山东省滕州市高三数学12月定时过关检测试题 文 新人教A版
- 格式:doc
- 大小:352.50 KB
- 文档页数:8
山东省枣庄市滕州市第一中学2023-2024学年高一下学期3月单元过关考试(月考)数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知()5,4a =r ,()3,2b =r ,则与23a b r r -平行的单位向量为A .⎝⎭B .⎝⎭或⎛ ⎝⎭C .⎝⎭或⎛ ⎝⎭D .⎛ ⎝⎭2.在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB =u u u r ,(1,3)AC =u u u r ,则BD =u u u r( )A .()2,4--B .()3,5--C .()3,5D .()2,43.若1z ,2z 为复数,则“12z z +是实数”是“1z ,2z 互为共轭复数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.如图所示,正方形''''O A B C 的边长为2cm ,它是水平放置的一个平面图形的直观图,则原图形的周长是( )A .16cmB .C .8cmD .4+5.ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若)c o s c o s c A a C -=,则c o s A =( )A .12B C D 6.正方形ABCD 的边长为2,O 是正方形ABCD 的中心,过中心O 的直线l 与边AB 交于点M ,与边CD 交于点N ,P 为平面内一点,且满足()21OP OB OC λλ=+-u u u r u u u r u u u r ,则PM u u u u r ·PNuuur 的最小值为( )A .14-B .94-C .2-D .74-7.如图,在ABC V 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =u u u r u u u u r ,AC nAN =u u u r u u u r,则m n +=( )A .1B .32C .2D .38.如图所示,在棱长为1的正方体1111ABCD A B C D -中,P 是1A B 上一动点,则1AP D P +的最小值为( )A .2BC .2D二、多选题9.设1z ,2z ,3z 是复数,则下列说法中正确的是( ) A .若120z z =,则10z =或20z = B .若1213z z z z =且10z ≠,则23z z =C .若12=z z ,则1122z z z z ⋅=⋅D .若12=z z ,则2212z z =10.已知ABC V 的内角A 、B 、C 所对的边分别为a 、b 、c ,下列说法正确的是( )A .若sin :sin :sin 2:3:4ABC =,则ABC V 是钝角三角形 B .若sin sin A B >,则a b >C .若0AC AB ⋅>u u u r u u u r,则ABC V 是锐角三角形D .若45A =o ,2a =,b =ABC V 只有一解 11.在给出的下列命题中,正确的是( )A .设O ABC 、、、是同一平面上的四个点,若(1)()OA m OB m OC m R =⋅+-⋅∈u u u v u u u v u u u v,则点、、A B C 必共线B .若向量,a b r r 是平面α上的两个向量,则平面α上的任一向量c r都可以表示为()c a b R λμμλ=+∈v v v、,且表示方法是唯一的C .已知平面向量OA OB OC u u u r u u u r u u u r 、、满足,||||AB AC OA OB OA OC AO AB AC λ⎛⎫⋅=⋅=+ ⎪⎝⎭u u u r u u u ru u u r u u u r u u u r u u u r u u u r u u ur u u u r 则ABC ∆为等腰三角形D .已知平面向量OA OB OC u u u r u u u r u u u r 、、满足||||(0)OA OB OC r r ==>u u u r u u u r u u u r |=|,且0O A O B O C ++=u u r u u r u u r r,则ABC ∆是等边三角形三、填空题12.在ABC ∆中,若5,,tan 24b B A π=∠==,则=a ;13.在ABC V中,60,2,BAC AB BC ∠=︒==BAC ∠的角平分线交BC 于D ,则AD =. 14.已知球的两个平行截面的面积分别为19π和36π,球的半径为10,则这两个平行截面之间的距离为.四、解答题15.已知(1,0),(2,1)a b ==r r(1)当k 为何值时,ka b -r r与2a b +r r 共线?(2)若23,AB a b BC a mb =+=+u u u r r r u u u r r r,且A ,B ,C 三点共线,求m 的值.16.已知复数z 为纯虚数,且21iz -+为实数. (1)求复数z ;(2)设m ∈R ,1z m z =+,若复数21z 在复平面内对应的点位于第三象限,求11z 的取值范围.17.在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,π3A =. (1)若2c b =,证明:()()sin sin sin sin sin sin AB A B BC +-=; (2)若2a =,求ABC V 周长的最大值.18.经过OAB V的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP mOA =u u u r u u u r,()0,0OQ nOB m n =>>u u u r u u u r.(1)证明:11m n+为定值; (2)求m +n 的最小值.19.在Rt ABC △中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos cos cos A B Ca b c+=+. (1)求角A ;(2)已知2c b ≠,a =点P ,Q 是边AC 上的两个动点(P ,Q 不重合),记PBQ θ∠=. ①当π6θ=时,设PBQ V 的面积为S ,求S 的最小值: ②记BPQ α∠=,BQP β∠=.问:是否存在实常数θ和k ,对于所有满足题意的α,β,都有sin 2sin 24sin sin k k αβαβ++=成立若存在,求出θ和k 的值;若不存在,说明理由.。
山东省潍坊市2024高三冲刺(高考数学)人教版摸底(培优卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知函数,那么()A.7B.6C.5D.4第(2)题有下列四个命题,其中是假命题的是()A.已知,其在复平面上对应的点落在第四象限B.“全等三角形的面积相等”的否命题C .在中,“”是“”的必要不充分条件D.命题“,”的否定是“,”第(3)题已知函数的部分图象如图所示,则下列正确个数有()①关于点对称;②关于直线对称;③在区间上单调递减;④在区间上的值域为.A.1个B.2个C.3个D.4个第(4)题已知全集,,,则()A.B.C.D.第(5)题已知复数,是方程的两个不同的根,则()A.B.C.D.1第(6)题已知全集,集合,则()A.B.C.D.第(7)题已知集合,,则()A.B.C.D.第(8)题已知集合,则集合()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知正方体的棱长为是空间中的一动点,下列结论正确的是()A.若点在正方形内部,异面直线与所成角为,则的范围为B.平面平面C .若,则的最小值为D.若,则平面截正方体所得截面面积的最大值为第(2)题下列说法中正确的是()A.若,则B.若,则C.若定义域为的奇函数在单调递减,且,则满足的的取值范围为D .若,,则第(3)题若袋子中有2个白球,3个黑球,现从袋子中有放回地随机取球4次,每次取一个球,取到白球记1分,取到黑球记0分,记4次取球的总分数为X,则()A.B.C.X的期望D.X的方差三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题若定义在上的非零函数,对任意实数,存在常数,使得恒成立,则称是一个“函数”,试写出一个“函数”:__________.第(2)题若一个圆锥的母线长是底面半径的3倍,则该圆锥的侧面积是底面积的_________倍;第(3)题首项为1,公比为的无穷等比数列的各项和为______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知数列满足,.求证:当时,(Ⅰ);(Ⅱ)当时,有;(Ⅲ)当时,有.第(2)题已知直线l:与点,过直线l上的一动点Q作直线,且点P满足.(1)求点P的轨迹C的方程;(2)过点F作直线与C交于A,B两点,设,直线AM与直线l相交于点N.试问:直线BN是否经过x轴上一定点?若过定点,求出该定点坐标;若不过定点,请说明理由.第(3)题已知函数(,)(1)讨论的单调性;(2)若对任意,恰有一个零点,求的取值范围.第(4)题近年来,随着国家对新能源汽车产业的支持,很多国产新能源汽车迅速崛起,其因颜值高、动力充沛、提速快、空间大、用车成本低等特点得到民众的追捧,但是充电难成为影响新能源汽车销量的主要原因,国家为了加快新能源汽车的普及程度,在全国范围内逐步增建充电桩.某地区年的充电桩数量及新能源汽车的年销量如表所示:年份20192020202120222023充电桩数量/万台13579新能源汽车年销量/万辆2537485872(1)已知可用线性回归模型拟合与的关系,请用相关系数加以说明(结果精确到0.001);(2)求关于的线性回归方程,预测当该地区充电桩数量为24万台时,新能源汽车的年销量是多少万辆?参考公式:相关系数,回归方程中斜率和截距的最小二乘估计公式分别为,.参考数据:,,,.第(5)题设点是直线上的一个动点,为坐标原点,过点作轴的垂线.过点作直线的垂线交直线于.(1)求点的轨迹的方程;(2)过曲线上的一点(异于原点)作曲线的切线交椭圆于,两点,求面积的最大值.。
山东省2025届高三第一次诊断考试数学试题(答案在最后)2024.10说明:本试卷满分150分。
试题答案请用2B 铅笔和0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。
考试时间120分钟。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{ln(3)},{2}A x y x B x x ==+=∣∣ ,则下列结论正确的是A.A B⊆ B.B A ⊆ C.A B = D.A B ⋂=∅2.在612x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为A.152-B.152C.52-D.523.已知()()cos f x x a x =+为奇函数,则曲线()y f x =在点(π,(π))f 处的切线方程为A.ππ0x y +-= B.ππ0x y -+= C.π0x y ++= D.0x y +=4.在ABC 中,“π2C =”是“22sin sin 1A B +=”的A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件5.由0,1,2,,9 这十个数字组成的无重复数字的四位数中,个位数字与百位数字之差的绝对值等于8的有A.98个B.105个C.112个D.210个6.已知函数()f x 在R 上满足()()f x f x =-,且当(,0]x ∈-∞时,()()0f x xf x '+<成立,若()0.60.6221122,ln 2(ln 2),log log 88a f b f c f ⎛⎫=⋅=⋅=⋅ ⎪⎝⎭,则,,a b c 的大小关系是A.a b c >>B.c b a>> C.a c b>> D.c a b>>7.若1cos 3sin αα+=,则cos 2sin αα-=A.-1B.1C.25-D.-1或25-8.已知函数225e 1,0(),()468,0x x f x g x x ax x x x ⎧+<⎪==-+⎨-+≥⎪⎩,若(())y g f x =有6个零点,则a 的取值范围是A.(4,)+∞ B.174,2⎡⎫⎪⎢⎣⎭C.[4,5]D.2017,(4,5]32⎡⎤⋃⎢⎥⎣⎦二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,选对但不全的得部分分,有选错的得0分.9.已知0a b >>,下列说法正确的是A.若c d >,则a c b d ->-B.若0c >,则b b c a a c+<+C.2ab a b <+D.11a b b a+>+10.已知,A B 分别为随机事件A ,B 的对立事件,()0,()0P A P B >>,则A.()()1P B A P B A +=∣∣ B.()()()P B A P B A P A +=∣∣C.若A ,B 独立,则()()P A B P A =∣ D.若A ,B 互斥,则()()P A B P B A =∣∣11.已知函数()(1)ln (0)f x x x ax a a =---≠在区间(0,)+∞上有两个不同的零点1x ,2x ,且12x x <,则下列选项正确的是A.a 的取值范围是(0,1) B.121x x =C.()()12114x x ++> D.1214ln 2ln ln 23x a x x a +<<++三、填空题:本题共3小题,每小题5分,共15分.12.若1~10,5X B ⎛⎫ ⎪⎝⎭,且51Y X =+,则()D Y =___________.13.已知二次函数2()2()f x ax x c x =++∈R 的值域为[1,)+∞,则14a c+的最小值为___________.14.一颗质地均匀的正方体骰子,六个面上分别标有点数1,2,3,4,5,6.现随机地将骰子抛掷三次(各次抛掷结果相互独立),其向上的点数依次为123,,a a a ,则事件“1223316a a a a a a -+-+-=”发生的概率为_____.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤。
选择性必修第一册全册课后练习及章末测验第一章空间向量与立体几何................................................................................................ - 2 -1.1.1空间向量及其线性运算......................................................................................... - 2 -1.1.2空间向量的数量积运算......................................................................................... - 8 -1.2空间向量基本定理.................................................................................................. - 15 -1.3.1空间直角坐标系 .................................................................................................. - 22 -1.3.2空间运算的坐标表示........................................................................................... - 28 -1.4.1第1课时空间向量与平行关系........................................................................... - 34 -1.4.1第2课时空间向量与垂直关系........................................................................... - 42 -1.4.2用空量研究距离夹角问题................................................................................... - 50 -第一章章末测验............................................................................................................ - 63 - 第二章直线和圆的方程...................................................................................................... - 78 -2.1.1倾斜角与斜率 ...................................................................................................... - 78 -2.1.2两条直线平行和垂直的判定............................................................................... - 82 -2.2.1直线的点斜式方程............................................................................................... - 86 -2.2.2直线的两点式方程............................................................................................... - 91 -2.2.3直线的一般式方程............................................................................................... - 96 -2.3.1 2.3.2两条直线的交点坐标两点间的距离公式............................................. - 101 -2.3.3 2.3.4点到直线的距离公式两条平行直线间的距离..................................... - 106 -2.4.1圆的标准方程 .................................................................................................... - 112 -2.4.2圆的一般方程 .................................................................................................... - 116 -2.5.1直线与圆的位置关系......................................................................................... - 121 -2.5.2圆与圆的位置关系............................................................................................. - 127 - 第三章圆锥曲线的方程.................................................................................................... - 143 -3.1.1椭圆及其标准方程............................................................................................. - 143 -3.1.2第1课时椭圆的简单几何性质......................................................................... - 148 -3.1.2第2课时椭圆的标准方程及性质的应用......................................................... - 154 -3.2.1双曲线及其标准方程......................................................................................... - 162 -3.2.2双曲线的简单几何性质..................................................................................... - 168 -3.3.1抛物线及其标准方程......................................................................................... - 176 -3.3.2抛物线的简单几何性质..................................................................................... - 182 -第三章章末测验.......................................................................................................... - 189 -第一章 空间向量与立体几何 1.1.1空间向量及其线性运算一、选择题1.空间任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于( ) A .DB → B .AC → C .AB → D .BA → D [DA →+CD →-CB →=DA →+BD →=BA →.]2.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( )A .平行四边形B .空间四边形C .等腰梯形D .矩形A [∵AO →+OB →=DO →+OC →,∴AB →=DC →. ∴AB →∥DC →且|AB →|=|DC →|. ∴四边形ABCD 为平行四边形.]3.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A ,B ,C 一定共面的是( )A .OM →=OA →+OB →+OC → B .OM →=2OA →-OB →-OC → C .OM →=OA →+12OB →+13OC →D .OM →=13OA →+13OB →+13OC → D [由OM →=13OA →+13OB →+13OC →,可得3OM →=OA →+OB →+OC →⇒OM →-OA →+OM →-OB →+OM →-OC →=0, 即AM →=-BM →-CM →.所以AM →与BM →,CM →在一个平面上,即点M 与点A ,B ,C 一定共面.] 4.若空间中任意四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则( )A .P ∈AB B .P ∉ABC .点P 可能在直线AB 上D .以上都不对A [因为m +n =1,所以m =1-n , 所以OP →=(1-n )OA →+nOB →, 即OP →-OA →=n (OB →-OA →), 即AP →=nAB →,所以AP →与AB →共线. 又AP →,AB →有公共起点A ,所以P ,A ,B 三点在同一直线上, 即P ∈AB .]5.已知在长方体ABCD -A 1B 1C 1D 1中,点E 是A 1C 1的中点, 点F 是AE 的三等分点,且AF =12EF ,则AF →=( )A .AA 1→+12AB →+12AD → B .12AA 1→+12AB →+12AD →C .12AA 1→+16AB →+16AD → D .13AA 1→+16AB →+16AD →D [如图所示,AF →=13AE →,AE →=AA 1→+A 1E →,A 1E →=12A 1C 1→,A 1C 1→=A 1B 1→+A 1D 1→,A 1B 1→=AB →,A 1D 1→=AD →,所以AF →=13⎝ ⎛⎭⎪⎫AA 1→+12A 1C 1→=13AA 1→+16AB →+16AD →,故选D.]二、填空题6.已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若由OM →=-2OA →+OB →+λOC →确定的点M 与A ,B ,C 共面,则λ=________.2 [由M 、A 、B 、C 四点共面知:-2+1+λ=1,即λ=2.]7.在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,用a ,b ,c 表示D 1M →,则D 1M →=________.12a -12b +c [D 1M →=D 1D →+DM → =A 1A →+12(DA →+DC →) =c +12(-A 1D 1→+A 1B 1→) =12a -12b +c .]8.在空间四边形ABCD 中,E ,F 分别是AB ,CD 的中点,则EF →和AD →+BC →的关系是________.(填“平行”,“相等”或“相反”)平行 [设G 是AC 的中点,则EF →=EG →+GF →=12BC →+12AD →=12(AD →+BC →) 所以2EF →=AD →+BC →, 从而EF →∥(AD →+BC →).] 三、解答题9.如图,在空间四边形ABCD 中,G 为△BCD 的重心,E ,F 分别为边CD 和AD 的中点,试化简AG →+13BE →-12AC →,并在图中标出化简结果的向量.[解] ∵G 是△BCD 的重心,BE 是CD 边上的中线,∴GE →=13BE →.又12AC →=12(DC →-DA →)=12DC →-12DA →=DE →-DF →=FE →, ∴AG →+13BE →-12AC →=AG →+GE →-FE →=AF →(如图所示).10.在长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,点N 在AC 上,且AN ∶NC =2∶1,求证:A 1N →与A 1B →,A 1M →共面.[证明] ∵A 1B →=AB →-AA 1→, A 1M →=A 1D 1→+D 1M →=AD →-12AA 1→, AN →=23AC →=23(AB →+AD →), ∴A 1N →=AN →-AA 1→ =23(AB →+AD →)-AA 1→=23(AB →-AA 1→)+23(AD →-12AA 1→) =23A 1B →+23A 1M →, ∴A 1N →与A 1B →,A 1M →共面.11.(多选题)若A ,B ,C ,D 为空间不同的四点,则下列各式为零向量的是( ) A .AB →+2BC →+2CD →+DC → B .2AB →+2BC →+3CD →+3DA →+AC →C.AB →+CA →+BD →D.AB →-CB →+CD →-AD →BD [A 中,AB →+2BC →+2CD →+DC →=AB →+2BD →+DC →=AB →+BD →+BD →+DC →=AD →+BC →;B 中,2AB →+2BC →+3CD →+3DA →+AC →=2AC →+3CA →+AC →=0;C 中,AB →+CA →+BD →=AD →+CA →;D 中,AB →-CB →+CD →-AD →=AB →+BC →+CD →+DA →表示A →B →C →D →A 恰好形成一个回路,结果必为0.]12.(多选题)有下列命题,其中真命题的有( ) A .若AB →∥CD →,则A ,B ,C ,D 四点共线 B .若AB →∥AC →,则A ,B ,C 三点共线C .若e 1,e 2为不共线的非零向量,a =4e 1-25e 2,b =-e 1+110e 2,则a ∥b D .若向量e 1,e 2,e 3是三个不共面的向量,且满足等式k 1e 1+k 2e 2+k 3e 3=0,则k 1=k 2=k 3=0BCD [根据共线向量的定义,若AB →∥CD →,则AB ∥CD 或A ,B ,C ,D 四点共线,故A 错;因为AB →∥AC →且AB →,AC →有公共点A ,所以B 正确;由于a =4e 1-25e 2=-4-e 1+110e 2=-4b ,所以a ∥b ,故C 正确;易知D 也正确.]13.(一题两空)已知A ,B ,C 三点共线,则对空间任一点O ,若OA →=2OB →+μOC →,则μ=________;存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.-1 0 [由A 、B 、C 三点共线,∴2+μ=1,∴μ=-1,又由λOA →+mOB →+nOC →=0得OA →=-m λOB →-n λOC →由A ,B ,C 三点共线知-m λ-nλ=1,则λ+m +n =0.]14.设e 1,e 2是平面上不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,则实数k 为________.-8 [因为BD →=CD →-CB →=e 1-4e 2,AB →=2e 1+k e 2,又A ,B ,D 三点共线,由共线向量定理得12=-4k ,所以k =-8.]15.如图所示,已知四边形ABCD 是平行四边形,点P 是ABCD 所在平面外的一点,连接P A ,PB ,PC ,PD .设点E ,F ,G ,H 分别为△P AB ,△PBC ,△PCD ,△PDA 的重心.(1)试用向量方法证明E ,F ,G ,H 四点共面;(2)试判断平面EFGH 与平面ABCD 的位置关系,并用向量方法证明你的判断. [证明] (1)分别连接PE ,PF ,PG ,PH 并延长,交对边于点M ,N ,Q ,R ,连接MN ,NQ ,QR ,RM ,∵E ,F ,G ,H 分别是所在三角形的重心,∴M ,N ,Q ,R 是所在边的中点,且PE →=23PM →,PF →=23PN →,PG →=23PQ →,PH →=23PR →.由题意知四边形MNQR 是平行四边形,∴MQ →=MN →+MR →=(PN →-PM →)+(PR →-PM →)=32(PF →-PE →)+32(PH →-PE →)=32(EF →+EH →).又MQ →=PQ →-PM →=32PG →-32PE →=32EG →.∴EG →=EF →+EH →,由共面向量定理知,E ,F ,G ,H 四点共面.(2)平行.证明如下:由(1)得MQ →=32EG →,∴MQ →∥EG →, ∴EG →∥平面ABCD .又MN →=PN →-PM →=32PF →-32PE → =32EF →,∴MN →∥EF →. 即EF ∥平面ABCD . 又∵EG ∩EF =E ,∴平面EFGH 与平面ABCD 平行1.1.2空间向量的数量积运算一、选择题1.已知a ⊥b ,|a |=2,|b |=3,且(3a +2b )⊥(λa -b ),则λ等于( ) A .32 B .-32 C .±32 D .1A [∵a ⊥b ,∴a ·b =0,∵3a +2b ⊥λa -b ,∴(3a +2b )·(λa -b )=0, 即3λa 2+(2λ-3)a ·b -2b 2=0,∴12λ-18=0,解得λ=32.]2.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A .a 2B .12a 2C .14a 2D .34a 2C [AE →·AF →=12(AB →+AC →)·12AD →=14(AB →·AD →+AC →·AD →)=14⎝ ⎛⎭⎪⎫a ×a ×12+a ×a ×12=14a 2.]3.已知长方体ABCD -A 1B 1C 1D 1,则下列向量的数量积一定不为0的是( ) A .AD 1→·B 1C →B .BD 1→·AC →C .AB →·AD 1→ D .BD 1→·BC →D [对于选项A ,当四边形ADD 1A 1为正方形时,可得AD 1⊥A 1D ,而A 1D ∥B 1C ,可得AD 1⊥B 1C ,此时有AD 1→·B 1C →=0;对于选项B ,当四边形ABCD 为正方形时,AC ⊥BD ,易得AC ⊥平面BB 1D 1D ,故有AC ⊥BD 1,此时有BD 1→·AC →=0;对于选项C ,由长方体的性质,可得AB ⊥平面ADD 1A 1,可得AB ⊥AD 1,此时必有AB →·AD 1→=0;对于选项D ,由长方体的性质,可得BC ⊥平面CDD 1C 1,可得BC ⊥CD 1,△BCD 1为直角三角形,∠BCD 1为直角,故BC 与BD 1不可能垂直,即BD 1→·BC →≠0.故选D.]4.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,向量BA 1→与向量AC →所成的角为( )A .60°B .150°C .90°D .120°D [BA 1→=BA →+AA 1→,|BA 1→|=2a ,AC →=A B →+AD →,|AC →|=2a .∴BA 1→·AC →=BA →·AB →+BA →·AD →+AA 1→·AB →+AA 1→·AD →=-a 2. ∴cos 〈BA 1→,AC →〉=-a 22a ·2a =-12.∴〈BA 1→,AC →〉=120°.]5.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,AB =1,AD =2,AA ′=3,∠BAD =90°,∠BAA ′=∠DAA ′=60°,则AC ′的长为( )A .13B .23C .33D .43B [∵AC ′→=AB →+BC →+CC ′→,∴AC ′→2=(AB →+BC →+CC ′→)2=AB →2+BC →2+CC ′→2+2(AB →·BC →+AB →·CC ′→+BC →·CC ′→) =12+22+32+2(0+1×3cos 60°+2×3cos 60°) =14+2×92=23,∴|AC ′→|=23,即AC ′的长为23.] 