABC 和△ADE 有公共顶点A ,∠ACB =∠AED =90°,∠BAC =45°,∠DAE =30°. (1)若DE //AB ,则∠EAC = ;(2)如图1,过AC 上一点O 作OG ⊥AC ,分别交A B 、A D 、AE 于点G 、H 、F . ①若AO =2,S △AGH =4,S △AHF =1,求线段OF 的长;②如图2,∠AFO 的平分线和∠AOF 的平分线交于点M ,∠FHD 的平分线和∠OGB 的平分线交于点N ,∠N +∠M 的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.【参考答案】一、选择题 1.B 解析:B 【分析】根据同位角的定义即可求出答案. 【详解】解:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角.即3∠是1∠的同位角. 故选:B . 【点睛】本题考查同位角的定义,解题的关键是:熟练理解同位角的定义.2.C 【分析】根据平移不改变图形的形状和大小,进而得出答案. 【详解】解:观察图形可知选项C 中的图案通过平移后可以得到. 故选:C . 【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键.解析:C 【分析】根据平移不改变图形的形状和大小,进而得出答案. 【详解】解:观察图形可知选项C 中的图案通过平移后可以得到. 故选:C . 【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键. 3.C 【分析】根据各象限内点的坐标特征判断即可. 【详解】由图可知,小手盖住的点在第四象限, ∴点的横坐标为正数,纵坐标为负数, ∴(2,-3)符合.其余都不符合 故选:C . 【点睛】本题考查了各象限内点的坐标特征,熟记各象限内点的坐标特征是解题的关键.4.D 【分析】根据平行线的定义,平行线公理,同一平面内,直线的位置关系,逐一判断各个小题,即可得到答案. 【详解】①在同一平面内,两条不相交的直线叫做平行线,故本小题错误, ②过直线外一点有且只有一条直线与已知直线平行,故本小题错误, ③在同一平面内不平行的两条直线一定相交;故本小题错误,④两条直线与第三条直线相交,那么这两条直线不一定相交,故本小题错误. 综上所述:错误的个数为4个. 故选D . 【点睛】本题主要考查平行线的定义,平行线公理,掌握平行线的定义,平行线公理是解题的关键. 5.C 【分析】利用平行线的性质和给出的已知数据即可求出CAE ∠的度数. 【详解】解:90F ∠=︒,45D ∠=︒, 45DEF ∴∠=︒,90ACB ∠=︒,60B ∠=︒, 30BAC ∴∠=︒,//AB DC ,45BAE DEF ∴∠=∠=︒,453015CAE BAE BAC ∴∠=∠-∠=︒-︒=︒,故选:C . 【点睛】本题考查了平行线的性质,解题的关键是熟记平行线的性质. 6.D 【分析】分别根据算术平方根的定义以及立方根的定义逐一判断即可. 【详解】解:A 3,故本选项不合题意;B 6=,故本选项不合题意;C 3≠,故本选项不合题意;D 、2=,故本选项符合题意; 故选:D . 【点睛】本题主要考查算术平方根及立方根,熟练掌握求一个数的算术平方根及立方根是解题的关键. 7.C 【分析】先根据三角形外角可求∠EHB =∠EFH +∠E =55°,根据平行线性质可得∠HGD =∠EHB =55°即可. 【详解】解:∵∠EHB 为△EFH 的外角,∠EFH =25°,∠E =30°, ∴∠EHB =∠EFH +∠E =25°+30°=55°, ∵AB ∥CD ,∴∠HGD =∠EHB =55°. 故选C . 【点睛】本题考查三角形外角性质,平行线性质,掌握三角形外角性质,平行线性质是解题关键.8.C 【分析】经观察分析所有点,除A1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A2022在第一象限;第一象解析:C 【分析】经观察分析所有点,除A 1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A 2022在第一象限;第一象限的点A 2(1,1),A 6(2,2),A 10(3,3)…观察易得到点的坐标=24n +. 【详解】 解:由题可知第一象限的点:A 2,A 6,A 10…角标除以4余数为2; 第二象限的点:A 3,A 7,A 11…角标除以4余数为3; 第三象限的点:A 4,A 8,A 12…角标除以4余数为0; 第四象限的点:A 5,A 9,A 13…角标除以4余数为1; 由上规律可知:2022÷4=505…2 ∴点A 2022在第一象限.观察图形,可知:点A 2的坐标为(1,1),点A 6的坐标为(2,2),点A 10的坐标为(3,3),…,∴第一象限点的横纵坐标数字隐含规律:点的坐标=24n +(n 为角标)∴点A 4n-2的坐标为(24n +,24n +)(n 为正整数), ∴点A 2022的坐标为(506,506). 故选C . 【点睛】本题考查了点的坐标正方形为单位格点变化规律,反应出点的坐标变化从特殊到一般再到特殊规律计算方法,同时也体现出第一象限点的横纵坐标数字隐含规律:点的坐标=24n +(n 为角标)求解.二、填空题 9.10 【分析】先计算乘法,然后计算算术平方根,即可得到答案. 【详解】 解:;故答案为:10. 【点睛】本题考查了算术平方根,解题的关键是掌握算术平方根的计算方法.解析:10 【分析】先计算乘法,然后计算算术平方根,即可得到答案. 【详解】10=; 故答案为:10. 【点睛】本题考查了算术平方根,解题的关键是掌握算术平方根的计算方法.10.0; 【分析】平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可. 【详解】解:根据对称的性质,得, 解得. 故答案为:0. 【点睛】考查了关于轴、轴对称的点的坐标,解析:0;【分析】平面直角坐标系中任意一点(,)P x y ,关于y 轴的对称点的坐标是(,)x y -,依此列出关于m 的方程求解即可.【详解】解:根据对称的性质,得11m -=-,解得0m =.故答案为:0.【点睛】考查了关于x 轴、y 轴对称的点的坐标,这一类题目是需要识记的基础题,解决的关键是对知识点的正确记忆.11.①②④【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,∵△ACD 沿AD 折叠,使得点C 落在AB 上的点C′处,∴∠1=∠2,A=AC ,DC解析:①②④【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,∵△ACD 沿AD 折叠,使得点C 落在AB 上的点C ′处,∴∠1=∠2,A C '=AC ,DC =D C ',∴AD 垂直平分C ′C ;∴①,②都正确;∵B C '=D C ', DC =D C ',∴B C '=D C '= DC ,∴∠3=∠B ,∠4=∠5,∴∠3=∠4+∠5=2∠5即∠B =2∠BC C ';∴③错误;根据折叠的性质,得∠ACD =∠A C 'D =∠B +∠3=2∠3,∵∠ACB 的角平分线交AD 于点E ,∴2(∠6+∠5)=2∠B ,653,∴∠+∠=∠∴3,DCE ∴∠=∠∴D C '∥EC∴④正确;故答案为:①②④.【点睛】本题考查了折叠的性质,平行线的判定,外角的性质,线段垂直平分线的性质,熟练掌握各种基本性质是解题的关键.12.126°【分析】根据两直线平行同位角相等得到,,结合邻补角的和180°解题即可.【详解】BA//DE ,BC//EF ,,∠B=54°,,故答案为:126°.【点睛】本题考查解析:126°【分析】根据两直线平行同位角相等得到CGE B ∠=∠,DGC E ∠=∠,结合邻补角的和180°解题即可.【详解】BA //DE ,BC //EF ,CGE B ∴∠=∠,DGC E ∠=∠∠B =54°,54CGE B ∴∠=∠=︒180CGE DGC ∠+∠=︒18054126DGC ∴∠=︒-︒=︒126E ∴∠=︒,故答案为:126°.【点睛】本题考查平行线的性质,是重要考点,难度较易,掌握相关知识是解题关键. 13.115【分析】先根据∠1+∠2=130°得出∠AMN+∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN+∠DNM= =115°.∵∠A+∠解析:115【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒-︒ =115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故答案为:115.【点睛】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.14.-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x +1)5=x 5+5x 4+10x 3+10x 2+5x +1,∵(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,∴a 0=1,a 1=5,a 2=10,a 3=10,a 4=5,a 5=1,把a 0=1,a 1=5,a 2=10,a 3=10,a 4=5,a 5=1代入﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5中, 可得:﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5=﹣32+80﹣80+40﹣10+1=﹣1,故答案为:﹣1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a 0,a 1,a 2,a 3,a 4,a 5的值. 15.(2,2)或(4,-4).【分析】点P 到x 轴的距离表示为,点P 到y 轴的距离表示为,根据题意得到=,然后去绝对值求出x 的值,再写出点P 的坐标.【详解】解:∵点P 到两坐标轴的距离相等∴=∴解析:(2,2)或(4,-4).【分析】点P 到x 轴的距离表示为31a -,点P 到y 轴的距离表示为3a -,根据题意得到31a -=3a -,然后去绝对值求出x 的值,再写出点P 的坐标.【详解】解:∵点P 到两坐标轴的距离相等 ∴31a -=3a -∴3a-1=3-a 或3a-1=-(3-a)解得a=1或a=-1当a=1时,3-a=2,3a-1=2;当a=-1时,3-a=4,3a-1=-4∴点P 的坐标为(2,2)或(4,-4).故答案为(2,2)或(4,-4).【点睛】本题考查了坐标与图形性质:利用点的坐标特征求出线段的长和判断线段与坐标轴的位置关系.点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面;①到x 轴的距离与纵坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.16.(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解解析:(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解】解:观察发现,每6个点形成一个循环,∵A6(6,0),∴OA6=6,∵2021÷6=336…5,∴点A2021的位于第337个循环组的第5个,∴点A2021的横坐标为6×336+5=2021,其纵坐标为:﹣2,∴点A2021的坐标为(2021,﹣2).故答案为:(2021,﹣2).【点睛】此题主要考查坐标的规律探索,解题的关键是根据图形的特点发现规律进行求解.三、解答题17.(1)0;(2);(3)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;(3)先算绝对值、立方根解析:(1)0;(23)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;(3)先算绝对值、立方根和乘方,再根据实数的加减运算法则计算即可得出答案;(4)先算根号、绝对值和乘方,再根据实数的加减运算法则计算即可得出答案.【详解】解:(1)原式=-3+4-3=-2(2)原式=(3)原式=2+(-2)+1=1(4)原式=2+2-1=3【点睛】本题考查的是实数的运算,难度不大,需要熟练掌握实数的加减运算法则.18.(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a2+b2=(a+b )2﹣2ab ,即可求解; (1)根据完全平方公式变形,得到(a ﹣b )2=a2+b2-2ab ,即可求解.【详解】解析:(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a 2+b 2=(a +b )2﹣2ab ,即可求解;(1)根据完全平方公式变形,得到(a ﹣b )2=a 2+b 2-2ab ,即可求解.【详解】解:(1)∵a +b =5,ab =2,∴a 2+b 2=(a +b )2﹣2ab =52﹣2×2=21;(2))∵a +b =5,ab =2,∴(a ﹣b )2=a 2+b 2-2ab =21-2×2=17.【点睛】本题主要考查了完全平方公式,熟练掌握()2222a b a ab b +=±+ 及其变形公式是解题的关键.19.已知;CD ;同旁内角互补两直线平行;∠APC ;两直线平行内错角相等;已知;∠BAP ;∠APC ;∠4;内错角相等两直线平行;两直线平行内错角相等.【分析】根据平行线的性质和判定即可解决问题;【详解析:已知;CD ;同旁内角互补两直线平行;∠APC ;两直线平行内错角相等;已知;∠BAP ;∠APC ;∠4;内错角相等两直线平行;两直线平行内错角相等.【分析】根据平行线的性质和判定即可解决问题;【详解】解:∵∠BAP +∠APD =180°(已知),∴AB ∥CD .(同旁内角互补两直线平行),∴∠BAP =∠APC .(两直线平行内错角相等),又∵∠1=∠2,(已知),∠3=∠BAP -∠1,∠4=∠APC -∠2,∴∠3=∠4(等式的性质),∴AE∥PF.(内错角相等两直线平行),∴∠E=∠F.(两直线平行内错角相等).【点睛】本题考查平行线的判定与性质,熟记平行线的判定方法和性质是解题的关键.20.(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;(2)设P(0,m解析:(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;(2)设P(0,m),构建方程解决问题即可.【详解】解:(1)如图,△A′B′C′即为所求,A′(1,5),B′(0,2),C′(4,2);(2)设P(0,m),由题意:12×4×|m+2|=4×12×4×3,解得m=10或-12,∴P(0,10)或(0,-12).【点睛】本题考查了坐标与图形的性质,平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质.21.4,【分析】根据分母不等于0,以及非负数的性质列式求出a、b的值,再根据根据被开方数估算无理数的大小即可得解.【详解】解:根据题意得,3a-b=0,a2-49=0且a+7>0,解得a=7,解析:44【分析】根据分母不等于0,以及非负数的性质列式求出a、b的值,再根据根据被开方数估算无理数的大小即可得解.【详解】解:根据题意得,3a-b=0,a2-49=0且a+7>0,解得a=7,b=21,∵16<21<25,∴44.【点睛】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.二十二、解答题22.(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形ABCD的面积为10,正方形ABCD2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形ABCD的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论.【详解】×3×1=10解:(1)正方形ABCD的面积为4×4-4×12则正方形ABCD;×2×2=8,所以该正方形即为所求,如图建立(2)如下图所示,正方形的面积为4×4-4×12数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点∴8∴弧与数轴的左边交点为8888【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键.二十三、解答题23.(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠解析:(1)80°;(2)∠AKC=12∠APC,理由见解析;(3)∠AKC=23∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,进而得到∠AKC=12∠APC;(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23∠APC,进而得到∠BAK﹣∠DCK=23∠APC.【详解】(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=12∠APC.理由:如图2,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP与∠DCP的角平分线相交于点K,∴∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,∴∠AKC=12∠APC;(3)∠AKC=23∠APC理由:如图3,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=23∠BAP,∠DCK=23∠DCP,∴∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23(∠BAP﹣∠DCP)=23∠APC,∴∠AKC=23∠APC.【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.24.(1)①90;②t为或或或或或或;(2)①正确,②错误,证明见解析.【分析】(1)①由平角的定义,结合已知条件可得:从而可得答案;②当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和解析:(1)①90;②t为3s或6s或9s或18s或21s或24s或27s;(2)①正确,②错误,证明见解析.【分析】(1)①由平角的定义,结合已知条件可得:180,DPC CPA DPB ∠=︒-∠-∠从而可得答案;②当//BD PC 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差求解旋转角,可得旋转时间;当//PA BD 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC DP 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC BD 时,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC BP 时的旋转时间与//PA BD 相同;(2)分两种情况讨论:当PD 在MN 上方时,当PD 在MN 下方时,①分别用含t 的代数式表示,CPD BPN ∠∠,从而可得CPD BPN∠∠的值;②分别用含t 的代数式表示,CPD BPN ∠∠,得到BPN CPD ∠+∠是一个含t 的代数式,从而可得答案.