二、填空题6.已知a ,b 是空间两个向量,若|a |=2,|b |=2,|a -b |=7,则cos 〈a ,b 〉=________.18[将|a -b |=7两边平方,得(a -b )2=7. 因为|a |=2,|b |=2,所以a ·b =12.又a ·b =|a ||b |cos 〈a ,b 〉,故cos 〈a ,b 〉=18.]7.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a ,b 所成的角是________.60° [AB →=AC →+CD →+DB →,∴CD →·AB →=CD →·(AC →+CD →+DB →)=|CD →|2=1, ∴cos 〈CD →,AB →〉=CD →·AB →|CD →||AB →|=12,∴异面直线a ,b 所成角是60°.]8.已知|a |=2,|b |=1,〈a ,b 〉=60°,则使向量a +λb 与λa -2b 的夹角为钝角的实数λ的取值范围是________.(-1-3,-1+3) [由题意知 ⎩⎨⎧(a +λb )·(λa -2b )<0,cos 〈a +λb ,λa -2b 〉≠-1. 即⎩⎨⎧(a +λb )·(λa -2b )<0,(a +λb )·(λa -2b )≠-|a +λb ||λa -2b |,得λ2+2λ-2<0.∴-1-3<λ<-1+ 3.] 三、解答题9.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB →=a ,AD →=b ,AP →=c .(1)试用a ,b ,c 表示出向量BM →; (2)求BM 的长.[解] (1)∵M 是PC 的中点,∴BM →=12(BC →+BP →)=12[AD →+(AP →-AB →)] =12[b +(c -a )]=-12a +12b +12c .(2)由于AB =AD =1,P A =2,∴|a |=|b |=1,|c |=2,由于AB ⊥AD ,∠P AB =∠P AD =60°,∴a·b =0,a·c =b·c =2·1·cos 60°=1, 由于BM →=12(-a +b +c ),|BM →|2=14(-a +b +c )2=14[a 2+b 2+c 2+2(-a·b -a·c +b·c )]=14[12+12+22+2(0-1+1)]=32.∴|BM →|=62,∴BM 的长为62.10.如图,已知直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. [解] (1)证明:设CA →=a ,CB →=b ,CC ′→=c , 根据题意得|a |=|b |=|c |,且a·b =b·c =c·a =0. ∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=⎝ ⎛⎭⎪⎫b +12c ·⎝ ⎛⎭⎪⎫-c +12b -12a =-12c 2+12b 2=0, ∴CE →⊥A ′D →,即CE ⊥A ′D .(2)∵AC ′→=-a +c ,∴|AC ′→|=2|a |,|CE →|=52|a |, ∵AC ′→·CE →=(-a +c )·⎝ ⎛⎭⎪⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22×52|a |2=1010.∴异面直线CE 与AC ′所成角的余弦值为1010.11.(多选题)在正方体ABCD -A 1B 1C 1D 1中,下列命题正确的有( ) A .(AA 1→+AD →+AB →)2=3AB →2 B .A 1C →·(A 1B 1→-A 1A →)=0 C .AD 1→与A 1B →的夹角为60° D .正方体的体积为|AB →·AA 1→·AD →|AB [如图,(AA 1→+AD →+AB →)2=(AA 1→+A 1D 1→+D 1C 1→)2=AC 1→2=3AB →2;A 1C →·(A 1B 1→-A 1A →)=A 1C →·AB 1→=0;AD 1→与A 1B →的夹角是D 1C →与D 1A →夹角的补角,而D 1C →与D 1A →的夹角为60°,故AD 1→与A 1B →的夹角为120°;正方体的体积为|AB →||AA 1→||AD →|.故选AB.]12.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,若E 是底面正方形A 1B 1C 1D 1的中心, 则AC 1→与CE →( )A .重合B .平行但不重合C .垂直D .无法确定C [AC 1→=AB →+AD →+AA 1→,CE →=CC 1→+C 1E →=AA 1→-12(AB →+AD →),于是AC 1→·CE →=(AB →+AD →+AA 1→)·⎣⎢⎡⎦⎥⎤AA 1-12(AB →+AD →)=AB →·AA 1→-12AB →2-12AB →·AD →+AD →·AA 1→-12AD →·AB →-12AD →2+AA 1→2-12AA 1→·AB →-12AA 1→·AD →=0-12-0+0-0-12+1-0-0=0,故AC 1→⊥CE →.]13.(一题两空)如图,在长方体ABCD -A 1B 1C 1D 1中,设AD =AA 1=1,AB =2,P 是C 1D 1的中点,则B 1C →·A 1P →=________,B 1C →与A 1P →所成角的大小为________.1 60° [法一:连接A 1D ,则∠P A 1D 就是B 1C →与A 1P →所成角.连接PD ,在△P A 1D 中,易得P A 1=DA 1=PD =2,即△P A 1D 为等边三角形,从而∠P A 1D =60°,即B 1C →与A 1P →所成角的大小为60°.因此B 1C →·A 1P →=2×2×cos 60°=1.法二:根据向量的线性运算可得B 1C →·A 1P →=(A 1A →+AD →)·⎝⎛⎭⎪⎫AD →+12AB →=AD →2=1. 由题意可得P A 1=B 1C =2,则2×2×cos 〈B 1C →,A 1P →〉=1,从而〈B 1C →,A 1P →〉=60°.]14.已知在正四面体D -ABC 中,所有棱长都为1,△ABC 的重心为G ,则DG 的长为________.63 [如图,连接AG 并延长交BC 于点M ,连接DM ,∵G 是△ABC 的重心,∴AG =23AM ,∴AG →=23AM →,DG →=DA →+AG →=DA →+23AM →=DA →+23(DM →-DA →)=DA →+23⎣⎢⎡⎦⎥⎤12(DB →+DC →)-DA →=13(DA →+DB →+DC →),而(DA →+DB →+DC →)2=DA →2+DB →2+DC →2+2DA →·DB →+2DB →·DC →+2DC →·DA →=1+1+1+2(cos 60°+cos 60°+cos 60°)=6,∴|DG →|=63.]15.如图,正四面体V -ABC 的高VD 的中点为O ,VC 的中点为M .(1)求证:AO ,BO ,CO 两两垂直;(2)求〈DM →,AO →〉.[解] (1)证明:设VA →=a ,VB →=b ,VC →=c ,正四面体的棱长为1, 则VD →=13(a +b +c ),AO →=16(b +c -5a ), BO →=16(a +c -5b ),CO →=16(a +b -5c ),所以AO →·BO →=136(b +c -5a )·(a +c -5b )=136(18a ·b -9|a |2)=136(18×1×1×cos 60°-9)=0,所以AO →⊥BO →,即AO ⊥BO .同理,AO ⊥CO ,BO ⊥CO . 所以AO ,BO ,CO 两两垂直.(2)DM →=DV →+VM →=-13(a +b +c )+12c =16(-2a -2b +c ),所以|DM →|=⎣⎢⎡⎦⎥⎤16(-2a -2b +c )2=12. 又|AO →|=⎣⎢⎡⎦⎥⎤16(b +c -5a )2=22,DM →·AO →=16(-2a -2b +c )·16(b +c -5a )=14, 所以cos 〈DM →,AO →〉=1412×22=22. 又〈DM →,AO →〉∈[0,π], 所以〈DM →,AO →〉=π4.1.2空间向量基本定理一、选择题1.若向量{a ,b ,c }是空间的一个基底,则一定可以与向量p =2a +b ,q =2a-b 构成空间的另一个基底的向量是( )A .aB .bC .cD .a +bC [由p =2a +b ,q =2a -b 得a =14p +14q ,所以a 、p 、q 共面,故a 、p 、q 不能构成空间的一个基底,排除A ;因为b =12p -12q ,所以b 、p 、q 共面,故b 、p 、q 不能构成空间的一个基底,排除B ;因为a +b =34p -14q ,所以a +b 、p 、q 共面,故a +b 、p 、q 不能构成空间的一个基底,排除D.]2.在平行六面体ABCD -A 1B 1C 1D 1中,M 是上底面对角线AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →可表示为( )A .12a +12b +cB .12a -12b +cC .-12a -12b +cD .-12a +12b +cD [由于B 1M →=B 1B →+BM →=B 1B →+12(BA →+BC →) =-12a +12b +c ,故选D.]3.若向量MA →,MB →,MC →的起点M 与终点A ,B ,C 互不重合,且点M ,A ,B ,C 中无三点共线,满足下列关系(O 是空间任一点),则能使向量MA →,MB →,MC →成为空间一个基底的关系是( )A .OM →=13OA →+13OB →+13OC → B .MA →≠MB →+MC → C .OM →=OA →+OB →+OC →D .MA →=2MB →-MC →C [若MA →,MB →,MC →为空间一组基向量,则M ,A ,B ,C 四点不共面.选项A 中,因为13+13+13=1,所以点M ,A ,B ,C 共面;选项B 中,MA →≠MB →+MC →,但可能存在实数λ,μ使得MA →=λMB →+μMC →,所以点M ,A ,B ,C 可能共面;选项D 中,四点M ,A ,B ,C 显然共面.故选C.]4.空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM →=2MA →,N 为BC 中点,则MN →为( )A .12a -23b +12cB .-23a +12b +12cC .12a +12b -23cD .23a +23b -12cB [MN →=MA →+AB →+BN →=13OA →+OB →-OA →+12(OC →-OB →)=-23OA →+12OB →+12OC →=-23a +12b +12c .]5.平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( )A .5B .6C .4D .8A [在平行六面体ABCD -A 1B 1C 1D 1中有,AC 1→=AB →+AD →+CC 1→=AB →+AD →+AA 1→所以有|AC 1→|=|AB →+AD →+AA 1→|,于是有|AC 1→|2=|AB →+AD →+AA 1→|2=|AB →|2+|AD →|2+|AA 1→|2+2|AB →|·|AD →|·cos 60°+2|AB →|·|AA 1→|·cos 60°+2|AD →||AA 1→|·cos 60°=25,所以|AC 1→|=5.]二、填空题6.在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.(用a ,b ,c 表示)12a +14b +14c [因为在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,所以OE →=12(OA →+OD →)=12OA →+12OD →=12a +12×12(OB →+OC →)=12a +14(b +c )=12a +14b +14c .]7.已知{a ,b ,c }是空间的一个单位正交基底,{a +b ,a -b ,c }是空间的另一个基底,若向量m 在基底{a ,b ,c }下表示为m =3a +5b +9c ,则m 在基底{a +b ,a -b,3c }下可表示为________.4(a +b )-(a -b )+3(3c ) [由题意知,m =3a +5b +9c ,设m =x (a +b )+y (a -b )+z (3c )则有⎩⎨⎧ x +y =3x -y =53z =9,解得⎩⎨⎧x =4y =-1z =3.则m 在基底{a +b ,a -b,3c }可表示为m =4(a +b )-(a -b )+3(3c ).] 8.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,P A →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.23a -13b +23c [因为BG =2GD ,所以BG →=23BD →. 又BD →=BA →+BC →=P A →-PB →+PC →-PB →=a +c -2b , 所以PG →=PB →+BG →=b +23(a +c -2b ) =23a -13b +23c .] 三、解答题9.如图所示,正方体OABC -O ′A ′B ′C ′,且OA →=a ,OC →=b ,OO ′→=c .(1)用a ,b ,c 表示向量OB ′→,AC ′→;(2)设G ,H 分别是侧面BB ′C ′C 和O ′A ′B ′C ′的中心,用a ,b ,c 表示GH →.[解] (1)OB ′→=OB →+BB ′→=OA →+OC →+OO ′→=a +b +c . AC ′→=AC →+CC ′→=AB →+AO →+AA ′→=OC →+OO ′→-OA →=b +c -a . (2)法一:连接OG ,OH (图略), 则GH →=GO →+OH →=-OG →+OH → =-12(OB ′→+OC →)+12(OB ′→+OO ′→) =-12(a +b +c +b )+12(a +b +c +c ) =12(c -b ).法二:连接O ′C (图略),则GH →=12CO ′→=12(OO ′→-OC →) =12(c -b ).10.如图,在平行六面体ABCD -A 1B 1C 1D 1中,MA →=-13AC →,ND →=13A 1D →,设AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示MN →.[解] 连接AN ,则MN →=MA →+AN →.由已知可得四边形ABCD 是平行四边形,从而可得 AC →=AB →+AD →=a +b , MA →=-13AC →=-13(a +b ), 又A 1D →=AD →-AA 1→=b -c ,故AN →=AD →+DN →=AD →-ND →=AD →-13A 1D →=b -13(b -c ), 所以MN →=MA →+AN → =-13(a +b )+b -13(b -c ) =13(-a +b +c ).11.(多选题)已知a ,b ,c 是不共面的三个向量,则下列向量组中,不能构成一个基底的一组向量是( )A .2a ,a -b ,a +2bB .2b ,b -a ,b +2aC .a,2b ,b -cD .c ,a +c ,a -cABD [对于A ,因为2a =43(a -b )+23(a +2b ),得2a 、a -b 、a +2b 三个向量共面,故它们不能构成一个基底;对于B ,因为2b =43(b -a )+23(b +2a ),得2b 、b -a 、b +2a 三个向量共面,故它们不能构成一个基底;对于C ,因为找不到实数λ、μ,使a =λ·2b +μ(b -c )成立,故a 、2b 、b -c 三个向量不共面,它们能构成一个基底;对于D ,因为c =12(a +c )-12(a -c ),得c 、a +c 、a -c 三个向量共面,故它们不能构成一个基底,故选ABD.]12.(多选题)给出下列命题,正确命题的有( )A .若{a ,b ,c }可以作为空间的一个基底,d 与c 共线,d ≠0,则{a ,b ,d }也可以作为空间的一个基底B .已知向量a ∥b ,则a ,b 与任何向量都不能构成空间的一个基底C .A ,B ,M ,N 是空间四点,若BA →,BM →,BN →不能构成空间的一个基底,则A ,B ,M ,N 四点共面D .已知{a ,b ,c }是空间的一个基底,若m =a +c ,则{a ,b ,m }也是空间的一个基底ABCD [根据基底的概念,知空间中任何三个不共面的向量都可作为空间的一个基底.显然B 正确.C 中由BA →,BM →,BN →不能构成空间的一个基底,知BA →,BM →,BN →共面.又BA →,BM →,BN →过相同点B ,知A ,B ,M ,N 四点共面.所以C 正确.下面证明AD 正确:A 假设d 与a ,b 共面,则存在实数λ,μ,使得d =λa +μb ,∵d 与c 共线,c ≠0,∴存在实数k ,使得d =k c .∵d ≠0,∴k ≠0,从而c =λk a +μk b ,∴c 与a ,b 共面,与条件矛盾,∴d 与a ,b 不共面.同理可证D 也是正确的.于是ABCD 四个命题都正确,故选ABCD.]13.(一题两空)已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 共线,则x =________,y =________.1 -1 [因为m 与n 共线, 所以存在实数λ,使m =λn ,即a -b +c =λx a +λy b +λc ,于是有⎩⎨⎧1=λx ,-1=λy ,1=λ,解得⎩⎨⎧x =1,y =-1.]14.(一题多空)已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.1 2 22 [由题意可令b =x 0e 1+y 0e 2+e 3,其中|e 3|=1,e 3⊥e i ,i =1,2.由b ·e 1=2得x 0+y 02=2,由b ·e 2=52得x 02+y 0=52,解得x 0=1,y 0=2,∴|b |=(e 1+2e 2+e 3)2=2 2.]15.在平行六面体ABCD -A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,E ,F 分别是AD 1,BD 的中点.(1)用向量a ,b ,c 表示D 1B →,EF →;(2)若D 1F →=x a +y b +z c ,求实数x ,y ,z 的值. [解] (1)如图,D 1B →=D 1D →+DB →=-AA 1→+AB →-AD →=a -b -c ,EF →=EA →+AF →=12D 1A →+12AC →=-12(AA 1→+AD →)+12(AB →+AD →)=12(a -c ). (2)D 1F →=12(D 1D →+D 1B →)=12(-AA 1→+AB →-AD 1→) =12(-AA 1→+AB →-AD →-DD 1→) =12(a -c -b -c )=12a -12b -c , ∴x =12,y =-12,z =-1.1.3.1空间直角坐标系一、选择题1.空间两点A ,B 的坐标分别为(x ,-y ,z ),(-x ,-y ,-z ),则A ,B 两点的位置关系是( )A .关于x 轴对称B .关于y 轴对称C .关于z 轴对称D .关于原点对称B [纵坐标相同,横坐标和竖坐标互为相反数,故两点关于y 轴对称.] 2.已知A (1,2,-1),B (5,6,7),则直线AB 与平面xOz 交点的坐标是( ) A .(0,1,1) B .(0,1,-3)C .(-1,0,3)D .(-1,0,-5)D [设直线AB 与平面xoz 交点坐标是M (x ,y ,z ),则AM →=(x -1,-2,z +1),AB →=(4,4,8),又AM →与AB →共线,∴AM →=λAB →,即⎩⎨⎧x -1=4λ,-2=4λ,z +1=8λ,解得x =-1,z =-5,∴点M (-1,0,-5).故选D.]3.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |=( ) A .534 B .532 C .532D .132 C [M ⎝ ⎛⎭⎪⎫2,32,3 ,|CM |=4+⎝ ⎛⎭⎪⎫32-12+9=532.] 4.如图,在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的棱长为1,B 1E =14A 1B 1,则BE →等于( )A .⎝ ⎛⎭⎪⎫0,14,-1B .⎝ ⎛⎭⎪⎫-14,0,1C .⎝ ⎛⎭⎪⎫0,-14,1D .⎝ ⎛⎭⎪⎫14,0,-1C [{DA →,DC →,DD 1→}为单位正交向量,BE →=BB 1→+B 1E →=-14DC →+DD 1→,∴BE →=⎝ ⎛⎭⎪⎫0,-14,1.] 5.设{i ,j ,k }是单位正交基底,已知向量p 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则向量p 在基底{i ,j ,k }下的坐标是( )A .(12,14,10)B .(10,12,14)C .(14,12,10)D .(4,3,2)A [依题意,知p =8a +6b +4c =8(i +j )+6(j +k )+4(k +i )=12i +14j +10k ,故向量p 在基底{i ,j ,k }下的坐标是(12,14,10).]二、填空题6.在空间直角坐标系中,已知点P (1,2,3),过点P 作平面yOz 的垂线PQ ,则垂足Q 的坐标为________.(0,2,3) [过P 的垂线PQ ⊥面yOz ,则Q 点横坐标为0,其余不变,故Q (0,2,3).]7.设{e 1,e 2,e 3}是空间向量的一个单位正交基底,a =4e 1-8e 2+3e 3,b =-2e 1-3e 2+7e 3,则a ,b 的坐标分别为________.(4,-8,3),(-2,-3,7) [由题意可知a =(4,-8,3),b =(-2,-3,7).] 8.如图所示,以长方体ABCD -A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若DB 1→的坐标为(4,3,2),则AC 1→的坐标为________.(-4,3,2) [由DB 1→=DA →+DC →+DD 1→,且DB 1→=(4,3,2),∴|DA →|=4,|DC →|=3,|DD 1→|=2,又AC 1→=-DA →+DC →+DD 1→,∴AC 1→=(-4,3,2).]三、解答题9.已知三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,所有的棱长都是1,建立适当的坐标系,并写出各点的坐标.[解] 如图所示,取AC 的中点O 和A 1C 1的中点O 1,可得BO ⊥AC ,OO 1⊥AC ,分别以OB ,OC ,OO 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.∵三棱柱各棱长均为1,∴OA =OC =O 1C 1=O 1A 1=12,OB =32.∵A ,B ,C 均在坐标轴上,∴A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0.∵点A 1与C 1在yOz 平面内, ∴A 1⎝ ⎛⎭⎪⎫0,-12,1,C 1⎝ ⎛⎭⎪⎫0,12,1.∵点B 1在xOy 平面内的射影为B ,且BB 1=1,∴B 1⎝ ⎛⎭⎪⎫32,0,1,即各点的坐标为A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0,A 1⎝ ⎛⎭⎪⎫0,-12,1,B 1⎝ ⎛⎭⎪⎫32,0,1,C 1⎝ ⎛⎭⎪⎫0,12,1. 10.棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别为棱DD 1,D 1C 1,BC 的中点,以{AB →,AD →,AA 1→}为正交基底,求下列向量的坐标:(1)AE →,AF →,AG →; (2)EF →,EG →,DG →.[解] 在正交基底{AB →,AD →,AA 1→}下,(1)AF →=12AB →+AD →+AA 1→, AE →=AD →+12AA 1→, AG →=AB →+12AD →,∴AE →=⎝ ⎛⎭⎪⎫0,1,12,AF →=⎝ ⎛⎭⎪⎫12,1,1,AG →=⎝ ⎛⎭⎪⎫1,12,0. (2)EF →=AF →-AE →=12AB →+12AA 1→,∴EF →=⎝ ⎛⎭⎪⎫12,0,12;EG →=AG →-AE →=AB →-12AD →-12AA 1→,∴EG →=⎝ ⎛⎭⎪⎫1,-12,-12;DG →=AG →-AD →=AB→-12AD →,∴DG →=⎝ ⎛⎭⎪⎫1,-12,0.11.(多选题)下列各命题正确的是( ) A .点(1,-2,3)关于平面xOz 的对称点为(1,2,3) B .点⎝ ⎛⎭⎪⎫12,1,-3关于y 轴的对称点为⎝ ⎛⎭⎪⎫-12,1,3C .点(2,-1,3)到平面yOz 的距离为1D .设{i ,j ,k }是空间向量的单位正交基底,若m =3i -2j +4k ,则m =(3,-2,4).ABD [“关于谁对称谁不变”,∴A 正确,B 正确,C 中(2,-1,3)到面yOz 的距离为2,∴C 错误.根据空间向量的坐标定义,D 正确.]12.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为正方体内一动点(包括表面),若AP →=xAB →+yAD →+zAA 1→,且0≤x ≤y ≤z ≤1.则点P 所有可能的位置所构成的几何体的体积是( )A .1B .12C .13D .16D [根据向量加法的几何意义和空间向量基本定理,满足0≤x ≤y ≤1的点P 在三棱柱ACD -A 1C 1D 1内;满足0≤y ≤z ≤1的点P 在三棱柱AA 1D 1-BB 1C 1内,故同时满足0≤x ≤y ≤1,0≤y ≤z ≤1的点P 在这两个三棱柱的公共部分(如图),即三棱锥A -A 1C 1D 1,其体积是13×12×1×1×1=16.]13.三棱锥P -ABC 中,∠ABC 为直角,PB ⊥平面ABC ,AB =BC =PB =1,M 为PC 的中点,N 为AC 的中点,以{BA →,BC →,BP →}为基底,则MN →的坐标为________.⎝ ⎛⎭⎪⎫12,0,-12 [MN →=BN →-BM → =12(BA →+BC →)-12(BP →+BC →) =12BA →-12BP →,故MN →=⎝ ⎛⎭⎪⎫12,0,-12.]14.已知O 是坐标原点,点A (2,0,-2),B (3,1,2),C (2,-1,7). (1)若点P 满足OP →=OA →+OB →+OC →,则点P 的坐标为________; (2)若点P 满足AP →=2AB →-AC →,则点P 的坐标为________.(1)(7,0,7) (2)(4,3,-3) [(1)中OP →=OA →+OB →+OC →=(2i -2k )+(3i +j +2k )+(2i -j +7k )=7i +0j +7k ,∴P (7,0,7).(2)中,AP →=2AB →-AC →得OP →-OA →=2OB →-2OA →-OC →+OA →,∴OP →=2OB →-OC →=2(3i +j +2k )-(2i -j +7k ) =4i +3j -3k ,∴P (4,3,-3).]15.如图,在正四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,O 是AC 与BD 的交点,PO =1,M 是PC 的中点.设AB →=a ,AD →=b ,AP →=c .(1)用向量a ,b ,c 表示BM →.(2)在如图的空间直角坐标系中,求BM →的坐标.[解] (1)∵BM →=BC →+CM →,BC →=AD →,CM →=12CP →,CP →=AP →-AC →,AC →=AB →+AD →, ∴BM →=AD →+12(AP →-AC →)=AD →+12AP →-12(AB →+AD →)=-12AB →+12AD →+12AP →=-12a +12b +12c .(2)a =AB →=(1,0,0),b =AD →=(0,1,0).∵A (0,0,0),O ⎝ ⎛⎭⎪⎫12,12,0,P ⎝ ⎛⎭⎪⎫12,12,1,∴c =AP →=OP →-OA →=⎝ ⎛⎭⎪⎫12,12,1,∴BM →=-12a +12b +12c =-12(1,0,0)+12(0,1,0)+12⎝ ⎛⎭⎪⎫12,12,1=⎝ ⎛⎭⎪⎫-14,34,12.1.3.2空间运算的坐标表示一、选择题1.已知三点A (1,5,-2),B (2,4,1),C (a,3,b +2)在同一条直线上,那么( ) A .a =3,b =-3 B .a =6,b =-1 C .a =3,b =2D .a =-2,b =1C [根据题意AB →=(1,-1,3),AC →=(a -1,-2,b +4), ∵AB →与AC →共线,∴AC →=λAB →, ∴(a -1,-2,b +4)=(λ,-λ,3λ),∴⎩⎨⎧a -1=λ,-2=-λ,b +4=3λ,解得⎩⎨⎧a =3,b =2,λ=2.故选C.]2.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( ) A .(0,3,-6) B .(0,6,-20) C .(0,6,-6)D .(6,6,-6)B [由题a =(2,3,-4),b =(-4,-3,-2),设x =(w ,y ,z )则由b =12x -2a ,可得(-4,-3,-2)=12(w ,y ,z )-2(2,3,-4)=⎝ ⎛⎭⎪⎫12w ,12y ,12z -(4,6,-8)=⎝ ⎛⎭⎪⎫12w -4,12y -6,12z +8,解得w =0,y =6,z =-20,即x =(0,6,-20).]3.已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1)D .(-1,0,1)B [不妨设向量为b =(x ,y ,z ),A .若b =(-1,1,0),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. B .若b =(1,-1,0),则cos θ=a ·b|a |·|b |=12×2=12,满足条件. C .若b =(0,-1,1),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. D .若b =(-1,0,1),则cos θ=a ·b |a |·|b |=-22×2=-1≠12,不满足条件.故选B.]4.已知向量a =(-2,x,2),b =(2,1,2),c =(4,-2,1),若a ⊥(b -c ),则x 的值为( )A .-2B .2C .3D .-3A [∵b -c =(-2,3,1),a ·(b -c )=4+3x +2=0,∴x =-2.]5.已知A 、B 、C 三点的坐标分别为A (4,1,3),B (2,-5,1),C (3,7,λ),若AB →⊥AC →,则λ等于( )A .28B .-28C .14D .-14D [AB →=(-2,-6,-2),AC →=(-1,6,λ-3),∵AB →⊥AC →,∴AB →·AC →=-2×(-1)-6×6-2(λ-3)=0,解得λ=-14.] 二、填空题6.已知a =(1,1,0),b =(0,1,1),c =(1,0,1),p =a -b ,q =a +2b -c ,则p ·q =________.-1 [∵p =a -b =(1,0,-1),q =a +2b -c =(0,3,1), ∴p ·q =1×0+0×3+(-1)×1=-1.]7.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB →与CA →的夹角θ的大小是________.120° [AB →=(-2,-1,3),CA →=(-1,3,-2),cos 〈AB →,CA →〉=(-2)×(-1)+(-1)×3+3×(-2)14·14=-12,∴θ=〈AB →,CA →〉=120°.]8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.1 [以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系(图略),设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴B 1E →=(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB →=(1,1,y ),由于AB ⊥B 1E ,若B 1E ⊥平面ABF ,只需FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.] 三、解答题9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求向量a 与向量b 的夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求实数k 的值.[解] (1)∵a =(1,1,0),b =(-1,0,2),∴a·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2,|b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010. (2)法一:∵k a +b =(k -1,k,2),k a -2b =(k +2,k ,-4),且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0,∴k =2或k =-52, ∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52.法二:由(1)知|a |=2,|b |=5,a·b =-1,∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2=2k 2+k -10=0,得k =2或k =-52. 10.已知正三棱柱ABC -A 1B 1C 1,底面边长AB =2,AB 1⊥BC 1,点O ,O 1分别是边AC ,A 1C 1的中点,建立如图所示的空间直角坐标系.(1)求正三棱柱的侧棱长;(2)求异面直线AB 1与BC 所成角的余弦值. [解] (1)设正三棱柱的侧棱长为h ,由题意得A (0,-1,0),B (3,0,0),C (0,1,0),B 1(3,0,h ),C 1(0,1,h ), 则AB 1→=(3,1,h ),BC 1→=(-3,1,h ), 因为AB 1⊥BC 1,所以AB 1→·BC 1→=-3+1+h 2=0, 所以h = 2.(2)由(1)可知AB 1→=(3,1,2),BC →=(-3,1,0), 所以AB 1→·BC →=-3+1=-2.因为|AB 1→|=6,|BC →|=2,所以cos 〈AB 1→,BC →〉=-226=-66.所以异面直线AB 1与BC 所成角的余弦值为66.11.(多选题)若向量a =(1,2,0),b =(-2,0,1),则下列结论正确的是( ) A .cos 〈a ,b 〉=-25 B .a ⊥b C .a ∥bD .|a |=|b |AD [∵向量a =(1,2,0),b =(-2,0,1), ∴|a |=5,|b |=5,a ·b =1×(-2)+2×0+0×1=-2,cos 〈a ,b 〉=a ·b |a |·|b |=-25=-25.由上知A 正确,B 不正确,D 正确.C 显然也不正确.]12.直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A .110B .25C .D .22C [建立如图所示的空间直角坐标系C -xyz ,设BC =2,则B (0,2,0),A (2,0,0),M (1,1,2),N (1,0,2),所以BM →=(1,-1,2),AN →=(-1,0,2),故BM 与AN 所成角θ的余弦值cos θ=BM →·AN →|BM →|·|AN →|=36×5=3010.] 13.已知a =(x,2,-4),b =(-1,y,3),c =(1,-2,z ),且a ,b ,c 两两垂直,则(x ,y ,z )=________.(-64,-26,-17) [∵a ,b ,c 两两垂直. ∴a ·b =0,a ·c =0,b ·c =0,∴⎩⎨⎧-x +2y -12=0x -4-4z =0-1-2y +3z =0,解得:x =-64,y =-26,z =-17. 故(x ,y ,z )=(-64,-26,-17).]14.(一题两空)已知A (1,2,0),B (0,1,-1),P 是x 轴上的动点,当|P A →|=|PB →|时,点P 的坐标为________;当AP →·BP →=0取最小值时,点P 的坐标为________.⎝ ⎛⎭⎪⎫32,0,0 ⎝ ⎛⎭⎪⎫12,0,0 [因为P 在x 轴上,设P (x,0,0),由|P A →|=|PB →|,则( x -1)2+4+0=x 2+1+1解得x =32.∴点P 的坐标为⎝ ⎛⎭⎪⎫32,0,0,又AP →=(x -1,-2,0),BP →=(x ,-1,1).。
山东省滕州实验中学2024年高三第二学期第二次综合练习数学试题理试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若函数()3222111()324f x x bx a c ac x =+++-存在极值,则角B 的取值范围是( ) A .0,3π⎛⎫⎪⎝⎭B .,63ππ⎛⎫⎪⎝⎭ C .,3π⎛⎫π⎪⎝⎭D .,6π⎛⎫π⎪⎝⎭2.双曲线2214x y -=的渐近线方程是( )A .2y x =±B .3y x =±C .2x y =±D .2y x =±3.已知函数32,0()ln ,0x x x f x x x ⎧-≤=⎨>⎩,则1(())f f e =( )A .32B .1C .-1D .04.已知复数(1)(3)(z i i i =+-为虚数单位) ,则z 的虚部为( ) A .2B .2iC .4D .4i5.若函数()()2(2 2.71828 (x)f x x mx e e =-+=为自然对数的底数)在区间[]1,2上不是单调函数,则实数m 的取值范围是( ) A .510,23⎡⎤⎢⎥⎣⎦B .510,23⎛⎫⎪⎝⎭C .102,3⎡⎤⎢⎥⎣⎦D .102,3⎛⎫⎪⎝⎭6.设a 、b R +∈,数列{}n a 满足12a =,21n n a a a b +=⋅+,n *∈N ,则( )A .对于任意a ,都存在实数M ,使得n a M <恒成立B .对于任意b ,都存在实数M ,使得n a M <恒成立C .对于任意()24,b a ∈-+∞,都存在实数M ,使得n a M <恒成立D .对于任意()0,24b a ∈-,都存在实数M ,使得n a M <恒成立 7.已知复数z 满足121iz i i+⋅=--(其中z 为z 的共轭复数),则z 的值为( )A .1B .2CD8.设一个正三棱柱ABC DEF -,每条棱长都相等,一只蚂蚁从上底面ABC 的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为10P ,则10P 为( )A .10111432⎛⎫⋅+ ⎪⎝⎭B .111132⎛⎫+ ⎪⎝⎭ C .111132⎛⎫- ⎪⎝⎭D .10111232⎛⎫⋅+ ⎪⎝⎭9.复数2(1)41i z i -+=+的虚部为( )A .—1B .—3C .1D .210.已知复数z 满足i •z =2+i ,则z 的共轭复数是() A .﹣1﹣2iB .﹣1+2iC .1﹣2iD .1+2i11.在ABC 中,12BD DC =,则AD =( ) A .1344+AB AC B .21+33AB ACC .12+33AB ACD .1233AB AC -12.已知函数21()log 1||f x x ⎛⎫=+⎪⎝⎭(lg )3f x >的解集为( )A .1,1010⎛⎫⎪⎝⎭B .1,(10,)10⎛⎫-∞⋃+∞ ⎪⎝⎭C .(1,10)D .1,1(1,10)10⎛⎫⋃⎪⎝⎭二、填空题:本题共4小题,每小题5分,共20分。
○…………………装…………○…………:___________姓名:___________班级:__________√3 B. 32 C. 1 D. √32A. √3(2−√3)3B. √3(3−2√2)3C. 2√2−√33D. 3√3−2√23√2√2 A. √132B. 3√32√3 √3A. 83第2页第Ⅱ卷三、解答题(共5题;共52分)17.(2020·新高考Ⅰ)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.18.(2020·济宁模拟)如图,四棱锥P−ABCD的底面为直角梯形,BC∥AD,∠BAD=90°,AD=PD=2AB=2BC=2,M为PA的中点.(Ⅰ)求证:BM∥平面PCD(Ⅱ)若平面ABCD⊥平面PAD,异面直线BC与PD所成角为60°,且△PAD是钝角三角形,求二面角B−PC−D的正弦值19.(2020高一下·大庆期末)已知ΔABC中,A(1,1)、B(2,−3)、C(3,5),写出满足下列条件的直线方程(要求最终结果都用直线的一般式方程表示).(1)BC边上的高线的方程;(2)BC边的垂直平分线的方程.第4页………○…………线…………○…答※※题※※………○…………线…………○…答案解析部分一、单选题 1.【答案】 C【考点】球的体积和表面积,点、线、面间的距离计算【解析】【解答】设球O 的半径为R ,则 4πR 2=16π ,解得: R =2 . 设 △ABC 外接圆半径为 r ,边长为 a , ∵△ABC 是面积为 9√34的等边三角形,∴12a 2×√32=9√34,解得: a =3 , ∴r =23×√a 2−a 24=23×√9−94=√3 ,∴ 球心 O 到平面 ABC 的距离 d =√R 2−r 2=√4−3=1 . 故答案为:C.【分析】根据球O 的表面积和 △ABC 的面积可求得球O 的半径R 和 △ABC 外接圆半径r ,由球的性质可知所求距离 d =√R 2−r 2 . 2.【答案】 A【考点】棱锥的结构特征【解析】【解答】因为根据题意可知,半径为R 的圆面剪切去如图中的阴影部分,沿图所画的线折成一个正三棱锥,结合图像可知侧棱长为, 而底面的边长为, 则根据正三棱锥的侧面与底面所成的二面角的余弦值是即为底面的高斜高的比值即为:O’D:VD 即为, 故选A.【分析】解决该试题的关键是分析折叠图前后的不变量,以及得到的正三棱锥的底面的变长和侧棱长问题。
山东省滕州市第一中学2024-2025学年高一上学期10月月考数学试卷一、单选题1.设集合{}0123,,,A =,{},,101,23,B =-,则R ()A B =I ð( ) A .∅B . {}1,2C .{}1-D .{}1,2,32.设集合{}260M x x x =+-=,{}N 16N x x =∈<<,则M N =I ( )A .{}12x x <<B .{}3C .{}36x x -<<D .{}23.“1a a<”是“1a <-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.若正数x ,y 满足44x y +=,则11x y+的最小值为( )A .2B .94C .3D .835.下列四组函数中,不是同一个函数的一组是( )A .()f x x =与()g x =B .()21f x x =+与()21g t t =+C .()xf x x =与()1,01,0x g x x >⎧=⎨-<⎩D .()2f x =与()g x =6.已知函数()f x 的定义域为[)0,+∞,则函数()25f x y x -=-的定义域为( )A .()()2,55,-+∞UB .[)()2,55,-+∞UC .()()2,55,⋃+∞D .[)()2,55,+∞U7.下列命题中真命题的个数是( )①函数()1f x =和()0g x x =是同一个函数;②“()2210a b +-=”是“()10a b -=”的必要条件;③集合{|A y y ==,{|B x y ==表示同一集合.A .0B .1C .2D .38.若a b >,且2ab =,则22(1)(1)a b a b-++-的最小值为( )A .2B .4C .4D .2二、多选题9.下列四个结论中正确的是( ) A .22,,4250x y x y x y ∃∈+-++=RB .命题“2,3210x x x ∀∈--<R ”的否定是“2000,3210x x x ∃∈-->R ” C .21,4x x x ∀∈+>R D .“a b >”是“1a b >+”的必要不充分条件10.已知非零实数,a b >,下列结论中错误的结论有( )A .11a b< B .22a b > C .22ab a b > D .2211ab a b> 11.已知关于x 一元二次不等式220ax ax b -+>的解集为{}A x m x n =<<(其中m n <),关于x 一元二次不等式222ax ax b -+>-的解集为{}B x p x q =<<,则( )A .AB B =I B .()A B B ⋃⊆C .m n p q +=+D .当2b <-时,2q p q+的最小值为3三、填空题12.已知集合{}221,,0A a a =-,{}1,5,9B a a =--,若满足{}9A B ⋂=,则实数a 的值为.13.已知关于x 的不等式210mx mx -+≤,若此不等式的解集为∅,则实数m 的取值范围是 14.已知关于x 的不等式组()224502525x x x x x k ⎧-++<⎪⎨+<-+⎪⎩的解集中存在整数解且只有一个整数解,则k 的取值范围为.四、解答题15.设集合{}{}|121,|25A x a x a B x x =+<<-=-<<. (1)若3a =,求()R A B ⋃ð;(2)是否存在实数a ,使得A B A =U ,若存在,求实数a 的取值范围,否则说明理由. 16.设m ∈R ,已知集合3211x A xx +⎧⎫=<⎨⎬-⎩⎭,(){}2220B x x m x m =+--<. (1)当1m =时,求A B U ;(2)若“x B ∈”是“x A ∈”的必要不充分条件,求m 的取值范围.17.中国建设新的芯片工厂的速度处于世界前列,这是朝着提高半导体自给率目标迈出的重要一步.根据国际半导体产业协会(SEMI)的数据,在截至2024年的4年里,中国计划建设31家大型半导体工厂.某公司打算在2023年度建设某型芯片的生产线,建设该生产线的成本为300万元,若该型芯片生产线在2024年产出x 万枚芯片,还需要投入物料及人工等成本()V x (单位:万元),已知当05x <≤时,()125V x =;当520x <≤时,()240100V x x x =+-;当20x >时,()160081600V x x x=+-,已知生产的该型芯片都能以每枚80元的价格售出. (1)已知2024年该型芯片生产线的利润为()P x (单位:万元),试求出()P x 的函数解析式. (2)请你为该型芯片的生产线的产量做一个计划,使得2024年该型芯片的生产线所获利润最大,并预测最大利润.18.已知函数()f x 对任意x 满足:()()324f x f x x --=,二次函数()g x 满足:()()24g x g x x +-=且()14g =-.(1)求()f x ,()g x 的解析式;(2)若R a ∈,解关于x 的不等式()()()()2143a x a x g x f x +-+->-.19.对于函数()f x ,若()f x x =,则称实数x 为()f x 的“不动点”,若()()f f x x =,则称实数x 为()f x 的“稳定点”,函数()f x 的“不动点”和“稳定点”组成的集合分别记为A 和B ,即(){}A x f x x ==,()(){}B x f f x x ==.(1)对于函数()21f x x =-,分别求出集合A 和B ; (2)对于所有的函数()f x ,证明:A B ⊆;(3)设()2f x x ax b =++,若{}1,3A =-,求集合B .。
人教版高中数学选择性必修第一册综合检测卷(原卷版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线过点(1,3),(4,3+3),则此直线的倾斜角是()A.π6B.π4C.π3D.2π32.(2019·北京,理)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,则()A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b3.如图,在三棱锥O -ABC 中,D 是棱AC 的中点,若OA →=a ,OB →=b ,OC →=c ,则BD →=()A.12a -b +12c B .a +b -c C .a -b +cD .-12a +b -12c4.直线y =x -1被抛物线y 2=4x 截得的线段AB 的中点坐标是()A .(2,6)B .(3,2)C .(6,4)D .(4,6)5.已知正四面体ABCD 的棱长为a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为()A .a 2 B.14a 2C.12a 2 D.34a 26.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为()A .x 2+y 2-2x -3=0B .x 2+y 2+4x =0C .x 2+y 2+2x -3=0D .x 2+y 2-4x =07.四棱锥P -ABCD 中,底面ABCD 为直角梯形,AB ⊥AD ,BC ∥AD ,且AB =BC =2,AD =3,PA ⊥平面ABCD 且PA =2,则PB 与平面PCD 所成角的正弦值为()A.427B.77C.33D.638.(2019·课标全国Ⅱ)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为()A.2B.3C .2 D.5二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列说法正确的是()A .在两坐标轴上截距相等的直线可以用方程x a +ya=1表示B .存在实数m ,使得方程x +my -2=0能表示平行于y 轴的直线C .经过点P (1,1),倾斜角为θ的直线方程为y -1=tan θ(x -1)D .点(0,2)关于直线y =x +1的对称点为(1,1)10.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是A 1D 1和C 1D 1的中点,则下列结论正确的是()A .A 1C 1∥平面CEFB .B 1D ⊥平面CEF C.CE →=12DA →+DD 1→-DC→D .若正方体ABCD -A 1B 1C 1D 1边长为2,点B 1到平面CEF 的距离为111.已知P 是椭圆C :x 26+y 2=1上的动点,Q 是圆D :(x +1)2+y 2=15上的动点,则()A .C 的焦距为5B .C 的离心率为306C .圆D 在C 的内部D .|PQ |的最小值为25512.已知动点P 到两定点M (-2,0),N (2,0)的距离乘积为常数16,其轨迹为C ,则()A .C 一定经过原点B .C 关于x 轴、y 轴对称C .△MPN 的面积的最大值为43D .C 在一个面积为64的矩形内三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,PA →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.14.已知点P 是圆C :x 2+y 2=4上的动点,点A (4,2),则线段AP 中点M 的轨迹方程是________________;点M 的轨迹与圆C 相交,则过交点的直线方程是________.(本题第一空2分,第二空3分)15.已知点F2为双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点,直线y=kx交双曲线C于A,B两点,若∠AF2B=2π3,S△AF2B=23,则双曲线C的虚轴长为________.16.已知椭圆x2a2+y2b2=1(a>b>0)的右焦点为F1(1,0),离心率为e.设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,原点O在以线段MN为直径的圆上.设直线AB的斜率为k,若0<k≤3,则e的取值范围为________.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知三角形的顶点A(2,3),B(0,-1),C(-2,1).(1)求直线AC的方程;(2)从①,②这两个问题中选择一个作答.①求点B关于直线AC的对称点D的坐标.②若直线l过点B且与直线AC交于点E,|BE|=3,求直线l的方程.18.(12分)已知圆C经过三点O(0,0),A(1,3),B(4,0).(1)求圆C的方程;(2)求过点P(3,6)且被圆C截得弦长为4的直线的方程.19.(12分)(2019·课标全国Ⅱ,文)已知F1,F2是椭圆C:x2a2+y2b2=1(a>0,b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.20.(12分)如图,在四棱锥P-ABCD中,平面PCD⊥平面ABCD,且△PCD是边长为2的等边三角形,四边形ABCD是矩形,BC=22,M为BC的中点.(1)求证:AM⊥PM;(2)求二面角P-AM-D的大小;(3)求点D到平面AMP的距离.21.(12分)如图,三棱柱ABC-A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1与A1C相交于点D.(1)求证:BD⊥平面AA1C1;(2)设点E是直线B1C1上一点,且DE∥平面AA1B1B,求平面EBD与平面ABC1夹角的余弦值.22.(12分)已知定点F(1,0),动点P在y轴上运动,过点P作PM交x轴于点M,并延长MP 到点N ,且PM →·PF →=0,|PM →|=|PN →|.(1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A ,B 两点,若OA →·OB →=-4,且46≤|AB →|≤430,求直线l 的斜率k 的取值范围.1.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为()A.54B.52C.32D.542.已知四面体顶点A (2,3,1),B (4,1,-2),C (6,3,7)和D (-5,-4,8),则顶点D 到平面ABC 的距离为()A .8B .9C .10D .113.如图,在四棱锥S -ABCD 中,底面ABCD 是边长为1的正方形,SA =SB =SC =SD =2.下列结论中正确的是()A.SA →+SB →+SC →+SD →=0B.SA →-SB →+SC →-SD →=0C.SA →·SB →+SC →·SD →=0D.SA →·SC →=04.已知A 是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左顶点,F 是抛物线C :y 2=-8ax 的焦点.若在双曲线的渐近线上存在点P ,使得AP →⊥FP →,则E 的离心率的取值范围是()A .(1,2),324D .(2,+∞)5.如图,在正四棱锥P -ABCD 中,PA =AB ,点M 为PA 的中点,BD →=λBN →.若MN ⊥AD ,则实数λ为()A .2B .3C .4D .56.已知椭圆C :x 24+y 23=1,M ,N 是坐标平面内的两点,且M 与椭圆C 的焦点不重合.若M 关于椭圆C 的左、右焦点的对称点分别为A ,B ,线段MN 的中点在椭圆C 上,则|AN |+|BN |=()A .4B .8C .12D .167.在平面直角坐标系xOy 中,已知点A (0,-2),点B (1,-1),P 为圆x 2+y 2=2上一动点(异于点B ),则|PB ||PA |的最大值是()A .2B .4C.2D .228.【多选题】若{a ,b ,c }为空间的一个基底,则()A .b +c ,b -c ,a 共面B .b +c ,b -c ,2b 共面C .b +c ,a ,a +b +c 共面D .a +c ,a -2c ,c 共面9.【多选题】如图,在长方体ABCD -A 1B 1C 1D 中,AB =3AD =3AA 1=3,点P 为线段A 1C 上的动点,则下列结论正确的是()A .当A 1C →=2A 1P →时,B 1,P ,D 三点共线B .当AP →⊥A 1C →时,AP →⊥D 1P→C .当A 1C →=3A 1P →时,D 1P ∥平面BDC 1D .当A 1C →=5A 1P →时,A 1C ⊥平面D 1AP10.【多选题】已知抛物线E :y 2=4x 的焦点为F ,准线为l ,过F 的直线与E 交于A ,B 两点,分别过A ,B 作l 的垂线,垂足为C ,D ,且|AF |=3|BF |,M 为AB 中点,则下列结论正确的是()A .∠CFD =90°B .△CMD 为等腰直角三角形C .直线AB 的斜率为±3D .△AOB 的面积为411.【多选题】a ,b 为空间两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以AC 为旋转轴旋转,则下列结论正确的是()A .直线AB 与a 所成角的最小值为π4B .直线AB 与a 所成角的最大值为π3C .当直线AB 与a 所成的角为π3时,AB 与b 所成的角为π6D .当直线AB 与a 所成的角为π3时,AB 与b 所成的角为π312.【多选题】古希腊著名数学家阿波罗尼奥斯发现:平面内到两个定点A,B的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy中,A(-2,0),B(4,0),点P满足|PA||PB|=12.设点P的轨迹为C,下列结论正确的是()A.轨迹C的方程为(x+4)2+y2=9B.在x轴上存在异于A,B的两点D,E使得|PD||PE|=1 2C.当A,B,P三点不共线时,射线PO是∠APB的平分线D.在C上存在点M,使得|MO|=2|MA|13.已知直线l:mx-y=1,若直线l与直线x-my-1=0平行,则实数m的值为________,动直线l被圆C:x2+y2+2x-24=0截得弦长的最小值为________.14.已知M(-2,0),N(2,0),点P(x,y)为坐标平面内的动点,满足|MN→|·|MP→|+MN→·NP→=0,则动点P的轨迹方程为________.15.已知直线l:4x-3y+6=0,抛物线C:y2=4x上一动点P到直线l与到y轴距离之和的最小值为________,P到直线l距离的最小值为________.16.已知直线l:y=-x+1与椭圆x2a2+y2b2=1(a>b>0)相交于A,B两点,且线段AB的中点为(1)求此椭圆的离心率;(2)若椭圆的右焦点关于直线l的对称点在圆x2+y2=5上,求此椭圆的方程.17.如图所示,该几何体是由一个直三棱柱ADE-BCF和一个正四棱锥P-ABCD组合而成的,AD⊥AF,AE=AD=2.(1)证明:平面PAD⊥平面ABFE;(2)求正四棱锥P-ABCD的高h,使得二面角C-AF-P的余弦值是22318.如图,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=3,∠ABC=60°.(1)证明:AB⊥A1C;(2)求二面角A-A1C-B的正切值大小.19.如图,直四棱柱ABCD-A1B1C1D1的高为3,底面是边长为4且∠DAB=60°的菱形,AC ∩BD=O,A1C1∩B1D1=O1,E是O1A的中点.(1)求二面角O1-BC-D的大小;(2)求点E到平面O1BC的距离.20.已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,若|PM|=|PO|,求|PM|的最小值及使得|PM|取得最小值的点P的坐标.21.已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.(1)求k的取值范围;(2)若OM→·ON→=12,其中O为坐标原点,求△OMN的面积.22.如图,在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的短轴长为2,椭圆C上的点到右焦点距离的最大值为2+ 3.过点P(m,0)作斜率为k的直线l交椭圆C于A,B两点,其中m>0,k>0,D是线段AB的中点,直线OD交椭圆C于M,N两点.(1)求椭圆C的标准方程;(2)若m=1,OM→+3OD→=0,求k的值;(3)若存在直线l,使得四边形OANB为平行四边形,求m的取值范围.人教版高中数学选择性必修第一册综合检测卷(解析版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线过点(1,3),(4,3+3),则此直线的倾斜角是()A.π6B.π4C.π3D.2π3答案A解析设直线的倾斜角为α,则tan α=3+3-34-1=33,∴α=π6.故选A.2.(2019·北京,理)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,则()A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b答案B 解析椭圆的离心率e =c a =12,c 2=a 2-b 2,化简得3a 2=4b 2.故选B.3.如图,在三棱锥O -ABC 中,D 是棱AC 的中点,若OA →=a ,OB →=b ,OC →=c ,则BD →=()A.12a -b +12c B .a +b -c C .a -b +c D .-12a +b -12c答案A解析OD →=OA →+AD →=OA →+12AC →=OA →+12(OC →-OA →)=12OA →+12OC →,因此BD →=OD →-OB →=12OA→-OB →+12OC →=12a -b +12c .4.直线y =x -1被抛物线y 2=4x 截得的线段AB 的中点坐标是()A .(2,6)B .(3,2)C .(6,4)D .(4,6)答案B解析设点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).将y =x -1代入y 2=4x ,整理得x 2-6x +1=0.由根与系数的关系得x 1+x 2=6,则x 1+x 22=3,y 1+y 22=x 1+x 2-22=6-22=2,所以所求点的坐标为(3,2).故选B.5.已知正四面体ABCD 的棱长为a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为()A .a 2 B.14a 2C.12a 2 D.34a 2答案B解析在正四面体ABCD 中,点E ,F 分别是BC ,AD 的中点,AE →=AB →+BE →,AF →=12AD →,所以AE →·AF →=(AB →+BE →)·12→=12AB →·AD →+12BE →·AD →.因为ABCD 是正四面体,所以BE ⊥AD ,∠BAD =π3,即BE →·AD →=0,AB →·AD →=|AB →|·|AD →|cos π3=12a 2,所以AE →·AF →=14a 2.故选B.6.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为()A .x 2+y 2-2x -3=0B .x 2+y 2+4x =0C .x 2+y 2+2x -3=0D .x 2+y 2-4x =0答案D解析由题意设圆心坐标为C (a ,0)(a >0),∵圆C 与直线3x +4y +4=0相切,∴|3a +0+4|9+16=2,解得a =2.∴圆心为C (2,0),∴圆C 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0.故选D.7.四棱锥P -ABCD 中,底面ABCD 为直角梯形,AB ⊥AD ,BC ∥AD ,且AB =BC =2,AD =3,PA ⊥平面ABCD 且PA =2,则PB 与平面PCD 所成角的正弦值为()A.427 B.77C.33D.63答案B解析建立如图所示的空间直角坐标系,则P (0,0,2),B (2,0,0),C (2,2,0),D (0,3,0).PB →=(2,0,-2),CD →=(-2,1,0),PD →=(0,3,-2).设平面PCD 的一个法向量为n =(x ,y ,z ),2x +y =0,y -2z =0.取x =1得n =(1,2,3).cos 〈PB →,n 〉=PB →·n |PB →||n |=-422×14=-77,可得PB 与平面PCD 所成角的正弦值为77.故选B.8.(2019·课标全国Ⅱ)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为()A.2B.3C .2 D.5答案A解析如图,由题意知以OF +y 2=c 24①,将x 2+y 2=a 2记为②式,①-②得x =a 2c ,则以OF 为直径的圆与圆x 2+y 2=a 2的相交弦所在直线的方程为x =a 2c,所以|PQ |=由|PQ |=|OF |,得c ,整理得c 4-4a 2c 2+4a 4=0,即e 4-4e 2+4=0,解得e = 2.故选A.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列说法正确的是()A .在两坐标轴上截距相等的直线可以用方程x a +ya =1表示B .存在实数m ,使得方程x +my -2=0能表示平行于y 轴的直线C .经过点P (1,1),倾斜角为θ的直线方程为y -1=tan θ(x -1)D .点(0,2)关于直线y =x +1的对称点为(1,1)答案BD 解析对于A ,若直线过原点,则在两坐标轴上的截距都为零,故不能用方程x a +ya=1表示,所以A 错误;对于B ,当m =0时,平行于y 轴的直线方程为x =2,所以B 正确;对于C ,若直线的倾斜角为90°,则该直线的斜率不存在,故不能用y -1=tan θ(x -1)表示,所以C 错误;对于D y =x +1上,且(0,2),(1,1)连线的斜率为-1,所以D 正确.故选BD.10.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是A 1D 1和C 1D 1的中点,则下列结论正确的是()A .A 1C 1∥平面CEFB .B 1D ⊥平面CEF C.CE →=12DA →+DD 1→-DC→D .若正方体ABCD -A 1B 1C 1D 1边长为2,点B 1到平面CEF 的距离为1答案AC解析对于A ,因为E ,F 分别是A 1D 1和C 1D 1的中点,所以EF ∥A 1C 1,且EF ⊂平面CEF ,故A 1C 1∥平面CEF 成立,A 正确;对于B ,以点D 为坐标原点,DA →,DC →,DD 1→的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系(如图),设正方形ABCD -A 1B 1C 1D 1的棱长为2,则D (0,0,0),C (0,2,0),A (2,0,0,),B 1(2,2,2),D 1(0,0,2),E (1,0,2),F (0,1,2),B 1D →=(-2,-2,-2),FC →=(0,1,-2),因为B 1D →·FC →=0-2+4=2≠0,所以B 1D →与FC →不垂直,又CF ⊂平面CEF ,所以B 1D 与平面CEF 不垂直,B 错误;对于C ,12DA →+DD 1→-DC →=12(2,0,0)+(0,0,2)-(0,2,0)=(1,-2,2),又CE →=(1,-2,2),所以CE →=12DA→+DD 1→-DC →成立,C 正确;对于D ,连接B 1E ,EF →=(-1,1,0),EC →=(-1,2,-2),设平面EFC 的法向量为n =(x ,y ,z )·n =0,·n =0,x +y =0,x +2y -2z =0,令x =2,得n =(2,2,1),又B 1E →=(-1,-2,0),所以点B 1到平面CEF 的距离d =|B 1E →·n ||n |=63=2,D 错误.故选AC.11.已知P 是椭圆C :x 26+y 2=1上的动点,Q 是圆D :(x +1)2+y 2=15上的动点,则()A .C 的焦距为5B .C 的离心率为306C .圆D 在C 的内部D .|PQ |的最小值为255答案BC解析∵x 26+y 2=1,∴a =6,b =1,∴c =a 2-b 2=6-1=5,则C 的焦距为25,e =ca=56=306.