【详解】解:(1)①∵∠DPC =180°﹣∠CPA ﹣∠DPB ,∠CPA =60°,∠DPB =30°,∴∠DPC =180﹣30﹣60=90°,故答案为90;②如图1﹣1,当BD ∥PC 时,∵PC ∥BD ,∠DBP =90°,∴∠CPN =∠DBP =90°,∵∠CPA =60°,∴∠APN =30°,∵转速为10°/秒,∴旋转时间为3秒;如图1﹣2,当PC ∥BD 时,∵//,PC BD ∠PBD =90°,∴∠CPB=∠DBP=90°,∵∠CPA=60°,∴∠APM=30°,∵三角板PAC绕点P逆时针旋转的角度为180°+30°=210°,∵转速为10°/秒,∴旋转时间为21秒,如图1﹣3,当PA∥BD时,即点D与点C重合,此时∠ACP=∠BPD=30°,则AC∥BP,∵PA∥BD,∴∠DBP=∠APN=90°,∴三角板PAC绕点P逆时针旋转的角度为90°,∵转速为10°/秒,∴旋转时间为9秒,如图1﹣4,当PA∥BD时,∵∠DPB=∠ACP=30°,∴AC∥BP,∵PA∥BD,∴∠DBP=∠BPA=90°,∴三角板PAC绕点P逆时针旋转的角度为90°+180°=270°,∵转速为10°/秒,∴旋转时间为27秒,如图1﹣5,当AC∥DP时,∵AC∥DP,∴∠C=∠DPC=30°,∴∠APN=180°﹣30°﹣30°﹣60°=60°,∴三角板PAC绕点P逆时针旋转的角度为60°,∵转速为10°/秒,∴旋转时间为6秒,AC DP时,如图1﹣6,当////AC DP,∴∠=∠=︒,90DPA PACDPN DPA∠+∠=︒-︒+︒=︒,1803090240∴三角板PAC绕点P逆时针旋转的角度为240︒,∵转速为10°/秒,∴旋转时间为24秒,如图1﹣7,当AC∥BD时,∵AC∥BD,∴∠DBP=∠BAC=90°,∴点A在MN上,∴三角板PAC绕点P逆时针旋转的角度为180°,∵转速为10°/秒,∴旋转时间为18秒,AC BP时,如图1-3,1-4,旋转时间分别为:9s,27s.当//综上所述:当t为3s或6s或9s或18s或21s或24s或27s时,这两个三角形是“孪生三角形”;(2)如图,当PD在MN上方时,①正确,理由如下:设运动时间为t 秒,则∠BPM =2t ,∴∠BPN =180°﹣2t ,∠DPM =30°﹣2t ,∠APN =3t .∴∠CPD =180°﹣∠DPM ﹣∠CPA ﹣∠APN =90°﹣t ,21802,BPN CPD t ∴∠=∠=︒- ∴1.2CPD BPN ∠=∠ ②∠BPN +∠CPD =180°﹣2t +90°﹣t =270°﹣3t ,可以看出∠BPN +∠CPD 随着时间在变化,不为定值,结论错误.当PD 在MN 下方时,如图,①正确,理由如下:设运动时间为t 秒,则∠BPM =2t ,∴∠BPN =180°﹣2t ,∠DPM =230,t -︒ ∠APN =3t .∴∠CPD =360CPA APN DPB BPN ︒-∠-∠-∠-∠()360603301802t t =︒-︒--︒-︒-=90t ︒-21802,BPN CPD t ∴∠=∠=︒-∴1.2CPD BPN ∠=∠ ②∠BPN +∠CPD =180°﹣2t +90°﹣t =270°﹣3t ,可以看出∠BPN +∠CPD 随着时间在变化,不为定值,结论错误.综上:①正确,②错误.【点睛】本题考查的是角的和差倍分关系,平行线的性质与判定,角的动态定义(旋转角)的理解,掌握分类讨论的思想是解题的关键.25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902D A ∠=︒+∠;②360°;(4)124E ∠=︒; =14F ∠︒.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1)D A B C ∠=∠+∠+∠.理由如下:如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠; (2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.②连结BE .∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒;180180(206)2262264014∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒F AGF GAF CDF CAE CDF CAE.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.26.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.【详解】解:(1)如图,∵AB∥ED∴∠E=∠EAB=90°(两直线平行,内错角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案为:45°.(2)①如图1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=12•GH•AO=4,S△AHF=12•FH•AO=1,∴GH=4,FH=1,∴OF=GH-HF-OG=4-1-2=1.②结论:∠N+∠M=142.5°,度数不变.理由:如图2中,∵MF,MO分别平分∠AFO,∠AOF,∴∠M=180°-12(∠AFO+∠AOF)=180°-12(180°-∠FAO)=90°+12∠FAO,∵NH,NG分别平分∠DHG,∠BGH,∴∠N=180°-12(∠DHG+∠BGH)=180°-12(∠HAG+∠AGH+∠HAG+∠AHG)=180°-12(180°+∠HAG)=90°-12∠HAG=90°-12(30°+∠FAO+45°)=52.5°-12∠FAO,∴∠M+∠N=142.5°.【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.。
七年级生物下册期末综合检测试卷附解析1一、选择题1.现代类人猿和人类的共同祖先是A.长臂猿B.黑猩猩C.森林古猿D.猩猩2.男性和女性生殖系统的主要器官分别是A.睾丸、子宫B.睾丸、卵巢C.阴囊、子宫D.阴囊、输卵管3.油脂:取小麦籽粒用火烘烤干后,切下胚,放在纸上挤压,纸上出现透明的油迹。
【详解】“食物中含有蛋白质、脂肪和淀粉”的实验中,包着面团的纱布在水中揉挤后,纱布中留下的黄白色的胶状物质是蛋白质,因此滴加碘液不变蓝。
【点睛】解答此类题目的关键是理解掌握鉴定种子成分的实验。
4.将用甲、乙、丙、丁四种水果榨取的果汁分别逐滴滴入同浓度、等量的质量分数为0.01%的紫色高锰酸钾溶液中,直到高锰酸钾溶液褪色为止。
所用果汁滴数如下表所示。
请据此判断:维生素C含量最多的水果是()A.甲B.乙C.丙D.丁5.如图为人体部分消化器官的示意图,甲处阻塞,最可能发生的是()A.肝脏无法分泌胆汁B.肠液无法分解蛋白质C.吸收葡萄糖的功能下降D.消化脂肪的功能下降6.下图为“探究馒头在口腔中的变化”的实验设计,图中试管均置于37℃温水中10分钟,以下说法正确的是()A.滴加碘液后,①②号试管变蓝色、③不变蓝色B.①与②对照,可探究唾液对馒头的消化作用C.本探究实验的变量不唯一,无法得出任何结论D.②③对照,②号为对照组,可探究牙齿的咀嚼和舌的搅拌对馒头消化的作用7.下列有关人体消化系统的叙述,错误..的是()A.消化系统由消化道和消化腺组成B.肝脏是人体内最大的消化腺C.口腔中的消化酶能将淀粉分解成葡萄糖D.大肠能吸收少量水分和无机盐8.如图是人体内的气体交换过程示意图,下列分析不正确的是()A.人体内的气体交换包括(A)和(B)两个过程B.血红蛋白与氧结合发生在(B)过程C.人体内二氧化碳的最初来源是组织细胞D.图中①表示氧气,②表示二氧化碳9.如图为肺泡内的气体交换示意图,下列叙述正确的是()A.过程a与b是通过气体扩散作用实现的B.气体c代表二氧化碳,气体d代表氧气C.与血管乙相比,血管甲的血液中含有更多的氧D.肺泡内的气体进入血液需经过一层细胞10.如图模拟的是人体呼吸运动的过程。
数学七年级下册 期末试卷综合测试卷(word 含答案)一、选择题1.如图,1∠和2∠不是同旁内角的是( )A .B .C .D . 2.下列运动属于平移的是( )A .汽车在平直的马路上行驶B .吹肥皂泡时小气泡变成大气泡C .铅球被抛出D .红旗随风飘扬 3.若点P 在第四象限内,则点P 的坐标可能是( ) A .()4,3 B .()3,4- C .()3,4-- D .()3,4- 4.下列命题中,是假命题的是( )A .经过一个已知点能画一条且只能画一条直线与已知直线平行B .从直线外一点到这条直线的垂线段的长度叫做这点到直线的距离C .在同一平面内,一条直线的垂线可以画无数条D .连接直线外一点与直线上各点的所有线段中,垂线段最短5.如图,//AB CD ,P 为平行线之间的一点,若AP CP ⊥,CP 平分∠ACD ,68ACD ∠=︒,则∠BAP 的度数为( )A .56︒B .58︒C .66︒D .68︒ 6.下列说法正确的是( )A .64的平方根是8B .-16的立方根是-4C .只有非负数才有立方根D .-3的立方根是33-7.如图,将一张长方形纸片ABCD 沿EF 折叠.使顶点C ,D 分别落在点C ',D 处,C E '交AF 于点G ,若70CEF ∠=︒,则GFD '∠=( )A .30B .40︒C .45︒D .60︒8.如图,一个蒲公英种子从平面直角坐标系的原点O 出发,向正东走3米到达点1A ,再向正北方向走6米到达点2A ,再向正西方向走9米到达点3A ,再向正南方向走12米到达点4A ,再向正东方向走15米到达点5A ,以此规律走下去,当蒲公英种子到达点10A 时,它在坐标系中坐标为( )A .(12,12)--B .(15,18)C .(15,12)-D .(15,18)-二、填空题9.如果一个正方形的面积为3,则这个正方形的边长是 _____________.10.点A (2,4)关于x 轴对称的点的坐标是_____.11.如图,在△ABC 中,CD 是它的角平分线,DE ⊥AC 于点 E .若BC =6cm ,DE =2cm ,则△BCD 的面积为_____cm 212.如图,折叠宽度相等的长方形纸条,若∠1=54°,则∠2=____度.13.如图为一张纸片沿直线AB 折成的V 字形图案,已知图中140∠=︒,则2∠=______°.14.如图,将面积为5的正方形放在数轴上,以表示-1的点为圆心,以正方形的边长为半径作圆,交数轴于点A ,B 两点,则点A ,B 表示的数分别为__________.15.已知点()6,23A m m --,且点A 到两坐标轴的距离相等,则点A 的坐标是____. 16.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O 出发,按向右、向上、向右、向下…的方向依次不断移动,每次移动1个单位,其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…第n 次移动到A n ,则A 2021的坐标是___________.三、解答题17.计算:(1)|﹣2|+(﹣3)2﹣4; (2)23252+-;(3)220183|3|27(4)(1)-+---+-.18.求下列各式中x 的值:(1)()24264x -=;(2)3338x -=. 19.请补全推理依据:如图,已知:12180∠+∠=︒,3A ∠=∠,求证:B C ∠=∠.证明:∠+∠=︒(已知)∵12180AD EF()∴//∠=∠()∴3D又∵3A∠=∠(已知)∴D A∠=∠()AB CD()∴//∠=∠()∴B C20.已知:如图,ΔABC的位置如图所示:(每个方格都是边长为1个单位长度的正方形,ΔABC的顶点都在格点上),点A,B,C的坐标分别为(−1,0),(5,0),(1,5).(1)请在图中画出坐标轴,建立直角坐标系;(2)点P(m,n)是ΔABC内部一点,平移ΔABC,点P随ΔABC一起平移,点A落在A′(0,4),点P落在P′(n,6),求点P的坐标并直接写出平移过程中线段PC扫过的面积.21.数学活动课上,王老师说:“2是无理数,无理数就是无限不循环小数,同学们,你能把2的小数部分全部写出来吗?”大家议论纷纷,小明同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用2﹣1表示它的小数部分.”王老师说:“小明同学的说法是正确的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:(1)填空题:3的整数部分是 ;小数部分是(2)已知8+3=x+y,其中x是一个整数,且0<y<1,求出2x+(y-3)2012的值.二十二、解答题22.如图,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长;(2)图中阴影部分是一个正方形ABCD ,求出阴影部分的边长.二十三、解答题23.已知,如图:射线PE 分别与直线AB 、CD 相交于E 、F 两点,PFD ∠的角平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设PFM α∠=︒,EMF β∠=︒且()2350αβα-+-=.(1)α=________,β=________;直线AB 与CD 的位置关系是______;(2)如图,若点G 是射线MA 上任意一点,且MGH PNF ∠=∠,试找出FMN ∠与GHF ∠之间存在一个什么确定的数量关系?并证明你的结论. (3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图)分别与AB 、CD 相交于点1M 和点1N 时,作1PM B ∠的角平分线1M Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值变不变?若不变,请求出其值;若变化,请说明理由.24.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A 射线从AM 开始顺时针旋转至AN 便立即回转,灯B 射线从BP 开始顺时针旋转至BQ 便立即回转,两灯不停交又照射巡视.若灯A 转动的速度是每秒2度,灯B 转动的速度是每秒1度.假定主道路是平行的,即//PQ MN ,且:3:2BAM BAN ∠∠=.(1)填空:BAN ∠=_________;(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作ACD ∠交PQ 于点D ,且126ACD ∠=︒,则在转动过程中,请探究BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.25.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论. ②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.26.已知AB //CD ,点E 是平面内一点,∠CDE 的角平分线与∠ABE 的角平分线交于点F . (1)若点E 的位置如图1所示.①若∠ABE =60°,∠CDE =80°,则∠F = °;②探究∠F 与∠BED 的数量关系并证明你的结论;(2)若点E 的位置如图2所示,∠F 与∠BED 满足的数量关系式是 .(3)若点E 的位置如图3所示,∠CDE 为锐角,且1452E F ∠≥∠+︒,设∠F =α,则α的取值范围为 .【参考答案】一、选择题1.B解析:B【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.根据同旁内角的概念可得答案.【详解】解:选项A 、C 、D 中,∠1与∠2在两直线的之间,并且在第三条直线(截线)的同旁,是同旁内角;选项B 中,∠1与∠2的两条边都不在同一条直线上,不是同旁内角.故选:B .【点睛】此题主要考查了同旁内角,关键是掌握同旁内角的边构成“U ”形.2.A【分析】根据平移的定义,对选项进行一一分析,排除错误答案.【详解】解:A 、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A 选项符合;B 、吹肥皂泡时小气泡变成大气泡,不属于平移解析:A【分析】根据平移的定义,对选项进行一一分析,排除错误答案.【详解】解:A 、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A 选项符合; B 、吹肥皂泡时小气泡变成大气泡,不属于平移,故B 选项不符合;C 、铅球被抛出是旋转与平移组合,故C 选项不符合;D 、随风摆动的红旗,不属于平移,故D 选项不符合.故选:A .【点睛】此题主要考查了平移定义,平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.3.B【分析】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负即可得出答案.【详解】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负,只有()3,4-满足要求, 故选:B .【点睛】本题主要考查平面直角坐标系中点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键.4.A【分析】分别利用平行线以及点到直线的距离以及垂线以及垂线段最短的定义分别分析得出即可.【详解】解:A 、在同一平面内,经过一点(点不在已知直线上)能画一条且只能画一条直线与已知直线平行,故选项错误,符合题意;B 、从直线外一点到这条直线的垂线段的长叫做点到直线的距离,正确,不符合题意;C 、一条直线的垂线可以画无数条,正确,不符合题意;D 、连接直线外一点与直线上各点的所有线段中,垂线段最短,正确,不符合题意; 故选:A .【点评】此题主要考查了平行线、垂线以及垂线段和点到直线的距离等定义,正确把握相关定义是解题关键.5.A【分析】过P 点作PM //AB 交AC 于点M ,直接利用平行线的性质以及平行公理分别分析即可得出答案.【详解】解:如图,过P 点作PM //AB 交AC 于点M .∵CP 平分∠ACD ,∠ACD =68°,∴∠4=12∠ACD =34°.∵AB //CD ,PM //AB ,∴PM //CD ,∴∠3=∠4=34°,∵AP ⊥CP ,∴∠APC =90°,∴∠2=∠APC -∠3=56°,∵PM //AB ,∴∠1=∠2=56°,即:∠BAP 的度数为56°,故选:A .【点睛】此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键.6.D【分析】根据平方根和立方根的定义逐项判断即可得.【详解】A 、64的平方根是8±,则此项说法错误,不符题意;B 、因为()346416-=-≠- ,所以16-的立方根不是4-,此项说法错误,不符题意;C 、任何实数都有立方根,则此项说法错误,不符题意;D 3333-=3-的立方根是33故选:D .