设P (x ,y )(-6≤x ≤6),则|PD |2=(x +1)2+y 2=(x +1)2+1-x 26=+45≥45>15,可知圆D 在C 的内部,且|PQ |的最小值为45-15=55.故选BC.12.已知动点P 到两定点M (-2,0),N (2,0)的距离乘积为常数16,其轨迹为C ,则()A .C 一定经过原点B .C 关于x 轴、y 轴对称C .△MPN 的面积的最大值为43D .C 在一个面积为64的矩形内答案BCD解析设点P 的坐标为(x ,y ),由题意可得(x +2)2+y 2·(x -2)2+y 2=16.对于A ,将原点坐标(0,0)代入方程得2×2=4≠16,故A 错误;对于B ,设点P 关于x 轴、y 轴的对称点分别为P 1(x ,-y ),P 2(-x ,y ),因为(x +2)2+(-y )2·(x -2)2+(-y )2=(x +2)2+y 2·(x -2)2+y 2=16,(-x +2)2+y 2·(-x -2)2+y 2=(x -2)2+y 2·(x +2)2+y 2=16,所以点P 1,P 2都在曲线C 上,所以曲线C 关于x 轴、y 轴对称,故B 正确;对于C ,设|PM |=a ,|PN |=b ,∠MPN =θ(0<θ<π),则ab =16,由余弦定理得cos θ=a 2+b 2-162ab =a 2+b 2-1632≥2ab -1632=12,当且仅当a =b =4时等号成立,则θ,π3,所以sin θ≤32,则△MPN 的面积S △MPN =12ab sin θ≤12×16×32=43,故C正确;对于D ,由16=(x +2)2+y 2·(x -2)2+y 2≥(x +2)2·(x -2)2=|x 2-4|,可得-16≤x 2-4≤16,得0≤x 2≤20,解得-25≤x ≤25,由C 知,S △MPN =12|MN |·|y |=12×4×|y |≤43,得|y |≤23,因为45×43=1615<64,所以曲线C 在一个面积为64的矩形内,故D 正确.故选BCD.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,PA →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.答案23a -13b +23c 解析PG →=PB →+BG→=PB →+23BD→=PB →+23(BA →+BC →)=PB →+23[(PA →-PB →)+(PC →-PB →)]=PB →+23(PA →-2PB →+PC →)=23PA →-13PB →+23PC →=23a -13b +23c .14.已知点P 是圆C :x 2+y 2=4上的动点,点A (4,2),则线段AP 中点M 的轨迹方程是________________;点M 的轨迹与圆C 相交,则过交点的直线方程是________.(本题第一空2分,第二空3分)答案(x -2)2+(y -1)2=12x +y -4=0解析设M (x ,y ),P (x 1,y 1),=x 1+42,=y 1+22,1=2x -4,1=2y -2.因为x 12+y 12=4,所以(2x -4)2+(2y -2)2=4.整理得(x -2)2+(y -1)2=1.①又圆C :x 2+y 2=4,②由①-②得2x +y -4=0,即为所求直线方程.15.已知点F 2为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,直线y =kx 交双曲线C 于A ,B两点,若∠AF 2B =2π3,S △AF 2B =23,则双曲线C 的虚轴长为________.答案22解析由题意知点B 与点A 关于原点对称,设双曲线的左焦点为F 1,连接AF 1,BF 1,由对称性可知四边形AF 1BF 2是平行四边形,所以∠F 1AF 2=π3,设|AF 2|=m ,不妨设点A 在点B 右侧,则|AF 1|=2a +m .在△AF 1F 2中,由余弦定理可得4c 2=m 2+(m +2a )2-m (m +2a ),化简得4c 2-4a 2=m 2+2ma ,即4b 2=m (m +2a ).又S △AF 2B =12m (m +2a )·32=23,所以b 2=2,所以2b =2 2.16.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F 1(1,0),离心率为e .设A ,B 为椭圆上关于原点对称的两点,AF 1的中点为M ,BF 1的中点为N ,原点O 在以线段MN 为直径的圆上.设直线AB 的斜率为k ,若0<k ≤3,则e 的取值范围为________.答案[3-1,1)解析设A (m ,n ),则B (-m ,-n ),则k =nm,因为原点O 在以线段MN 为直径的圆上,所以OM ⊥ON ,又因为M 为AF 1的中点,所以OM ∥BF 1,同理ON ∥AF 1,所以四边形OMF 1N 是矩形,即AF 1⊥BF 1,而AF 1→=(1-m ,-n ),BF 1→=(1+m ,n ),所以(1-m )(1+m )-n 2=0,即m 2+n 2=1,又m 2a 2+n 2b 2=1,于是有m 2a 2+n 2b 2=m 2+n 2,从而1a 2-11-1b 2=n 2m 2=k 2≤3,即1a 2+3b2≥4,将b 2=a 2-1代入上式,整理得4a 4-8a 2+1≤0,解得2-32≤a 2≤2+32,又a >c =1,所以4-23≤1a2<1,即3-1≤e <1.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知三角形的顶点A (2,3),B (0,-1),C (-2,1).(1)求直线AC 的方程;(2)从①,②这两个问题中选择一个作答.①求点B 关于直线AC 的对称点D 的坐标.②若直线l 过点B 且与直线AC 交于点E ,|BE |=3,求直线l 的方程.思路分析(1)由A (2,3),C (-2,1),可求出直线AC 的斜率,由点斜式即可写出直线的方程;(2)选①由对称点的性质即可求出;选②设出E ,12t +t 的值,根据B ,E 两点的坐标即可求出直线的方程.解析(1)因为直线AC 的斜率为k AC =12,所以直线AC 的方程为y -3=12(x -2),即直线AC 的方程为x -2y +4=0.(2)选择问题①:设D 的坐标为(m ,n ),·12=-1,2·n -12+4=0,=-125,=195.所以点D -125,选择问题②:设E,12t +|BE |=33,解得t =0或t =-125.所以E 的坐标为(0,2)-125,所以直线l 的方程为x =0或3x +4y +4=0.18.(12分)已知圆C 经过三点O (0,0),A (1,3),B (4,0).(1)求圆C 的方程;(2)求过点P (3,6)且被圆C 截得弦长为4的直线的方程.解析(1)由题意,设圆C 的方程为x 2+y 2+Dx +Ey +F =0,=0,+9+D +3E +F =0+4D +F =0,=-4,=-2,=0.所以圆C 的方程为x 2+y 2-4x -2y =0,即(x -2)2+(y -1)2=5.(2)由(1)知圆心坐标为C (2,1),半径为5,弦长为4时,圆心C 到直线的距离为1.①若直线斜率不存在,则直线方程为x =3,经检验符合题意;②若直线斜率存在,设直线斜率为k ,则直线方程为y -6=k (x -3),即kx -y -3k +6=0,则|5-k |1+k 2=1,解得k =125,所以直线方程为y -6=125(x -3),即12x -5y -6=0.综上可知,直线方程为x =3或12x -5y -6=0.19.(12分)(2019·课标全国Ⅱ,文)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >0,b >0)的两个焦点,P 为C 上的点,O 为坐标原点.(1)若△POF 2为等边三角形,求C 的离心率;(2)如果存在点P ,使得PF 1⊥PF 2,且△F 1PF 2的面积等于16,求b 的值和a 的取值范围.解析(1)若△POF 2为等边三角形,则P ,±32c ,代入方程x 2a 2+y 2b 2=1,可得c 24a2+3c 24b2=1,解得e 2=4±23,所以e =3-1(3+1已舍去).(2)由题意可得|PF 1→|+|PF 2→|=2a ,因为PF 1⊥PF 2,所以|PF 1→|2+|PF 2→|2=4c 2,所以(|PF 1→|+|PF 2→|)2-2|PF 1→|·|PF 2→|=4c 2,所以2|PF 1→|·|PF 2→|=4a 2-4c 2=4b 2,所以|PF 1→|·|PF 2→|=2b 2,所以S △PF 1F 2=12|PF 1→|·|PF 2→|=b 2=16,解得b =4.因为(|PF 1→|+|PF 2→|)2≥4|PF 1→|·|PF 2→|,即(2a )2≥4|PF 1→|·|PF 2→|,即a 2≥|PF 1→|·|PF 2→|,所以a 2≥32,所以a ≥42,即a 的取值范围为[42,+∞).20.(12分)如图,在四棱锥P -ABCD 中,平面PCD ⊥平面ABCD ,且△PCD 是边长为2的等边三角形,四边形ABCD 是矩形,BC =22,M 为BC 的中点.(1)求证:AM ⊥PM ;(2)求二面角P -AM -D 的大小;(3)求点D 到平面AMP 的距离.解析以点D 为原点,分别以直线DA ,DC 为x 轴、y 轴,建立如图所示的空间直角坐标系,依题意,可得D (0,0,0),P (0,1,3),A (22,0,0),M (2,2,0),PM →=(2,1,-3),AM →=(-2,2,0).(1)证明:∵PM →·AM →=(2,1,-3)·(-2,2,0)=0,即PM →⊥AM →,∴AM ⊥PM .(2)设n =(x ,y ,z )为平面PAM 的法向量,·PM →=0,·AM →=0,y -3z =0,+2y =0,取y =1,得n =(2,1,3).取p =(0,0,1),显然p 为平面ABCD 的一个法向量,∵cos 〈n ,p 〉=n ·p |n ||p |=36=22,∴二面角P -AM -D 的大小为45°.(3)设点D 到平面AMP 的距离为d ,由(2)可知n =(2,1,3)为平面AMP 的一个法向量,∴d =|DA →·n ||n |=|22×2|2+1+3=263,即点D 到平面AMP 的距离为263.21.(12分)如图,三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=BC 1=2,∠AA 1C 1=60°,平面ABC 1⊥平面AA 1C 1C ,AC 1与A 1C 相交于点D .(1)求证:BD ⊥平面AA 1C 1;(2)设点E 是直线B 1C 1上一点,且DE ∥平面AA 1B 1B ,求平面EBD 与平面ABC 1夹角的余弦值.解析(1)证明:由已知得侧面AA 1C 1C 是菱形,D 是AC 1的中点.∵BA =BC 1,∴BD ⊥AC 1.∵平面ABC 1⊥平面AA 1C 1C ,且BD ⊂平面ABC 1,平面ABC 1∩平面AA 1C 1C =AC 1,∴BD ⊥平面AA 1C 1C .(2)设点F 是A 1C 1的中点,连接DF ,EF ,∵点D 是AC 1的中点,∴DF ∥平面AA 1B 1B .又∵DE ∥平面AA 1B 1B ,∴平面DEF ∥平面AA 1B 1B .又∵平面DEF ∩平面A 1B 1C 1=EF ,平面AA 1B 1B ∩平面A 1B 1C 1=A 1B 1,∴EF ∥A 1B 1.∴点E 是B 1C 1的中点.如图,以D 为原点,以DA 1,DA ,DB 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.由已知可得AC 1=2,AD =1,BD =A 1D =DC =3,BC =6,∴D (0,0,0),A (0,1,0),A 1(3,0,0),B (0,0,3),C 1(0,-1,0).设平面EBD 的法向量是m =(x ,y ,z ),由m ⊥DB →,得3z =0⇒z =0.又DE →=12(DC 1→+DB 1→)=12(DC 1→+DB →+AA 1→)1由m ⊥DE →,得(x ,y ,z10⇒32x -y =0.令x =1,得y =32,∴m ,32,∵平面ABC 1⊥平面AA 1C 1C ,DA 1⊥AC 1,∴DA 1⊥平面ABC 1.∴DA 1→是平面ABC 1的一个法向量,DA 1→=(3,0,0).∴cos 〈m ,DA 1→〉=31+34×3=277,∴平面EBD 与平面ABC 1夹角的余弦值是277.22.(12分)已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且PM →·PF →=0,|PM →|=|PN →|.(1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A ,B 两点,若OA →·OB →=-4,且46≤|AB →|≤430,求直线l 的斜率k 的取值范围.解析(1)由题意知P 为线段MN 的中点,设N (x ,y ),则M (-x ,0),由PM →·PF →=0x,∴(-x )·10,∴y 2=4x (x >0),∴点N 的轨迹方程为y 2=4x (x >0).(2)设l 与抛物线交于点A (x 1,y 1),B (x 2,y 2).当l 与x 轴垂直时,则由OA →·OB →=-4,得y 1=22,y 2=-22,|AB |=42<46,不合题意.故l 与x 轴不垂直.可设直线l 的方程为y =kx +b (k ≠0),则由OA →·OB →=-4,得x 1x 2+y 1y 2=-4.由点A ,B 在抛物线y 2=4x (x >0)上有y 12=4x 1,y 22=4x 2,故y 1y 2=-8.又2=4x ,=kx +b ,联立消x ,得ky 2-4y +4b =0.∴4bk =-8,b =-2k.∴Δ=16(1+2k 2),|AB |2y1-y 2)2∵46≤|AB |≤430,∴96480.解得直线l的斜率取值范围为-1,-12∪12,1.1.若椭圆x2a2+y2b2=1(a>b>0)的离心率为32,则双曲线x2a2-y2b2=1的离心率为()A.54B.52C.32D.54答案B2.已知四面体顶点A(2,3,1),B(4,1,-2),C(6,3,7)和D(-5,-4,8),则顶点D 到平面ABC的距离为()A.8B.9C.10D.11答案D解析设平面ABC的一个法向量为n=(x,y,z),则·AB→=0,·AC→=0,x,y,z)·(2,-2,-3)=0,x,y,z)·(4,0,6)=0.x-2y-3z=0,x+6z=0=2x,=-23x,令x=1,则n,2AD→=(-7,-7,7),故所求距离为|AD→·n||n|=|-7-14-143|1+4+49=11.3.如图,在四棱锥S-ABCD中,底面ABCD是边长为1的正方形,SA=SB=SC=SD=2.下列结论中正确的是()A.SA→+SB→+SC→+SD→=0B.SA→-SB→+SC→-SD→=0C.SA→·SB→+SC→·SD→=0D.SA→·SC→=0答案B解析本题考查空间向量的加减运算和数量积.由题意易知A错误;因为SA→-SB→+SC→-SD→=BA→+DC→=0,所以B正确;因为底面ABCD是边长为1的正方形,SA=SB=SC=SD=2,所以SA →·SB →=2×2×cos ∠ASB ,SC →·SD →=2×2×cos ∠CSD ,而∠ASB =∠CSD ,于是SA →·SB →=SC →·SD →≠0,所以C 错误;连接AC ,在△SAC 中,SA =SC =2,AC =2,所以∠ASC ≠90°,所以cos ∠ASC ≠0,又SA →·SC →=2×2×cos ∠ASC ,所以SA →·SC →≠0,所以D 错误.故选B.4.已知A 是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左顶点,F 是抛物线C :y 2=-8ax 的焦点.若在双曲线的渐近线上存在点P ,使得AP →⊥FP →,则E 的离心率的取值范围是()A .(1,2),324D .(2,+∞)答案B解析由题意得,A (-a ,0),F (-2a ,0),不妨设0,ba x AP →⊥FP →,得AP →·FP →=0⇒0+a ,b a x 0+2a ,ba x 0⇒c 2a 2x 02+3ax 0+2a 2=0.因为在双曲线E 的渐近线上存在点P ,所以Δ≥0,即9a 2-4×2a 2×c 2a 2≥0,9a 2≥8c 2⇒e 2≤98⇒-324≤e ≤324,又因为E 为双曲线,所以1<e ≤324.故选B.5.如图,在正四棱锥P -ABCD 中,PA =AB ,点M 为PA 的中点,BD →=λBN →.若MN ⊥AD ,则实数λ为()A .2B .3C .4D .5答案C解析连接AC 交BD 于点O ,以O 为原点,OA 为x 轴,OB 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系.设PA =AB =2,则A (2,0,0),D (0,-2,0),P (0,0,2),0B (0,2,0),∴BD →=(0,-22,0),设N (0,b ,0),则BN →=(0,b -2,0).∵BD=λBN →,∴-22=λ(b -2),∴b =2λ-22λ,∴N,2λ-22λ,,→-22,2λ-22λ,-AD →=(-2,-2,0),∵AD ⊥MN ,∴AD →·MN →=1-2λ-4λ=0,解得λ=4.故选C.6.已知椭圆C :x 24+y 23=1,M ,N 是坐标平面内的两点,且M 与椭圆C 的焦点不重合.若M 关于椭圆C 的左、右焦点的对称点分别为A ,B ,线段MN 的中点在椭圆C 上,则|AN |+|BN |=()A .4B .8C .12D .16答案B解析设MN 的中点为D ,椭圆C 的左、右焦点分别为F 1,F 2,如图,连接DF 1,DF 2.∵F 1是MA 的中点,D 是MN 的中点,∴F 1D 是△MAN 的中位线,∴|DF 1|=12|AN |,同理|DF 2|=12|BN |,∴|AN |+|BN |=2(|DF 1|+|DF 2|).∵点D 在椭圆上,根据椭圆的标准方程及椭圆的定义知,|DF 1|+|DF 2|=4,∴|AN |+|BN |=8.故选B.7.在平面直角坐标系xOy 中,已知点A (0,-2),点B (1,-1),P 为圆x 2+y 2=2上一动点(异于点B ),则|PB ||PA |的最大值是()A .2B .4C.2D .22答案A解析设点P (x 0,y 0),则x 02+y 02=2,所以|PB |2|PA |2=(x 0-1)2+(y 0+1)2x 02+(y 0+2)2=x 02+y 02-2x 0+2y 0+2x 02+y 02+4y 0+4=-2x 0+2y 0+44y 0+6=-x 0+y 0+22y 0+3,令λ=-x 0+y 0+22y 0+3,则λ≠0,x 0+(2λ-1)y 0+3λ-2=0,由题意,知直线x +(2λ-1)y +3λ-2=0与圆x 2+y 2=2有公共点,所以|3λ-2|1+(2λ-1)2≤2,得λ2-4λ≤0,得0<λ≤4,所以|PB ||PA |的最大值为2.8.【多选题】若{a ,b ,c }为空间的一个基底,则()A .b +c ,b -c ,a 共面B .b +c ,b -c ,2b 共面C .b +c ,a ,a +b +c 共面D .a +c ,a -2c ,c 共面答案BCD解析易知b +c ,b -c ,a 不共面;因为2b =(b +c )+(b -c ),所以b +c ,b -c ,2b 共面;因为a +b +c =(b +c )+a ,所以b +c ,a ,a +b +c 共面;因为a +c =(a -2c )+3c ,所以a +c ,a -2c ,c 共面.故选BCD.9.【多选题】如图,在长方体ABCD -A 1B 1C 1D 中,AB =3AD =3AA 1=3,点P 为线段A 1C 上的动点,则下列结论正确的是()A .当A 1C →=2A 1P →时,B 1,P ,D 三点共线B .当AP →⊥A 1C →时,AP →⊥D 1P→C .当A 1C →=3A 1P →时,D 1P ∥平面BDC 1D .当A 1C →=5A 1P →时,A 1C ⊥平面D 1AP答案ACD解析在长方体ABCD -A 1B 1C 1D 1中,连接AC ,以点D 为坐标原点,建立如图所示的空间直角坐标系,因为AB =3AD =3AA 1=3,所以AD =AA 1=1,则A (1,0,0),A 1(1,0,1),C (0,3,0),C 1(0,3,1),D 1(0,0,1),D (0,0,0),B (1,3,0),则A 1C →=(-1,3,-1),D 1A →=(1,0,-1),DC 1→=(0,3,1),DB →=(1,3,0),A 1D 1→=(-1,0,0).当A 1C →=2A 1P →时,P 为A 1C 的中点,根据长方体结构特征,可知P 为体对角线的中点,因此P 也为B 1D 的中点,所以B 1,P ,D 三点共线,故A 正确;当AP →⊥A 1C →时,AP ⊥A 1C ,由题意可得A 1C =1+1+3=5,AC =1+3=2,因为S △A 1AC =12AA 1·AC =12A 1C ·AP ,所以AP =255,所以A 1P =55,即点P 为靠近点A 1的五等分点,所以,35,D 1P →,35,-AP →=-15,35,D 1P →·AP →=-425+325-425=-15≠0,所以AP →与D 1P →不垂直,故B 错误;当A 1C →=3A 1P →时,A 1P →=13A 1C →-13,33,-BDC 1的一个法向量为n =(x ,y ,z ),·DC 1→=0,·DB →=0,+z =0,+3y =0,令y =1,可得n =(-3,1,-3),又D 1P →=A 1P →-A 1D 1→=,33,-D 1P →·n =0,因此D 1P →⊥n ,所以D 1P →∥平面BDC 1,故C 正确;当A 1C →=5A 1P →时,A 1P →=15A 1C →-15,35,-所以D 1P →=A 1P →-A 1D 1→,35,-所以A 1C →·D 1P →=0,A 1C →·D 1A →=0,因此A 1C ⊥D 1P ,A 1C ⊥D 1A ,又D 1P ∩D 1A =D 1,所以A 1C ⊥平面D 1AP ,故D 正确.故选ACD.10.【多选题】已知抛物线E :y 2=4x 的焦点为F ,准线为l ,过F 的直线与E 交于A ,B 两点,分别过A ,B 作l 的垂线,垂足为C ,D ,且|AF |=3|BF |,M 为AB 中点,则下列结论正确的是()A .∠CFD =90°B .△CMD 为等腰直角三角形C .直线AB 的斜率为±3D .△AOB 的面积为4答案AC解析如图,过点M 向准线l 作垂线,垂足为N ,F (1,0),设A (x 1,y 1),B (x 2,y 2),因为|AF |=|AC |,所以∠AFC =∠ACF ,又因为∠OFC =∠ACF ,所以∠OFC =∠AFC ,所以FC 平分∠OFA ,同理可知FD 平分∠OFB ,所以∠CFD =90°,故A 正确;假设△CMD 为等腰直角三角形,则∠CFD =∠CMD =90°,则C ,D ,F ,M 四点共圆且圆的半径为12|CD |=|MN |,又因为|AF |=3|BF |,所以|AB |=|AF |+|BF |=|AC |+|BD |=2|MN |=4|BF |,所以|MN |=2|BF |,所以|CD |=2|MN |=4|BF |,所以|CD |=|AB |,显然不成立,故B 错误;设直线AB的方程为x =my +12=4x ,+1,所以y 2-4my -4=01+y 2=4m ,1y 2=-4,又因为|AF |=3|BF |,所以y 1=-3y 22y 2=4m ,3y 22=-4,所以m 2=13,所以1m =±3,所以直线AB 的斜率为±3,故C 正确;取m =331+y 2=433,1y 2=-4,所以|y 1-y 2|=833,所以S △AOB =12·|OF |·|y 1-y 2|=12×1×833=433D 错误.故选AC.11.【多选题】a ,b 为空间两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以AC 为旋转轴旋转,则下列结论正确的是()A .直线AB 与a 所成角的最小值为π4B .直线AB 与a 所成角的最大值为π3C .当直线AB 与a 所成的角为π3时,AB 与b 所成的角为π6D .当直线AB 与a 所成的角为π3时,AB 与b 所成的角为π3答案AD解析由题意知,a ,b ,AC 三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体的棱长为1,则AC =1,AB =2,斜边AB 以直线AC 为旋转轴旋转,则A 点保持不变,B 点的运动轨迹是以C 为圆心,BC 长为半径的圆,设CB 旋转到直线a 上时为CE ,旋转到直线b 上时为CD ,以C 为坐标原点,以CD 所在直线为x 轴,CE 所在直线为y 轴,CA 所在直线为z 轴,建立空间直角坐标系,则D (1,0,0),A (0,0,1),设B 点在运动过程中的坐标为(cos θ,sin θ,0),其中θ为射线CD 绕端点C 旋转到CB 形成的角,θ∈[0,2π),∴AB 在运动过程中对应的向量AB →=(cos θ,sin θ,-1),|AB →|=2,设AB 与a 所成的角为α,α∈0,π2,则cos α=22|sin θ|∈0,22,∴α∈π4,π2,故A 正确,B错误;设AB 与b 所成的角为β,β∈0,π2,则cos β=22|cos θ|,当AB 与a 所成的角为π3,即α=π3时,|sin θ|=2cos α=2cos π3=22,∵cos 2θ+sin 2θ=1,∴cos β=22|cos θ|=12,∵β∈0,π2,∴β=π3,此时AB 与b所成的角为π3,故D 正确,C 错误.故选AD.12.【多选题】古希腊著名数学家阿波罗尼奥斯发现:平面内到两个定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,A (-2,0),B (4,0),点P 满足|PA ||PB |=12.设点P 的轨迹为C ,下列结论正确的是()A .轨迹C 的方程为(x +4)2+y 2=9B .在x 轴上存在异于A ,B 的两点D ,E 使得|PD ||PE |=12C .当A ,B ,P 三点不共线时,射线PO 是∠APB 的平分线D .在C 上存在点M ,使得|MO |=2|MA |答案BC解析设P (x ,y ),则(x +2)2+y 2(x -4)2+y 2=12,化简得(x +4)2+y 2=16,所以A 错误;假设在x轴上存在异于A ,B 的两点D ,E 使得|PD ||PE |=12,设D (m ,0),E (n ,0),则(x -n )2+y 2=2(x -m )2+y 2,化简得3x 2+3y 2-(8m -2n )x +4m 2-n 2=0,由轨迹C 的方程为x 2+y 2+8x =0,可得8m -2n =-24,4m 2-n 2=0,解得m =-6,n =-12或m =-2,n =4(舍去),即在x 轴上存在异于A ,B 的两点D ,E 使|PD ||PE |=12,所以B 正确;当A ,B ,P 三点不共线时,由|OA ||OB |=12=|PA ||PB |,可得射线PO 是∠APB 的平分线,所以C 正确;假设在C 上存在点M ,使得|MO |=2|MA |,可设M (x ,y ),则有x 2+y 2=2(x +2)2+y 2,化简得x 2+y 2+163x +163=0,与x 2+y 2+8x =0联立,得x =2,不合题意,故不存在点M ,所以D 错误.故选BC.13.已知直线l :mx -y =1,若直线l 与直线x -my -1=0平行,则实数m 的值为________,动直线l 被圆C :x 2+y 2+2x -24=0截得弦长的最小值为________.答案-1223解析由题得m ×(-m )-(-1)×1=0,所以m =±1.当m =1时,两直线重合,舍去,故m =-1.因为圆C 的方程x 2+y 2+2x -24=0可化为(x +1)2+y 2=25,所以圆心为C (-1,0),半径为5.由于直线l :mx -y -1=0过定点P (0,-1),所以过点P 且与PC 垂直的弦的弦长最短,且最短弦长为2×52-(2)2=223.14.已知M (-2,0),N (2,0),点P (x ,y )为坐标平面内的动点,满足|MN →|·|MP →|+MN →·NP →=0,则动点P 的轨迹方程为________.答案y 2=-8x 解析由题意,知MN →=(4,0),|MN →|=4,MP →=(x +2,y ),NP →=(x -2,y ).由|MN →|·|MP →|+MN →·NP →=0,得4(x +2)2+y 2+4(x -2)=0,化简整理,得y 2=-8x .15.已知直线l :4x -3y +6=0,抛物线C :y 2=4x 上一动点P 到直线l 与到y 轴距离之和的最小值为________,P 到直线l 距离的最小值为________.答案134解析设抛物线C :y 2=4x 上的点P 到直线4x -3y +6=0的距离为d 1,到准线的距离为d 2,到y 轴的距离为d 3,由抛物线方程可得焦点坐标为F (1,0),准线方程为x =-1,则d 3=d 2-1,|PF |=d 2,因此d 1+d 3=d 1+d 2-1=d 1+|PF |-1,因为d 1+|PF |的最小值是焦点F 到直线4x -3y +6=0的距离,即|4+6|42+(-3)2=2,所以d 1+d 3=d 1+|PF |-1的最小值为2-1=1;设平行于直线l 且与抛物线C :y 2=4x 相切的直线方程为4x -3y +m =0,由x -3y +m =0,2=4x ,得y 2-3y +m =0,因为直线4x -3y +m =0与抛物线C :y 2=4x 相切,所以Δ=(-3)2-4m =0,解得m =94,因此该切线方程为4x -3y +94=0,所以两平行线间的距离为6-9442+(-3)2=34,即P 到直线l 距离的最小值为34.16.已知直线l :y =-x +1与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,且线段AB 的中点为(1)求此椭圆的离心率;(2)若椭圆的右焦点关于直线l 的对称点在圆x 2+y 2=5上,求此椭圆的方程.解析(1)x +1,+y 2b 2=1,得(b 2+a 2)x 2-2a 2x +a 2-a 2b 2=0,∴Δ=4a 4-4(a 2+b 2)(a 2-a 2b 2)>0⇒a 2+b 2>1.设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=2a 2b 2+a 2.∵线段AB ,∴2a 2b 2+a 2=43,得a 2=2b 2.又a 2=b 2+c 2,∴a 2=2c 2,∴e =22.(2)设椭圆的右焦点为F (c ,0),则点F 关于直线l :y =-x +1的对称点为P (1,1-c ).∵点P 在圆x 2+y 2=5上,∴1+(1-c )2=5,即c 2-2c -3=0.∵c >0,∴c =3,又a 2=2c 2且a 2=b 2+c 2,∴a =32,b =3,∴椭圆的方程为x 218+y 29=1.17.如图所示,该几何体是由一个直三棱柱ADE -BCF 和一个正四棱锥P -ABCD 组合而成的,AD ⊥AF ,AE =AD =2.(1)证明:平面PAD ⊥平面ABFE ;(2)求正四棱锥P -ABCD 的高h ,使得二面角C -AF -P 的余弦值是223解析(1)证明:在直三棱柱ADE -BCF 中,AB ⊥平面ADE ,AD ⊂平面ADE ,所以AB ⊥AD .又AD ⊥AF ,AB ∩AF =A ,AB ⊂平面ABFE ,AF ⊂平面ABFE ,所以AD ⊥平面ABFE .因为AD ⊂平面PAD ,所以平面PAD ⊥平面ABFE .(2)由(1)知AD ⊥平面ABFE ,以A 为原点,AB ,AE ,AD 所在直线分别为x ,y ,z 轴建立空间直角坐标系,如图,则A (0,0,0),F (2,2,0),C (2,0,2),P (1,-h ,1),AF →=(2,2,0),AC →=(2,0,2),AP →=(1,-h ,1).设平面AFC 的一个法向量为m =(x 1,y 1,z 1),·AF →=2x 1+2y 1=0,·AC →=2x 1+2z 1=0,取x 1=1,则y 1=z 1=-1,所以m =(1,-1,-1).设平面AFP 的一个法向量为n =(x 2,y 2,z 2),·AF →=2x 2+2y 2=0,·AP →=x 2-hy 2+z 2=0,取x 2=1,则y 2=-1,z 2=-1-h ,所以n =(1,-1,-1-h ).因为二面角C -AF -P 的余弦值为223,所以|cos 〈m ·n 〉|=|m ·n ||m |·|n |=|1+1+1+h |3×2+(h +1)2=223,解得h =1或h =-35(舍),所以正四棱锥P -ABCD 的高h =1.18.如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,AC =AA 1=3,∠ABC =60°.。