【点睛】本题考查了平方根和立方根,熟练掌握定义是解题关键.7.B【分析】根据两直线平行,内错角相等求出EFG ,再根据平角的定义求出EFD ∠,然后根据折叠的性质可得EFD EFD '∠=∠,进而即可得解.【详解】解:∵在矩形纸片ABCD 中,//AD BC ,70CEF ∠=︒,70EFG CEF ∴∠=∠=︒,180110EFD EFG ∴∠=︒-∠=︒,∵折叠,∴110EFD EFD ∠'=∠=︒,GFD EFD EFG ∴∠'=∠'-∠11070=︒-︒40=︒.故选:B .【点睛】本题考查了平行线的性质以及折叠的性质,根据两直线平行,内错角相等求出EFG 是解题的关键,另外,根据折叠前后的两个角相等也很重要.8.B【分析】由题意可知:OA1=3;A1A2=3×2;A2A3=3×3;可得规律:An ﹣1An =3n ,根据规律可得到A9A10=3×10=30,进而求得A10的横纵坐标.【详解】解:根据题意可解析:B【分析】由题意可知:OA 1=3;A 1A 2=3×2;A 2A 3=3×3;可得规律:A n ﹣1A n =3n ,根据规律可得到A 9A 10=3×10=30,进而求得A 10的横纵坐标.【详解】解:根据题意可知:OA 1=3,A 1A 2=6,A 2A 3=9,A 3A 4=12,A 4A 5=15,A 5A 6=18•••,A 9A 10=30,∴A 1点坐标为(3,0),A 2点坐标为(3,6),A 3点坐标为(﹣6,6),A 4点坐标为(﹣6,﹣6),A 5点坐标为(9,﹣6),A 6点坐标为(9,12),以此类推,A 9点坐标为(15,﹣12),所以A 10点横坐标为15,纵坐标为﹣12+30=18,∴A10点坐标为(15,18),故选:B.【点睛】本题主要考查了坐标确定位置的运用,解题的关键是发现规律,利用规律解决问题,解题时注意:各象限内点P(a,b)的坐标特征为:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.二、填空题9.【分析】设这个正方形的边长为x(x>0),由题意得x2=3,根据算术平方根的定义解决此题.【详解】解:设这个正方形的边长为x(x>0).由题意得:x2=3.∴x=.故答案为:.【点睛【分析】设这个正方形的边长为x(x>0),由题意得x2=3,根据算术平方根的定义解决此题.【详解】解:设这个正方形的边长为x(x>0).由题意得:x2=3.∴x【点睛】本题主要考查正方形的面积以及算术平方根,熟练掌握算术平方根的定义是解决本题的关键.10.(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛解析:(2,﹣4)【分析】根据关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A (2,4)关于x 轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛】此题主要考查了关于x 轴对称的点的坐标,关键是掌握点的坐标的变化规律.11.6【分析】根据角平分线的性质计算即可;【详解】作,∵CD 是角平分线,DE ⊥AC ,∴,又∵BC =6cm ,∴;故答案是6.【点睛】本题主要考查了角平分线的性质,准确计算是解题的关解析:6【分析】根据角平分线的性质计算即可;【详解】作DF BC ⊥,∵CD 是角平分线,DE ⊥AC ,∴=2DE DF cm =,又∵BC =6cm , ∴212662BCD S cm =⨯⨯=△; 故答案是6.【点睛】本题主要考查了角平分线的性质,准确计算是解题的关键.12.72【分析】根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得.【详解】解:如图,长方形的两边平行,,折叠,,.故答案为:.【点睛】本题考查了平行线的性质,折叠的解析:72【分析】根据平行线的性质可得13∠=∠,由折叠的性质可知34∠=∠,由平角的定义即可求得2∠.【详解】解:如图,长方形的两边平行,∴13∠=∠,折叠,∴34∠=∠,218034180545472∴∠=︒-∠-∠=︒-︒-︒=︒.故答案为:72.【点睛】本题考查了平行线的性质,折叠的性质,掌握以上知识是解题的关键.13.70【分析】根据∠1+2∠2=180°求解即可.【详解】解:∵∠1+2∠2=180°,,∴∠2=70°.故答案为:70.【点睛】本题考查了折叠的性质,角的和差计算,由图得出∠1+2∠解析:70【分析】根据∠1+2∠2=180°求解即可.【详解】∠=︒,解:∵∠1+2∠2=180°,140∴∠2=70°.故答案为:70.【点睛】本题考查了折叠的性质,角的和差计算,由图得出∠1+2∠2=180°是解答本题的关键.14.,【分析】根据算术平方根的定义以及数轴的定义解答即可.【详解】解:∵正方形的面积为5,∴圆的半径为,∴点A表示的数为,点B表示的数为.故答案为:,.【点睛】本题考查了实数与数轴,熟解析:1--,1【分析】根据算术平方根的定义以及数轴的定义解答即可.【详解】解:∵正方形的面积为5,∴∴点A表示的数为1-1-+.故答案为:1--1【点睛】本题考查了实数与数轴,熟记算术平方根的定义是解答本题的关键.15.或;【分析】根据点A 到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案.【详解】解:∵点A 到两坐标轴的距离相等,且点A 为,∴,∴或,解得:或,∴点A 的坐标为:或;故答案为:或解析:()4,4--或()8,8-;【分析】根据点A 到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案.【详解】解:∵点A 到两坐标轴的距离相等,且点A 为()6,23m m --, ∴623m m -=-,∴623m m -=-或6(23)m m -=--,解得:2m =或2m =-,∴点A 的坐标为:()4,4--或()8,8-;故答案为:()4,4--或()8,8-;【点睛】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x 轴上点的纵坐标为0,在y 轴上点的横坐标为0;记住各象限点的坐标特点.16.(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,解析:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A 2021的坐标.【详解】解:A 1(1,0),A 2(1,1),A 3(2,1),A 4(2,0),A 5(3,0),A 6(3,1),…, 2021÷4=505•••1,所以A 2021的坐标为(505×2+1,0),则A2021的坐标是(1011,0).故答案为:(1011,0).【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.三、解答题17.(1)9;(2)-;(3)-3.【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式=2+9﹣2=9,(2)原式=(1+3﹣5)=﹣,(3)原式=3﹣3﹣4解析:【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式=2+9﹣2=9,(2)原式=(1+3﹣5,(3)原式=3﹣3﹣4+1=﹣3.【点睛】本题考查了实数的运算,熟练掌握相关运算法则是解题关键.18.(1)或;(2)【分析】(1)根据平方根的性质求解即可;(2)根据立方根的性质求解即可;【详解】(1),,,或,∴或;(2),,;【点睛】本题主要考查了平方根的性质应用和解析:(1)6x =或2x =-;(2)32x =【分析】(1)根据平方根的性质求解即可;(2)根据立方根的性质求解即可;【详解】(1)()24264x -=, ()2216x -=,24x -=±,24x -=或24-=-x ,∴6x =或2x =-;(2)3338x -=, 3278x , 32x =; 【点睛】本题主要考查了平方根的性质应用和立方根的性质应用,准确计算是解题的关键. 19.同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定定理以及性质定理证明即可.【详解】证明:∵∠1+∠2=180解析:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定定理以及性质定理证明即可.【详解】证明:∵∠1+∠2=180°(已知),∴AD ∥EF (同旁内角互补,两直线平行),∴∠3=∠D (两直线平行,同位角相等),又∵∠3=∠A (已知),∴∠D =∠A (等量代换),,∴AB ∥CD (内错角相等,两直线平行),∴∠B =∠C (两直线平行,内错角相等).故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题主要考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解本题的关键.20.(1)见解析;(2)点P 的坐标为(1,2);线段PC 扫过的面积为.【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m 、n 的值,可求得点P 的坐标,再利用平行四边形的性质解析:(1)见解析;(2)点P 的坐标为(1,2);线段PC 扫过的面积为3.【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m 、n 的值,可求得点P 的坐标,再利用平行四边形的性质可求得线段PC 扫过的面积.【详解】解:(1)平面直角坐标系如图所示:(2)因为点A (−1,0)落在A ′(0,4),同时点P (m ,n )落在P ′(n ,6),∴146m n n +=⎧⎨+=⎩,解得12m n =⎧⎨=⎩, ∴点P 的坐标为(1,2);如图,线段PC 扫过的面积即为平行四边形PCC ′P ′的面积,⨯=.∴线段PC扫过的面积为313【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1)1;-1(2)19【分析】(1)根据已知的条件就可以求出;(2)先估算的范围,进一步确定8+的范围,即可求出x,y的值,即可解答.【详解】解:(1)∵1<<2,∴的整数部分是1;小解析:(1)13(2)19【分析】(1)根据已知的条件就可以求出;(233x,y的值,即可解答.【详解】解:(1)∵132,∴313;(2)解:∵132,∴9<310,∵3x+y,且x是一个整数,0<y<1,∴x=9,y=3931,∴2x+(32012=2×9+332012=18+1=19.【点睛】二十二、解答题22.(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.【详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4.解析:(1)棱长为4;(2【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.【详解】解:(1)设正方体的棱长为x ,则364x =,所以4x =,即正方体的棱长为4.(2)因为正方体的棱长为4,所以AB=【点睛】本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键.二十三、解答题23.(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ;(2解析:(1)35,35,平行;(2)∠FMN +∠GHF =180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ; (2)先根据内错角相等证GH ∥PN ,再根据同旁内角互补和等量代换得出∠FMN +∠GHF =180°;(3)作∠PEM 1的平分线交M 1Q 的延长线于R ,先根据同位角相等证ER ∥FQ ,得∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,得出∠EPM 1=2∠R ,即可得1FPN Q∠∠=2. 【详解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM =∠MFN =35°,∠EMF =35°,∴∠EMF =∠MFN ,∴AB ∥CD ;(2)∠FMN +∠GHF =180°;理由:由(1)得AB ∥CD ,∴∠MNF =∠PME ,∵∠MGH =∠MNF ,∴∠PME =∠MGH ,∴GH ∥PN ,∴∠GHM =∠FMN ,∵∠GHF +∠GHM =180°,∴∠FMN +∠GHF =180°;(3)1FPN Q∠∠的值不变,为2, 理由:如图3中,作∠PEM 1的平分线交M 1Q 的延长线于R ,∵AB ∥CD ,∴∠PEM 1=∠PFN ,∵∠PER =12∠PEM 1,∠PFQ =12∠PFN ,∴∠PER =∠PFQ ,∴ER ∥FQ ,∴∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,则有:122y x Ry x EPM ⎧⎨⎩=+∠=+∠, 可得∠EPM 1=2∠R ,∴∠EPM 1=2∠FQM 1,∴11EPM FQM ∠∠=1FPN Q∠∠=2. 【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.24.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.【详解】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,∴∠BAN=180°×2=72°,5故答案为:72;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t-180)=180,解得t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN=180°-2t,∴∠BAC=72°-(180°-2t)=2t-108°,又∵∠ABC=108°-t,∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°,∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.25.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′解析:(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG )以及(∠C'DE+∠C'ED )和(∠A'HL+∠A'LH ),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE =180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE -∠AED-∠A′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG )-(∠C'DE+∠C'ED )-(∠A'HL+∠A'LH )=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.26.(1)①70;②∠F=∠BED ,证明见解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A解析:(1)①70;②∠F =12∠BED ,证明见解析;(2)2∠F+∠BED =360°;(3)3045α︒≤<︒ 【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF ),求得∠ABF+∠CDF=70︒,即可求解; ②分别过E 、F 作EN//AB ,FM//AB ,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE ,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF ),同理得到∠F=∠ABF+∠CDF ,即可求解;(2)根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,过点E 作EG ∥AB ,则∠BEG+∠ABE=180°,因为AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED 与∠BFD 之间的数量关系;(3)通过对1452E F ∠≥∠+︒的计算求得30α≥︒,利用角平分线的定义以及三角形外角的性质求得45α<︒,即可求得3045α︒≤<︒.【详解】(1)①过F 作FG//AB ,如图:∵AB ∥CD ,FG ∥AB ,∴CD ∥FG ,∴∠ABF=∠BFG ,∠CDF=∠DFG ,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,∵BF 平分∠ABE ,∴∠ABE=2∠ABF ,∵DF 平分∠CDE ,∴∠CDE=2∠CDF ,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60︒+80︒=140︒,∴∠ABF+∠CDF=70︒,∴∠DFB=∠ABF+∠CDF=70︒,故答案为:70;∠BED,②∠F=12理由是:分别过E、F作EN//AB,FM//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∠BED;∴∠F=12(3)2∠F+∠BED=360°.如图,过点E作EG∥AB,则∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由①得:∠BFD=∠ABF+∠CDF,∴∠BED=360°-2∠BFD,即2∠F+∠BED=360°;(3)∵1452E F ∠≥∠+︒,∠F =α,∴2452αα≥+︒, 解得:30α≥︒,如图,∵∠CDE 为锐角,DF 是∠CDE 的角平分线,∴∠CDH=∠DHB 190452<⨯︒=︒, ∴∠F <∠DHB 45<︒,即45α<︒,∴3045α︒≤<︒,故答案为:3045α︒≤<︒.【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.。
2022-2023学年部编人教版七年级下册期
末考试及答案
一、选择题
1.下列中不是色盲的是()
A.父亲 B.母亲 C.儿子 D.女儿
【答案】D
2.生态系统中,垂直带状分布的现象是由于()
A.太阳辐射强度不同
B.空气密度有区别
C.地球离太阳的距离远近不同;
D.水平气温分布不规则
【答案】A
二、填空题
1.北限是指阔叶林的最南缘,南限是指针叶林的最北缘,两者之间是、。
2.模拟实验是近年来涌现出的一种实验方法,它是在和实验室中进行的。
【答案】
1、过渡林、针阔混交林
2、计算机、模拟装置
三、解答题
1.简述黄河的重要性及其治理措施
【答案】黄河是我国第二大河流,母亲河之一,也是国家重要的水资源和农业灌溉基地。
近年来,黄河进入生态危机,其主要表现是携带的泥沙下降、水量减少、干支流断流、水质污染等一系列问题。
治理黄河的措施包括涵养和节约水资源,加强河道建设,严格控制黄河上游经济发展和治理黄河流域生态环境等。
2.某地区空气污染严重,你会采取哪些措施进行治理?