山东省部分学校2025届新高三上学期开学联合教学质量检测数学试卷1.若集合,则()A.B.C.D.2.在等比数列中,若,,则()A.2B.C.4D.3.若非零向量满足,则在方向上的投影向量为()A.B.C.D.4.已知点是直线上的动点,由点向圆引切线,切点分别为且,若满足以上条件的点有且只有一个,则()A.B.C.2D.5.若两个正实数x,y满足,且不等式有解,则实数m的取值范围是()A.B.或C.D.或6.的的展开式中的系数为()A.30B.C.20D.7.设函数,若对于任意实数在区间上至少2个零点,至多有3个零点,则的取值范围是()A.B.C.D.8.已知函数有4个不同的零点,则的取值可以为()A.B.C.D.09.已知复数的共轭复数分别为,则下列命题为真命题的有()A.B.C.若,则D.若,则或10.如图,已知二面角的棱上有两点,,,若,则()A.直线与所成角的余弦值为B.二面角的大小为C.三棱锥的体积为D.直线与平面所成角的正弦值为11.甲箱中有3个黄球、2个绿球,乙箱中有2个黄球、3个绿球(这10个球除颜色外,大小、形状完全相同),先从甲箱中随机取出2个球放入乙箱,记事件A,B,C分别表示事件“取出2个黄球”,“取出2个绿球”,“取出一黄一绿两个球”,再从乙箱中摸出一球,记事件D表示摸出的球为黄球,则下列说法不正确的是()A.A,B是对立事件B.事件B,D相互独立C.D.12.甲,乙两人组成的“梦队”参加篮球机器人比赛,比赛分为自主传球,自主投篮2个环节,其中任何一人在每个环节获胜得2分,失败得0分,比赛中甲和乙获胜与否互不影响,各环节之间也互不影响.若甲在每个环节中获胜的概率都为,乙在每个环节中获胜的概率都为,且甲,乙两人在自主传球环节得分之和为2的概率为,“梦队”在比赛中得分不低于6分的概率为________.13.如图,在四面体中,,,则该四面体的外接球体积为______.14.已知点P是双曲线右支上一点,、分别为双曲线C的左、右焦点,的内切圆与x轴相切于点N,若,则双曲线C的离心率为_________.15.已知数列的首项为,且满足.(1)证明:数列为等差数列;(2)设数列的前n项和为,求数列的前项和.16.已知的内角A,B,C的对边分别为a,b,c,.(1)求角A;(2)若中边上中线的长度为3,求面积的最大值.17.如图,四棱锥中,底面是矩形,,,,M是的中点,.(1)证明:平面;(2)若点P是棱上的动点,直线与平面所成角的正弦值为,求的值.18.已知、分别为椭圆的左、右焦点,点在椭圆上,且的垂心为.(1)求椭圆的方程;(2)设为椭圆的左顶点,过点的直线叫椭圆于、两点,记直线,的斜率分别为,,若,求直线的方程.(3)设是从椭圆中心到椭圆在点处切线的距离,当在椭圆上运动时,判断是否为定值.若是求出定值,若不是说明理由.19.若函数在上存在,使得,,则称是上的“双中值函数”,其中称为在上的中值点.(1)判断函数是否是上的“双中值函数”,并说明理由;(2)已知函数,存在,使得,且是上的“双中值函数”,是在上的中值点.①求的取值范围;②证明:.。
高三开学调研监测考试数学试题2024.9本试卷共4页.满分150分.考试时间120分钟.注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号、回答非选择题时,将答案写在答题卡上、写在本试卷上无效3.考试结束,考生必须将试题卷和答题卡一并交回.一、单项选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12i12i -+的虚部是()A.45 B.45-C.35D.35-【答案】B 【解析】【分析】根据复数的除法运算和虚部的概念即可得到答案.【详解】()()()212i 12i 144i 34i 12i 12i 12i 555----===--++-,则其虚部为45-.故选:B.2.设集合{}{}21,2,4,50A B xx x m ==-+=∣,若{}2A B = ,则B =()A.{}2,3- B.{}2,6- C.{}2,3 D.{}2,6【答案】C 【解析】【分析】由交集可得6m =,再解方程可得集合B ;【详解】因为{}2A B = ,所以2B ∈,代入250x x m -+=,可得6m =,所以方程变为2560x x -+=,可解得2x =或3,所以{}2,3B =,故选:C.3.已知向量,,a b c在正方形网格中的位置如图所示,若网格纸上小正方形的边长为2,则()a b c a b +⋅+⋅=()A.0B.3C.6D.12【答案】D 【解析】【分析】建立合适的直角坐标系,写出相关向量计算向量数量积即可.【详解】以两向量公共点为坐标原点建立如图所示直角坐标系,则()4,2a = ,()4,2b =- ,()0,2c =,则()()()()()8,00,24,24,212a b c a b +⋅+⋅=⋅+⋅-=.故选:D.4.坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,还有两个面是全等的等腰三角形,若25m,10m AB BC ==,且等腰梯形所在平面、等腰三角形所在平面与平面ABCD 的夹角均为45 ,则该五面体的体积为()A.3375mB.31625m 3C.3545m D.3625m 【答案】B 【解析】【分析】作出图形,结合二面角的定义分别求出15m 2PO FO BC ===,最后利用五面体的体积为2倍的四棱锥ADHG F -的体积加上三棱柱FGH EMN -的体积求出结果即可;【详解】如图,作FG AB ⊥于G ,//HG DA ,连接FH ;同理作EM AB ⊥于M ,//BC MN ,连接EN ,取AD 中点P ,连接OP ,再作FO GH ⊥于O ,因为等腰梯形所在平面、等腰三角形所在平面与平面ABCD 的夹角均为45 ,因为FG AB ⊥,房顶的底面为矩形,//HG DA ,所以HG AB ⊥,又AD 中点P ,PF AD ⊥,且FG FH =,所以FO GH ⊥,所以OP AD ⊥,FP AD ⊥,所以由二面角的定义可得45FGH FPO ∠=∠=︒,因为10m BC =,所以15m 2PO FO BC ===,因为FO GH ⊥,FO PO ⊥,PO GH O ⋂=,且,PO GH ⊂底面ABCD ,所以FO ⊥底面ABCD ,所以该五面体的体积为2倍的四棱锥ADHG F -的体积加上三棱柱FGH EMN -的体积,即112150016252510510515375323233AG GH FO GH FO GM ⋅⨯⨯+⋅⨯=⨯⨯⨯+⨯⨯⨯=+=,故选:B .5.已知圆22:20C x y x +-=,则过点()3,0P 的圆C 的切线方程是()A.()132y x =±- B.()23y x =±-C.()333y x =±-D.)3y x =-【答案】C 【解析】【分析】首先说明点在圆外,再设点斜式方程,利用圆心到直线距离等于半径得到方程,解出即可.【详解】将()3,0P代入圆方程得22302330+-⨯=>,则该点在圆外,22:20C x y x +-=,即()22:11C x y -+=,则其圆心为()1,0,半径为1,当切线斜率不存在时,此时直线方程为3x =,显然不合题意,故舍去,则设切线方程为:()3y k x =-,即30kx y k --=,1=,解得33k =±,此时切线方程为()333y x =±-.故选:C.6.数列中,112,2n n a a a +==+,若19270k k k a a a +++++= ,则k =()A.7B.8C.9D.10【答案】C 【解析】【分析】先求等差数列求出通项,再求和得出参数.【详解】因为112,2n n a a a +=-=,所以()2122n a n n =+-⨯=,()()()91910102218291027022k k k k k a a k k a a a k +++++++++===+⨯= ,所以9k =.故选:C.7.设412341010x x x x ≤<<<≤,随机变量1ξ取值1234,,,x x x x 的概率均为14,随机变量2ξ取值123234341412,,,3333x x x x x x x x x x x x ++++++++的概率也均为14,若记()1D ξ,()2D ξ分别是12,ξξ的方差,则()A.()()12D D ξξ>B.()()12D D ξξ=C.()()12D D ξξ< D.()1D ξ与()2D ξ的大小不确定【答案】A【解析】【分析】先由期望和方差公式表示出()1D ξ,()2D ξ,再比较公式中不同部分的大小,然后再由基本不等式比较即可;【详解】()123414x x x x E ξ+++=,()()()()()()()()()()()()()2222111213141222221234123411141244D xE x E x E x E x x x x x x x x E E ξξξξξξξ⎡⎤=-+-+-+-⎢⎥⎣⎦⎡⎤=+++-++++⎣⎦,()()1232343411234412211433334x x x x x x x x x x x x x x x x E E ξξ+++++++++++⎛⎫=+++==⎪⎝⎭,()()()()()222212323434141221111143333x x x x x x x x x x x x D E E E E ξξξξξ⎡⎤++++++++⎛⎫⎛⎫⎛⎫⎛⎫=-+-++⎢⎥⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()()()2222212323434141212341112443333x x x x x x x x x x x x x x x x E E ξξ⎡⎤⎛⎫++++++++⎛⎫⎛⎫⎛⎫⎛⎫=+++-++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦,所以只需比较22222341x x x x +++与22221232343414123333x x x x x x x x x x x x ++++++++⎛⎫⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的大小,因为()2222234123121323122239x x x x x x x x x x x x ++⎛⎫=+++++ ⎪⎝⎭,所以22221232343414123333x x x x x x x x x x x x ++++++++⎛⎫⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()222212341213232434141322222229x x x x x x x x x x x x x x x x ⎡⎤=+++++++++⎣⎦,①因为412341010x x x x ≤<<<≤,所以2212122x x x x <+,2213132x x x x <+,2223232x x x x <+,2224242x x x x <+,2234432x x x x <+,2214142x x x x <+,所以①()()()2222222222221234123412341369x x x x x x x x x x x x ⎡⎤<+++++++=+++⎣⎦,所以()()12D D ξξ>,故选:A.。
模块综合训练(时间:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线√3x-y-2 021=0的倾斜角等于()A.π6B.π3C.π4D.不存在√3x-y-2021=0化为y=√3x-2021,则直线的斜率为√3,所以直线的倾斜角等于π3.故选B .2.(2020天津,7)设双曲线C 的方程为x 2a 2−y 2b 2=1(a>0,b>0),过抛物线y 2=4x 的焦点和点(0,b )的直线为l.若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为()A.x 24−y 24=1B.x 2-y24=1C.x 24-y 2=1D.x 2-y 2=1解析∵双曲线x2a2−y2b2=1的渐近线方程为y=±bax,y2=4x的焦点坐标为(1,0),l为yb+x1=1,即y=-bx+b,∴-b=-ba且-b·ba=-1,∴a=1,b=1.故选D.3.若圆x2+y2-ax-2y+1=0关于直线x-y-1=0对称的圆的方程是x2+y2-4x+3=0,则a的值等于() A.0B.2C.1D.±2x2+y2-ax-2y+1=0的标准方程为(x-a2)2+(y-1)2=a24,圆心坐标为(a2,1),圆x2+y2-4x+3=0的标准方程为(x-2)2+y2=1,圆心坐标为(2,0),半径为1,连心线所在直线的斜率为1a2-2=2a-4,中点坐标为(a+44,12),由题意可得{a24=1,2a-4·1=-1,a+44-12-1=0,解得a=2.4.如图,在棱长均相等的四面体O-ABC中,点D为AB的中点,CE=12ED,设OA⃗⃗⃗⃗⃗ =a,OB⃗⃗⃗⃗⃗ =b,OC⃗⃗⃗⃗⃗ =c,则OE⃗⃗⃗⃗⃗ =()A.16a +16b +13cB.13a +13b +13cC.16a +16b -13cD.16a +16b +23cCE=12ED ,∴CE ⃗⃗⃗⃗⃗ =13CD ⃗⃗⃗⃗⃗ =13(CA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ) =13(CA ⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ )=13CA ⃗⃗⃗⃗⃗ +16AB ⃗⃗⃗⃗⃗ , ∴OE ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ +13CA ⃗⃗⃗⃗⃗ +16AB ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ +13(OA ⃗⃗⃗⃗⃗ -OC ⃗⃗⃗⃗⃗ )+16(OB ⃗⃗⃗⃗⃗ -OA ⃗⃗⃗⃗⃗ ) =16OA ⃗⃗⃗⃗⃗ +16OB ⃗⃗⃗⃗⃗ +23OC ⃗⃗⃗⃗⃗ =16a +16b +23c .5.若双曲线C :x 2a2−y 2b 2=1(a>0,b>0)的一条渐近线被圆(x-2)2+y 2=4所截得的弦长为2,则C 的离心率为()A.2B.√3C.√2D.2√33bx ±ay=0,圆心(2,0)到渐近线距离为d=√22-12=√3,则点(2,0)到直线bx+ay=0的距离为d=√a 2+b 2=2b c=√3,即4(c 2-a 2)c 2=3,整理可得c 2=4a 2,双曲线的离心率e=√c 2a 2=√4=2.6.如图,在几何体ABC-A 1B 1C 1中,△ABC 为正三角形,AA 1∥BB 1∥CC 1,AA 1⊥平面ABC ,若E 是棱B 1C 1的中点,且AB=AA 1=CC 1=2BB 1,则异面直线A 1E 与AC 1所成角的余弦值为()A.√1313B.2√1313C.√2613D.2√2613C 为原点,在平面ABC 内过C 作BC 的垂线为x 轴,CB 为y 轴,CC 1为z 轴,建立空间直角坐标系,设AB=AA 1=CC 1=2BB 1=2,则A 1(√3,1,2),A (√3,1,0),C 1(0,0,2),B 1(0,2,1),E (0,1,32),A 1E ⃗⃗⃗⃗⃗⃗⃗ =(-√3,0,-12),AC 1⃗⃗⃗⃗⃗⃗⃗ =(-√3,-1,2),设异面直线A 1E 与AC 1所成角为θ,则cos θ=|A 1E ⃗⃗⃗⃗⃗⃗⃗⃗ ·AC 1⃗⃗⃗⃗⃗⃗⃗⃗ ||A 1E ⃗⃗⃗⃗⃗⃗⃗⃗ ||AC1⃗⃗⃗⃗⃗⃗⃗⃗ |=√134·√8=√2613. ∴异面直线A 1E 与AC 1所成角的余弦值为√2613.7.已知抛物线C :y 2=8x ,圆F :(x-2)2+y 2=4(点F 为其圆心),直线l :y=k (x-2)(k ≠0)自上而下顺次与上述两曲线交于M 1,M 2,M 3,M 4四点,则下列各式结果为定值的是()A.|M 1M 3|·|M 2M 4|B.|FM 1|·|FM 4|C.|M 1M 2|·|M 3M 4|D.|FM 1|·|M 1M 2|,设M 1,M 2,M 3,M 4四点的横坐标分别为x 1,x 2,x 3,x 4,由题意知y 2=8x 的焦点坐标与圆F 的圆心(2,0)相同,准线l 0:x=-2.由定义得|M1F|=x1+2.又|M1F|=|M1M2|+2,∴|M1M2|=x1,同理,|M3M4|=x4.将y=k(x-2)代入抛物线方程,得k2x2-(4k2+8)x+4k2=0, ∴x1x4=4,∴|M1M2|·|M3M4|=4.故选C.8.如图,已知F1,F2是椭圆T:x2a2+y2b2=1(a>b>0)的左、右焦点,P是椭圆T上一点,且不与x轴重合,过F2作∠F1PF2的外角的平分线的垂线,垂足为Q,则点Q在上运动.()A.直线B.圆C.椭圆D.抛物线F 2Q 与F 1P 的延长线交于点M ,连接OQ (图略).因为PQ 是∠F 1PF 2的外角的平分线,且PQ ⊥F 2M ,所以在△PF 2M 中,|PF 2|=|PM|,且Q 为线段F 2M 的中点.又O 为线段F 1F 2的中点,由三角形的中位线定理,得|OQ|=12|F 1M|=12(|PF 1|+|PF 2|).由椭圆的定义,得|PF 1|+|PF 2|=2a ,所以|OQ|=a ,所以点Q 在以原点为圆心,a 为半径的圆上运动.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.(2020山东,9)已知曲线C :mx 2+ny 2=1.()A.若m>n>0,则C 是椭圆,其焦点在y 轴上B.若m=n>0,则C 是圆,其半径为√nC.若mn<0,则C 是双曲线,其渐近线方程为y=±√-mnxD.若m=0,n>0,则C 是两条直线mx 2+ny 2=1,∴x 21m+y 21n=1.∵m>n>0,∴1n >1m >0,∴C 是焦点在y 轴上的椭圆,A 正确;∵m=n>0,∴x 2+y 2=1n ,即C 是圆,∴r=√nn ,B 错误;由mx2+ny2=1,得x21m +y21n=1,∵mn<0,1m与1n异号,∴C是双曲线,令mx2+ny2=0,可得y2=-mnx2,即y=±√-mnx,C正确;当m=0,n>0时,有ny2=1,得y2=1n ,即y=±√nn,表示两条直线,D正确,故选ACD.10.如图,在长方体ABCD-A1B1C1D1中,AA1=AB=4,BC=2,M,N分别为棱C1D1,CC1的中点,则下列说法正确的是()A.A,M,N,B四点共面B.平面ADM⊥平面CDD1C1C.直线BN与B1M所成的角为60°D.BN∥平面ADMA,由图显然AM、BN是异面直线,故A,M,N,B四点不共面,故A错误;对于B,由题意AD ⊥平面CDD 1C 1,故平面ADM ⊥平面CDD 1C 1,故B 正确;对于C,取CD 的中点O ,连接BO ,ON ,可知B 1M ∥OB ,三角形BON 为等边三角形,故C 正确;对于D,BN ∥平面AA 1D 1D ,显然BN 与平面ADM 不平行,故D 错误.11.在正方体ABCD-A 1B 1C 1D 1中,给出下列四个结论,其中正确的结论是()A.(A 1A ⃗⃗⃗⃗⃗⃗⃗ +A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=3A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2B.A 1C ⃗⃗⃗⃗⃗⃗⃗ ·(A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ −A 1A ⃗⃗⃗⃗⃗⃗⃗ )=0C.向量AD 1⃗⃗⃗⃗⃗⃗⃗ 与向量A 1B ⃗⃗⃗⃗⃗⃗⃗ 的夹角为60°D.正方体ABCD-A 1B 1C 1D 1的体积为|AB ⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ |中,设正方体的棱长为1,则(A 1A ⃗⃗⃗⃗⃗⃗⃗ +A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=A 1C ⃗⃗⃗⃗⃗⃗⃗ 2=3,3A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2=3,故A 正确;B 中,A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ −A 1A ⃗⃗⃗⃗⃗⃗⃗ =AB 1⃗⃗⃗⃗⃗⃗⃗ ,由AB 1⃗⃗⃗⃗⃗⃗⃗ ⊥A 1C ⃗⃗⃗⃗⃗⃗⃗ ,故B 正确;C 中,A 1B 与AD 1两异面直线所成角为60°,但AD 1⃗⃗⃗⃗⃗⃗⃗ 与A 1B ⃗⃗⃗⃗⃗⃗⃗ 的夹角为120°,故C 不正确;D 中,|AB ⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ |=0,故D 也不正确.12.若曲线C 上存在点M ,使M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,则称曲线C 为“好曲线”.以下曲线是“好曲线”的是()A.x+y=5B.x 2+y 2=9C.x 225+y 29=1D.x 2=16y:点M 轨迹是以A ,B 为焦点的双曲线.则a=4,c=5,∴b 2=c 2-a 2=9,∴M 的轨迹方程为x 216−y 29=1.直线x+y=5过点(5,0),故直线与M 的轨迹有交点,是“好曲线”,A 正确;x 2+y 2=9是以(0,0)为圆心,3为半径的圆,与M 的轨迹没有交点,不是“好曲线”,B 错误;x 225+y 29=1的右顶点为(5,0),故椭圆与M 的轨迹有交点,是“好曲线”,C 正确;把x 2=16y 代入双曲线方程,可得y 2-9y+9=0,此时Δ>0,故抛物线与M 的轨迹有交点,是“好曲线”,D 正确.三、填空题:本题共4小题,每小题5分,共20分.13.已知圆C :x 2+y 2-2x-1=0,以点12,1为中点的弦所在的直线l 的方程是.(x-1)2+y 2=2,可知圆心为C (1,0).设A12,1,则以A 为中点的弦所在的直线l 即为经过点A 且垂直于AC 的直线.又知k AC =0-11-12=-2,所以k l =12,所以直线l 的方程为y-1=12x-12,即2x-4y+3=0.x-4y+3=014.在四棱锥P-ABCD 中,设向量AB ⃗⃗⃗⃗⃗ =(4,-2,3),AD ⃗⃗⃗⃗⃗ =(-4,1,0),AP ⃗⃗⃗⃗⃗ =(-6,2,-8),则顶点P 到底面ABCD 的距离为.ABCD 的法向量n =(x ,y ,z ),则{AB⃗⃗⃗⃗⃗ ·n =4x -2y +3z =0,AD ⃗⃗⃗⃗⃗ ·n =-4x +y =0,令x=3,则y=12,z=4,∴n =(3,12,4).∴点P 到底面ABCD 的距离d=|AP ⃗⃗⃗⃗⃗ ·n||n|=√9+144+16=2.15.(2019全国Ⅲ,理15)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为.a 2=36,b 2=20,∴c 2=a 2-b 2=16,∴c=4.由题意得,|MF 1|=|F 1F 2|=2c=8.∵|MF 1|+|MF 2|=2a=12,∴|MF 2|=4.设点M 的坐标为(x 0,y 0)(x 0>0,y 0>0),则S△MF 1F 2=12×|F 1F 2|×y 0=4y 0.又S△MF 1F 2=12×4×√82-22=4√15,∴4y0=4√15,解得y0=√15.又点M在椭圆C上,∴x0236+(√15)220=1,解得x0=3或x0=-3(舍去).∴点M的坐标为(3,√15).√15)16.正方体ABCD-A1B1C1D1的棱长为2,M,N,E,F分别是A1B1,AD,B1C1,C1D1的中点,则过EF且与MN平行的平面截正方体所得截面的面积为,CE和该截面所成角的正弦值为.A1D1的中点G,BC的中点P,CD的中点H,连接GM,GN,MN,PE,PH,PF,HF,∵MG∥EF,NG∥EP,MG∩NG=G,EF∩EP=E,∴平面MNG∥平面PEFH,∴过EF且与MN平行的平面截正方体所得截面为PEFH,∵PE=2,EF=√12+12=√2,四边形PEFH是矩形,∴过EF且与MN平行的平面截正方体所得截面PEFH的面积为S=2√2.以D1为原点,D1A1为x轴,D1C1为y轴,D1D为z轴,建立空间直角坐标系,E (1,2,0),F (0,1,0),H (0,1,2),C (0,2,2),EC ⃗⃗⃗⃗⃗ =(-1,0,2),EF ⃗⃗⃗⃗⃗ =(-1,-1,0),EH⃗⃗⃗⃗⃗⃗ =(-1,-1,2),设平面PEFH 的法向量n =(x ,y ,z ), 则{n ·EF ⃗⃗⃗⃗⃗ =-x -y =0,n ·EH ⃗⃗⃗⃗⃗⃗ =-x -y +2z =0,取x=1,得n =(1,-1,0),设CE 和该截面所成角为θ,则sin θ=|EC⃗⃗⃗⃗⃗ ·n||EC ⃗⃗⃗⃗⃗ ||n|=1√5·√2=√1010, ∴CE 和该截面所成角的正弦值为√1010.√2√1010四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)一座抛物线拱桥在某时刻水面的宽度为52米,拱顶距离水面6.5米.(1)建立如图所示的平面直角坐标系xOy ,试求拱桥所在抛物线的方程;(2)若一竹排上有一个4米宽、6米高的大木箱,问此木排能否安全通过此桥?由题意在平面直角坐标系xOy 中,设抛物线方程为y=ax 2(a<0).由条件得点(26,-6.5)在抛物线上,∴-6.5=262a ,解得a=-1104,∴抛物线方程为y=-1104x 2,即x 2=-104y.(2)由(1)可得抛物线的方程为x 2=-104y ,当x=2时,解得y=-126,∵6.5-6=0.5>126,∴木排可安全通过此桥.18.(12分)如图,已知以点A (-1,2)为圆心的圆与直线l 1:x+2y+7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P.(1)求圆A 的方程;(2)当|MN|=2√19时,求直线l 的方程.由于圆A 与直线l 1:x+2y+7=0相切,∴R=√5=2√5,∴圆A的方程为(x+1)2+(y-2)2=20.(2)①当直线l与x轴垂直时,易知x=-2与题意相符,使|MN|=2√19.②当直线l与x轴不垂直时,设直线l的方程为y=k(x+2),即kx-y+2k=0,连接AQ,则AQ⊥MN,∵|MN|=2√19,∴|AQ|=1,由|AQ|=√k2+1=1,得k=34.∴直线l:3x-4y+6=0,故直线l的方程为x=-2或3x-4y+6=0.19.(12分)(2020山东,20)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.PD⊥底面ABCD,所以PD⊥AD.又底面ABCD为正方形,所以AD⊥DC.所以AD⊥平面PDC.因为AD∥BC,AD不在平面PBC中,所以AD∥平面PBC,又因为AD⊂平面PAD,平面PAD∩平面PBC=l,所以l∥AD.所以l ⊥平面PDC.(2)D 为坐标原点,分别以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DP ⃗⃗⃗⃗⃗ 的方向为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系Dxyz.由PD=AD=1,得D (0,0,0),C (0,1,0),B (1,1,0),P (0,0,1),则DC⃗⃗⃗⃗⃗ =(0,1,0),PB ⃗⃗⃗⃗⃗ =(1,1,-1). 由(1)可设Q (a ,0,1),则DQ⃗⃗⃗⃗⃗⃗ =(a ,0,1). 设n =(x ,y ,z )是平面QCD 的法向量,则{n ·DQ ⃗⃗⃗⃗⃗⃗ =0,n ·DC ⃗⃗⃗⃗⃗ =0,即{ax +z =0,y =0.可取n =(-1,0,a ).所以cos <n ,PB⃗⃗⃗⃗⃗ >=n ·PB⃗⃗⃗⃗⃗ |n||PB⃗⃗⃗⃗⃗ |=√3√1+a 2.设PB 与平面QCD 所成角为θ,则sin θ=√33√1+a2=√33√1+2a a 2+1.因为√33√1+2a a 2+1≤√63,当且仅当a=1时,等号成立,所以PB 与平面QCD 所成角的正弦值的最大值为√63.20.(12分)已知抛物线x 2=2py (p>0)的焦点到直线l :x-y-2=0的距离为3√22. (1)求抛物线的标准方程;(2)设点C 是抛物线上的动点,若以点C 为圆心的圆在x 轴上截得的弦长均为4,求证:圆C 恒过定点.x 2=2py 的焦点坐标为(0,p2),由点到直线的距离公式可得(|-p 2-2|)√2=3√22, 解得p=2(负值舍去),所以抛物线的标准方程是x 2=4y.C 的坐标为(x 0,x 024),半径为r ,又圆C 在x 轴上截得的弦长为4,所以r 2=4+(x024)2,所以圆C 的标准方程为(x-x 0)2+(y -x024)2=4+(x 024)2,化简得(1-y2)x 02-2xx 0+(x 2+y 2-4)=0,对于任意的x 0∈R ,上述方程均成立,故有{1-y2=0,-2x =0,x 2+y 2=4,解得x=0,y=2,所以圆C 恒过定点(0,2).21.(12分)在矩形ABCD 中,AB=3,AD=2,E 是线段CD 上靠近点D 的一个三等分点,F 是线段AD 上的一个动点,且DF ⃗⃗⃗⃗⃗ =λDA ⃗⃗⃗⃗⃗ (0≤λ≤1).如图,将△BCE 沿BE 折起至△BEG ,使得平面BEG ⊥平面ABED.(1)当λ=12时,求证:EF ⊥BG.(2)是否存在λ,使得FG 与平面DEG 所成的角的正弦值为13?若存在,求出λ的值;若不存在,请说明理由.当λ=12时,F 是AD 的中点,∴DF=12AD=1,DE=13CD=1.∵∠ADC=90°,∴∠DEF=45°.∵CE=23CD=2,BC=2,∠BCD=90°,∴∠BEC=45°.∴BE ⊥EF.又平面GBE ⊥平面ABED ,平面GBE ∩平面ABED=BE ,EF ⊂平面ABED ,∴EF ⊥平面BEG.∵BG ⊂平面BEG ,∴EF ⊥BG.(2)存在.以C 为原点,CD⃗⃗⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ 的方向为x 轴,y 轴的正方向建立如图所示的空间直角坐标系. 则E (2,0,0),D (3,0,0),F (3,2λ,0).取BE 的中点O ,∵GE=BG=2,∴GO ⊥BE ,∴易证得OG ⊥平面BCE ,∵BE=2√2,∴OG=√2,∴G (1,1,√2).∴FG ⃗⃗⃗⃗⃗ =(-2,1-2λ,√2),EG⃗⃗⃗⃗⃗ =(-1,1,√2),DG ⃗⃗⃗⃗⃗ =(-2,1,√2).设平面DEG 的一个法向量为n =(x ,y ,z ),则{n ·DG ⃗⃗⃗⃗⃗ =-2x +y +√2z =0,n ·EG⃗⃗⃗⃗⃗ =-x +y +√2z =0,令z=√2,则n =(0,-2,√2).设FG 与平面DEG 所成的角为θ,则sin θ=|cos <FG ⃗⃗⃗⃗⃗ ,n >|=√6×√6+(1-2λ)2=13,解得λ=12或λ=-710(舍去), ∴存在实数λ,使得FG 与平面DEG 所成的角的正弦值为13,此时λ=12.22.(12分)(2020山东,22)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率为√22,且过点A (2,1).(1)求C 的方程;(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足,证明:存在定点Q ,使得|DQ|为定值.解由题设得4a 2+1b 2=1,a 2-b 2a 2=12,解得a 2=6,b 2=3,所以C 的方程为x 26+y 23=1.M (x 1,y 1),N (x 2,y 2).若直线MN 与x 轴不垂直,设直线MN 的方程为y=kx+m ,代入x 26+y 23=1得(1+2k 2)x 2+4kmx+2m 2-6=0.于是x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-61+2k 2.由AM ⊥AN 知AM ⃗⃗⃗⃗⃗⃗ ·AN⃗⃗⃗⃗⃗⃗ =0, 故(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=0,可得(k 2+1)x 1x 2+(km-k-2)(x 1+x 2)+(m-1)2+4=0.整理得(2k+3m+1)(2k+m-1)=0.因为A (2,1)不在直线MN 上,所以2k+m-1≠0,故2k+3m+1=0,k ≠1.于是MN 的方程为y=k (x -23)−13(k ≠1).所以直线MN 过点P (23,-13).若直线MN 与x 轴垂直,可得N (x 1,-y 1).由AM ⃗⃗⃗⃗⃗⃗ ·AN ⃗⃗⃗⃗⃗⃗ =0得(x 1-2)(x 1-2)+(y 1-1)(-y 1-1)=0.又x 126+y 123=1,可得3x 12-8x 1+4=0.解得x 1=2(舍去)或x 1=23.此时直线MN 过点P (23,-13).令Q 为AP 的中点,即Q (43,13).若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边,故|DQ|=12|AP|=2√23. 若D 与P 重合,则|DQ|=12|AP|.综上,存在点Q (43,13),使得|DQ|为定值.21 / 21。