【答案】采取治理大气污染的措施,如减少机动车污染排放、控制工业废气排放、推广清洁能源、加强城市绿化建设、进行科学
的城市规划等。
同时,也需要加强公众环保意识的培养,促进人类与自然生态系统更加和谐的发展。
部编人教版】七年级语文下册期末综合测试题(含答案)七年级下册期末综合测试题一、基础(23分)1.默写或根据课文填空。
(10分)1) 落红不是无情物,化作春泥更护花。
(XXX《己亥杂诗(其五)》)2) 可怜夜半虚前席,不问苍生问鬼神。
(XXX《贾生》)3) 然则天下事,但知其一,不知其二者多矣,可据理臆断欤?(XXX《河中石兽》)4) XXX的《登飞来峰》中表现诗人满怀豪情、XXX的诗句是“会当凌绝顶,一览众山小。
”5) 烟笼寒水月笼沙,夜泊秦淮近酒家。
XXX不知亡国恨,隔江犹唱《后庭花》。
2.根据拼音,写出相应的词语。
(4分)1) 青年人写信,写得太草率,XXX是深恶痛绝之的。
2) 平常日子,学校开始上课的时候,总有一阵喧闹,就是在街上也能听到。
3) 但当我哀悼隐鼠,给它复仇的时候,一面又在渴慕着绘图的《山海经》了。
4) 在我认识的一些前辈和同辈里,重视语文,努力求完美,并且以身作则,鞠躬尽瘁,XXX先生应该说是第一位。
3.(2012年广东省卷)下列对病句的修改,不正确的一项是(B)(3分)A。
一个人能否取得卓越的成就,并不在于他就读的学校是重点还是普通,而在于他是否具备成功的特质。
(在“一个人能”后面加“否”)B。
纪录片《舌尖上的中国》不仅让人怀念童年时的美味,而且引发了人们对“文化认同”和“软实力输出”的思考。
(将“文化认同”和“软实力输出”互换位置)C。
XXX认为梦的材料来自三个方面:一是身体的状态;二是白天经历的事情;三是儿童时期的经历。
D。
尽管天气很热,可是喜欢游泳的XXX有这种体验:刚从水里出来时会感到有点凉,有时甚至还会打一下寒战。
(把“不管”改成“尽管”)4.1、加点词语运用错误的一项是(D)(3分)A。
海交会整合了两岸各自的资源,通过优势互补,实现了双赢。
B。
正在进行旅游开发的千岛湖水下古城,其历史可以追溯到一千年以前。
C。
网络交友已是许多人玩腻了的游戏,可有些年轻人依然乐此不疲,一个个前赴后继地扎进去。
2022—2023年人教版七年级地理(下册)期末综合能力测试卷及答案(时间:60分钟分数:100分)班级:姓名:分数:一、选择题(共25个小题,每题2分,共50分)1、近年来,我国高新技术产品逐渐由“中国制造”转变为“中国创造”,主要影响因素是A.劳动力数量 B.自然资源 C.交通 D.人才和技术2、下列经纬线不穿过亚洲的是()A.赤道B.北回归线C.北极圈D.本初子午线3、解决水资源空间分布不均的有效措施是()A.跨流域调水B.防治水污染C.兴修水库D.节约用水4、东南亚中南半岛上的地形特点()A.中部较为低下,四周高B.地形以山地为主C.山河相间,纵列分布D.南部较低,北部较高5、亚洲人数最多的民族是()A.汉族B.朝鲜族C.阿拉伯族D.大和民族6、我们所生活的亚洲有众多的大江大河,它们大多呈放射状流向周边的海洋,由此可推断亚洲的地势特点是()A.南高北低B.西高东低C.中部高四周低D.东低西高7、世界上最大的热带雨林气候区是()A.刚果河流域平原 B.密西西比河流域C.亚马孙河流域 D.尼罗河流域8、“早穿皮袄午穿纱”反映的是()A.该地气温年较差大B.该地气温月较差大C.该地气温日较差大D.该地气温年际变化大9、南亚最大、人口最多、发展速度最快的国家是()A.印度B.巴基斯坦C.孟加拉国D.尼泊尔10、下列国家中属于经济大国、资源小国的是( )A.中国B.俄罗斯C.日本D.印度11、世界大多数农作物和动植物都能在我国找到适合生长的地区,是因为我国()A.气候复杂多样B.季风气候显著C.夏季普遍高温D.雨热同期12、亚洲地势的特点是()A.西部高、东部低B.东部高、西部低C.中部高、四周低D.中部低、四周高13、去青藏地区旅游,经常会看到被称为“高原之舟”的畜种是()A.牦牛 B.藏绵羊 C.藏山羊 D.骆驼14、下列图例中,表示长城的是()A.B.C.D.15、下列表示北京的四幅图中,地图比例尺最小的是A.①图B.②图C.③图D.④图16、读图,示意某大洲不同海拔陆地面积所占比重示意图,该大洲的主要地形类型是()A.高原B.平原C.丘陵D.山地17、海拔一般在200米以下,且地面起伏较小的地形是()A.平原B.高原C.山地D.丘陵18、日本主要的经济模式是()A.以出口初级农矿产品为主B.发达的加工贸易经济C.以捕鱼业为主D.单一的商品经济19、本初子午线是指()A.0°纬线B.0°经线C.180°经线D.20°W经线20、美国旧金山南面,有一片环境优美、交通便捷的狭长谷地,被称为“硅谷”。
七年级生物(下册)期末综合检测卷及答案考试说明:本试卷五个大题,满分100分,时间90分钟。
题序一二三四五总分得分一、选择题(共25个小题,每题2分,共50分)1、当体内胆汁分泌不足时,则会对食物中的哪种营养物质的消化有不利影响()A.蛋白质B.淀粉C.维生素D.脂肪2、广东名桔之一的砂糖桔,其果皮、果肉及其中的“筋络”分别属于( )①保护组织;②输导组织;③分生组织;④营养组织。
A.①④③B.③④②C.①②③D.①④②3、下列关于小肠特征的叙述中,与其吸收功能无关的是()A.小肠内表面有环形皱襞和小肠绒毛B.小肠绒毛壁及其内毛细血管壁均由一层上皮细胞构成C.小肠内有多种消化酶D.小肠绒毛中有丰富的毛细血管4、下列关于一株番茄和一头牛的叙述中错误的是()A.细胞既是结构单位,又是功能单位B.都是由一个细胞——受精卵发育而来的C.番茄果实的表皮和牛的心脏都属于器官D.它们的各种组织的形成是细胞分化的结果5、在设计对照组实验时应该注意的问题是()A.所有实验参数都相同B.所有实验参数都不同C.所有实验变量都不相同D.除实验变量外,其他实验参数相同6、下面关于生物分类的叙述,正确的是()A.生物分类单位从大到小依次是:界、门、纲、科、目、属、种B.分类单位越大,所包含的生物亲缘关系越近C.分类单位越小,所包含的生物种类越少D.动物和植物的分类都以生理功能为主要依据7、种子萌发时,首先进行的是()A.胚根突破种皮发育成根B.胚芽发育成茎和叶C.胚轴发育成连接茎和根的部分D.从周围环境吸收水分8、下图甲表示屈肘动作,图乙表示投篮动作,下列叙述错误的是()A.图甲中①是肌腱,②是肌腹B.图乙所示投篮动作中,肱三头肌的变化是先收缩后舒张C.投篮动作至少需要两组肌肉相互配合D.运动并不是仅靠运动系统来完成的,还需要其他系统如神经系统的调节9、下列动物的行为属于学习行为的是()A.菜青虫总是取食白菜、甘蓝等十字花科植物B.失去雏鸟的红雀连续给浮到水面求食的金鱼喂昆虫C.黑猩猩把几个木箱堆叠起来,爬到箱顶取下高处的香蕉D.刚出生的小袋鼠爬到母亲的育儿袋里吃奶10、有关生物与环境的说法,错误的是()A.“雨露滋润禾苗壮”主要体现了生物对环境的适应B.“鱼儿离不开水”说明了生物依赖环境C.“种豆南山下,草盛豆苗稀”体现了生物之间的竞争关系D.“人间四月芳菲尽,山寺桃花始盛开”主要体现了温度对生物的影响11、北极熊皮下有厚厚的脂肪,能起到防寒的作用,这厚厚的脂肪属于()A.上皮组织B.肌肉组织C.结缔组织D.营养组织12、研究发现某工业区附近海域的海蛇蛇皮中砷含量增高,这一结果说明()A.生物影响环境B.环境影响生物C.生物适应环境D.环境适应生物13、克隆羊“多莉”长相与提供细胞核的母羊相像,这一实例说明了细胞核()A.能合成有机物B .控制着生物的遗传C.能控制物质进出D.可将光能转变成化学能14、素有“绿色水库”之称的生态系统是()A.农田生态系统B.城市生态系统C.森林生态系统D.荒漠生态系统15、“吃饱”的感觉是因为下述哪个器官中有较多的食物()A.胃B.小肠C.大肠D.肝脏16、将大米播种到地里,不能萌发的主要原因是()A.水分不足B.温度太低C.没有胚乳D.胚被破坏了17、依据生物的某些特征,可以将我们学过的生物分成如图所示的三个类群。
2023-2024学年人教版七年级数学下册期末综合模拟测试2一、单选题1.下列实数是无理数的是( ) A .()01π-B .3π C .5 D .3.142.如图,一辆汽车在笔直的公路上由A 向B 行驶,M 是学校的位置,当汽车行驶到下列哪一位置时,汽车离学校最近( )A .D 点B .E 点C .F 点D .N 点3.下列说法正确的是()A .一个数的算术平方根一定是正数B .1的立方根是1±C 5=±D .2是4的平方根4.在平面直角坐标中,点A (4,-1)所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限5.为了了解某市参加中考的32000名学生的体重情况,抽查了其中1600名学生的体重进行统计分析.下列叙述正确的是( ) A .32000名学生是总体 B .1600名学生的体重是总体的一个样本 C .每名学生是总体的一个个体D .样本容量是1600名6.如图,直线a b ∥,一块直角三角形ABC 按如图所示放置,若150∠=︒,则2∠的度数是( )A .105︒B .110︒C .115︒D .130︒7 ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间8.若31a ->,两边都除以3-,得( )A .13a <-B .13a >-C .3a <-D .3a >-9.已知点(1,3)A m -与点(2,1)B n -关于x 轴对称,则m n +的值为( ) A .1B .1-C .0D .310.在解二元一次方程组259236x y x y +=⎧⎨-=⎩①②时,用①-②消去未知数x 后,得到的方程是( )A .23y =B .215y =C .83y =D .815y =11.如果关于x 的不等式()11a x a +>+的解集为1x <,则a 的取值范围是( )A .0a <B .1a <-C .1a >D .1>-a12.如图,90C ∠=︒,将直角三角形ABC 沿着射线BC 方向平移5cm ,得三角形A B C ''',已知3cm BC =,4cm AC =,则阴影部分的面积为( )2cm .A .18B .14C .20D .2213.为了解中学生获取资讯的主要渠道,随机抽取50名中学生进行问卷调查,调查问卷设置了“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项),根据调查结果绘制了如图所示的条形图(D 组数据被污染).该调查的调查方式及D 组对应的频率分别为( )A .全面调查;52%B .全面调查;48%C .抽样调查;52%D .抽样调查;48%14.《九章算术》中记载这样一个问题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.问绳长、井深各几何?”题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺;如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?若设绳长、井深分别为x 、y 尺,则符合题意的方程组是( )A .()()3441y x y x ⎧=+⎪⎨=+⎪⎩B .3441y x y x =+⎧⎨=+⎩C .()()3441x y x y ⎧=+⎪⎨=+⎪⎩D .3441x y x y =+⎧⎨=+⎩15.如图,在平面直角坐标系中,有若干个整点,按图中→方向排列,即()0,0→ 0,1 →()1,1→()2,2→ 2,3 →()3,3→()4,4,……,则按此规律排列下去第23个点的坐标为( )A .(13,13)B .(14,14)C .(15,15)D .(14,15)二、填空题16.图,∠1+∠2=180°,∠3=110°,则∠4=度.17.已知43x y +=,且17y -<≤则x 的取值范围是.18.在已知点A 的坐标是()2,4A -,线段AB y ∥轴,且5AB =,则B 点的坐标是. 19.已知关于x 的不等式组0521x a x -≥⎧⎨->⎩只有四个整数解,则实数a 的取值范围是.三、解答题 20.计算:1-;3π- 21.解不等式组23(1)2223x x x x +<+⎧⎪+⎨-≤⎪⎩.22.有A 、B 两种型号台灯,若购买2台A 型台灯和6台B 型台灯共需610元.若购买6台A 型台灯和2台B 型台灯共需470元. (1)求A 、B 两种型号台灯每台分别多少元?(2)采购员小红想采购A 、B 两种型号台灯共30台,且总费用不超过2200元,则最多能采购B 型台灯多少台?23.疫情期间,学校为了解学生最喜欢以下4门网课:A .数学,B .语文,C .英语,D .道德与法制中的哪一门学科,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图(如图1,图2),请回答下列问题:(1)这次被调查的学生共有多少人? (2)补全图2中的条形统计图;(3)图1扇形统计图中,B ,C ,D 所占的百分比各是多少?24.二元一次方程组23253x y m x y m +=+⎧⎨+=-⎩的解x ,y 的值是一个等腰三角形两边的长,且这个等腰三角形的周长为5,求腰的长.(注:等腰三角形中相等的两条边叫做等腰三角形的腰) 25.如图,已知AD BC ⊥,EF BC ⊥,垂足分别为D 、F ,23180∠+∠=︒,试说明:GDC B ∠=∠.请补充说明过程,并在括号内填上相应的理由.解:AD BC ⊥Q ,EF BC ⊥(已知)90ADB EFB ∴∠=∠=︒(), ∴EF AD ∥(), ∴2180+∠=︒().又23180∠+∠=︒Q (已知),13∠∠∴=(),∴AB P (), ∴GDC B ∠=∠().26.某商场有A 、B 两种商品,每件的进价分别为15元、35元.商场销售5件A 商品和2件B 商品,可获得利润45元;销售8件A 商品和4件B 商品,可获得利润80元. (1)求A 、B 两种商品的销售单价;(2)如果该商场计划购进A 、B 两种商品共80件,用于进货资金最多投入2 000元,但又要确保获利至少590元,请问有那几种进货方案?27.在综合与实践课上,老师让同学们以“两条平行线、AB CD 和一块含60︒角的直角三角尺EFG (90EFG ∠=︒,60EGF ∠=︒)”为主题开展数学活动.(1)如图1,若三角尺的60︒角的顶点G 放在CD 上,若221∠=∠,求1∠的度数; (2)如图2,小颖把三角尺的两个锐角的顶点E 、G 分别放在AB 和CD 上,请你探索并说明AEF ∠与FGC ∠间的数量关系;(3)如图3,小亮把三角尺的直角顶点F 放在CD 上,30︒角的顶点E 落在AB 上,请你探索并说明AEG ∠与CFG ∠间的数量关系.。
⼈教版七年级数学下册期末测试题+答案解析(共四套)⼈教版七年级第⼆学期综合测试题(⼆)、填空题:(每题3分,共15分)i.8i 的算术平⽅根是 ________ ,旷64= __________ . 2. 如果 13. 在⼛ABC 中,已知两条边a=3,b=4,则第三边c 的取值范围是 _____________4. 若三⾓形三个内⾓度数的⽐为 2:3:4,则相应的外⾓⽐是 ___________ .5.已知两边相等的三⾓形⼀边等于 ___________ 5cm,另⼀边等于11cm,则周长是.⼆、选择题:(每题3分,共15分)6?点P (a,b )在第四象限,则点P 到x 轴的距离是() A.a B.b C.| a | D. | b |7. 已知aa b A.a+5>b+5B.3a>3b;C.-5a>-5bD.>3 38. 如图,不能作为判断AB// CD 的条件是()A. / FEB=/ ECDB./ AEC ⽞ ECD; C. / BEC+Z ECD=180D. / AEG=Z DCH三、解答题:(每题6分,共18分) 11.解下列⽅程组:12.2x 5y 25,4x 3y 15.9.以下说法正确的是()A. 有公共顶点,并且相等的两个⾓是对顶⾓B. 两条直线相交,任意两个⾓都是对顶⾓C. 两⾓的两边互为反向延长线的两个⾓是对顶⾓D. 两⾓的两边分别在同⼀直线上,这两个⾓互为对顶⾓ 10.下列各式中,正确的是()13.若A(2x-5,6-2x)在第四象限,求a解不等式组,并在数轴表⽰2x 3 6 x,1 4x 5x 2.的取值范围作图题:(6分)作BC 边上的⾼作AC 边上的中线。
五.有两块试验⽥,原来可产花⽣470千克,改⽤良种后共产花⽣ 532千克,已知第⼀块⽥的产量⽐原来增加 16%,第⼆块⽥的产量⽐原来增加10%,问这两块试验⽥改⽤良种后各增产花⽣多少千克?( 8分)六,已知a 、b 、c 是⼆⾓形的⼆边长,化简:|a — b +c|+ |a — b — c| (6分)⼋,填空、如图1,已知/1 =/2, Z B =Z C ,可推得AB //CD 。
人教版七年级数学下册期末综合复习试卷(附答案)一、选择题1.如图,直线1l 截2l 、3l 分别交于A 、B 两点,则1∠的同位角是( )A .2∠B .3∠C .4∠D .5∠2.下列各组图形可以通过平移互相得到的是( )A .B .C .D .3.点()3,5A -在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.给出以下命题:①对顶角相等;②在同一平面内, 垂直于同一条直线的两条直线平行;③相等的角是对顶角;④内错角相等.其中假命题有( )A .1个B .2个C .3个D .4个5.下列几个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等;②如果1∠和2∠是对顶角,那么12∠=∠;③一个角的余角一定小于这个角的补角;④三角形的一个外角大于它的任一个内角.A .1个B .2个C .3个D .46.对于有理数a .b ,定义min {a ,b }的含义为:当a <b 时,min {a ,b }=a ,当b <a 时,min {a ,b }=b .例如:min {1,﹣2}=﹣2,已知min {30,a }=a ,min {30,b }=30,且a 和b 为两个连续正整数,则a ﹣b 的立方根为( )A .﹣1B .1C .﹣2D .27.如图,AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,FH 平分∠EFD ,若∠1=110°,则∠2的度数为( )A .45°B .40°C .55°D .35°8.如图所示,已知点A (﹣1,2),将长方形ABOC 沿x 轴正方向连续翻转2021次,点A 依次落在点A 1,A 2,A 3,…,A 2021的位置,则A 2021的坐标是( )A .(3038,1)B .(3032,1)C .(2021,0)D .(2021,1)九、填空题9.已知非零实数a.b 满足|2a-4|+|b+2|+()23a b -+4=2a ,则2a+b=_______.十、填空题10.点P 关于y 轴的对称点是(3,﹣2),则P 关于原点的对称点是__.十一、填空题11.如图.已知点C 为两条相互平行的直线,AB ED 之间一动点,ABC ∠和CDE ∠的角平分线相交于F ,若3304BCD BFD ∠=∠+︒,则BCD ∠的度数为________.十二、填空题12.如图,BD 平分∠ABC ,ED ∥BC ,∠1=25°,则∠2=_____°,∠3=______°.十三、填空题13.将一张长方形纸条折成如图的形状,已知1110∠=︒,则2∠=___________°.十四、填空题14.已知,a b 为两个连续的整数,且 15a b <<,则a b +=_______ 十五、填空题15.若点P (2m+4,3m+3)在x 轴上,则点P 的坐标为________.十六、填空题16.如图,在直角坐标系中,A (1,3),B (2,0),第一次将△AOB 变换成△OA 1B 1,A 1(2,3),B 1(4,0);第二次将△OA 1B 1变换成△OA 2B 2,A 2(4,3),B 2(8,0),第三次将△OA 2B 2变换成△OA 3B 3,……,则B 2021的横坐标为______.十七、解答题17.(1)计算:()()23121273-+-⨯--- (2)解方程:123123x x +--= 十八、解答题18.求下列各式中x 的值.(1)4x 2=64;(2)3(x ﹣1)3+24=0.十九、解答题19.请把以下证明过程补充完整,并在下面的括号内填上推理理由:已知:如图,∠1=∠2,∠A =∠D .求证:∠B =∠C .证明:∵∠1=∠2,(已知)又:∵∠1=∠3,( )∴∠2=____________(等量代换)AE FD ∴∥(同位角相等,两直线平行)∴∠A =∠BFD ( )∵∠A =∠D (已知)∴∠D =_____________(等量代换)∴____________∥CD ( )∴∠B =∠C ( )二十、解答题20.ABC ∆与A B C '''∆在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A ' ; B ' ;C ' ;(2)说明A B C '''∆由ABC ∆经过怎样的平移得到?答:_______________.(3)若点(),P a b 是ABC ∆内部一点,则平移后A B C '''∆内的对应点P '的坐标为_________; (4)求ABC ∆的面积.二十一、解答题21.若整数m 的两个平方根为63a -,22a -;b 为89的整数部分.(1)求a 及m 的值;(2)求275m b ++的立方根.二十二、解答题22.如图,在99⨯网格中,每个小正方形的边长均为1,正方形ABCD 的顶点都在网格的格点上.(1)求正方形ABCD 的面积和边长;(2)建立适当的平面直角坐标系,写出正方形四个顶点的坐标.二十三、解答题23.已知//AB CD ,定点E ,F 分别在直线AB ,CD 上,在平行线AB ,CD 之间有一动点P .(1)如图1所示时,试问AEP ∠,EPF ∠,PFC ∠满足怎样的数量关系?并说明理由. (2)除了(1)的结论外,试问AEP ∠,EPF ∠,PFC ∠还可能满足怎样的数量关系?请画图并证明(3)当EPF ∠满足0180EPF ︒<∠<︒,且QE ,QF 分别平分PEB ∠和PFD ∠, ①若60EPF ∠=︒,则EQF ∠=__________°.②猜想EPF ∠与EQF ∠的数量关系.(直接写出结论)二十四、解答题24.如图1,E 点在BC 上,A D ∠=∠.180ACB BED ∠+∠=︒.(1)求证://AB CD(2)如图2,//,AB CD BG 平分ABE ∠,与EDF ∠的平分线交于H 点,若DEB ∠比DHB ∠大60︒,求DEB ∠的度数.(3)保持(2)中所求的DEB ∠的度数不变,如图3,BM 平分,EBK DN ∠平分CDE ∠,作//BP DN ,则PBM ∠的度数是否改变?若不变,请直接写出答案;若改变,请说明理由. 二十五、解答题25.在ABC 中,100BAC ∠=︒,A ABC CB =∠∠,点D 在直线BC 上运动(不与点B 、C 重合),点E 在射线AC 上运动,且ADE AED ∠=∠,设DAC n ∠=︒.(1)如图①,当点D 在边BC 上,且40n =︒时,则BAD ∠=__________︒,CDE ∠=__________︒;(2)如图②,当点D 运动到点B 的左侧时,其他条件不变,请猜想BAD ∠和CDE ∠的数量关系,并说明理由;(3)当点D 运动到点C 的右侧时,其他条件不变,BAD ∠和CDE ∠还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑)【参考答案】一、选择题1.B解析:B【分析】根据同位角的定义:两条直线a ,b 被第三条直线c 所截(或说a ,b 相交c ),在截线c 的同旁,被截两直线a ,b 的同一侧的角,我们把这样的两个角称为同位角,进行判断即可.【详解】解:如图所示,∠1的同位角为∠3,故选B.【点睛】本题主要考查了同位角的定义,解题的关键在于能够熟练掌握同位角的定义.2.C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C 通过平移后可以得到.故选:C .【点睛】本题考查的是解析:C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C 通过平移后可以得到.故选:C .【点睛】本题考查的是平移变换及其基本性质,掌握以上知识是解题的关键.3.B【分析】根据坐标的特点即可求解.【详解】点()3,5A -在平面直角坐标系中所在的象限是第二象限故选B .【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点.4.B【分析】根据对顶角的性质、平行线的判定和性质进行判断即可.【详解】解:①对顶角相等,是真命题;②在同一平面内,垂直于同一条直线的两条直线平行,是真命题;③相等的角不一定是对顶角,原命题是假命题;④两直线平行,内错角相等,原命题是假命题.故选:B .【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的判定和性质,难度较小.5.B【分析】根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据余角与补角的定义对③进行判断;根据三角形外角性质对④进行判断.【详解】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;一个角的余角一定小于这个角的补角,所以③正确;三角形的外角大于任何一个与之不相邻的一个内角,所以④错误.故选:B .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.A【分析】根据a,b的范围即可求出a−b的立方根.【详解】解:根据题意得:ab∵25<30<36,∴56,∵a和b为两个连续正整数,∴a=5,b=6,∴a﹣b=﹣1,∴﹣1的立方根是﹣1,故选:A.【点睛】本题考查用新定义解决数学问题及无理数的估计,立方根的求法,正确理解新定义是求解本题的关键.7.D【分析】根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补求出∠DFE,然后根据角平分线的定义求出∠DFH,再根据两直线平行,内错角相等解答.【详解】解:∵∠1=110°,∴∠3=∠1=110°,∵AB∥CD,∴∠DFE=180°-∠3=180°-110°=70°,∵HF平分∠EFD,∴∠DFH=12∠DFE=12×70°=35°,∵AB∥CD,∴∠2=∠DFH=35°.故选:D.【点睛】本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键.8.B【分析】观察探究规律发现A1(2,1),A2(3,0)A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6,解析:B【分析】观察探究规律发现A1(2,1),A2(3,0)A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6,利用周期变化规律即可求解.【详解】解:由题意A1(2,1),A2(3,0),A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6,∵2021÷4=505.....1,∴A2021的纵坐标与A1相同,横坐标=505×6+2=3032,∴A2021(3032,1),故选B.【点睛】本题主要考查坐标与图形的变化规律型问题,解题的关键是学会探究规律的方法.九、填空题9.4【分析】首先根据算术平方根的被开方数≥0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十2|+=0.根据非负数的性质可分别求出a和b的值,即可求出2a+b的值.【详解】解:解析:4【分析】首先根据算术平方根的被开方数≥0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十=0.根据非负数的性质可分别求出a和b的值,即可求出2a+b的值.【详解】解:由题意可得a≥3,∴2a-4>0,已知等式整理得:,∴a=3,b=-2,∴2a+b=2×3-2=4.故答案为4.【点睛】本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0,熟练掌握非负数的性质是解题的关键.十、填空题10.【分析】直接利用关于y轴对称点的性质得出P点坐标,再利用关于原点对称点的性质得出答案.【详解】解:∵点P 关于y 轴的对称点是,∴点,则P 关于原点的对称点是.故答案为:.【点睛】本题考解析:()3,2【分析】直接利用关于y 轴对称点的性质得出P 点坐标,再利用关于原点对称点的性质得出答案.【详解】解:∵点P 关于y 轴的对称点是()3,-2,∴点()3,2P --,则P 关于原点的对称点是()3,2.故答案为:()3,2.【点睛】本题考查关于x 轴、y 轴对称的点的坐标求法、关于原点对称的点的坐标求法,牢记相关性质是解题关键.十一、填空题11.120°【分析】由角平分线的定义可得,,又由,得,;设,,则;再根据四边形内角和定理得到,最后根据即可求解.【详解】解:和的角平分线相交于,,,又,,,设,,,在四边形中,,,,解析:120°【分析】由角平分线的定义可得EDA ADC ∠=∠,CBE ABE ∠=∠,又由//AB ED ,得EDF DAB ∠=∠,DFE ABF ∠=∠;设EDF DAB x ∠=∠=,DFE ABF y ∠=∠=,则DFB x y ∠=+;再根据四边形内角和定理得到3602()BCD x y ∠=︒-+,最后根据3304BCD BFD ∠=∠+︒即可求解. 【详解】解:ABC ∠和CDE ∠的角平分线相交于F ,EDA ADC ∴∠=∠,CBE ABE ∠=∠,又//AB ED ,EDF DAB ∴∠=∠,DEF ABF ∠=∠,设EDF DAB x ∠=∠=,DEF ABF y ∠=∠=,BFD EDA ADE x y ∴∠=∠+∠=+,在四边形BCDF 中,FBC x ∠=,ADC y ∠=,BFD x y ∠=+,3602()BCD x y ∴∠=︒-+,0433BCD BFD ∠=∠+︒, 120BFD x y ∴∠=+=︒,3602()120BCD x y ∴∠=︒-+=︒,故答案为:120︒.【点睛】本题考查了平行线的判定和性质,正确的识别图形是解题的关键.十二、填空题12.50【分析】由两直线平行,内错角、同位角分别相等可得出∠2=∠DBC ,∠3=∠ABC=∠1+∠DBC ,又由BD 平分∠ABC 得出∠DBC=∠1=25°,利用等价替换法分别求出∠2和∠3即可解析:50【分析】由两直线平行,内错角、同位角分别相等可得出∠2=∠DBC ,∠3=∠ABC=∠1+∠DBC ,又由BD 平分∠ABC 得出∠DBC=∠1=25°,利用等价替换法分别求出∠2和∠3即可.【详解】解:∵BD 平分∠ABC ,∴∠DBC=∠1=25°;又∵ED ∥BC ,∴∠2=∠DBC=25°,∠3=∠ABC=∠1+∠DBC=50°.故答案为:25、50.【点睛】本题考查了平行线的性质:两直线平行,内错角相等,同位角相等,解题过程中采用了等量代换的方法.十三、填空题13.55【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵ABCD,∴∠1=∠BAD=110°,由折叠可得,∠2=∠BAD=×110°=55°,故答案为:解析:55【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵AB//CD,∴∠1=∠BAD=110°,由折叠可得,∠2=12∠BAD=12×110°=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.十四、填空题14.7【分析】由无理数的估算,先求出a、b的值,再进行计算即可.【详解】解:∵,∴,∵、为两个连续的整数,,∴,,∴;故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确解析:7【分析】由无理数的估算,先求出a、b的值,再进行计算即可.【详解】解:∵∴34<,∵a、b为两个连续的整数,a b<,b=,∴3a=,4a b+=+=;∴347故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确求出a、b的值,从而进行解题.十五、填空题15.(2,0)【分析】根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.【详解】解:∵点P(2m+4,3m+3)在x轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P解析:(2,0)【分析】根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.【详解】解:∵点P(2m+4,3m+3)在x轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P的坐标为(2,0),故答案为(2,0).十六、填空题16.【分析】根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解.【详解】解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可解析:20222【分析】根据点B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)可得规律为横坐标为12n +,由此问题可求解.【详解】解:由B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)可得:()12,0n n B +,∴B 2021的横坐标为20222;故答案为20222.【点睛】本题主要考查图形与坐标,解题的关键是根据题意得到点的坐标规律.十七、解答题17.(1);(2)x=【分析】(1)先算乘方、绝对值和开方,再算乘法,最后算加减;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:(1)==解析:(1)19-;(2)x =79【分析】(1)先算乘方、绝对值和开方,再算乘法,最后算加减;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:(1)()312123-+-⨯- =()181273-+-⨯- =847---=19-;(2)123123x x +--=,去分母,可得:3(x+1)-6=2(2-3x),去括号,可得:3x+3-6=4-6x,移项,可得:3x+6x=4-3+6,合并同类项,可得:9x=7,系数化为1,可得:x=79.【点睛】此题主要考查了实数的混合运算,解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.十八、解答题18.(1)x=±4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可.【详解】解:(1)4x2=64,∴x2=16,∴x=±4;(2)3(x-1)解析:(1)x=±4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可.【详解】解:(1)4x2=64,∴x2=16,∴x=±4;(2)3(x-1)3+24=0,∴3(x-1)3=-24,∴(x-1)3=-8,∴x-1=-2,∴x=-1.【点睛】本题主要考查了平方根和立方根,解题时注意一个正数的平方根有两个,不要漏解.十九、解答题19.对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据对顶角相等,平行线的性质与判定定理填空即可.