2021年高三上学期12月月考数学试卷(文科)含解析一、选择题(每小题5分,共计50分)1.设i是虚数单位,复数( )A.3﹣2i B.3+2i C.2﹣3i D.2+3i2.集合A={x|x2﹣a≥0},B={x|x<2},若C R A⊆B,则实数a的取值范围是( ) A.(﹣∞,4] B.[0,4] C.(﹣∞,4)D.(0,4)3.已知a0=20.5,b=log32,c=log20.1,则( )A.a<b<c B.c<a<b C.c<b<a D.b<c<a4.下列四个结论:①若x>0,则x>sinx恒成立;②命题“若x﹣sinx=0则x=0”的逆命题为“若x≠0则x﹣sinx≠0”;③“命题p或q为真”是“命题p且q为真”的充分不必要条件;④命题“∀x∈R,x﹣lnx>0”的否定是“∃x0∈R,x0﹣lnx0≤0”.其中正确结论的个数是( )A.1个B.2个C.3个D.4个5.直线x+my+1=0与不等式组表示的平面区域有公共点,则实数m的取值范围是( )A.[,]B.[﹣,﹣]C.[,3] D.[﹣3,﹣]6.已知某几何体的三视图,则该几何体的体积是( )A.12 B.24 C.36 D.487.设0<a<1,则函数y=的图象大致为( )A.B.C.D.8.已知向量=(0,sinx),=(1,2cosx),函数f(x)=•,g(x)=2+2﹣,则f(x)的图象可由g(x)的图象经过怎样的变换得到( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度9.已知函数f (x)=Asin(ωx+φ),(0<φ<π)的图象如图所示,若f (x0)=3,x0∈(,),则sinx0的值为( )A. B. C. D.10.设f(x)=|lnx|,若函数g(x)=f(x)﹣ax在区间(0,3]上有三个零点,则实数a的取值范围是( )A.(0,)B.(,e)C.(0,]D.[,)二、解答题(每小题5分共计25分)11.已知sinα﹣cosα=,α∈(0,π),tanα=__________.12.已知平面向量=(1,2),=(﹣2,m),且⊥,则2+3=__________.13.函数y=lg(1﹣)+的定义域是__________.14.设甲、乙两个圆柱的底面积分别为S1、S2,体积分别为υ1,υ2,若它们的侧面积相等,且的值为__________.15.给出下列四个命题:①命题“∀x∈R,cosx>0”的否定是“∃x∈R,cosx≤0”;②a、b、c是空间中的三条直线,a∥b的充要条件是a⊥c且b⊥c;③命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为假命题;④对任意实数x,有f(﹣x)=f(x),且当x>0时,f′(x)>0,则当x<0时,f′(x)<0.其中的真命题是__________.(写出所有真命题的编号)三、解答题:16.已知函数f(x)=sinωxcosωx﹣cos2ωx﹣(ω>0,x∈R)的图象上相邻两个最高点的距离为π.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若△ABC三个内角A、B、C的对边分别为a、b、c,且c=,f(C)=0,sinB=3sinA,求a,b的值.17.已知数列{a n}前n项和S n满足:2S n+a n=1(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,数列{b n}的前n项和为T n,求证:T n<.18.已知函数.(1)求f(x)的最小正周期;(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间上的最大值和最小值,并求出相应的x的值.19.如图正方形ABCD的边长为ABCD的边长为,四边形BDEF是平行四边形,BD与AC 交于点G,O为GC的中点,平面ABCD.(I)求证:AE∥平面BCF;(Ⅱ)若,求证CF⊥平面AEF.20.(13分)已知函数f(x)=lnx﹣mx,m∈R(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)≤﹣2m+1在[1,+∞)上恒成立,求实数m的取值范围.21.(14分)近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录.为此,一公司举行某产品的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足(其中0≤x≤a,a为正常数).已知生产该产品还需投入成本(10+2P)万元(不含促销费用),产品的销售价格定为元/件.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,厂家的利润最大.xx山东省潍坊市寿光五中高三(上)12月月考数学试卷(文科)一、选择题(每小题5分,共计50分)1.设i是虚数单位,复数( )A.3﹣2i B.3+2i C.2﹣3i D.2+3i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】利用复数的运算法则即可得出.【解答】解:复数===3﹣2i,故选:A.【点评】本题考查了复数的运算法则,属于基础题.2.集合A={x|x2﹣a≥0},B={x|x<2},若C R A⊆B,则实数a的取值范围是( )A.(﹣∞,4]B.[0,4]C.(﹣∞,4)D.(0,4)【考点】补集及其运算;集合的包含关系判断及应用.【专题】集合.【分析】根据集合的补集关系进行求解即可.【解答】解:∵A={x|x2﹣a≥0}={x|x2≥a},∴C R A={x|x2≤a},若a<0,则C R A=∅,满足C R A⊆B,若a≥0,则C R A={x|x2<a}={x|﹣<x<},若C R A⊆B,则≤2,解得0≤a≤4,综上a≤4,故选:A【点评】本题主要考查集合的基本运算和集合关系的应用,注意分类讨论.3.已知a0=20.5,b=log32,c=log20.1,则( )A.a<b<c B.c<a<b C.c<b<a D.b<c<a【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】利用指数函数和对数函数的单调性即可得出.【解答】解:∵a=20.5>20=1,0<b=log32<log33=1,c=log20.1<log21=0.∴c<b<a.故选:C.【点评】本题考查了指数函数和对数函数的单调性,属于基础题.4.下列四个结论:①若x>0,则x>sinx恒成立;②命题“若x﹣sinx=0则x=0”的逆命题为“若x≠0则x﹣sinx≠0”;③“命题p或q为真”是“命题p且q为真”的充分不必要条件;④命题“∀x∈R,x﹣lnx>0”的否定是“∃x0∈R,x0﹣lnx0≤0”.其中正确结论的个数是( )A.1个B.2个C.3个D.4个【考点】命题的真假判断与应用.【专题】规律型;探究型;构造法;导数的概念及应用;简易逻辑.【分析】令f(x)=x﹣sinx,利用导数分析其单调性,可判断①;写出原命题的逆命题,可判断②;根据充要条件的定义,可判断③;写出原命题的否定,可判断④.【解答】解:令f(x)=x﹣sinx,则f′(x)=1﹣cosx≥0恒成立,故f(x)=x﹣sinx在R上为增函数,故x>0时,f(x)>f(0)=0,即x>sinx恒成立,故①正确;命题“若x﹣sinx=0,则x=0”的逆命题为“若x=0,则x﹣sinx=0”,故②错误;“命题p或q为真”时,“命题p且q为真”不一定成立,“命题p且q为真”时,“命题p或q为真”成立,故“命题p或q为真”是“命题p且q为真”的必要不充分条件,故③错误;④命题“∀x∈R,x﹣lnx>0”的否定是“∃x0∈R,x0﹣lnx0≤0”,故正确.其中正确结论的个数是2个,故选:B【点评】本题考查的知识点是全称命题的否定,四种命题,复合命题,函数的单调性,难度中档.5.直线x+my+1=0与不等式组表示的平面区域有公共点,则实数m的取值范围是( )A.[,]B.[﹣,﹣]C.[,3] D.[﹣3,﹣]【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用线性规划的知识即可得到结论.【解答】解:即直线x+my+1=0过定点D(﹣1,0)作出不等式组对应的平面区域如图:当m=0时,直线为x=﹣1,此时直线和平面区域没有公共点,故m≠0,x+my+1=0的斜截式方程为y=x,斜率k=,要使直线和平面区域有公共点,则直线x+my+1=0的斜率k>0,即k=>0,即m<0,满足k CD≤k<k AB,此时AB的斜率k AB=2,由解得,即C(2,1),CD的斜率k CD==,由,解得,即A(2,4),AD的斜率k AD==,即≤k≤,则≤≤,解得﹣3≤m≤﹣,故选:D.【点评】本题主要考查线性规划以及斜率的应用,利用数形结合是解决本题的关键.6.已知某几何体的三视图,则该几何体的体积是( )A.12 B.24 C.36 D.48【考点】由三视图求面积、体积.【专题】计算题;空间位置关系与距离.【分析】利用三视图判断几何体的形状,通过三视图是数据,求出几何体的体积即可.【解答】解:三视图复原的几何体是底面为边长4、3的矩形,高为3的棱锥,高所在棱垂直底面矩形的一个得到,所以棱锥的体积为:=12.故选:A.【点评】本题主要考查关于“几何体的三视图”与“几何体的直观图”的相互转化的掌握情况,同时考查空间想象能力.7.设0<a<1,则函数y=的图象大致为( )A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】利用0<a<1,判断a x,x>0时的范围,以及x<0时的范围,然后求解a x﹣1的范围,倒数的范围,即可判断函数的图象.【解答】解:因为0<a<1,x>0时,0<a x<1,﹣1<a x﹣1<0,<﹣1,x<0时,a x>1,a x﹣1>0,>0,观察函数的图象可知:B满足题意.故选:B.【点评】本题考查指数函数的图象,解题时要认真审题,仔细解答,注意合理地进行等价转化,注意函数的值域以及指数函数的性质.8.已知向量=(0,sinx),=(1,2cosx),函数f(x)=•,g(x)=2+2﹣,则f(x)的图象可由g(x)的图象经过怎样的变换得到( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【考点】函数y=Asin(ωx+φ)的图象变换;平面向量数量积的运算.【专题】平面向量及应用.【分析】由题意利用两个向量的数量积公式、诱导公式可得函数f(x)=sin2x,g(x)=sin2(x+),再根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.【解答】解:由题意可得函数f(x)=•=(2sinxcosx)=sin2x,g(x)=2+2﹣=sin2x+1+4cos2x﹣=3cos2x﹣=cos2x=sin(2x+)=sin2(x+),故把g(x)的图象向右平移个单位长度,可得f(x)的图象,故选:B.【点评】本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,统一这两个三角函数的名称,是解题的关键,属于基础题.9.已知函数f (x)=Asin(ωx+φ),(0<φ<π)的图象如图所示,若f (x0)=3,x0∈(,),则sinx0的值为( )A. B. C. D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】三角函数的图像与性质.【分析】由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,求出函数的解析式.再由f (x0)=3求出sin(x0+ )的值,可得cos(x0+ )的值,再由两角差的正弦公式求得sinx0 =sin[(x0+ )﹣]的值.【解答】解:由函数的图象可得A=5,且=,解得ω=1再由五点法作图可得1•+φ=,解得φ=.故函数的解析式为f(x)=5sin(x+ ).再由f (x0)=3,x0∈(,),可得5sin(1•x0+ )=3,解得sin(x0+ )=,故有cos(x0+ )=﹣,sinx0 =sin[(x0+ )﹣]=sin(x0+ )cos﹣cos(x0+ )sin=﹣(﹣)=.故选A.【点评】本题主要考查由函数y=Asin(ωx+∅)的部分图象求解析式,由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,两角差的正弦公式的应用,属于中档题.10.设f(x)=|lnx|,若函数g(x)=f(x)﹣ax在区间(0,3]上有三个零点,则实数a的取值范围是( )A.(0,)B.(,e)C.(0,]D.[,)【考点】根的存在性及根的个数判断;函数零点的判定定理.【专题】函数的性质及应用.【分析】首先,画出函数f(x)=|lnx|的图象,然后,借助于图象,结合在区间(0,3]上有三个零点,进行判断.【解答】解:函数f(x)=|lnx|的图象如图示:当a≤0时,显然,不合乎题意,当a>0时,如图示,当x∈(0,1]时,存在一个零点,当x>1时,f(x)=lnx,可得g(x)=lnx﹣ax,(x∈(1,3])g′(x)==,若g′(x)<0,可得x>,g(x)为减函数,若g′(x)>0,可得x<,g(x)为增函数,此时f(x)必须在[1,3]上有两个零点,∴解得,,在区间(0,3]上有三个零点时,,故选D.【点评】本题重点考查函数的零点,属于中档题,难度中等.二、解答题(每小题5分共计25分)11.已知sinα﹣cosα=,α∈(0,π),tanα=﹣1.【考点】同角三角函数间的基本关系.【专题】计算题;三角函数的求值.【分析】已知等式左边提取,利用两角和与差的正弦函数公式化简,求出sin(α﹣)的值为1,由α的范围,利用特殊角的三角函数值求出α的度数,即可求出tanα的值.【解答】解:∵sinα﹣cosα=sin(α﹣)=,∴sin(α﹣)=1,∵α∈(0,π),∴α﹣=,即α=,则tanα=﹣1.【点评】此题考查了同角三角函数间的基本关系,特殊角的三角函数值,以及两角和与差的正弦函数公式,熟练掌握公式及基本关系是解本题的关键.12.已知平面向量=(1,2),=(﹣2,m),且⊥,则2+3=(﹣4,7).【考点】平面向量的坐标运算.【专题】计算题;转化思想;向量法;平面向量及应用.【分析】由向量=(1,2),=(﹣2,m),且⊥,求出m的值,则2+3的答案可求.【解答】解:∵向量=(1,2),=(﹣2,m),且⊥,∴﹣2+2m=0,解得m=1,则2+3=2×(1,2)+3×(﹣2,1)=(﹣4,7).故答案为:(﹣4,7).【点评】本题考查了平面向量数量积的运算,考查了平面向量的坐标运算,是基础题.13.函数y=lg(1﹣)+的定义域是[log23,+∞).【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据函数成立的条件,即可求出函数的定义域.【解答】解:要使函数有意义,则,即,∴x≥log23,即函数的定义域为[log23,+∞),故答案为:[log23,+∞)【点评】本题主要考查函数定义域的求法,要求熟练掌握常见函数成立的条件,比较基础.14.设甲、乙两个圆柱的底面积分别为S1、S2,体积分别为υ1,υ2,若它们的侧面积相等,且的值为.【考点】棱柱、棱锥、棱台的体积;棱柱、棱锥、棱台的侧面积和表面积.【专题】空间位置关系与距离.【分析】设两个圆柱的底面半径分别为R,r,高分别为H,h,由=,得=,由它们的侧面积相等,得=,由此能求出.【解答】解:设两个圆柱的底面半径分别为R,r,高分别为H,h,∵=,∴=,∵它们的侧面积相等,∴=1,∴=,∴==()2×=.故答案为:.【点评】本题考查两个圆柱的体积的比值的求法,是中档题,解题时要注意圆柱的体积和侧面积计算公式的合理运用.15.给出下列四个命题:①命题“∀x∈R,cosx>0”的否定是“∃x∈R,cosx≤0”;②a、b、c是空间中的三条直线,a∥b的充要条件是a⊥c且b⊥c;③命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为假命题;④对任意实数x,有f(﹣x)=f(x),且当x>0时,f′(x)>0,则当x<0时,f′(x)<0.其中的真命题是①④.(写出所有真命题的编号)【考点】命题的真假判断与应用.【专题】简易逻辑.【分析】①利用命题的否定即可判断出;②由a⊥c且b⊥c可得a∥b或相交或为异面直线,另一方面由a∥b,推不出a⊥c,b⊥c,即可判断出;③在△ABC中,A>B⇔a>b,由正弦定理可得:,可得sinA>sinB.④利用偶函数的性质即可得出.【解答】解:①命题“∀x∈R,cosx>0”的否定是“∃x∈R,cosx≤0”,正确;②a、b、c是空间中的三条直线,由a⊥c且b⊥c可得a∥b或相交或为异面直线,由a∥b,推不出a⊥c,b⊥c,因此“a⊥c且b⊥c”是a∥b的既不充分也不必要条件,因此②不正确;③在△ABC中,由A>B⇔a>b,由正弦定理可得:,因此sinA>sinB.可知逆命题为真命题,因此不正确;④对任意实数x,有f(﹣x)=f(x),可知函数f(x)是偶函数.由当x>0时,f′(x)>0,则当x<0时,f′(x)<0.正确.综上可知:只有①④正确.故答案为:①④.【点评】本题综合考查了空间中的线线位置关系、三角形的边角关系、函数的奇偶性单调性、简易逻辑等基础知识与基本技能方法,属于基础题.三、解答题:16.已知函数f(x)=sinωxcosωx﹣cos2ωx﹣(ω>0,x∈R)的图象上相邻两个最高点的距离为π.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若△ABC三个内角A、B、C的对边分别为a、b、c,且c=,f(C)=0,sinB=3sinA,求a,b的值.【考点】余弦定理;两角和与差的正弦函数;正弦函数的单调性.【专题】解三角形.【分析】(Ⅰ)f(x)解析式利用二倍角的正弦、余弦函数公式化简,整理为一个角的正弦函数,根据题意确定出ω的值,确定出f(x)解析式,利用正弦函数的单调性求出函数f(x)的单调递增区间即可;(Ⅱ)由f(C)=0,求出C的度数,利用正弦定理化简sinB=3sinA,由余弦定理表示出cosC,把各自的值代入求出a与b的值即可.【解答】解:f(x)=sin2ωx﹣(1+cos2ωx)﹣=sin(2ωx﹣)﹣1,∵f (x )图象上相邻两个最高点的距离为π,∴=π,即ω=1,则f (x )=sin (2x ﹣)﹣1,(Ⅰ)令﹣+2k π≤2x ﹣≤+2k π,k ∈Z ,得到﹣+k π≤x ≤k π+,k ∈Z ,则函数f (x )的单调递增区间为[﹣+k π,k π+],k ∈Z ;(Ⅱ)由f (C )=0,得到f (C )=sin (2C ﹣)﹣1=0,即sin (2x ﹣)=1,∴2C ﹣=,即C=,由正弦定理=得:b=,把sinB=3sinA 代入得:b=3a ,由余弦定理及c=得:cosC===,整理得:10a 2﹣7=3a 2,解得:a=1,则b=3.【点评】此题考查了正弦、余弦定理,以及二倍角的正弦、余弦函数公式,熟练掌握定理是解本题的关键.17.已知数列{a n }前n 项和S n 满足:2S n +a n =1(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =,数列{b n }的前n 项和为T n ,求证:T n <.【考点】数列的求和;数列递推式.【专题】等差数列与等比数列.【分析】(I )利用递推式可得:.再利用等比数列的通项公式即可得出;(II )由(I )可得b n ==,;利用“裂项求和”即可得出数列{b n }的前n 项和为T n ,进而得到证明.【解答】(I )解:∵2S n +a n =1,∴当n ≥2时,2S n ﹣1+a n ﹣1=1,∴2a n +a n ﹣a n ﹣1=0,化为.当n=1时,2a 1+a 1=1,∴a 1=.∴数列{a n }是等比数列,首项与公比都为.∴.(II )证明:b n = ===,∴数列{b n }的前n 项和为T n =++…+=.∴T n <.【点评】本题考查了递推式的应用、等比数列的通项公式、“裂项求和”、不等式的证明,考查了推理能力与计算能力,属于中档题.18.已知函数.(1)求f(x)的最小正周期;(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间上的最大值和最小值,并求出相应的x的值.【考点】函数y=Asin(ωx+φ)的图象变换;三角函数中的恒等变换应用.【专题】三角函数的图像与性质.【分析】(1)利用三角函数的倍角公式和诱导公式化简函数f(x),然后直接由周期公式求周期;(2)通过函数的图象的平移求解函数g(x)的解析式为g(x)=,由x的范围求出的范围,从而求得函数g(x)的最值,并得到相应的x的值.【解答】解:(1)由,得==.∴f(x)的最小正周期为π;(2)∵将f(x)的图象向右平移个单位,得到函数g(x)的图象,∴=.∵x∈[0,)时,,∴当,即时,g(x)取得最大值2;当,即x=0时,g(x)取得最小值.【点评】本题考查了三角函数的倍角公式及诱导公式,考查了三角函数的图象平移,训练了三角函数的最值得求法,是中档题.19.如图正方形ABCD的边长为ABCD的边长为,四边形BDEF是平行四边形,BD与AC 交于点G,O为GC的中点,平面ABCD.(I)求证:AE∥平面BCF;(Ⅱ)若,求证CF⊥平面AEF.【考点】直线与平面垂直的判定;直线与平面平行的判定.【专题】证明题;数形结合;数形结合法;空间位置关系与距离.【分析】(I)利用正方形,平行四边形的性质可得AD∥BC,DE∥BF,可证平面ADE∥平面BCF,即可证明AE∥平面BCF…5分(Ⅱ)由已知可证AC2=AF2+CF2,由勾股定理可得CF⊥AF,又FO⊥平面ABCD,可得FO⊥BD,又AC⊥BD,即可证明BD⊥平面AFC,结合EF∥BD,即可证明EF⊥CF,从而可证CF⊥平面AEF.【解答】证明:(I)∵四边形ABCD为正方形,四边形BDEF是平行四边形,∴AD∥BC,DE∥BF,∵AD∩DE=D,BC∩BF=B,∴平面ADE∥平面BCF,又∵AE⊂平面ADE,∴AE∥平面BCF…5分(Ⅱ)∵正方形ABCD边长为2,∴对角线AC=4,又∵O为GC中点,∴AO=3,OC=1又∵FO⊥平面ABCD,且FO=,∴AF2=AO2+OF2=9+3=12,CF2=OC2+OF2=1+3=4,又AC2=16,∴AC2=AF2+CF2,∴CF⊥AF,又FO⊥平面ABCD,BD⊂平面ABCD,∴FO⊥BD又∵AC⊥BD∴BD⊥平面AFC,又∵EF∥BD,∴EF⊥平面AFC∴EF⊥CF,又EF∩AF=F∴CF⊥平面AEF…12分【点评】本题主要考查了直线与平面垂直的判定,直线与平面平行的判定,考查了空间想象能力和推理论证能力,属于中档题.20.(13分)已知函数f(x)=lnx﹣mx,m∈R(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)≤﹣2m+1在[1,+∞)上恒成立,求实数m的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】导数的概念及应用;导数的综合应用.【分析】(1)先对原函数求导数,然后通过解导数大于零或小于零的不等式得到原函数的单调区间;(2)先将原不等式归零化简,然后通过求函数的最值解决问题,只需利用导数研究函数的单调性即可,注意分类讨论.【解答】解:由题意可得,函数f(x)的定义域为(0,+∞),f′(x)=.(1)当m≤0时,f′(x)>0,此时函数f(x)在(0,+∞)上单调递增,当m>0时,令f′(x)>0,解得,令f′(x)<0,解得.所以当m≤0时,此时函数f(x)在(0,+∞)上单调递增;当m>0时,函数f(x)的单调递增区间为(0,),单调减区间为().(2)因为在[1,+∞)上恒成立.即在[1,+∞)上恒成立,令g(x)=,则,(1)当,即时,若,则g′(x)<0,g(x)是减函数,所以g(x)<g(1)=0,即g(x)≥0在[1,+∞)上不恒成立;(2)当,即时,若x>1,则g′(x)>0,g(x)是增函数,所以g(x)>g(1)=0,即,故当x≥1时,f(x)恒成立.综上所述,所求的正实数m的取值范围是.【点评】本题考查了利用导数研究函数的单调性的思路,以及不等式恒成立问题转化为函数的最值问题来解的基本思想.21.(14分)近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录.为此,一公司举行某产品的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足(其中0≤x≤a,a为正常数).已知生产该产品还需投入成本(10+2P)万元(不含促销费用),产品的销售价格定为元/件.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,厂家的利润最大.【考点】基本不等式在最值问题中的应用.【专题】不等式的解法及应用.【分析】(1)根据产品的利润=销售额﹣产品的成本建立函数关系;(2)利用基本不等式可求出该函数的最值,注意等号成立的条件.【解答】解:(1)由题意知,,将代入化简得:(0≤x≤a).…(2),当且仅当,即x=1时,上式取等号.…当a≥1时,促销费用投入1万元时,厂家的利润最大;当a<1时,在[0,a]上单调递增,所以x=a时,函数有最大值.即促销费用投入a万元时,厂家的利润最大.综上,当a≥1时,促销费用投入1万元,厂家的利润最大;当a<1时,促销费用投入a万元,厂家的利润最大.…【点评】本题主要考查了函数模型的选择与应用,以及基本不等式在最值问题中的应用,同时考查了计算能力,属于中档题.。
模块卷(一)时间:120分钟 分值:145分集合、常用逻辑用语、函数、导数、不等式一、选择题:本题共7小题,每小题5分,共35分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2020浙江嘉兴期末,3)设曲线y =x+1x -2在点(1,-2)处的切线与直线ax +by +c =0垂直,则ab= ( )A.13 B.-13C.3D.-3 答案 B y'=x -2-(x+1)(x -2)2=-3(x -2)2,y'|x =1=-3,因为曲线y =x+1x -2在点(1,-2)处的切线与直线ax +by +c =0垂直,所以(-3)·(-a b)=-1,解得a b=-13,故选B .2.(2020新疆昌吉期中,6)若a >0,b >0,a +2b =3,则3a +6b的最小值为 ( ) A.5 B.6 C.8 D.9答案 D 本题考查基本不等式在求最值中的应用,考查了数学运算的核心素养. ∵a >0,b >0,a +2b =3,∴3a +6b =13(3a+6b)(a +2b ) =13(3+6b a +6a b +12)≥13×(15+2√6b a ·6ab )=9, 当且仅当6b a =6a b,即a =b =1时取等号, 所以3a +6b的最小值为9.故选D .3.(2019天津耀华中学一模,2)已知f (x )是定义在R 上的周期为2的奇函数,当x ∈(0,1)时,f (x )=sin π2x ,则f (-52)+f (1)+f (2)=( )A.-2-√22B.-1-√22 C.-√22 D.1-√22 答案 C ∵f (x )是定义在R 上的周期为2的奇函数, ∴f (0)=0,f (1)=f (-1)=-f (1),∴f (1)=0, ∴f (-52)+f (1)+f (2)=-f (52)+f (1)+f (0) =-f (12)+0+0=-sin π4=-√22.4.(2020北京,9,4分)已知α,β∈R ,则“存在k ∈Z 使得α=k π+(-1)kβ”是“sin α=sin β”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 C (1)充分性:已知存在k ∈Z 使得α=k π+(-1)kβ,(i )若k 为奇数,则k =2n +1,n ∈Z ,此时α=(2n +1)π-β,n ∈Z ,sin α=sin (2n π+π-β)=sin (π-β)=sin β; (ii )若k 为偶数,则k =2n ,n ∈Z ,此时α=2n π+β,n ∈Z , sin α=sin (2n π+β)=sin β.由(i )(ii )知,充分性成立.(2)必要性:若sin α=sin β成立,则角α与β的终边重合或角α与β的终边关于y 轴对称,即α=β+2m π或α+β=2m π+π,m ∈Z ,即存在k ∈Z 使得α=k π+(-1)kβ,必要性也成立,故选C .5.(2017山东文,9,5分)设f (x )={√x ,0<x <1,2(x -1),x ≥1.若f (a )=f (a +1),则f (1a )=( )A.2B.4C.6D.8答案 C 本题考查分段函数与函数值的计算.解法一:当0<a <1时,a +1>1,∴f (a )=√a ,f (a +1)=2(a +1-1)=2a.由f (a )=f (a +1)得√a =2a ,∴a =14.此时f (1a )=f (4)=2×(4-1)=6.当a ≥1时,a +1>1,∴f (a )=2(a -1),f (a +1)=2(a +1-1)=2a.由f (a )=f (a +1)得2(a -1)=2a ,无解.综上,f (1a)=6,故选C .解法二:∵当0<x <1时,f (x )=√x ,为增函数,当x ≥1时,f (x )=2(x -1),为增函数,又f (a )=f (a +1),∴√a =2(a +1-1),∴a =14.∴f (1a )=f (4)=6.6.(2020浙江镇海中学分校检测,6)已知函数f (x )=√a ·4x +a ·2x +3a -6的定义域是R ,则实数a 的取值范围是 ( ) A.[2,+∞) B.[2411,+∞) C.(0,2411] D.(-∞,2411] 答案 A 令t =2x(t >0),则at 2+at +3a -6≥0对t >0恒成立,所以a ≥6t 2+t+3,又6t 2+t+3<63=2,所以a ≥2.故选A .7.(2020新高考Ⅰ,8,5分)若定义在R 的奇函数f (x )在(-∞,0)单调递减,且f (2)=0,则满足xf (x -1)≥0的x 的取值范围是( )A.[-1,1]∪[3,+∞)B.[-3,-1]∪[0,1]C.[-1,0]∪[1,+∞)D.[-1,0]∪[1,3]答案 D ∵f (x )是定义在R 上的奇函数,∴f (x -1)的图象关于点(1,0)中心对称,又∵f (x )在(-∞,0)上单调递减,∴f (x -1)在(-∞,1)上单调递减,在(1,+∞)上也单调递减,且过(-1,0)和(3,0),f (x -1)的大致图象如图: 当-1≤x ≤0时,f (x -1)≤0,∴xf (x -1)≥0;当1≤x ≤3时,f (x -1)≥0,∴xf (x -1)≥0.综上,满足xf (x -1)≥0的x 的取值范围是[-1,0]∪[1,3].故选D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.8.(2020山东百师联盟测试五,11)常数a ≠0,下列有关方程x 3+x 2-x -a =0的根的说法正确的是 ( )A.可以有三个负根B.可以有两个负根和一个正根C.可以有两个正根和一个负根D.可以有三个正根答案 BC 方程x 3+x 2-x -a =0可化为x 3+x 2-x =a.令函数f (x )=x 3+x 2-x ,则f'(x )=3x 2+2x -1=(3x -1)(x +1).当x <-1或x >13时,f'(x )>0,当-1<x <13时,f'(x )<0,故f (x )在(-∞,-1),(13,+∞)上为单调增函数,在(-1,13)上为单调减函数,且f (-1)>0,f (13)<0,作出f (x )的图象如图,从而方程x 3+x 2-x -a =0可以有两个正根和一个负根,也可以有两个负根和一个正根,但不会有三个负根,也不会有三个正根.故选BC .9.(多选题)(2020山东枣庄、滕州期末)如图所示,一座小岛距离海岸线上最近的P 点的距离是2km ,从P 点沿海岸正东12km 处有一个城镇.假设一个人驾驶的小船的平均速度为3km/h ,步行的速度为5km/h ,时间t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.设u =√x 2+4+x ,v =√x 2+4-x ,则 ( )A.函数v =f (u )为减函数B.15t -u -4v =32C.当x =1.5时,此人从小岛到城镇花费的时间最少D.当x =4时,此人从小岛到城镇花费的时间不超过3h 答案 AC A .∵u =√x 2+4+x ,v =√x 2+4-x ,∴√x 2+4=u+v 2,x =u -v 2,uv =4,易知v =4u在(0,+∞)上是减函数,A 正确.B.t =√x 2+43+12-x 5=u+v 6+125-u -v10,整理得15t =u +4v +36,B 错误; C.由A 、B 得15t =u +16u+36≥2√u ·16u +36=44,当且仅当u =16u ,即u =4时取等号,由√x 2+4+x =4,解得x =32=1.5,C 正确;D.x =4时,t =2√53+85,t -3=2√53-75=10√5-2115=√500-√44115>0,t >3,D 错误.故选AC. 10.(2020山东夏季高考模拟,12)函数f (x )的定义域为R ,且f (x +1)与f (x +2)都为奇函数,则 ( ) A.f (x )为奇函数 B.f (x )为周期函数 C.f (x +3)为奇函数 D.f (x +4)为偶函数答案 ABC 本题主要考查函数的奇偶性,周期性,考查逻辑推理的核心素养.∵f (x +1)为奇函数,∴f (-x +1)=-f (x +1), ∴f (-x )=-f (x +2),又∵f (x +2)为奇函数,∴f (-x +2)=-f (x +2), ∴f (-x )=-f (x +4),∴-f (x +2)=-f (x +4), ∴f (x +2)=f (x +4),即f (x +2)=f (x ),∴f (x )是周期为2的奇函数,∴f (x +4)是奇函数. 由于f (x )的周期为2,且f (x +1)是奇函数, ∴f (x +3)=f (x +1)是奇函数,故A ,B ,C 均正确.11.(多选题)(2020海南调研测试,12)已知函数f (x )=x +sin x -x cos x 的定义域为[-2π,2π),则 ( ) A.f (x )为奇函数 B.f (x )在[0,π)上单调递增C.f (x )恰有4个极大值点D.f (x )有且仅有4个极值点答案 BD 因为f (x )的定义域为[-2π,2π),所以f (x )是非奇非偶函数.f'(x )=1+cos x -(cos x -x sin x )=1+x sin x ,当x ∈[0,π)时,f'(x )>0,则f (x )在[0,π)上单调递增,显然f'(0)≠0,令f'(x )=0,得sin x =-1x,分别作出y =sin x ,y =-1x在区间[-2π,2π)上的图象,由图可知,这两个函数的图象在区间[-2π,2π)上共有4个公共点,且两图象在这些公共点上都不相切,故f (x )在区间[-2π,2π)上的极值点的个数为4,且f (x )只有2个极大值点,故选BD .三、填空题:本题共4小题,每小题5分,共20分.12.(2020浙江“七彩阳光”联盟4月模考,11)集合A ={x |-1≤x ≤2},B ={x |1<x <4},则A ∩B = ;A ∩(∁R B )=.答案 (1,2];[-1,1]解析 本题考查集合的基本运算.A =[-1,2],B =(1,4),所以A ∩B =(1,2],∁R B =(-∞,1]∪[4,+∞),所以A ∩(∁R B )=[-1,1].13.(2020天津,14,5分)已知a >0,b >0,且ab =1,则12a +12b +8a+b的最小值为 .答案 4 解析 12a +12b +8a+b =a+b 2ab +8a+b =a+b 2+8a+b ≥2√a+b 2×8a+b =4,当且仅当a+b 2=8a+b,即(a +b )2=16,也即a +b =4时取等号.又∵ab =1,∴{a =2+√3,b =2-√3或{a =2-√3,b =2+√3时取等号,∴12a +12b +8a+b的最小值为4.14.(2020浙江嘉兴二模,16)已知函数f (x )={lnx ,x >0,(12)x -2,x ≤0,若f (f (a ))≤0,则实数a 的取值范围为 . 答案 [-log 23,0]∪[1e,e]解析 本题考查分段函数和不等式的求解,属于基础题.令f (x )≤0,即{lnx ≤0,x >0或{(12)x-2≤0,x ≤0,解得0<x ≤1或-1≤x ≤0,所以f (f (a ))≤0等价于0<f (a )≤1或-1≤f (a )≤0,所以{0<lna ≤1,a >0或{0<(12)a-2≤1,a ≤0或{-1≤lna ≤0,a >0 或{-1≤(12)a-2≤0,a ≤0,解得-log 23≤a ≤0或1e≤a ≤e .15.(2018江苏,11,5分)若函数f (x )=2x 3-ax 2+1(a ∈R )在(0,+∞)内有且只有一个零点,则f (x )在[-1,1]上的最大值与最小值的和为 . 答案 -3解析 本题考查利用导数研究函数的极值和最值. ∵f (x )=2x 3-ax 2+1,∴f'(x )=6x 2-2ax =2x (3x -a ).