【详解】证明:∵∠1=∠2,(解析:对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据对顶角相等,平行线的性质与判定定理填空即可.【详解】证明:∵∠1=∠2,(已知)又:∵∠1=∠3,(对顶角相等)∴∠2=∠3(等量代换)∥(同位角相等,两直线平行)AE FD∴∠A=∠BFD(两直线平行,同位角相等)∵∠A=∠D(已知)∴∠D=∠BFD(等量代换)∴AB∥CD(内错角相等,两直线平行)∴∠B=∠C(两直线平行,内错角相等).【点睛】本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键.二十、解答题20.(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对解析:(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点A、A′的变化写出平移方法即可;(3)根据平移规律逆向写出点P′的坐标;(4)利用△ABC所在的长方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【详解】解:(1)A′(-3,1);B′(-2,-2);C′(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)若点P (a ,b )是△ABC 内部一点,则平移后△A 'B 'C '内的对应点P '的坐标为:(a -4,b -2);(4)△ABC 的面积=11123131122222⨯-⨯⨯-⨯⨯-⨯⨯=2.【点睛】本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键. 二十一、解答题21.(1)a=4,m=36;(2)6【分析】(1)根据平方根的性质得到,求出a 值,从而得到m ;(2)估算出的范围,得到b 值,代入求出,从而得到的立方根.【详解】解:(1)∵整数的两个平方根为,解析:(1)a =4,m =36;(2)6【分析】(1)根据平方根的性质得到63220a a -+-=,求出a 值,从而得到m ;(2b 值,代入求出275m b ++,从而得到275m b ++的立方根.【详解】解:(1)∵整数m 的两个平方根为63a -,22a -,∴63220a a -+-=,解得:4a =,∴222426a -=⨯-=,∴m =36;(2)∵b ∴<∴910<,∴b =9,∴275275369216m b ++=+⨯+=,∴275m b ++的立方根为6.【点睛】本题主要考查立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.二十二、解答题22.(1)面积为29,边长为;(2),,,,图见解析.【分析】(1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;(2)建立适当的坐标系后写出四个顶点的坐标解析:(1)面积为29,边长为29;(2)(0,5)A ,(2,0)B ,(7,2)C ,(5,7)D ,图见解析.【分析】(1)面积等于一个77⨯大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;(2)建立适当的坐标系后写出四个顶点的坐标即可.【详解】解:(1)正方形的面积217425292ABCD S =-⨯⨯⨯=正方形,正方形边长为29S =;(2)建立如图平面直角坐标系,则(0,5)A ,(2,0)B ,(7,2)C ,(5,7)D .【点睛】本题考查了算术平方根及坐标与图形的性质及割补法求面积,从图形中整理出直角三角形是进一步解题的关键.二十三、解答题23.(1)∠AEP+∠PFC=∠EPF ;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于点是平行线,之间解析:(1)∠AEP +∠PFC =∠EPF ;(2)∠AEP +∠EPF +∠PFC =360°;(3)①150°或30;②∠EPF +2∠EQF =360°或∠EPF =2∠EQF【分析】(1)由于点P 是平行线AB ,CD 之间有一动点,因此需要对点P 的位置进行分类讨论:如图1,当P 点在EF 的左侧时,AEP ∠,EPF ∠,PFC ∠满足数量关系为:EPF AEP PFC ∠=∠+∠;(2)当P 点在EF 的右侧时,AEP ∠,EPF ∠,PFC ∠满足数量关系为:360AEP EPF PFC ∠+∠+∠=︒;(3)①若当P 点在EF 的左侧时,150EQF BEQ QFD ∠=∠+∠=︒;当P 点在EF 的右侧时,可求得30BEQ QFD ∠+∠=︒;②结合①可得180218023602()EPF BEQ DFQ BEQ PFD ∠=︒-∠+︒-∠=︒-∠+∠,由EQF BEQ DFQ ∠=∠+∠,得出2360EPF EQF ∠+∠=︒;可得EPF BEP PFD =∠+∠,由BEQ DFQ EQF ∠+∠=∠,得出2EPF EQF ∠=∠.【详解】解:(1)如图1,过点P 作//PG AB ,//PG AB ,EPG AEP ∴∠=∠,//AB CD ,//PG CD ∴,FPG PFC ∴∠=∠,AEP PFC EPF ∴∠+∠=∠;(2)如图2,当P 点在EF 的右侧时,AEP ∠,EPF ∠,PFC ∠满足数量关系为:360AEP EPF PFC ∠+∠+∠=︒;过点P 作//PG AB ,//PG AB ,180EPG AEP ∴∠+∠=︒,//AB CD ,//PG CD ∴,180FPG PFC ∴∠+∠=︒,360AEP EPF PFC ∴∠+∠+∠=︒;(3)①如图3,若当P 点在EF 的左侧时,60EPF ∠=︒,36060300PEB PFD ∴∠+∠=︒-︒=︒, EQ ,FQ 分别平分PEB ∠和PFD ∠, 12BEQ PEB ∴∠=∠,12QFD PFD ∠=∠, 11()30015022EQF BEQ QFD PEB PFD ∴∠=∠+∠=∠+∠=⨯︒=︒; 如图4,当P 点在EF 的右侧时,60EPF ∠=︒,60PEB PFD ∴∠+∠=︒,11()603022BEQ QFD PEB PFD ∴∠+∠=∠+∠=⨯︒=︒; 故答案为:150︒或30;②由①可知:11()(360)22EQF BEQ QFD PEB PFD EPF ∠=∠+∠=∠+∠=︒-∠,2360EPF EQF ∴∠+∠=︒; 11()22EQF BEQ QFD PEB PFD EPF ∠=∠+∠=∠+∠=∠, 2EPF EQF ∴∠=∠.综合以上可得EPF ∠与EQF ∠的数量关系为:2360EPF EQF ∠+∠=︒或2EPF EQF ∠=∠.【点睛】本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键.二十四、解答题24.(1)见解析;(2)100°;(3)不变,40°【分析】(1)如图1,延长交于点,根据,,可得,所以,可得,又,进而可得结论; (2)如图2,作,,根据,可得,根据平行线的性质得角之间的关系,再解析:(1)见解析;(2)100°;(3)不变,40°【分析】(1)如图1,延长DE 交AB 于点F ,根据180ACB BED ∠+∠=︒,180CED BED ∠+∠=︒,可得ACB CED ∠=∠,所以//AC DF ,可得A DFB ∠=∠,又A D ∠=∠,进而可得结论; (2)如图2,作//EM CD ,//HN CD ,根据//AB CD ,可得//////AB EM HN CD ,根据平行线的性质得角之间的关系,再根据DEB ∠比DHB ∠大60︒,列出等式即可求DEB ∠的度数;(3)如图3,过点E 作//ES CD ,设直线DF 和直线BP 相交于点G ,根据平行线的性质和角平分线定义可求PBM ∠的度数.【详解】解:(1)证明:如图1,延长DE 交AB 于点F ,180ACB BED ∠+∠=︒,180CED BED ∠+∠=︒,ACB CED ∴∠=∠,//AC DF ∴,A DFB ∴∠=∠,A D ∠=∠,DFB D ∴∠=∠,//AB CD ∴;(2)如图2,作//EM CD ,//HN CD ,//AB CD ,//////AB EM HN CD ∴,1180EDF ∴∠+∠=︒,MEB ABE ∠=∠, BG 平分ABE ∠,12ABG ABE ∴∠=∠, //AB HN ,2ABG ∴∠=∠,//CF HN ,23β∴∠+∠=∠,∴132ABE β∠+∠=∠, DH 平分EDF ∠,132EDF ∴∠=∠, ∴1122ABE EDF β∠+∠=∠,1()2EDF ABE β∴∠=∠-∠, 2EDF ABE β∴∠-∠=∠,设DEB α∠=∠,1180180()1802MEB EDF ABE EDF ABE αβ∠=∠+∠=︒-∠+∠=︒-∠-∠=︒-∠,DEB ∠比DHB ∠大60︒,60αβ∴∠-︒=∠,1802(60)αα∴∠=︒-∠-︒解得100α∠=︒DEB ∴∠的度数为100︒;(3)PBM ∠的度数不变,理由如下:如图3,过点E 作//ES CD ,设直线DF 和直线BP 相交于点G ,BM 平分EBK ∠,DN 平分CDE ∠,12EBM MBK EBK ∴∠=∠=∠, 12CDN EDN CDE ∠=∠=∠, //ES CD ,//AB CD ,////ES AB CD ∴,DES CDE ∴∠=∠,180BES ABE EBK ∠=∠=︒-∠,G PBK ∠=∠,由(2)可知:100DEB ∠=︒,180100CDE EBK ∴∠+︒-∠=︒,80EBK CDE ∴∠-∠=︒,//BP DN ,CDN G ∴∠=∠,12PBK G CDN CDE ∴∠=∠=∠=∠, PBM MBK PBK ∴∠=∠-∠1122EBK CDE =∠-∠ 1()2EBK CDE =∠-∠ 1802=⨯︒ 40=︒.【点睛】本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质. 二十五、解答题25.(1)60,30;(2)∠BAD=2∠CDE ,证明见解析;(3)成立,∠BAD=2∠CDE ,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD =2∠CDE ,证明见解析;(3)成立,∠BAD =2∠CDE ,证明见解析【分析】(1)如图①,将∠BAC =100°,∠DAC =40°代入∠BAD =∠BAC -∠DAC ,求出∠BAD .在△ABC 中利用三角形内角和定理求出∠ABC =∠ACB =40°,根据三角形外角的性质得出∠ADC =∠ABC +∠BAD =100°,在△ADE 中利用三角形内角和定理求出∠ADE =∠AED =70°,那么∠CDE =∠ADC -∠ADE =30°;(2)如图②,在△ABC 和△ADE 中利用三角形内角和定理求出∠ABC =∠ACB =40°,∠ADE =∠AED =1802n ︒-.根据三角形外角的性质得出∠CDE =∠ACB -∠AED =1002n -︒,再由∠BAD =∠DAC -∠BAC 得到∠BAD =n -100°,从而得出结论∠BAD =2∠CDE ;(3)如图③,在△ABC 和△ADE 中利用三角形内角和定理求出∠ABC =∠ACB =40°,∠ADE =∠AED =1802n ︒-.根据三角形外角的性质得出∠CDE =∠ACD -∠AED =1002n ︒+,再由∠BAD =∠BAC +∠DAC 得到∠BAD =100°+n ,从而得出结论∠BAD =2∠CDE .【详解】解:(1)∠BAD =∠BAC -∠DAC =100°-40°=60°.∵在△ABC 中,∠BAC =100°,∠ABC =∠ACB ,∴∠ABC =∠ACB =40°,∴∠ADC =∠ABC +∠BAD =40°+60°=100°.∵∠DAC =40°,∠ADE =∠AED ,∴∠ADE =∠AED =70°,∴∠CDE =∠ADC -∠ADE =100°-70°=30°.故答案为60,30.(2)∠BAD =2∠CDE ,理由如下:如图②,在△ABC 中,∠BAC =100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-1802n︒-=1002n-︒,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-1802n︒-=1002n︒+,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【点睛】本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.。
数学苏教版七年级下册期末综合测试试卷(比较难)及答案解析一、选择题1.下列计算正确的是( )A .448a a a +=B .4416a a a ⋅=C .422a a a ÷=D .()448a a = 答案:C解析:C【分析】分别利用合并同类项、同底数幂的乘法、除法以及幂的乘方法则进行计算,即可得出结论.【详解】解:A 、 4442a a a +=,故此选项计算错误,不符合题意;B 、448a a a ⋅=,故此选项计算错误,不符合题意;C 、422a a a ÷=,,故此选项计算正确,符合题意;D 、()1446a a =,故此选项计算错误,不符合题意; 故选:C .【点睛】此题考查了合并同类项、同底数幂的乘法、除法及幂的乘方的运算,熟练掌握相关运算法则并能灵活运用其准确求解是解题的关键.2.如图,属于同位角的是( )A .2∠与3∠B .1∠与4∠C .1∠与3∠D .2∠与4∠ 答案:A解析:A【分析】根据同位角、内错角、同旁内角的意义进行判断即可.【详解】解:∠2与∠3是两条直线被第三条直线所截形成的同位角,因此选项A 符合题意. ∠1与∠4是对顶角,因此选项B 不符合题意.∠1与∠3是内错角,因此选项C 不符合题意.∠2与∠4同旁内角,因此选项D 不符合题意.故选:A .【点睛】本题考查同位角、内错角、同旁内角,理解和掌握同位角、内错角、同旁内角的意义是正确判断的前提.3.不等式250x -≤的正整数解有( )A .4个B .3个C .2个D .1个答案:C解析:C【分析】根据解一元一次不等式的方法可以解答本题.【详解】解:250x -≤,解得x <52∴正整数解为1、2,故选:C .【点睛】本题考查解一元一次不等式,解答本题的关键是明确解一元一次不等式的方法,利用不等式的性质解答.4.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”,则下面哪个数是“神秘数”( )A .56B .66C .76D .86答案:C解析:C【分析】利用“神秘数”定义判断即可.【详解】解:∵76=38×2=(20+18)(20-18)=202﹣182,∴76是“神秘数”,而其余各数均不能表示为两个连续偶数的平方差,故选:C .【点睛】此题考查了平方差公式,正确理解“神秘数”的定义是解本题的关键.5.已知关于x 的不等式组13x m x m >⎧⎨+≤⎩有且只有两个整数解,则m 的取值范围是( ) A .413m <≤ B .413m ≤< C .4533m <≤ D .4533m ≤< 答案:D解析:D【分析】本题两个整数不明确,因而一般化设为n ,n +1,再利用m 这个量的交叉传递,得到n 的值,从而求解.【详解】解:不等式组整理得31x m x m >⎧⎨≤-⎩, 令整数的值为n ,n +1,则有:n -1≤m <n ,n +1≤3m -1<n +2, 故12333n m n n n m -≤<⎧⎪++⎨≤<⎪⎩, ∴n -1<33n +且23n +<n , ∴1<n <3,∴n =2, ∴124533m m ≤<⎧⎪⎨≤<⎪⎩, ∴4533m ≤<. 故选:D .【点睛】本题考查不等式组的解法及整数解的确定,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.下列命题中假命题的是( )A .两直线平行,内错角相等B .三角形的一个外角大于任何一个内角C .如果a ∥b ,b ∥c ,那么a ∥cD .过直线外一点有且只有一条直线与这条直线平行答案:B解析:B【分析】根据平行线的性质、三角形的外角性质、平行公理判断.【详解】解:A 、两直线平行,内错角相等,A 是真命题;B 、三角形的一个外角大于与它不相邻的任何一个内角,B 是假命题;C 、如果a ∥b ,b ∥c ,那么a ∥c ,C 是真命题;D 、过直线外一点有且只有一条直线与这条直线平行,D 是真命题;故选:B .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2020个格子中的数为( )3 a b c -12 … A .3 B .2 C .0 D .-1答案:A解析:A【分析】首先由已知和表格求出a 、b 、c ,再观察得出规律求出第2020个格子中的数.【详解】解:已知其中任意三个相邻格子中 所填整数之和都相等,则3+a +b =a +b +c ,a +b +c =b +c −1,所以a =−1,c =3,按要求排列顺序为,3,−1,b ,3,−1,b ,…,再结合已知表可知:b =2,所以每个小格子中都填入一个整数后排列为:3,−1,2,3,−1,2,…,即每3个数一个循环,因为2020÷3=673…1,所以第2020个格子中的数为3.故选:A .【点睛】此题考查的是数字的变化类问题,解题的关键是先由已知求出a 、b 、c ,再找出规律求出答案.8.如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,2cm CH =,4cm EF =,下列结论:①//BH EF ;②AD BE =;③BD CH =:④C BHD ∠=∠;⑤阴影部分的面积为26cm .其中正确的是( )A .①②③④⑤B .②③④⑤C .①②③⑤D .①②④⑤ 答案:A解析:A【分析】根据平移的性质可直接判断①②③,根据平行线的性质可判断④,阴影部分的面积=S 梯形BEFH ,于是可判断⑤,进而可得答案.【详解】解:因为将ABC 沿AB 方向平移2cm 得到DEF ,所以//BH EF ,AD BE =,DF ∥AC ,故①②正确;所以C BHD ∠=∠,故④正确;∵AC ∥DF ,点H 是BC 的中点,则有点D 为DE 的中点,则BD=AD=CH=2cm 故③正确;因为2cm CH =,4cm EF BC ==,所以BH=2cm ,又因为BE=2cm ,所以阴影部分的面积=S △ABC -S △DBH = S △DEF -S △DBH =S 梯形BEFH =()12422⨯+⨯=26cm ,故⑤正确;综上,正确的结论是①②③④⑤.故选:A .【点睛】本题考查了平移的性质,属于基础题目,正确理解题意、熟练掌握平移的性质是解题的关键.二、填空题9.计算:(﹣3ab 2)3•(a 2b )=______.解析:5727a b -【分析】先算乘方,再利用单项式乘单项式法则计算即可得到结果.【详解】解:32236257=32727=ab a b a b a b a b ﹣.故答案为:5727a b -.【点睛】此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.10.命题“若22a b =,则a=b”是__________命题(填“真”或“假”)解析:假【分析】根据22a b =可得a b =,即可判断.【详解】∵22a b = ∴a b =,即a b =±∴原命题为假命题,故答案为:假.【点睛】本题考查真假命题的判断,熟练掌握平方根的基本概念是解题的关键.11.如图,△ABC ,△DBE 均为直角三角形,且D ,A ,E ,C 都在一条直线上,已知∠C =25°,∠D =45°,则∠EBC 的度数是_____.答案:D解析:20°.【分析】先根据三角形的内角和定理得:∠DEB =45°,最后根据三角形外角的性质可得结论.【详解】解:Rt △DBE 中,∵∠D =45°,∠DBE =90°,∴∠DEB =90°-45°=45°,∵∠C =25°,∴∠EBC =∠DEB ﹣∠C =45°-25°=20°,故答案为:20°.【点睛】本题考查三角形内角和和外角和定理,熟练掌握其性质是解题的关键.12.若 x ﹣y=5,xy=6,则12x 2y ﹣12xy 2 =_________;解析:15【分析】直接将原式变形,提取公因式,进而分解因式得出即可.【详解】∵x ﹣y=5,xy=6, ∴()22111165152222x y xy xy x y -=-=⨯⨯=. 故答案是15.【点睛】本题主要考查了因式分解的提取公因式法,运用公式是解题的关键.13.已知方程组4,5ax by bx ay +=⎧⎨+=⎩的解是1,2,x y =⎧⎨=⎩那么+a b 的值是__________. 解析:3【分析】把12x y =⎧⎨=⎩代入方程组4,5ax by bx ay +=⎧⎨+=⎩中可以得到关于a 、b 的方程组,解这个方程组即可求解.【详解】解:把12x y =⎧⎨=⎩代入方程组45ax by bx ay +=⎧⎨+=⎩得关于a、b的方程组2425a bb a+=⎧⎨+=⎩,解得:21ab=⎧⎨=⎩,∴a+b=3,故答案为:3.【点睛】本题考查了二元一次方程组的解,熟练掌握运算法则是解本题的关键.14.如图,在三角形ABC中,AC=5,BC=6,BC边上的高AD=4,若点P在边AC上(不与点A,C重合)移动,则线段BP最短时的长为_________________.答案:B解析:24 5【分析】根据点到直线的连线中,垂线段最短,得到当BP垂直于AC时,BP的长最小,利用面积法即可求出此时BP的长.【详解】解:根据垂线段最短可知,当BP⊥AC时,BP最短,∵S△ABC=12×BC×AD=12×AC×BP,∴6×4=5BP,∴PB=245,即BP最短时的值为:245.故答案为:245.【点评】此题考查了垂线段最短,三角形的面积,熟练掌握线段的性质是解本题的关键.15.小华用三根木棒搭一个三角形,其中两根木棒的长度分别为10cm和2cm,第三根木棒的长度为偶数,则第三根的长度是_____________cm.答案:10【分析】首先根据三角形的三边关系求得第三根木棒的取值范围,再进一步根据偶数这一条件分析.【详解】解:根据三角形的三边关系,得10-2<第三根木棒<10+2,即8<第三根木棒<12.解析:10【分析】首先根据三角形的三边关系求得第三根木棒的取值范围,再进一步根据偶数这一条件分析.【详解】解:根据三角形的三边关系,得10-2<第三根木棒<10+2,即8<第三根木棒<12.又∵第三根木棒的长选取偶数,∴第三根木棒的长度只能为10cm.故答案为:10.【点睛】本题主要考查了三角形的三边关系以及偶数的定义,难度适中.△沿着AD翻折得到AED,若16.如图,在ABC中,点D在BC上,将ABD∠+∠的度数为______.∠=︒,则ABD BAD20CDE答案:80°【分析】根据三角形外角的性质和翻折的性质解答即可.【详解】解:由翻折得,∵又∴∵∴∴∴故答案为:80°.【点睛】本题主要考查了翻折的性质,三角形外角的性解析:80°【分析】根据三角形外角的性质和翻折的性质解答即可.【详解】解:由翻折得,ADB ADE ∠=∠∵ADE ADC CDE ∠=∠+∠又20CDE ∠=︒∴20ADE ADB ADC ∠=∠=∠+︒∵180ADB ADC ∠+∠=︒∴20180ADC ADC ∠+︒+∠=︒∴80ADC ∠=︒∴80ABD BAD ∠+∠=︒故答案为:80°.【点睛】本题主要考查了翻折的性质,三角形外角的性质以及平角的定义,求出80ADC ∠=︒是解答本题的关键.17.计算:(1)1022021--(2)()2354·3x x x + 答案:(1);(2)【分析】(1)根据零指数幂和分式的负指数幂法则进行运算;(2)根据同底数幂的乘法以及幂的乘方和积的乘方运算法则即可求解.【详解】解:(1)原式(2)原式【点睛】本题主要解析:(1)12-;(2)810x 【分析】(1)根据零指数幂和分式的负指数幂法则进行运算;(2)根据同底数幂的乘法以及幂的乘方和积的乘方运算法则即可求解.【详解】解:(1)原式11122=-=-(2)原式888910x x x =+=【点睛】本题主要考查了同底数幂的乘法以及幂的乘方和积的乘方运算,熟练掌握运算法则是解题的关键.18.因式分解:(1)34x x -;(2)()()269a b a b ++++;(3)222xy x y ---;(4)()222416x x +-. 答案:(1);(2);(3);(4).【分析】(1)先提公因式,再用平方差公式因式分解即可;(2)利用完全平方公式因式分解即可;(3)先提符号,在用完全平方公式因式分解即可;(4)先利用平方差公解析:(1)()()22x x x +-;(2)()23a b ++;(3)()2x y -+;(4)()()2222x x +-. 【分析】(1)先提公因式,再用平方差公式因式分解即可;(2)利用完全平方公式因式分解即可;(3)先提符号,在用完全平方公式因式分解即可;(4)先利用平方差公式因式分解,再用完全平方公式因式分解即可【详解】解:(1)()()()324422x x x x x x x -=-=+-;(2)()()()()2226933a b a b a b a b ++++=++=++⎡⎤⎣⎦;(3)()()2222222x xy y x y y xy x -=-++=-+--; (4)()()()()()2222222416444422x x x x x x x x ⎡⎤⎡⎤+-=+++-=+-⎣⎦⎣⎦. 【点睛】本题考查因式分解,掌握因式分解的方法与技巧是解题关键.19.解方程组(1)21365x y y x -=⎧⎨=-⎩(2)414314312x y x y +=⎧⎪-⎨-=⎪⎩ 答案:(1);(2).(1)方程组利用代入消元法求解即可;(2)方程组整理后,方程组利用加减消元法求解即可.【详解】解:(1)将②代入①,得解得:将代入②,得原方程组的解为:;解析:(1)217x y =-⎧⎨=-⎩;(2)62x y =⎧⎨=⎩. 【分析】(1)方程组利用代入消元法求解即可;(2)方程组整理后,方程组利用加减消元法求解即可.【详解】解:(1)21365x y y x -=⎧⎨=-⎩①②将②代入①,得()26513x x --=解得:2x =-将2x =-代入②,得()62517y =⨯--=-∴原方程组的解为:217x y =-⎧⎨=-⎩; (2)方程组化简为:4143410x y x y +=⎧⎨-=⎩①② ①+②,得424x =解得:6x =将6x =代入①得,6414y +=解得:2y =∴原方程组的解为:62x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.求不等式组513(1)131722x x x x -≥+⎧⎪⎨-≤-⎪⎩的正整数解. 答案:不等式组的正整数解为2,3,4先求出每个不等式的解集,然后求出不等式组的解集,最后求出其整数解即可.【详解】解:解不等式①得:解不等式②得:原不等式组的解集为则不等式组的正整解析:不等式组的正整数解为2,3,4【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后求出其整数解即可.【详解】 解:513(1)131722x x x x -≥+⎧⎪⎨-≤-⎪⎩①② 解不等式①得:2x ≥解不等式②得:4x ≤∴原不等式组的解集为24x ≤≤则不等式组的正整数解为2,3,4.【点睛】本题主要考查了解一元一次不等式组合求不等式的整数解,解题的关键在于能够熟练掌握解一元一次不等式的方法.三、解答题21.已知:如图,ABC ∆中,在CA 的延长线上取一点E ,作EG BC ⊥于点G (1)如图①,若AD BC ⊥于点,3D E ∠=∠,那么AD 是BAC ∠的平分线吗?若是,请说明理由.请完成下列证明并在下面的括号内填注依据解:是,理由如下:,AD BC EG BC ⊥⊥(已知)4590︒∴∠=∠=(垂直定义)//AD EG ∴( )1E ∴∠=∠(两直线平行,同位角相等)2∠= ( )3E ∠=∠(已知)12∠∠∴=(等量代换)AD ∴平分BAC ∠( )(2)如图②,若ABC ∆中90,BAC ABC CEG ︒∠=∠∠、的角平分线相交于点H . ①求证:180C BFE ︒∠+∠=②随着C ∠的变化,BHE ∠的大小会发生变化吗﹖如果有变化,请直接写出BHE ∠与C ∠的数量关系;如果没有变化,请直接写出BHE ∠的度数.答案:(1)同位角相等,两直线平行;3,两直线平行,内错角相等;角平分线的定义;(2)①见详解;②.【分析】(1)根据题意及平行线的性质可直接进行求解;(2)①由题意易得∠C+∠GEC=90°,∠C解析:(1)同位角相等,两直线平行;3,两直线平行,内错角相等;角平分线的定义;(2)①见详解;②90BHE ∠=︒.【分析】(1)根据题意及平行线的性质可直接进行求解;(2)①由题意易得∠C +∠GEC =90°,∠CEG +∠EFA =90°,则有∠C =∠EFA ,然后问题可求证;②连接CH 并延长,由题意易得11,22HEC CEG HBC ABC ∠=∠∠=∠,然后由三角形外角的性质可得,EHM HEC HCE BHM HBC HCB ∠=∠+∠∠=∠+∠,进而根据角的和差关系可进行求解.【详解】(1)解:由题意得:,AD BC EG BC ⊥⊥(已知)4590∴∠=∠=︒(垂直定义)//AD EG ∴(同位角相等,两直线平行)1E ∴∠=∠(两直线平行,同位角相等)2∠=∠3(两直线平行,内错角相等)3E ∠=∠(已知)12∠∠∴=(等量代换)AD ∴平分BAC ∠(角平分线的定义)故答案为同位角相等,两直线平行;3,两直线平行,内错角相等;角平分线的定义; (2)①证明:∵90,BAC EG BC ∠=︒⊥,∴90BAE EGC BAC ∠=∠=∠=︒,∴∠C +∠GEC =90°,∠CEG +∠EFA =90°,∴∠C =∠EFA ,∵180EFB EFA ∠+∠=︒,∴180C BFE ∠+∠=︒;②90BHE ∠=︒,理由如下:连接CH 并延长,如图所示:∵ABC CEG ∠∠、的角平分线相交于点H , ∴11,22HEC CEG HBC ABC ∠=∠∠=∠, 由三角形外角的性质可得,EHM HEC HCE BHM HBC HCB ∠=∠+∠∠=∠+∠,∵∠FEA +∠EFA =∠BFG +∠FBG =90°,∠EFA =∠BFG ,∴∠FEA =∠FBG ,∵,EHB EHM BHM ACB HCE HCB ∠=∠+∠∠=∠+∠, ∴119022BHE GEC ABC ACB GEC ACB ∠=∠+∠+∠=∠+∠=︒. 【点睛】本题主要考查直角三角形的性质、三角形外角的性质、平行线的性质及角平分线的定义,熟练掌握直角三角形的性质、三角形外角的性质、平行线的性质及角平分线的定义是解题的关键.22.某地上网有两种收费方式,用户可以任选其一:(A )计时制:2.8元/时;(B )包月制:60元/月;此外,每一种上网方式都加收通信费1.2元/时.(1)某用户每月上网20小时,选用哪种上网方式比较合算?(2)某用户有120元钱用于上网(一个月),选用哪种上网方式合算?(3)请你为用户设计一个方案,使用户能合理地选择上网方式.答案:(1)选择A 种方式比较合算;(2)选择B 种方式比较合算;(3)上网时间t=小时,两种方式一样合算;当上网时间t<小时,选用A 种方式合算;当上网时间t>小时,选用B 种方式合算【分析】(1)设用户上解析:(1)选择A 种方式比较合算;(2)选择B 种方式比较合算;(3)上网时间t =1507小时,两种方式一样合算;当上网时间t <1507小时,选用A 种方式合算;当上网时间t >1507小时,选用B 种方式合算 【分析】(1)设用户上网的时间为t 小时,分别用t 表示出两种收费方式,代入时间20小时,分别计算,对比分析即可.(2)将120分别代入两种收费方式的表达式中,求得各自的时间,对比分析即可. (3)令两种方式的关系式分别相等,大于或小于,分类讨论即可.【详解】解:(1)设用户上网的时间为t 小时,则A 种方式的费用为2. 8t +1.2t =4t 元;B 种方式的费用为(60 +1.2t )元,当t =20时,4t =80,60+1.2t =84,因为80< 84,所以选择A 种方式比较合算;(2)若用户有120元钱上网,由题意:14120t =,260 1.2120t +=分别解得1=30t ,2=50t因为30 <50,所以用户选择B 种方式比较合算;(3)当两种方式费用相同时,即460 1.2t t =+,解得t =1507,所以此时选择两种方式一样合算; 令460 1.2t t <+,解得1507t <,所以当上网时间t <1507时,选用A 种方式合算; 令460 1.2t t >+,解得1507t >,所以当上网时间t >1507时,选用B 种方式合算. 【点睛】本题考察一元一次不等式与一次函数在方案类问题中的实际应用,根据题意列出函数关系并讨论是解题重点.23.某文具店准备购进甲,乙两种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若购进了甲种钢笔80支,乙种钢笔60支,求需要多少元?(3)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种购进方案.答案:(1)甲种钢笔每支需5元,乙种钢笔每支需10元;(2)1000元;(3)6种【分析】(1)设购进甲种钢笔每支需元,购进乙种钢笔每支需元,根据“若购进甲种钢笔100支,乙种钢笔50支,需要1000解析:(1)甲种钢笔每支需5元,乙种钢笔每支需10元;(2)1000元;(3)6种【分析】(1)设购进甲种钢笔每支需x元,购进乙种钢笔每支需y元,根据“若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元”,即可得出关于x,y的二元一次方程组,解之即可得出甲、乙两种钢笔的单价;(2)利用总价=单价⨯数量,即可求出购进甲种钢笔80支、乙种钢笔60支所需费用;(3)设购进甲种钢笔m支,则购进乙种钢笔1(100)2m-支,根据“购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m,1(100)2m-均为正整数,即可得出进货方案的数量.【详解】解:(1)设购进甲种钢笔每支需x元,购进乙种钢笔每支需y元,依题意得:100501000 5030550x yx y+=⎧⎨+=⎩,解得:510xy=⎧⎨=⎩.答:购进甲种钢笔每支需5元,购进乙种钢笔每支需10元.(2)5801060⨯+⨯400600=+1000=(元).答:需要1000元.(3)设购进甲种钢笔m支,则购进乙种钢笔100051(100)102mm-=-支,依题意得:16(100)218(100)2m mm m⎧-⎪⎪⎨⎪-⎪⎩,解得:150160m.又m,1(100)2m-均为正整数,m∴可以为150,152,154,156,158,160,∴该文具店共有6种购进方案.【点睛】本题考查了二元一次方程组的应用、有理数的混合运算以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,找出关于m的一元一次不等式组.24.已知AB CD,点E是平面内一点,∠CDE的角平分线与∠ABE的角平分线交于点F.(1)若点E的位置如图1所示.①若∠ABE=60°,∠CDE=80°,则∠F= °;②探究∠F与∠BED的数量关系并证明你的结论;(2)若点E的位置如图2所示,∠F与∠BED满足的数量关系式是.(3)若点E的位置如图3所示,∠CDE为锐角,且,设∠F=α,则α的取值范围为.