若a ≤0,则x >0时,f'(x )>0,∴f (x )在(0,+∞)上为增函数,又f (0)=1,∴f (x )在(0,+∞)上没有零点,∴a >0.当0<x <a 3时,f'(x )<0,f (x )为减函数;当x >a 3时,f'(x )>0,f (x )为增函数,∴x >0时,f (x )有极小值,为f (a 3)=-a 327+1. ∵f (x )在(0,+∞)内有且只有一个零点, ∴f (a 3)=0,∴a =3.∴f (x )=2x 3-3x 2+1,则f'(x )=6x (x -1).x -1(-1,0) 0(0,1) 1f'(x )+-f (x )-4增1减∴f (x )在[-1,1]上的最大值为1,最小值为-4. ∴最大值与最小值的和为-3.四、解答题:共70分.解答应写出文字说明,证明过程或演算步骤. 16.(10分)(2019安徽黄山模拟,18)已知函数f (x )=log 2(12x +a). (1)若函数f (x )是R 上的奇函数,求a 的值;(2)若函数f (x )的定义域是一切实数,求a 的取值范围;(3)若函数f (x )在区间[0,1]上的最大值与最小值的差不小于2,求实数a 的取值范围. 解析 (1)因为函数f (x )是R 上的奇函数, 所以f (0)=0,求得a =0.(2分)当a =0时,f (x )=-x 是R 上的奇函数. 所以a =0为所求.(4分)(2)因为函数f (x )的定义域是一切实数,所以12x +a >0恒成立.即a >-12x 恒成立,由于-12x ∈(-∞,0), (6分) 故只要a ≥0即可.(7分)(3)由已知得函数f (x )是减函数,故f (x )在区间[0,1]上的最大值是f (0)=log 2(1+a ),最小值是f (1)=log 2(12+a).(8分)由题设得log 2(1+a )-log 2(12+a)≥2⇒{a +12>0,a +1≥4a +2.(11分)故-12<a ≤-13.(12分)17.(12分)已知函数f (x )=(x -√2x -1)·e -x(x ≥12). (1)求f (x )的导函数;(2)求f (x )在区间[12,+∞)上的取值范围.解析 本题主要考查函数的最大(小)值,导数的运算及其应用,同时考查分析问题和解决问题的能力. (1)因为(x -√2x -1)'=1-1√2x -1,(e -x )'=-e -x,所以f'(x )=(11√2x -1)e -x -(x -√2x -1)e -x=√2x -1-2)e -x √2x -1>12).(2)由f'(x )=√2x -1-2)e -x√2x -1=0,解得x =1或x =52. 因为x 12 (12,1) 1 (1,52) 52(52,+∞)f'(x )- 0 + 0- f (x )12e -12 ↘↗12e -52 ↘又f (x )=12(√2x -1-1)2e -x≥0,所以f (x )在区间[12,+∞)上的取值范围是[0,12e -12].18.(12分)(2019山西晋中模拟,18)已知f (x )=ax 2-2x +1-a ,a ∈R .(1)求f (x )在[0,2]上的最小值g (a );(2)若关于x 的方程f (2x )=(a +1)·4x -a ·(2x +1)-2x +1+3有正实数根,求实数a 的取值范围. 解析 (1)当a =0时,f (x )=-2x +1在[0,2]上单调递减,故最小值g (a )=f (2)=-3. 当a ≠0时,f (x )=ax 2-2x +1-a 是关于x 的二次函数,其图象的对称轴为x =1a.①当a <0时,x =1a<0,此时f (x )在[0,2]上单调递减, 故最小值g (a )=f (2)=3a -3; ②当a >0时,x =1a>0,当1a ∈(0,2),即a >12时,f (x )在(0,1a )上单调递减,在(1a ,2)上单调递增,故最小值g (a )=f (1a )=1-a -1a; 当1a∈[2,+∞),即0<a ≤12时,f (x )在[0,2]上单调递减, 故最小值g (a )=f (2)=3a -3.综上所述,g (a )={3a -3,a ≤12,1-1a-a ,a >12.(2)f (2x )=(a +1)4x-a (2x+1)-2x +1+3即a ·4x-2x +1+1-a =(a +1)4x-a (2x+1)-2x +1+3,化简得4x-a ·2x+2=0, 令t =2x (t >0),则方程变形为t 2-at +2=0, 根据题意得,原方程4x -a ·2x+2=0有正实数根,即关于t 的一元二次方程t 2-at +2=0有大于1的实数根, 而方程t 2-at +2=0⇔2t+t =a 在(1,+∞)上有实根,令F (t )=2t+t ,t ∈(1,+∞),则F (t )在(1,+∞)上的值域为[2√2,+∞),故a ∈[2√2,+∞). 19.(12分)已知函数f (x )=2x 3-ax 2+2.(1)讨论f (x )的单调性;(2)当0<a <3时,记f (x )在区间[0,1]的最大值为M ,最小值为m ,求M -m 的取值范围.解析 本题考查导数及其应用的基础知识,考查导数与函数单调性之间的关系以及利用导数求函数最值的方法,考查学生的运算求解能力、推理论证能力以及分类讨论思想的应用. (1)f'(x )=6x 2-2ax =2x (3x -a ). 令f'(x )=0,得x =0或x =a 3.若a >0,则当x ∈(-∞,0)∪(a 3,+∞)时,f'(x )>0; 当x ∈(0,a 3)时,f'(x )<0.故f (x )在(-∞,0),(a 3,+∞)单调递增,在(0,a 3)单调递减; 若a =0,f (x )在(-∞,+∞)单调递增;若a <0,则当x ∈(-∞,a 3)∪(0,+∞)时,f'(x )>0; 当x ∈(a 3,0)时,f'(x )<0.故f (x )在(-∞,a 3),(0,+∞)单调递增,在(a 3,0)单调递减.(2)当0<a <3时,由(1)知,f (x )在(0,a 3)单调递减,在(a 3,1)单调递增,所以f (x )在[0,1]的最小值为f (a 3)=-a 327+2,最大值为f (0)=2或f (1)=4-a. 于是m =-a 327+2,M ={4-a ,0<a <2,2,2≤a <3.所以M -m ={2-a +a 327,0<a <2,a327,2≤a <3.当0<a <2时,可知2-a +a 327单调递减,所以M -m 的取值范围是(827,2). 当2≤a <3时,a 327单调递增,所以M -m 的取值范围是[827,1). 综上,M -m 的取值范围是[827,2). 20.(12分)(2019苏州期中,18)已知f (x )=e x-a ex 是奇函数. (1)求实数a 的值;(2)求函数y =e 2x+e -2x-2λf (x )在x ∈[0,+∞)上的值域; (3)令g (x )=f (x )-2x ,求不等式g (x 3+1)+g (1-3x 2)<0的解集. 解析 (1)函数的定义域为R ,因为f (x )为奇函数, 所以f (0)=0,所以1-a =0,所以a =1. (3分)当a =1时,f (-x )=e -x-1e -x =-e x +1ex =-f (x ), 此时f (x )为奇函数. (4分) (2)令e x-1ex =t (t ≥0),所以e 2x+1e 2x=t 2+2, 所以h (t )=t 2-2λt +2,对称轴为直线t =λ. (5分)①当λ≤0时,h (t )∈[h (0),+∞),所求值域为[2,+∞); (7分)②当λ>0时,h (t )∈[h (λ),+∞),所求值域为[2-λ2,+∞). (9分)(3)g (x )的定义域为R .因为f (x )=e x -1e x 为奇函数,所以g (-x )=f (-x )-2(-x )=-f (x )+2x =-g (x ),所以g (x )=f (x )-2x 为奇函数,所以g (x 3+1)+g (1-3x 2)<0等价于g (x 3+1)<g (3x 2-1). (10分)又g'(x )=f'(x )-2=e x +1e x -2≥2-2=0,当且仅当x =0时,等号成立,所以g (x )=f (x )-2x 在R 上单调递增,所以x 3+1<3x 2-1,即x 3-3x 2+2<0, (13分)即(x -1)(x 2-2x -2)<0,所以x <1-√3或1<x <1+√3. (14分)所以不等式的解集是(-∞,1-√3)∪(1,1+√3). (15分)21.(12分)(2020北京房山一模,20)已知函数f (x )=2x 3-ax 2+2. (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)讨论函数f (x )的单调性;(3)若a >0,设函数g (x )=|f (x )|,g (x )在[-1,1]上的最大值不小于3,求a 的取值范围.解析 本题考查导数的几何意义、导数的应用、导数与函数的单调性,考查学生解决问题的能力,渗透逻辑推理、数学运算的核心素养.(1)f'(x )=6x 2-2ax ,由f'(0)=0,f (0)=2,得曲线y =f (x )在点(0,f (0))处的切线方程为y =2.(2)函数f (x )的定义域为R ,f'(x )=6x 2-2ax =2x (3x -a ),令f'(x )=0,解得x 1=0,x 2=a 3,若a =0,则f'(x )=6x 2≥0,f (x )在R 上单调递增;若a >0,当x <0时,f'(x )>0,f (x )单调递增,当0<x <a 3时,f'(x )<0,f (x )单调递减,当x >a 3时,f'(x )>0,f (x )单调递增; 若a <0,当x <a 3时,f'(x )>0,f (x )单调递增,当a 3<x <0时,f'(x )<0,f (x )单调递减,当x >0时,f'(x )>0,f (x )单调递增.(3)若a >0,函数f (x )的单调递减区间为(0,a 3),单调递增区间为(-∞,0),(a 3,+∞).当a 3≥1,即a ≥3时,f (x )在[-1,0]上单调递增,在[0,1]上单调递减,则g (x )max =max {|f (-1)|,|f (0)|,|f (1)|}=max {a ,2,|4-a |}≥3,则a ≥3;当0<a 3<1,即0<a <3时,f (x )在[-1,0]和[a 3,1]上单调递增,在[0,a 3]上单调递减,∴f (x )在x =a 3处取得极小值,极小值为f (a 3)=2-a 327>0,则g (x )max =max {|f (-1)|,|f (0)|,|f (1)|}=max {a ,2,4-a },若g (x )max ≥3,则4-a ≥3,解得a ≤1,又0<a <3,∴0<a ≤1.综上,a 的取值范围为(0,1]∪[3,+∞).。
高中数学选修1-2(人教A 版)综合测试题一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.独立性检验,适用于检查______变量之间的关系 ( )A.线性B.非线性C.解释与预报D.分类2.样本点),(,),,(),,(2211n n y x y x y x 的样本中心与回归直线a x b y ˆˆˆ+=的关系( )A.在直线上B.在直线左上方C. 在直线右下方D.在直线外 3.复平面上矩形ABCD 的四个顶点中,C B A 、、所对应的复数分别为i 32+、i 23+、i 32--,则D 点对应的复数是 ( ) A.i 32+- B.i 23-- C.i 32- D.i 23-4.在复数集C 内分解因式5422+-x x 等于 ( ) A.)31)(31(i x i x --+- B.)322)(322(i x i x --+- C.)1)(1(2i x i x --+- D.)1)(1(2i x i x -+++5.已知数列 ,11,22,5,2,则52是这个数列的 ( ) A.第6项 B.第7项 C.第19项 D.第11项6.用数学归纳法证明)5,(22≥∈>*n N n n n成立时,第二步归纳假设正确写法是( ) A.假设k n =时命题成立 B.假设)(*∈=N k k n 时命题成立 C.假设)5(≥=n k n 时命题成立 D.假设)5(>=n k n 时命题成立 7.2020)1()1(i i --+的值为 ( )A.0B.1024C.1024-D.10241- 8.确定结论“X 与Y 有关系”的可信度为5.99℅时,则随即变量2k 的观测值k 必须( ) A.大于828.10 B.小于829.7 C.小于635.6 D.大于706.2 9.已知复数z 满足||z z -=,则z 的实部 ( ) A.不小于0 B.不大于0 C.大于0 D.小于0 10.下面说法正确的有 ( ) (1)演绎推理是由一般到特殊的推理; (2)演绎推理得到的结论一定是正确的; (3)演绎推理一般模式是“三段论”形式;(4)演绎推理的结论的正误与大前提、小前提和推理形式有关。
山东省滨州市(新版)2024高考数学人教版考试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知函数,则曲线在点处的切线与两坐标轴围成的三角形的面积等于()A.1B.C.D.第(2)题已知全集,集合,,则图中阴影部分表示的集合为().A.B.C.D.第(3)题下图是梁思成研究广济寺三大士殿的手稿,它是该建筑中垂直于房梁的截面,其中是房梁与该截面的交点,,分别是两房檐与该截面的交点,该建筑关于房梁所在铅垂面(垂直于水平面的面)对称,测得柱子与之间的距离是(为测量单位),柱子与之间的距离是.如果把,视作线段,记,,是的四等分点,,,是的四等分点,若,则线段的长度为()A.B.C.D.第(4)题已知集合,,则()A.B.C.D.第(5)题设集合,,则()A.B.C.D.第(6)题设i是虚数单位,若复数,则z的共轭复数为()A.B.C.D.第(7)题已知集合,,则()A.B.C.D.第(8)题对于无穷数列,定义(),则“为递增数列”是“为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知等差数列的公差为,前项和为,,,则()A.B.C.D.取得最大值时,第(2)题已知a,b,c为实数,且,则下列不等式一定成立的是()A.B.C.D.第(3)题用一个平面去截正方体,关于截面的说法,正确的有()A.截面有可能是三角形,并且有可能是正三角形B.截面有可能是四边形,并且有可能是正方形C.截面有可能是五边形,并且有可能是正五边形D.截面有可能是六边形,并且有可能是正六边形三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知数列的通项公式为,数列是以1为首项,2为公比的等比数列,则___________.第(2)题若至少存在一个,使得关于的不等式成立,则实数的取值范围为______.第(3)题已知过抛物线的焦点且倾斜角为的直线交抛物线于、两点,则线段的中点到轴的距离是______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图所示,ABCD为矩形,PD垂直于平面AC,平面PBC与底面AC所成的角是45,M为PC的中点,证明:DM⊥平面PBC第(2)题在数列中,,.(1)求证:数列为等比数列,并求数列的通项公式;(2)设,求数列的前项和.第(3)题如图,矩形是圆柱的轴截面,分别是上、下底面圆周上的点,且.(1)求证:;(2)若四边形为正方形,求平面与平面夹角的正弦值第(4)题某手机配件生产厂为了了解该厂生产同一型号配件的甲、乙两车间的生产质量.质检部门随机从甲、乙两车间各抽检了件配件,其检测结果:等级一等品二等品次品甲车间配件频数乙车间配件频数其中一、二等品为正品.(1)分别估计甲、乙车间生产出配件的正品的概率;(2)该厂规定一等品每件的出厂价是二等品每件的出厂价的倍.已知每件配件的生产成本为元,根据环保要求,每件次品需要处理费用为元,厂家要求生产的每件配件的平均利润不低于元,求二等品每件的出厂的最低价.第(5)题已知的角对边分别为,满足,.(1)求;(2)求外接圆的半径.。
2024届高三12月大联考(新课标卷)数学·全解全析及评分标准一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的。
1.B 【解析】因为{|21}M x x ,{|2N x x 或1}x ,所以M N (2,1] ,故选B . 2.A 【解析】根据全称命题的否定为特称命题,知命题“0,ln(21)0x x ”的否定是“0,ln(21)0x x ”.故选A .3.C 【解析】由(1,3) a ,(1,2) b ,得(1,32), a b (2,5) a b .因为向量 a b 与 a b 垂直,所以()()0 a b a b ,即2(1)5(32)0 ,所以2215100 ,解得1217.故选C .4.D 【解析】将函数2πcos(2)3y x的图象向左平移π6个单位长度后,所得图象对应的函数表达式为π2πππππcos[2(cos(2)cos[(2)]sin(2633626y x x x x ,故选D .5.A 【解析】5(21)x 展开式的通项为515=C (2)(1)rr r r T x ,0,1,2,3,4,5r ,所以25(1)(21)x x 的展开式中3x 项为2414232355C (2)(1)1C (2)(1)90x x x x ,所以25(1)(21)x x 的展开式中3x 项的系数为90.故选A.6.C 【解析】由(1)f x 是奇函数,得(1)(1)f x f x ,即(2)()f x f x ,则函数()y f x 的图象关于点(1,0)中心对称,直线1y x 也关于点(1,0)中心对称.又曲线()y f x 与直线1y x 有且仅有3个交点,则这3个交点中有2个点关于点(1,0)对称,另一个点为(1,0),所以这3个交点的横坐标之和为3,故选C .7.B 【解析】由题意,知基座的体积为22113030343413073π17[((]π130********V.设塔身底面正八边形的边长为a,则1)a,所以底面面积2211)242S2252)500 ,所以塔身的体积为2136500V S ,所以辽阳白塔模型基座和塔身的体积之和12V V V 13073650019573 ,故选B .8.D 【解析】方法一:因为sin y x 在π(02,上单调递增,所以3π2sin sin 2323a b .设()1ln g x x x ,则11()1x g x x x,当[1)x ,时,1()0x g x x,所以3()(1)11ln102g g ,所以331ln 22 ,即13ln 22 ,所以213ln 322b c .综上,得a b c ,故选D .方法二:因为sin y x 在π(0)2,上单调递增,所以3π2sin sin 2323a b .又213ln 322b c.综上,得a b c ,故选D . 二、选择题:本题共4小题,每小题5分,共20分。
2021-2022学年山东省潍坊市高三(上)抽测数学试卷(12月份)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)如图,设全集U=N,集合A={1,3,5,7,9},B={x∈Z|0<x<6},则图中阴影部分表示的集合为()A.{2,4}B.{7,9}C.{1,3,5}D.{1,2,3,4,5} 2.(5分)命题“所有奇数的立方是奇数”的否定是()A.所有奇数的立方不是奇数B.不存在一个奇数,它的立方是偶数C.存在一个奇数,它的立方是偶数D.不存在一个奇数,它的立方是奇数3.(5分)在复平面内,复数z对应的点的坐标是(−12,√32),则z2=()A.z B.z C.|z|2D.﹣z4.(5分)为了鼓励学生积极锻炼身体,强健体魄,某学校决定每学期对体育成绩在年级前100名的学生给予专项奖励.已知该校高三年级共有500名学生,如图是该年级学生本学期体育测试成绩的频率分布直方图.据此估计,能够获得该项奖励的高三学生的最低分数为()A.89B.88C.87D.865.(5分)函数y=(1+cosx)(x−1x)的部分图象大致为()A .B .C .D .6.(5分)根据《民用建筑工程室内环境污染控制标准》,室内某污染物的浓度≤0.1mg /m 3为安全范围.已知一公共场所使用含有该污染物的喷剂,处于良好的通风环境下时,该污染物浓度ρ(t )(单位:mg /m 3)与竣工后保持良好通风的时间t (t ∈N *)(单位:周)近似满足函数关系式ρ(t )=3at +b ,若竣工1周后该污染物浓度为6.25mg /m 3,3周后室内该污染物浓度为2.25mg /m 3,则要达到安全使用标准,该建筑物室内至少需要通风放置的时间为( )(参考数据:(35)7≈0.028,(35)8≈0.017,(35)9≈0.010) A .8周B .9周C .10周D .11周7.(5分)五角星是指有五只尖角、并以五条直线画成的星星图形,有许多国家的国旗设计都包含五角星,如中华人民共和国国旗.如图在正五角星中,每个角的角尖为36°,则下列说法正确的是( )A .CH →+ID →=0→B .AB →∥FE →C .AF →+FG →=2HG →D .AF →=AB →+AJ →8.(5分)牟合方盖是由我国古代数学家刘徽首先发现并采用的一种用于计算球体体积的方法,该方法不直接给出球体的体积,而是先计算牟合方盖的体积.刘徽通过计算,“牟合方盖”的体积与球的体积关系为V 牟V 球=4π,并且推理出了“牟合方盖”的八分之一的体积计算公式,即V 牟8=r 3−V 方盖差,从而计算出V 球=43πr 3.如果记所有棱长都为r 的正四棱锥的体积为V ,则V 方差盖:V =( ) A .√22B .1C .√2D .2√2二、多项选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分. 9.(5分)不透明的口袋内装有红色和绿色卡片各2张,一次任意取出2张卡片,则与事件“2张卡片都为红色”互斥而不对立的事件有( ) A .2张卡片都不是红色 B .2张卡片恰有一张红色C .2张卡片至少有一张红色D .2张卡片至多有一张红色10.(5分)已知直线m ,n ,平面α,β,且m ⊂α,n ⊂β,则下列说法正确的是( ) A .若m ⊥n ,则α⊥β B .若α∥β,则m ∥βC .若m ⊥β,则α⊥βD .若m ∥n ,则α∥β11.(5分)设x ,y ,z 为正实数,且log 2x =log 3y =log 5z >0,则下列关系式可能成立的是( ) A .x2=y 3=z5B .y 3<z 5<x2C .z 5<y 3<x2D .x 2<y 3<z512.(5分)已知函数f (x )的定义域为(0,+∞),且对任意x ∈(0,+∞),f (2x )=2f (x )恒成立;若x ∈(1,2]时,f (x )=2﹣x .下列说法正确的是( ) A .x ∈(2,4]时,f (x )=4﹣x B .对任意m ∈Z ,有f (2m )=0 C .存在n ∈Z ,使得f (2n +1)=9D .“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k ,2k +1)”三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置. 13.(5分)(x ﹣y )(x +y )8的展开式中x 2y 7的系数为 .(用数字填写答案) 14.(5分)请写出同时满足以下条件的一个函数: . ①该函数的定义域是R ,且其图象是一条连续不断的曲线; ②该函数是偶函数; ③该函数恰有2个零点.15.(5分)已知sin(π−α)=√2,那么sin(2α+π)= .16.(2分)纸张的规格是指纸张制成后,经过修整切边,裁成一定的尺寸.现在我国采用国际标准,规定以A 0,A 1,A 2,B 1,B 2,…等标记来表示纸张的幅面规格.复印纸幅面规格只采用A 系列和B 系列,其中An (n ∈N ,n ≤8)系列的幅面规格为:①A 0,A 1,A 2,…,A 8所有规格的纸张的幅宽(以x 表示)和长度(以y 表示)的比例关系都为x :y =1:√2;②将A 0纸张沿长度方向对开成两等分,便成为A 1规格,A 1纸张沿长度方向对开成两等分,便成为A 2规格,…,如此对开至A 8规格.现有A 0,A 1,A 2,…,A 8纸各一张.若A 4纸的宽度为2dm ,则A 0纸的面积为 dm 2;这9张纸的面积之和等于 dm 2. 四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知函数f (x )=sin (ωx +φ)(ω>0,0<φ<2π)在一个周期内的部分对应值如下表: x −π2 0 π6π2f (x )﹣1112﹣1(Ⅰ)求f (x )的解析式;(Ⅱ)求函数g (x )=f (x )+2sin x 的最大值和最小值. 18.(12分)已知数列{a n }满足1a 1+2a 2+3a 3+⋯+n a n=n +3,n ∈N *.(1)求数列{a n }的通项公式;(2)令b n ={a n ,n 为奇数2a n ,n 为偶数,求数列{b n }的前2n 项和T 2n .19.(12分)如图,在△ABC 中,点D 在边AB 上,且AD →=13DB →.记∠ACD =α,∠BCD=β.(1)求证:3AC •sin α=BC •sin β;(2)若α=π6,β=π2,AB =√19,求BC 的长.20.(12分)2022年第24届冬季奥林匹克运动会,简称“北京张家口冬奥会”,将在2022年02月04日~2022年02月20日在北京市和张家口市联合举行,这是中国历史上第一次举办冬季奥运会,北京将承办所有冰上项目,延庆和张家口将承办所有的雪上项目.如表是截取了2月5日和2月6日两天的赛程表:2022年北京冬奥会赛程表(第七版,发布自2020年11月)2022年 2月北京赛区 延庆赛区张家口赛区 开闭幕式冰壶 冰球 速度 滑冰 短道 速滑 花 样 滑 冰 高 山 滑 雪 有舵雪橇 钢架雪车 无舵雪橇 跳台滑雪 北欧两项 越野滑雪 单板滑雪 冬季两项 自由式 滑雪 当 日决赛数5(六) * * 1 1 * 1 1 * 1 1 6 6(日)**1*1111117说明:“*”代表当日有不是决赛的比赛;数字代表当日有相应数量的决赛.(Ⅰ)(ⅰ)若在这两天每天随机观看一个比赛项目,求恰好看到冰壶和冰球的概率; (ⅱ)若在这两天每天随机观看一场决赛,求两场决赛恰好在同一赛区的概率; (Ⅱ)若在2月6日(星期日)的所有决赛中观看三场,记X 为赛区的个数,求X 的分布列及期望E (X ).21.(12分)已知圆柱OO 1的底面半径为1,高为π,ABCD 是圆柱的一个轴截面.一动点从点B 出发沿着圆柱的侧面到达点D ,其距离最短时在侧面留下的曲线Γ如图所示.将轴截面ABCD 绕着轴OO 1逆时针旋转θ(0<θ<π)后,边B 1C 1与曲线Γ相交于点P . (1)当θ=π2时,证明:平面APB ⊥平面A 1B 1C 1D 1;(2)是否存在θ,使得二面角D ﹣AB ﹣P 的大小为π4?若存在,求出线段BP 的长度;若不存在,请说明理由.22.(15分)已知函数f(x)=e x﹣ax(a∈R).(1)若函数f(x)≥0在(0,+∞)恒成立,求实数a的取值范围;(2)若g(x)=f(x)+ax﹣ax2在区间(0,+∞)上存在极大值M,试判断M与a的大小,并说明理由.2021-2022学年山东省潍坊市高三(上)抽测数学试卷(12月份)参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)如图,设全集U=N,集合A={1,3,5,7,9},B={x∈Z|0<x<6},则图中阴影部分表示的集合为()A.{2,4}B.{7,9}C.{1,3,5}D.{1,2,3,4,5}【解答】解:全集U=N,集合A={1,3,5,7,9},B={x∈Z|0<x<6}={1,2,3,4,5},∴图中阴影部分表示的集合为(∁U A)∩B={2,4}.故选:A.2.(5分)命题“所有奇数的立方是奇数”的否定是()A.所有奇数的立方不是奇数B.不存在一个奇数,它的立方是偶数C.存在一个奇数,它的立方是偶数D.不存在一个奇数,它的立方是奇数【解答】解:根据命题的否定的定义知,命题“所有奇数的立方是奇数”的否定为:存在一个奇数,它的立方是偶数.故选:C.3.(5分)在复平面内,复数z对应的点的坐标是(−12,√32),则z2=()A.z B.z C.|z|2D.﹣z【解答】解:因为复数z对应的点的坐标是(−12,√32),所以z=−12+√32i,所以z2=(−12+√32i)2=14−√32i+34i2=−12−√32i=z.故选:A.4.(5分)为了鼓励学生积极锻炼身体,强健体魄,某学校决定每学期对体育成绩在年级前100名的学生给予专项奖励.已知该校高三年级共有500名学生,如图是该年级学生本学期体育测试成绩的频率分布直方图.据此估计,能够获得该项奖励的高三学生的最低分数为( )A .89B .88C .87D .86【解答】解:由题意,对500名学生中的前100名学生给予专项奖励,而500−100500=0.8,即未获得该项奖励的高三学生的人数占总人数的80%,获得该项奖励的高三学生的人数占总人数的20%,由频率分布直方图可得学生分数在[70,75),[75,80),[80,85),[85,90),[90,95)的频率分别为:0.02×5=0.1,0.03×5=0.15,0.08×5=0.4,0.05×5=0.25,0.02×5=0.1, 前三组的频率之和为0.1+0.15+0.4=0.65, 前四组的频率之和为0.1+0.15+0.4+0.25=0.9,所以分数由高到低排名的前100名学生的成绩在[85,95)内, 即能获得该项奖励的高三学生的分数在[85,95)内, 设这个分数为x ,\则(90﹣x )×0.05+0.1=0.2, 解得x =88,所以获得该项奖励的高三学生的最低分数为88, 故选:B .5.(5分)函数y =(1+cosx)(x −1x )的部分图象大致为( )A .B .C .D .【解答】解:由函数解析式可得,0不在定义域内,故f (0)无意义,排除选项A ; 令y =f (x )=(1+cos x )(x −1x ),∵f (﹣x )=[1+cos (﹣x )](﹣x +1x)=﹣(1+cos x )(x −1x)=﹣f (x ), ∴f (x )为奇函数,故函数的图象关于原点对称,排除选项B ; 当0<x ≤5时,令y =0,则x =1或cos x =﹣1,即x =1或x =π, 所以,函数y 在(0,5]上有两个零点,故选项C 错误,D 正确, 故选:D .6.(5分)根据《民用建筑工程室内环境污染控制标准》,室内某污染物的浓度≤0.1mg /m 3为安全范围.已知一公共场所使用含有该污染物的喷剂,处于良好的通风环境下时,该污染物浓度ρ(t )(单位:mg /m 3)与竣工后保持良好通风的时间t (t ∈N *)(单位:周)近似满足函数关系式ρ(t )=3at +b ,若竣工1周后该污染物浓度为6.25mg /m 3,3周后室内该污染物浓度为2.25mg /m 3,则要达到安全使用标准,该建筑物室内至少需要通风放置的时间为( )(参考数据:(35)7≈0.028,(35)8≈0.017,(35)9≈0.010) A .8周B .9周C .10周D .11周【解答】解:由题意可得{6.25=3a+b 2.25=33a+b ,两式相除可得32a =(35)2,即3a =35,则3b =53×6.25,因为室内某污染物的浓度≤0.1mg /m 3为安全范围, 所以3at +b ≤0.1, 所以(3a )t •3b ≤0.1,即(35)t ≤0.153×6.25≈0.010, ∴t ≥9,故建筑物室内至少需要通风放置的时间为9周. 故选:B .7.(5分)五角星是指有五只尖角、并以五条直线画成的星星图形,有许多国家的国旗设计都包含五角星,如中华人民共和国国旗.如图在正五角星中,每个角的角尖为36°,则下列说法正确的是( )A .CH →+ID →=0→B .AB →∥FE →C .AF →+FG →=2HG →D .AF →=AB →+AJ →【解答】解:对于A ,由图可知CH 与ID 相交,所以CH →与ID →不是相反向量,故A 错误; 对于B ,AB →与DE →共线,所以DE →与FE →不共线,所以AB →与FE →不共线,故B 错误; 对于C :AF →+FG →=AG →≠2HG →,故C 错误;对于D ,连接BF ,JF ,由五角星的性质可得ABJF 为平行四边形,根据平行四边形法则可得AF →=AB →+AJ →,故D 正确.故选:D .8.(5分)牟合方盖是由我国古代数学家刘徽首先发现并采用的一种用于计算球体体积的方法,该方法不直接给出球体的体积,而是先计算牟合方盖的体积.刘徽通过计算,“牟合方盖”的体积与球的体积关系为V 牟V 球=4π,并且推理出了“牟合方盖”的八分之一的体积计算公式,即V 牟8=r 3−V 方盖差,从而计算出V 球=43πr 3.如果记所有棱长都为r 的正四棱锥的体积为V ,则V 方差盖:V =( ) A .√22B .1C .√2D .2√2【解答】解:由题意可得,V 方差盖=r 3−18V 牟=r 3−18×4π×43×π×r 3=13r 3, 所有棱长都为r 的正四棱锥的体积为V 正=13×r ×r ×r 2−(√22r)2=√26r 3, 所以V 方盖差V 正=13r 3√26r =√2.故选:C .二、多项选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分. 9.(5分)不透明的口袋内装有红色和绿色卡片各2张,一次任意取出2张卡片,则与事件“2张卡片都为红色”互斥而不对立的事件有( ) A .2张卡片都不是红色 B .2张卡片恰有一张红色C .2张卡片至少有一张红色D .2张卡片至多有一张红色【解答】解:不透明的口袋内装有红色和绿色卡片各2张,一次任意取出2张卡片, 对于A ,2张卡片都不是红色与事件“2张卡片都为红色”不能同时发生,但能同时不发生,是互斥而不对立的事件,故A 正确;对于B ,2张卡片恰有一张红色与事件“2张卡片都为红色”不能同时发生,能同时不发生,是互斥事件而不对立事件,故B 正确;对于C ,2张卡片至少有一张红色与事件“2张卡片都为红色”能同时发生,不是互斥事件,故C 错误;对于D ,2张卡片至多有一张红色与事件“2张卡片都为红色”不能同时发生,也不能同时不发生,是对立事件事件,故D 错误. 故选:AB .10.(5分)已知直线m ,n ,平面α,β,且m ⊂α,n ⊂β,则下列说法正确的是( )A .若m ⊥n ,则α⊥βB .若α∥β,则m ∥βC .若m ⊥β,则α⊥βD .若m ∥n ,则α∥β【解答】解:对于A ,若m ⊥n ,则α与β相交,不一定垂直,故A 错误; 对于B ,若α∥β,m ⊂α,利用面面平行的性质定理,可知B 正确;对于C ,若m ⊥β,m ⊂α,n ⊂β,根据面面垂直的判定定理,可得α⊥β,故C 正确; 对于D ,若m ∥n ,则α与β平行或相交,故D 错误; 故选:BC .11.