答案:(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)解析:(1)①70;②∠F=12【分析】(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70︒,即可求解;②分别过E、F作EN//AB,FM//AB,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;(2)根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED与∠BFD之间的数量关系;(3)通过对的计算求得,利用角平分线的定义以及三角形外角的性质求得,即可求得.【详解】(1)①过F作FG//AB,如图:∵AB∥CD,FG∥AB,∴CD∥FG,∴∠ABF=∠BFG,∠CDF=∠DFG,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60︒+80︒=140︒,∴∠ABF+∠CDF=70︒,∴∠DFB=∠ABF+∠CDF=70︒,故答案为:70;∠BED,②∠F=12理由是:分别过E、F作EN//AB,FM//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∠BED;∴∠F=12(3)2∠F+∠BED=360°.如图,过点E作EG∥AB,则∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由①得:∠BFD=∠ABF+∠CDF,∴∠BED=360°-2∠BFD,即2∠F+∠BED=360°;(3)∵,∠F=α,∴,解得:,如图,∵∠CDE为锐角,DF是∠CDE的角平分线,∴∠CDH=∠DHB,∴∠F∠DHB,即,∴,故答案为:.【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.25.如图,在△ABC中,∠B=30°,∠C>∠B,AE平分∠BAC,交BC边于点E.(1)如图1,过点A作AD⊥BC于D,若已知∠C=50°,则∠EAD的度数为;(2)如图2,过点A作AD⊥BC于D,若AD恰好又平分∠EAC,求∠C的度数;(3)如图3,CF平分△ABC的外角∠BCG,交AE的延长线于点F,作FD⊥BC于D,设∠ACB=n°,试求∠DFE﹣∠AFC的值;(用含有n的代数式表示)(4)如图4,在图3的基础上分别作∠BAE和∠BCF的角平分线,交于点F1,作F1D1⊥BC 于D1,设∠ACB=n°,试直接写出∠D1F1A﹣∠AF1C的值.(用含有n的代数式表示)答案:(1)10°;(2)∠C的度数为70°;(3)∠DFE﹣∠AFC的值为;(4)∠D1F1A﹣∠AF1C的值为.【分析】(1)根据∠EAD=∠EAC-∠DAC,求出∠EAC,∠DAC即可解决问题.解析:(1)10°;(2)∠C的度数为70°;(3)∠DFE﹣∠AFC的值为1302n-︒;(4)∠D1F1A﹣∠AF1C的值为14n.【分析】(1)根据∠EAD=∠EAC-∠DAC,求出∠EAC,∠DAC即可解决问题.(2)设∠CAD=x,则∠EAD=∠CAD=x,∠EAB=∠EAC=2x,利用三角形内角和定理构建方程求出x即可解决问题.(3)设∠CAD=x,则∠EAD=∠CAD=x,∠EAB=∠EAC=2x,用n,x表示出∠DFE,∠AFC,再结合三角形内角和定理解决问题即可.(4)设∠FAC=∠FAB=y.用n,x表示出∠D1F1A,∠AF1C,再结合三角形内角和定理解决问题即可.【详解】解:(1)∵∠B=30°,∠C=50°,∴∠BAC=180°-∠B-∠C=100°,∵AE平分∠BAC,∴∠CAE=12∠BAC=50°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°-50°=40°,∴∠EAD=∠EAC-∠DAC=50°-40°=10°.(2)设∠CAD=x,则∠EAD=∠CAD=x,∠EAB=∠EAC=2x,∵AD⊥EC,∴∠ADE=∠ADC=90°,∴∠AED+∠EAD=90°,∠C+∠DAC=90°,∴∠AED=∠C=∠B+∠EAB=30°+2x,在△ABC中,由三角形内角和定理可得:30°+30°+2x+4x=180°,解得x=20°,∴∠C=30°+40°=70°.(3)设∠FAC=∠FAB=x.则有∠AEC=∠DEF=180°-n-x,∵FD⊥BC,∴∠FDE=90°,∴∠DFA=90°-(180°-n-x)=n+x-90°,∵CF平分∠BCG,∴∠FCG=12(180°-n),∵∠AFC=∠FCG-∠FAC=12(180°-n)-x=90°-12n-x=15°,∴∠DFE-∠AFC=n+x-105°,∵2x+30°+n=180°,∴x=75°-12n,∴∠DFE-∠AFC=12n-30°.(4)设∠FAC=∠FAB=y.由题意同法可得:∠D1F1A=90°-(180°-n-32y)=n+32y-90°,∠AF1C=180°-32y-n-14(180°-n)=135°-32y-34n,∴∠D1F1A-∠AF1C=n+32y-90°-(135°-32y-34n)=74n+3y-225°,∵2y+30°+n=180°,∴y=75°-12n,∴∠D1F1A-∠AF1C=n+32y-90°-(135°-32x-34n)=74n+225°-32n-225°=14n.【点睛】本题考查了三角形内角和定理,角平分线的定义,三角形的外角的性质等知识,解题的关键是学会利用参数解决问题,本题有一定的难度.。
七年级下学期道德与法治期末综合素养评价测试一、单选题1.面对青春的邀约,我们要学会悦纳自己的生理变化,下列说法你认可的是()A.我不喜欢父母干涉我,但遇到麻烦时,还是渴望他们出现B.我长出喉结了,嗓子也变哑了,就像公鸡打鸣,太难听了C.虽然这一年来我只长高了一点点,但我认为只要健康就好D.当我心情不好的时候,喜欢找朋友聊聊天,很快就没事了2.有门“科学思维课”,每节课开篇都说这段话:“知识这东西就得经常核实和订正,尤其是从别人那听来的知识…”这提示我们()①学会独立思考②培养批判精神③张扬个性特点④破除刻板印象A.①②B.①④C.②③D.③④3.UPC(无限制格斗)重量级格斗冠军张伟丽,曾怀揩武侠梦学习传统武术和散打,并最终在世界级的舞台上夺得了金腰牌。
张伟丽用实力告诉全世界,力量不是男性的专利。
从中,我们可以看出()A.要正确认识性别差异,学会塑造自我形象B.男生和女生在生理特征上的差异在逐渐消失C.要实现男女平等,女生必须付出更艰辛的努力D.打破性别刻板印象的影响,有利于发掘自身的潜能4.相遇青春,我们心中开始萌发一些对异性朦胧的情感。
面对这种朦胧的情感,我们应该()①言行得当,自然大方②慎重对待,理智处理③认识到这是青春成长中不正常的现象④真诚相待,尊重对方A.①②③B.①②④C.①③④D.②③④5.在边疆哨所、贫困山村、抗疫一线……“80后”“90后”,甚至“00后”,正以昂扬的姿态奔向火热一线,用行动诠释着自强不息的精神。
下列诗句中能体现这一精神的是()A.山重水复疑无路,柳暗花明又一村B.人生自古谁无死,留取丹心照汗青C.两情若是久长时,又岂在朝朝暮暮D.先天下之忧而忧,后天下之乐而乐6.看到一位老人在倾盆暴雨中摔倒,从此路过的10岁男孩小镇快步走上前为老人撑起雨伞,不惜让自己身体淋在雨中。
这说明小镇()①过于单纯,缺少必要的自我保护意识②能够体谅到他人疾苦,传递美好情感③具有榜样示范的作用,促进社会和谐④提醒我们要自我否定,修正一切行为A.①②B.③④C.①④D.②③7.良好的情绪能激发学生的学习兴趣,也利于青少年的身体健康,下列属于良好情绪的是()A.为了一丁点儿小事就闹得不可开交B.对外界的任何刺激都无动于衷C.总是生活在对未来可能发生的危害的恐慌之中D.能与朋友正常交往,对人有同情心8.很多人都有这样的体验:听着催眠曲就不知不觉进入了甜美的梦乡;在紧张学习了一天之后,高歌一曲会消除疲劳;运动员赛前如果有异常的情绪表现,如过分紧张,此时听一段轻音乐,往往就能使情绪稳定下来。
七年级下册期末综合测试题一、积累运用1.下列选项中加点字注音与无误的一项是(2分)()A. 憎恶.(è)菩萨.(sà)镶嵌.(qiàn)愧怍.(zuò)B. 繁琐.(suǒ)霹.(pī)雳肿胀.(zhàng)烦躁.(zào)C. 辫.子(biàn)诘.问(jí)晌.午(shăng)糟.(zāo)糕D. 疮.疤(chuàng)胸脯.(pú)侮.(wŭ)辱粗拙.(zhuō)2.下列选项中书写无误的一项是(2分)()A. 收敛哽咽妇儒皆知家喻户晓B. 崎岖斓语气冲斗牛锋芒毕露C. 赫然怪诞莫名其妙颠沛流离D. 拖沓竹蔑刮目相看群蚁排衙3.下列文学常识的搭配有误的一项是(2分)()A.《孙权劝学》——司马光——《资治通鉴》B.《阿长与〈山海经〉》——鲁迅——《野草》C.《最后一课》——都德——法国D.《卖油翁》——欧阳修——北宋4.下面一段话有多处错误,请按要求修改。
(2分)大概没有一个人敢保证,自己在以往从前的日子里,能够始终做到表里如一。
哪一个人未曾说过假话呢?哪一个民族没有因为种种原因而一度走了弯路呢?也恰恰是因为有了这一切,才有了勇于忏悔的个人、国家和民族,才有了忏悔和反思后的腾飞。
⑴文中有一处语义重复,应删去的是。
⑵文中有一个句子的词序不当,应调整为。
5.古诗文默写。
(6分)⑴万里赴戎机,。
⑵马上相逢无纸笔,。
⑶杨花榆荚无才思,。
⑷,何人不起故园情。
⑸陋室铭中表现主人交往之雅的语句是,。
6.名著阅读。
(4分)A.临河的土场上,太阳渐渐的收了他通黄的光线了,场边靠河的乌桕树叶,干巴巴的才喘过气来,几个花脚蚊子在下面哼着飞舞。
B.6月15那天,天热得发了狂。
太阳刚一出来,地上已像下了火。
一些似云非云,似雾非雾的灰气低低地浮在空中,使人觉得憋气。
⑴以上两段话,出自《骆驼祥子》的是(2分)()⑵祥子买车三起三落,最后一次失车是因为(2分)()A.为虎妞办丧事B.被孙侦探敲诈C.为赎回小福子D.被当兵的抢走了7.阅读下面的材料,选出正确答案。
(4分)国外某城市开设了租车自驾游旅游项目,驾车人发动汽车时,车内自动放音装置就会放一段录音:“阁下,驾驶汽车时速不超过30英里,你就可以饱览本地的美丽景色;超过60英里,请到法庭做客;超过80英里,欢迎光顾本地设备最新的急救医院,;上了100英里,请君安息吧!”⑴下列对当地规定的驾车最高时速的理解正确的一项是()A.30英里B.60英里C.80英里D.100英里⑵若要用简明的语言,直截了当地表达录音内容,在“阁下,请您……”后接续最恰当的一项是()A.饱览美景B.不要超车C.驾车慢行D.热爱生命8.综合性学习与探究。
(6分)学校开展以“爱阅读”为主题的综合性学习活动,请完成下列任务。
阅读下面的材料,写出你从中得出的结论。
中国新闻出版研究院的调查显示,2015年我国人均纸质图书阅读量为4.77本,比2014年增加0.38本;人均电子书阅读量为2.48本,比上年增加0.13本。
⑴结论:。
(2分)⑵纸质书阅读和电子书阅读这两种阅读形式,你更喜欢哪一种?为什么?。
(2分)⑶请根据下面的材料提出两条改善国民阅读现状的建议,(材料一)某地所做的一项调查显示,有近40%的家庭“三无一有”,无文学书,无杂志,无报纸,有电视。
大人和小孩每天一块看电视的时间可能超过一小时,一起读书的时间却不到十五分钟。
(材料二)建议:①。
(1分)②。
(1分)二、现代文阅读(一)阅读下文,完成9∽13题。
(16分)我的语文老师①我特别感激我高中时的语文老师。
②她是南京大学的高材生,是一个高高的、身体长得非常扁平的女人,是我心目中最高贵、最美丽的人。
在之后的生活中我千百度的寻找,但是再也没有找到像她这样的一位女性。
③我记得她第一次走上讲台,把两只手轻轻的悬在讲台上,她没有带粉笔,没有带备课笔记,也没有带语文教材,是空着手走上来的。
她望着我们说了一句话:“同学们,什么叫语文?”④然后她用了两节课的时间,给我们阐释什么叫“语文”。
期间,天开始下雨,她把头转向窗外,对我们说:“同学们,你们知道吗?一年四季的雨是不一样的,春天是春天的雨,夏天是夏天的雨,秋天是秋天的雨,冬天是冬天的雨。
”⑤然后她又说:“同学们,你们知道吗,一天里的雨也是不一样的,上午的雨与早晨的雨不一样,下午的雨与上午的雨不一样,晚上的雨与夜里的雨也不一样。
”⑥然后她又说:“同学们,你们知道吗?雨落在草丛中和落在水塘里,那个样子和发出来的声音都是不一样的。
”⑦我至今还记得,所有的同学把头转向的窗口,那个时候,外面有一大片荷花塘,千条万条银色的雨丝纷纷飘落在那片很大的荷花塘里。
这就是我的语文老师。
⑧大概一个星期之后,她又走上讲台,那一天是作文课。
她走上讲台之后,说了一句话:“同学们,你们知道吗,我们班上写作文写得最不好的同学是曹文轩。
”在此之前,我的历任语文老师都说:“写作文写得最好的同学是曹文轩。
”这个反差太大了!⑨对我来说,这个打击是巨大的,我根本无法接受她的判断,所以我当着她的面就把作文本撕了,扔在了地上,冲出了教室,来到了离教室不远的一条大河边。
我至今还记得我坐在大河边,望着那条大河,把地上的石子瓦片一块一块狠狠地砸向水面,一边砸,嘴里一边骂:“丑八怪!”⑩晚上,我回到了学校,来到了她的宿舍门口,我记得我不是轻轻的把她的门敲开,而几乎就用脚把她的门踢开的。
她拉开了门,站在门口,微笑着看着我,说:“你进来坐一会儿。
”○11然后我就进了她的卧室,看到了她不知道从哪里弄来的我的六个作文本。
她把这六个作文本一本一本的摆在她的桌子上,然后说:“你过来看看,我们先不说内容,单说你的这些作文里的字,就非常稚拙,但是能看出你非常认真。
你再看看最后一个作文本,你的字已经张扬到什么程度了,你已经浮躁到什么程度了?”○12她又说:“在这六个作文本里,都有一篇作文是写春天的,第一本里你写春天的时候是非常诚实的,是非常朴素的对春天进行描写。
但是后来你慢慢地控制不住自己了,你有必要用那么多的形容词吗?你的作文写得越来越臃肿,越来越夸张,当那些老师都说你有才气的时候,你就已经不知道自己是谁了。
”○13她说:“才气,有时候是害人的。
”○14我记得那一天离开她的卧室,走进校园,月亮特别好。
月色如水,清澈的月光整个地铺在校园里头。
那个夜晚是我一生铭记的。
没有那个夜晚,就没有我以后的漫长的人生之路。
○15这就是我的语文老师。
(有删改)9.作者回忆了与语文老师有关的哪两件事?请简要概括。
(4分)⑴⑵10.文中的语文老师是一个怎样的人?请结合文章内容简要分析。
(4分)11.分析第○13段中画波浪线句子的含义。
(2分)才气,有时候是害人的。
12.根据要求,品析文中画横线的语句。
(4分)⑴我至今还记得我坐在大河边,望着那条大河,把地上的石子瓦片一块一块狠狠的砸向水面,一边砸,嘴里一边骂:“丑八怪!”(从描写方法的角度赏析)⑵夜色如水,清澈的月光整个地铺在校园里头。
(从修辞手法的角度赏析)13.本文蕴含了作者对语文老师怎样的思想感情?(2分)(二)阅读下文,完成14∽17题。
(10分)名人墙哥已经来弟家三天了。
哥终于支支吾吾,把自己的来意讲明了。
弟是将军,是小清河村里走出去的最能的人,也是乡里有名、县里挂号的人。
哥是小清河村村支书,早已退了很多年了。
退了的哥偏偏不肯安生,喜欢乱操心,家乡的雨季眼看就要来了,小清河就要变成黄水河。
河上无桥,村民出行,村里的孩子们来来回回上学又成了问题。
哥在新任村支书面前夸下海口,他去省城找他的老三,一定要把修桥的钱给化来。
哥,不是兄弟我不念乡情,我确实有我的难处。
家大业大是不差,可向我伸手的地方也多啊……你也这么大年纪了,回去好好跟嫂子过日子吧,折腾啥呢?你一手能翻了咱那穷窝的天吗?弟满脸真诚,说得哥红着脸低了头。
哥走了……哥没再向弟开过一次口,回家他闷闷地跟新任村支书说,老三有难处,咱不能难为他。
靠天靠地不如靠自己,桥,咱自己修吧!哥带头把自己存的那点养老钱全拿出来,又挨家挨户动员,再苦不能苦孩子啊。
那些心下犹豫的村民,也就不好再说什么,有钱的出钱,有力的出力。
小清河上人欢马叫,热腾腾地忙活起来。
没有谁号召,顺其自然,哥成了建桥的大总管,从桥体设计到材料的置备,他都一手操管。
七十多岁的老头儿了,驼着背,顶着一头白发,在人声喧嚣的工地上指挥人,指挥车,有爱开玩笑的年轻人,从“嗵嗵嗵”的马达声里,冲他大喊:大爷,我看你有大将军的风度。
工地上噪音太大,哥听不清,但从对方脸上的表情明白些什么。
他咧开嘴,笑得憨,也笑得欢,露出黑黑的牙洞来,额前的一缕白发在风里一下一下地翻。
桥修成,一座漂亮又结实的双孔石拱桥神气地横跨在小清河上,蛮横了多少年的小清河一下子驯顺了,不再张牙舞爪,河水从桥孔下钻过去,柔顺地顺河堤而下。
村民们到河对岸去种田,不用再肩挑手提,三轮机动车可以开到家门口,孩子们上学不再用大人护送,背着书包蹦蹦跳跳就过了河,村里再没有牲畜掉下河淹死这些让人烦恼的事儿了。
修了一座桥,把哥累得不轻。
原来就年老体弱的人,身体越发弱下去,他要拄着拐棍才能从家里走到桥上看看。
夕光晚照中,村里上空的炊烟袅袅地升上天空。
牛羊归圈,孩子放学,村民扛着工具慢悠悠回家。
满头银发的哥拄着拐棍站在桥头,被西天的云霞镀了一身的金粉,像一尊塑像。
大爷好啊。
大爷爷好。
……每一个过路的人,看到桥头上伫立着的哥,都会恭恭敬敬向哥打声招呼。
哥回应着,脸上的笑意久久不去。
哥给弟打电话,说小清河上有桥了,小车可以一直开到家门口。
哥想弟了,年纪越大,越是牵念。
弟却总是那么忙,今天出差,明天开会,一副日理万机的样子。
哥便不再说什么,叮嘱几句,挂电话。
弟回来时,哥已经缠绵病榻多日。
弟不是是专程回来看哥的,是回来参加县里的一个活动。
县里要树一面名人墙,把全县在全国各地的显要都召集回来,给他们立传扬名,也是对县里的一项是宣传。
弟说,这是县里的大事,自己再怎么忙也要回来呀。
是,是该回来。
人不能忘本。
哥拉着弟的手亲不够。
呵,你以为他妈的他们白请我回来呀,每个人都要带着货回来。
一个名字刻上去,二十万。
弟还是那气度,当将军当惯了,说起话来骂骂咧咧。
二十万块?二十万啊……哥脸上的笑容慢慢敛了去,他的肝又开始疼了,疼得他直吐凉气。
二十万块,我们乡下人几家一年不吃不喝也攒不够二十万,我们修桥才花了四万多……花二十万,就为把名字刻在石头里——哥到死也没想明白弟这算的是哪门子帐。
(选自《2014年中国微型小说精选》,有改动)14.根据文意,用简洁的语文补充故事情节。
(3分)哥找弟筹资修桥,弟①→哥②,桥修成→哥牵念弟,打电话,弟借口忙未归→弟③,哥至死不理解弟的心思。