(5分)设x ,y ,z 为正实数,且log 2x =log 3y =log 5z >0,则下列关系式可能成立的是( ) A .x2=y 3=z5B .y 3<z 5<x2C .z 5<y 3<x2D .x 2<y 3<z5【解答】解:设k =log 2x =log 3y =log 5z >0, 则x =2k ,y =3k ,z =5k , ∴x 2=2k ﹣1,y 3=3k ﹣1,z5=5k ﹣1,①当k =1时,则x 2=y 3=z 5=1,∴A 成立,②当k >1时,函数y =x k ﹣1在(0,+∞)上为增函数,∴2k ﹣1<3k ﹣1<5k ﹣1,即x2<y 3<z5,∴D 成立,③当k <1时,函数y =x k﹣1在(0,+∞)上为减函数,∴2k ﹣1>3k ﹣1>5k ﹣1,即x2>y 3>z5,∴C 成立,故选:ACD .12.(5分)已知函数f (x )的定义域为(0,+∞),且对任意x ∈(0,+∞),f (2x )=2f (x )恒成立;若x ∈(1,2]时,f (x )=2﹣x .下列说法正确的是( ) A .x ∈(2,4]时,f (x )=4﹣x B .对任意m ∈Z ,有f (2m )=0 C .存在n ∈Z ,使得f (2n +1)=9D .“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k ,2k +1)”【解答】解:对于A ,设x ∈(2,4],则x2∈(1,2],f (x2)=2−x2=12f (x ),所以f (x )=4﹣x ,2<x ≤4,故A 正确;对于B ,f (2m )=f (2•2m ﹣1)=2f (2m ﹣1)=...=2m ﹣1•f (2),而当x ∈(1,2]时,f (x )=2﹣x ,所以f (2)=0,所以f (2m )=0 故B 正确; 取x ∈(2m ,2m +1],则x 2m∈(1,2],f (x2m)=2−x2m , f (x )=2f (x2),而f (x )=2m •f (x 2m)=2m +1﹣x ,其中,m =0,1,2..,从而f (x )∈[0,+∞);对于C :f (2m +1)=2m +1﹣2m ﹣1,假设存在n ∈Z ,使f (2n +1)=9,因为2n +1∈(2n ,2n +1],所以f (2n +1)=2n +1﹣2n ﹣1=2n ﹣1,所以2n ﹣1=9,即2n =10,这与n ∈Z 矛盾,故C 错误;对于D ,当x ∈(2k ,2k +1)(k ∈Z )时,f (x )=2k +1﹣x 单调递减,所以“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k ,2k +1)”,故D 正确. 故选:ABD .三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置. 13.(5分)(x ﹣y )(x +y )8的展开式中x 2y 7的系数为 ﹣20 .(用数字填写答案) 【解答】解:(x +y )8的展开式中,含xy 7的系数是:8. 含x 2y 6的系数是28,∴(x ﹣y )(x +y )8的展开式中x 2y 7的系数为:8﹣28=﹣20. 故答案为:﹣2014.(5分)请写出同时满足以下条件的一个函数: y =x 2﹣1(答案不唯一) . ①该函数的定义域是R ,且其图象是一条连续不断的曲线; ②该函数是偶函数; ③该函数恰有2个零点.【解答】解:若函数同时满足:①该函数的定义域是R ,且其图象是一条连续不断的曲线;②该函数是偶函数;③该函数恰有2个零点,结合二次函数的性质,可知符合题意的一个函数为y =x 2﹣1. 故答案为:y =x 2﹣1(答案不唯一).15.(5分)已知sin(π6−α)=√23,那么sin(2α+π6)= 59 .【解答】解:因为sin(π6−α)=√23,所以sin(2α+π6)=cos[π2−(π6+2α)]=cos[2(π6−α)]=1﹣2sin 2(π6−α)=1−49=59.故答案为:59.16.(2分)纸张的规格是指纸张制成后,经过修整切边,裁成一定的尺寸.现在我国采用国际标准,规定以A 0,A 1,A 2,B 1,B 2,…等标记来表示纸张的幅面规格.复印纸幅面规格只采用A 系列和B 系列,其中An (n ∈N ,n ≤8)系列的幅面规格为:①A 0,A 1,A 2,…,A 8所有规格的纸张的幅宽(以x 表示)和长度(以y 表示)的比例关系都为x :y =1:√2;②将A 0纸张沿长度方向对开成两等分,便成为A 1规格,A 1纸张沿长度方向对开成两等分,便成为A 2规格,…,如此对开至A 8规格.现有A 0,A 1,A 2,…,A 8纸各一张.若A 4纸的宽度为2dm ,则A 0纸的面积为 64√2 dm 2;这9张纸的面积之和等于 511√24dm 2.【解答】解:可设A i 纸张的长度为y i ,i =0,1, (8)由A 4纸的宽度为2dm ,且纸张的幅宽和长度的比例关系都为x :y =1:√2, 可得y 4=2√2,由题意可得y 0=2√2•24=32√2,即有A 0纸的面积为32√2×2=64√2dm 2;由A 0,A 1,A 2,…,A 8纸9张纸的面积构成一个以64√2为首项,12为公比的等比数列,可得这9张纸的面积之和为64√2(1−129)1−2=511√24dm 2.故答案为:64√2,511√24.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知函数f (x )=sin (ωx +φ)(ω>0,0<φ<2π)在一个周期内的部分对应值如下表: x −π2 0 π6π2f (x )﹣1112﹣1(Ⅰ)求f (x )的解析式;(Ⅱ)求函数g (x )=f (x )+2sin x 的最大值和最小值.【解答】解:(Ⅰ)由表格可知,f (x )的周期T =π2−(−π2)=π, 所以ω=2ππ=2. 又由sin (2×0+φ)=1,且0<φ<2π,所以φ=π2. 所以f(x)=sin(2x +π2)=cos2x .…(6分)(Ⅱ)g (x )=f (x )+2sin x =cos2x +2sin x =1﹣2sin 2x +2sin x =−2(sinx −12)2+32. 由sin x ∈[﹣1,1],所以当sinx =12时,g (x )有最大值32;当sin x =﹣1时,g (x )有最小值﹣3.…(13分) 18.(12分)已知数列{a n }满足1a 1+2a 2+3a 3+⋯+n a n=n +3,n ∈N *.(1)求数列{a n }的通项公式;(2)令b n ={a n ,n 为奇数2a n ,n 为偶数,求数列{b n }的前2n 项和T 2n .【解答】解:(1)设c n =na n,数列{c n }的前n 项和为S n ,则S n =n +3,所以c n =S n ﹣S n ﹣1=(n +3)﹣(n +2)=1(n ≥2),即na n=1(n ≥2),所以a n =n (n ≥2), 当n =1时,有1a 1=1+3=4,所以a 1=14,综上,数列{a n }的通项公式为a n ={14,n =1n ,n ≥2. (2)因为b n ={a n ,n 为奇数2a n ,n 为偶数,所以T 2n =(b 1+b 3+…+b 2n ﹣1)+(b 2+b 4+…+b 2n )=(a 1+a 3+…+a 2n ﹣1)+(2a 2+2a 4+⋯+2a 2n ) =[14+3+…+(2n ﹣1)]+(22+24+…+22n )=14+[3+(2n−1)](n−1)2+4(1−4n )1−4=6n 2﹣5n +13•4n +1−2512.19.(12分)如图,在△ABC 中,点D 在边AB 上,且AD →=13DB →.记∠ACD =α,∠BCD=β.(1)求证:3AC •sin α=BC •sin β;(2)若α=π6,β=π2,AB =√19,求BC 的长.【解答】(1)证明:在△ACD 中,由正弦定理得:AC sin∠ADC=AD sinα,在△BCD 中,由正弦定理得:BC sin∠BDC=BD sinβ,∵∠ADC +∠BDC =π,∴sin ∠ADC =sin ∠BDC , ∵AD →=13DB →.所以AD DB=13,∴ACBC=sinβ3sinα,∴3AC •sin α=BC •sin β; (2)解:∵α=π6,β=π2, ∴AC BC=sinβ3sinα=23,∠ACB =α+β=2π3. 设AC =2k ,BC =3k ,k >0,由余弦定理得:AB 2=AC 2+BC 2﹣2AC •BC •cos ∠ACB , 即19=4k 2+9k 2﹣2×2k ×3k ×cos 2π3,解得k =1,∴BC =3.20.(12分)2022年第24届冬季奥林匹克运动会,简称“北京张家口冬奥会”,将在2022年02月04日~2022年02月20日在北京市和张家口市联合举行,这是中国历史上第一次举办冬季奥运会,北京将承办所有冰上项目,延庆和张家口将承办所有的雪上项目.如表是截取了2月5日和2月6日两天的赛程表:2022年北京冬奥会赛程表(第七版,发布自2020年11月)2022年 2月北京赛区 延庆赛区张家口赛区 开闭幕式冰壶 冰球 速度 滑冰 短道 速滑 花 样 滑 冰 高 山 滑 雪 有舵雪橇 钢架雪车 无舵雪橇 跳台滑雪 北欧两项 越野滑雪 单板滑雪 冬季两项 自由式 滑雪 当 日决赛数5(六) * * 1 1 * 1 1 * 1 1 6 6(日)**1*1111117说明:“*”代表当日有不是决赛的比赛;数字代表当日有相应数量的决赛.(Ⅰ)(ⅰ)若在这两天每天随机观看一个比赛项目,求恰好看到冰壶和冰球的概率; (ⅱ)若在这两天每天随机观看一场决赛,求两场决赛恰好在同一赛区的概率; (Ⅱ)若在2月6日(星期日)的所有决赛中观看三场,记X 为赛区的个数,求X 的分布列及期望E (X ).【解答】解:(Ⅰ)(i ) 记“在这两天每天随机观看一个项目,恰好看到冰壶冰球”为事件A .由表可知,在这两天每天随机观看一个项目,共有10×10=100种不同方法, 其中恰好看到冰壶冰球,共有2种不同方法. 所以,恰好看到冰壶和冰球的概率P (A )=2100=150. (ii ) 记“在这两天每天随机观看一场决赛,两场决赛恰好在同一赛区”为事件B . 由表可知,在这两天每天随机观看一场决赛共有6×7=42种不同方法, 其中两场决赛恰好在北京赛区共有2种不同方法,在张家口赛区共有4×4=16. 所以P (B )=2+1642=37. (Ⅱ)随机变量X 的所有可能取值为1,2,3. 根据题意,P(X =1)=C 43C 73=435, P(X =2)=C 11⋅C 22+C 11⋅C 42+C 21C 42+C 22C 41C 73=1+6+12+435=2335,P(X =3)=C 11⋅C 21⋅C 41C 73=835. 随机变量X 的分布列是:X 123P4352335835数学期望E(X)=1×435+2×2335+3×835=7435.21.(12分)已知圆柱OO 1的底面半径为1,高为π,ABCD 是圆柱的一个轴截面.一动点从点B 出发沿着圆柱的侧面到达点D ,其距离最短时在侧面留下的曲线Γ如图所示.将轴截面ABCD 绕着轴OO 1逆时针旋转θ(0<θ<π)后,边B 1C 1与曲线Γ相交于点P .(1)当θ=π2时,证明:平面APB ⊥平面A 1B 1C 1D 1;(2)是否存在θ,使得二面角D ﹣AB ﹣P 的大小为π4?若存在,求出线段BP 的长度;若不存在,请说明理由.【解答】(1)证明:当θ=π2时,点B 1恰好为AB 的中点,所以P 为B 1C 1中点, 又圆柱底面半径为1,高为π,所以A 1B 1C 1D 1为正方形,所以在正方形A 1B 1C 1D 1中,OP ∥A 1C 1,D 1B 1⊥A 1C 1,∴OP ⊥B 1D 1, AB ⊥OO 1,AB ⊥A 1B 1,OO 1⋂A 1B 1=O ,∴AB ⊥平面A 1B 1C 1D 1,又B 1D 1⊂平面A 1B 1C 1D 1,∴AB ⊥B 1D 1,又OP ⊥B 1D 1,AB ⋂OP =O ,AB ,OP ⊂平面APB ,∴直线D 1B 1⊥平面APB .又B 1D 1⊂平面A 1B 1C 1D 1,所以平面APB ⊥平面A 1B 1C 1D 1. (2)由于二面角D ﹣AB ﹣B 1为直二面角,故只要考查二面角P ﹣AB ﹣B 1是否为π4即可.过B 1作B 1Q ⊥AB 于Q ,连接PQ .由于B 1Q ⊥AB ,B 1P ⊥AB ,所以AB ⊥平面B 1PQ ,所以AB ⊥PQ . 于是∠PQB 1即为二面角P ﹣AB ﹣B 1的平面角.在Rt △PB 1Q 中,B 1Q =sinθ,B 1P =BB 1̂=θ.若∠PQB 1=π4,则需B 1P =B 1Q ,即sin θ=θ.令f (x )=sin x ﹣x (0<x <π),则f '(x )=cos x ﹣1<0, 故f (x )在(0,π)单调递减.所以f (x )<f (0)=0,即sin x <x 在(0,π)上恒成立. 故不存在θ∈(0,π),使sin θ=θ.也就是说,不存在θ∈(0,π),使二面角D ﹣AB ﹣P 为π4.22.(15分)已知函数f (x )=e x ﹣ax (a ∈R ).(1)若函数f (x )≥0在(0,+∞)恒成立,求实数a 的取值范围;(2)若g (x )=f (x )+ax ﹣ax 2在区间(0,+∞)上存在极大值M ,试判断M 与a 的大小,并说明理由.【解答】解:(1)f '(x )=e x ﹣a ,因为在区间(0,+∞)上,e x >1, 当a ≤1时,f '(x )>0恒成立,故f (x )在R 递增,而f (0)=e 0﹣0=1>0,所以f (x )>f (0)>0合题意; 当a >1时,由f '(x )=0,解得:x =lna >0, 则f (x )在(0,lna )递减,在(lna ,+∞)递增, 则f (x )min =f (lna )=a −alna ⩾0,解得:1<a ≤e , 综上,{a |a ≤e };(2)由函数g (x )=e x ﹣ax 2,则g '(x )=e x ﹣2ax ,令m (x )=e x ﹣2ax ,可得m '(x )=e x ﹣2a ,因为在区间(0,+∞)上,e x >1, 当2a ≤1,即a ≤12时,m '(x )>0,m (x )在(0,+∞)递增,此时m (x )>m (0)=1,故g '(x )>0,函数g (x )在(0,+∞)上单调递增,此时不存在极大值, 当a >12时,令m '(x )=0,解得:x =ln (2a ),令m '(x )>0,解得:x >ln (2a ),令m '(x )<0,解得:x <ln (2a ), 故g '(x )在(0,ln (2a ))上单调递减,在(ln (2a ),+∞)上单调递增,∵g (x )在(0,+∞)上存在极大值,故g '(ln (2a ))=2a ﹣2aln (2a )<0,解得:a >e2, ∵g '(0)=1>0,g '(1)=e ﹣2a <0,g '[ln (2a )2]=(2a )2﹣2aln (2a )2=4a (a ﹣ln (2a )),令u (x )=a ﹣ln (2a ),则u ′(x)=1−1a >0,所以u (x )=a ﹣ln (2a )单增,又a>e2,所以u(x)>u(e2)=e2−lne=e2−1>0,所以g'[ln(2a)2]=4a(a﹣ln(2a))>0,又1<ln(2a)<ln(2a)2,所以存在x1∈(0,1),g′(x1)=e x1−2ax1=0,存在x2∈(ln(2a),ln(2a)2),使得g'(x2)=0,故g(x)在(0,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上单调递增,故当x=x1时,函数g(x)取得极大值M,即M=e x1−ax12,0<x1<1,由e x1−2ax1=0,e x1=2ax1,故M=e x1−ax12=2ax1−ax12=−a(x1−1)2+a<a.。
高三单元滚动检测卷·数学考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分. 4.请在密封线内作答,保持试卷清洁完整.综合检测(二)第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知1-b i1+2i =a +i (a ,b ∈R ),其中i 为虚数单位,则a +b 等于( )A .-4B .4C .-10D .102.(2020·宜昌调研)下列说法中,正确的是( ) A .命题“若am 2<bm 2,则a <b ”的逆命题是真命题B .命题“存在x 0∈R ,x 20-x 0>0”的否定是“对任意的x ∈R ,x 2-x ≤0”C .命题“p 或q ”为真命题,则命题p 和命题q 均为真命题D .已知x ∈R ,则“x >1”是“x >2”的充分不必要条件3.已知数列{a n }满足:a 1=1,a n +1=a n a n +2 (n ∈N *),则数列{a n }的通项公式为( )A .a n =2n -1B .a n =12n -1C .a n =12n -1D .a n =13n-14.已知f (x )=⎩⎪⎨⎪⎧|lg x |,x >0,2|x |,x ≤0,则函数y =2[f (x )]2-3f (x )+1的零点个数是( )A .3B .5C .7D .85.现有2门不同的考试要安排在连续的5天之内进行,每天最多考一门,且不能连续两天有考试,则不同的安排方案有( ) A .6种 B .8种 C .12种D .16种6.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3 cm 的圆,中间有边长为1 cm 的正方形孔,若你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率是( ) A.9π4 B.94π C.4π9D.49π7.如果执行下面的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a n ,输出A ,B ,则( )A .A +B 为a 1,a 2,…,a n 的和 B.A +B 2为a 1,a 2,…,a n 的算术平均数C .A 和B 分别是a 1,a 2,…,a n 中最大的数和最小的数D .A 和B 分别是a 1,a 2,…,a n 中最小的数和最大的数8.学习合情推理后,甲、乙两位同学各举了一个例子,甲:由“若三角形周长为l ,面积为S ,则其内切圆半径r =2Sl”类比可得“若三棱锥表面积为S ,体积为V ,则其内切球半径r=3VS ”;乙:由“若直角三角形两直角边长分别为a ,b ,则其外接圆半径r =a 2+b 22”;类比可得“若三棱锥三条侧棱两两垂直,侧棱长分别为a 、b 、c ,则其外接球半径r =a 2+b 2+c 23”,这两位同学类比得出的结论( ) A .两人都对 B .甲错、乙对 C .甲对、乙错D .两人都错9.设x 1、x 2∈R ,常数a >0,定义运算“*”:x 1]x *a ))的轨迹是( ) A .圆B .椭圆的一部分C .双曲线的一部分D .抛物线的一部分10.在实数集R 中定义一种运算“*”,对任意a ,b ∈R ,a *b 为唯一确定的实数,且具有性质:(1)对任意a ∈R ,a *0=a ;(2)对任意a ,b ∈R ,a *b =ab +(a *0)+(b *0).关于函数f (x )=(e x )*1e x 的性质,有如下说法:①函数f (x )的最小值为3;②函数f (x )为偶函数;③函数f (x )的单调递增区间为(-∞,0]. 其中所有正确说法的个数为( ) A .0 B .1 C .2D .311.已知f (x )=|x +2|+|x -4|的最小值为n ,则二项式⎝⎛⎭⎫x -1x n 展开式中x 2项的系数为( ) A .11 B .20 C .15D .1612.(2020·延安模拟)已知椭圆C :x 2a 2+y 2b 2=1 (a >b >0)的左,右焦点分别为F 1,F 2,若椭圆C上恰好有6个不同的点P ,使得△F 1F 2P 为等腰三角形,则椭圆C 的离心率的取值范围是( ) A.⎝⎛⎭⎫13,23 B.⎝⎛⎭⎫12,1 C.⎝⎛⎭⎫23,1D.⎝⎛⎭⎫13,12∪⎝⎛⎭⎫12,1第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.用黑白两种颜色的正方形地砖依照图中的规律拼成若干图形,则按此规律第100个图形中有白色地砖________块;现将一粒豆子随机撒在第100个图中,则豆子落在白色地砖上的概率是________.14.若m =ʃ20(2x -e x )d x ,则“a =m +e 2-214”是“函数f (x )=ax 2-x -1只有一个零点”的________条件(从“充要”“充分不必要”“必要不充分”“既不充分也不必要”中选填). 15.如图,在△OAB 中,C 为OA 上的一点,且OC →=23OA →,D 是BC 的中点,过点A 的直线l ∥OD ,P 是直线l 上的动点,若OP →=λ1OB →+λ2OC →,则λ1-λ2=______.16.已知双曲线E :x 2a 2-y 2b 2=1 (a >0,b >0)的离心率为1+52,圆C 是以坐标原点O 为圆心,实轴为直径的圆.过双曲线第一象限内的任一点P (x 0,y 0)作圆C 的两条切线,其切点分别为A ,B .若直线AB 与x 轴、y 轴分别相交于M ,N 两点,则b 22|OM |2-a 22|ON |2的值为______.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)(2020·福州质检)如图,函数f (x )=3sin x 2·cos x 2+cos 2x2+m 的图象过点⎝⎛⎭⎫5π6,0.(1)求实数m 的值及f (x )的单调递增区间;(2)设y =f (x )的图象与x 轴、y 轴及直线x =t ⎝⎛⎭⎫0<t <2π3所围成的曲边四边形的面积为S ,求S 关于t 的函数S (t )的解析式.18.(12分)(2020·淄博模考)中国男子篮球职业联赛总决赛采用七场四胜制(即先胜四场者获胜).进入总决赛的甲、乙两队中,若每一场比赛甲队获胜的概率为23,乙队获胜的概率为13,假设每场比赛的结果互相独立.现已赛完两场,乙队以2∶0暂时领先. (1)求甲队获得这次比赛胜利的概率;(2)设比赛结束时两队比赛的场数为随机变量X ,求随机变量X 的分布列和均值E (X ).19.(12分)(2020·珠海摸底)在边长为4 cm 的正方形ABCD 中,E ,F 分别为BC ,CD 的中点,M ,N 分别为AB ,CF 的中点,现沿AE ,AF ,EF 折叠,使B ,C ,D 三点重合,构成一个三棱锥.(1)请判断MN 与平面AEF 的位置关系,并给出证明; (2)证明:AB ⊥平面BEF ; (3)求二面角M —EF —B 的余弦值.20.(12分) 已知公比为q 的等比数列{a n }是递减数列,且满足a 1+a 2+a 3=139,a 1a 2a 3=127.(1)求数列{a n }的通项公式;(2)求数列{(2n -1)·a n }的前n 项和T n ;(3)若b n =n 3n -1·a n +32 (n ∈N *),证明:1b 1b 2+1b 2b 3+…+1b n b n +1≥435.21.(12分)若函数f (x )=ln x ,g (x )=x -2x .(1)求函数φ(x )=g (x )-kf (x )(k >0)的单调区间;(2)若对所有的x ∈[e ,+∞),都有xf (x )≥ax -a 成立,求实数a 的取值范围.22.(12分)(2020·广州普通高中毕业班综合测试)已知椭圆C 1的中心在坐标原点,两焦点分别为双曲线C 2:x 22-y 2=1的顶点,直线x +2y =0与椭圆C 1交于A ,B 两点,且点A 的坐标为(-2,1),点P 是椭圆C 1上异于点A ,B 的任意一点,点Q 满足AQ →·AP →=0,BQ →·BP →=0,且A ,B ,Q 三点不共线. (1)求椭圆C 1的方程; (2)求点Q 的轨迹方程;(3)求△ABQ 面积的最大值及此时点Q 的坐标.综合检测(二)1.A 2.B 3.C 4.B 5.C 6.D 7.C 8.C 9.D [∵x 1]x *a )=(x +a )2-(x -a )2=2ax , 则P (x,2ax ). 设P (x 1,y 1),即⎩⎨⎧x 1=x ,y 1=2ax ,消去x 得y 21=4ax 1(x 1≥0,y 1≥0). 故点P 的轨迹为抛物线的一部分.]10.C [由定义的运算知,f (x )=(e x )*1e x =e x ·1e x +e x *0+1e x *0=1+e x +1e x ,①f (x )=1+e x +1e x ≥1+2e x ·1e x =3,当且仅当e x =1ex ,即x =0时取等号,∴f (x )的最小值为3,故①正确; ②∵f (-x )=1+e -x +1e-x =1+1e x +e x=f (x ), ∴f (x )为偶函数,故②正确;③f ′(x )=e x-1e x =e 2x -1e x ,当x ≤0时,f ′(x )=e 2x -1e x ≤0,∴f (x )在(-∞,0]上单调递减,故③错误.故正确说法的个数是2.]11.C [因为函数f (x )=|x +2|+|x -4|表示数轴上的点到-2和4之间的距离, 易知其最小值为4-(-2)=6,即n =6, 此时展开式的通项公式为 T r +1=C r 6x 6-r (-1x)r =C r 6x 6-2r (-1)r , 由6-2r =2,得r =2,所以T 3=C 26x 2(-1)2=15x 2,即x 2项的系数为15.]12.D [6个不同的点有两个为短轴的两个端点,另外4个分别在第一、二、三、四象限,且上下对称左右对称.不妨设P 在第一象限,|PF 1|>|PF 2|,当|PF 1|=|F 1F 2|=2c 时,|PF 2|=2a -|PF 1|=2a -2c ,即2c >2a -2c ,解得e =c a >12.因为e <1,所以12<e <1.当|PF 2|=|F 1F 2|=2c 时,|PF 1|=2a -|PF 2|=2a -2c ,即2a -2c >2c ,且2c +2c >2a -2c ,解得13<e <12.综上可得13<e <12或12<e <1,故选D.] 13.503 503603 14.充分不必要 15.-3216.5+14解析 由题知P 、A 、O 、B 四点共圆,其方程为⎝⎛⎭⎫x -x 022+⎝⎛⎭⎫y -y 022=14(x 20+y 20),又圆C 的方程为x 2+y 2=a 2,两式作差,得公共弦AB 的方程为x 0x +y 0y =a 2,分别令x =0,y =0,得|ON |=a 2y 0,|OM |=a 2x 0.又点P (x 0,y 0)在双曲线上,故x 20a 2-y 20b 2=1,即b 2x 20-a 2y 20=a 2b 2.又e 2=c 2a 2=a 2+b 2a2=⎝ ⎛⎭⎪⎫1+522,所以b 2a 2=1+52.故b 22|OM |2-a 22|ON |2=b 22a 4x 20-a 22a 4y 20=b 2x 20-a 2y 202a 4=b 22a 2=1+54.17.解 (1)f (x )=3sin x 2cos x 2+cos 2x2+m=32sin x +12cos x +12+m=sin ⎝⎛⎭⎫x +π6+12+m . 因为f (x )的图象过点⎝⎛⎭⎫5π6,0,所以sin ⎝⎛⎭⎫5π6+π6+12+m =0,解得m =-12. 所以f (x )=sin ⎝⎛⎭⎫x +π6, 由-π2+2k π≤x +π6≤π2+2k π,k ∈Z ,得-2π3+2k π≤x ≤π3+2k π,k ∈Z .故f (x )的单调递增区间是⎣⎡⎦⎤-2π3+2k π,π3+2k π,k ∈Z . (2)由(1)得f (x )=32sin x +12cos x . 所以S =ʃt 0⎝⎛⎭⎫32sin x +12cos x d x=⎪⎪⎝⎛⎭⎫-32cos x +12sin x t 0=⎝⎛⎭⎫-32cos t +12sin t -⎝⎛⎭⎫-32cos 0+12sin 0=sin ⎝⎛⎭⎫t -π3+32. 所以S (t )=sin ⎝⎛⎭⎫t -π3+32 ⎝⎛⎭⎫0<t <2π3. 18.解 (1)设甲队获胜为事件A ,则甲队获胜包括甲队以4∶2获胜和甲队以4∶3获胜两种情况.设甲队以4∶2获胜为事件A 1, 则P (A 1)=⎝⎛⎭⎫234=1681;设甲队以4∶3获胜为事件A 2, 则P (A 2)=C 14×13×⎝⎛⎭⎫233×23=64243, 则P (A )=P (A 1)+P (A 2)=1681+64243=112243.(2)随机变量X 可能的取值为4,5,6,7. P (X =4)=⎝⎛⎭⎫132=19.P (X =5)=C 12×13×23×13=427.P(X=6)=C13×13×⎝⎛⎭⎫232×13+⎝⎛⎭⎫234=2881.P(X=7)=C14×13×⎝⎛⎭⎫233=3281,则X的分布列为X 4567P1942728813281E(X)=4×19+5×427+6×2881+7×3281=48881.19.(1)解MN∥平面AEF.证明:由题意可知点M,N在折叠前后都分别是AB,CF的中点(折叠后B,C两点重合),所以MN∥AF.因为⎩⎪⎨⎪⎧MN⊄平面AEF,AF⊂平面AEF,MN∥AF,所以MN∥平面AEF.(2)证明由题意可知AB⊥BE的关系在折叠前后都没有改变.因为在折叠前AD⊥DF,由于折叠后AD与AB重合,点D与B重合,所以AB⊥BF.因为⎩⎪⎨⎪⎧AB⊥BE,AB⊥BF,BE⊂平面BEF,BF⊂平面BEF,BE∩BF=B,所以AB⊥平面BEF.(3)解记EF的中点为G,连接ME,MF,BG,MG.因为BE=BF,ME=MF,所以BG⊥EF且MG⊥EF,所以∠MGB是二面角M—EF—B的平面角.因为AB⊥平面BEF,所以∠MBG=90°.在△BEF中,BG=2,由于MB =2,所以MG =MB 2+BG 2=6,于是cos ∠MGB =BG MG =26=33. 所以二面角M —EF —B 的余弦值为33. 20.(1)解 由a 1a 2a 3=127及等比数列性质得a 32=127,即a 2=13,由a 1+a 2+a 3=139,得a 1+a 3=109, 由⎩⎨⎧ a 2=13,a 1+a 3=109得⎩⎨⎧ a 1q =13,a 1+a 1q 2=109,∴1+q 2q =103,即3q 2-10q +3=0, 解得q =3,或q =13. ∵{a n }是递减数列,故q =3舍去, ∴q =13,由a 2=13,得a 1=1. 故数列{a n }的通项公式为a n =13n -1 (n ∈N *).(2)解 由(1)知(2n -1)·a n =2n -13n -1, ∴T n =1+33+532+…+2n -13n -1,① 13T n =13+332+533+…+2n -33n -1+2n -13n ,② ①-②得:23T n =1+23+232+233+…+23n -1-2n -13n =1+2⎝⎛⎭⎫13+132+133+…+13n -1-2n -13n =1+2·13⎝⎛⎭⎫1-13n -11-13-2n -13n =2-13n -1-2n -13n , ∴T n =3-n +13n -1.(3)证明 ∵b n =n 3n -1·a n +32(n ∈N *) =n +32=2n +32, ∴1b 1b 2+1b 2b 3+…+1b n b n +1=25·27+27·29+…+22n +3·22n +5=2⎣⎡⎦⎤⎝⎛⎭⎫15-17+⎝⎛⎭⎫17-19+…+⎝⎛⎭⎫12n +3-12n +5 =2⎝⎛⎭⎫15-12n +5. ∵n ≥1,15-12n +5≥15-17=235, ∴1b 1b 2+1b 2b 3+…+1b n b n +1≥435. 21.解 (1)函数φ(x )=x -2x-k ln x 的定义域为(0,+∞). φ′(x )=1+2x 2-k x =x 2-kx +2x 2, 记函数h (x )=x 2-kx +2,其判别式Δ=k 2-8.①当Δ=k 2-8≤0,即0<k ≤22时,h (x )≥0恒成立,∴φ′(x )≥0在(0,+∞)恒成立,φ(x )在区间(0,+∞)上递增,②当Δ=k 2-8>0即k >22时,方程h (x )=0有两个不等的实根x 1=k -k 2-82>0,x 2=k +k 2-82>0. 若x 1<x <x 2,则h (x )<0,∴φ′(x )<0,∴φ(x )在区间(x 1,x 2)上递减;若x >x 2或0<x <x 1,则h (x )>0,∴φ′(x )>0,∴φ(x )在区间(0,x 1)和(x 2,+∞)上递增.综上可知:当0<k ≤22时,φ(x )的递增区间为(0,+∞);当k >22时,φ(x )的递增区间为(0,k -k 2-82)和(k +k 2-82,+∞),递减区间为(k -k 2-82,k +k 2-82).(2)∵x ≥e ,∴x ln x ≥ax -a ⇔a ≤x ln x x -1. 令p (x )=x ln x x -1,x ∈[e ,+∞),则p ′(x )=x -ln x -1(x -1)2. ∵当x ≥e 时,(x -ln x -1)′=1-1x>0, ∴函数y =x -ln x -1在[e ,+∞)上是增函数,∴x -ln x -1≥e -ln e -1=e -2>0,p ′(x )>0,∴p (x )在[e ,+∞)上是增函数,∴p (x )的最小值为p (e)=e e -1,∴a ≤e e -1. 22.解 (1)∵双曲线C 2:x 22-y 2=1的顶点为F 1(-2,0),F 2(2,0), ∴椭圆C 1的两焦点分别为F 1(-2,0),F 2(2,0).设椭圆C 1的方程为x 2a 2+y 2b 2=1 (a >b >0), ∵椭圆C 1过点A (-2,1),∴2a =|AF 1|+|AF 2|=4,得a =2.∴b 2=a 2-(2)2=2.∴椭圆C 1的方程为x 24+y 22=1. (2)设点Q (x ,y ),点P (x 1,y 1),由A (-2,1)及椭圆C 1关于原点对称可得B (2,-1), ∴AQ →=(x +2,y -1),AP →=(x 1+2,y 1-1),BQ →=(x -2,y +1),BP →=(x 1-2,y 1+1).由AQ →·AP →=0,得(x +2)(x 1+2)+(y -1)(y 1-1)=0,即(x +2)(x 1+2)=-(y -1)(y 1-1).①同理,由BQ →·BP →=0,得(x -2)(x 1-2)=-(y +1)(y 1+1).②①×②,得(x 2-2)(x 21-2)=(y 2-1)(y 21-1).③由于点P 在椭圆C 1上,则x 214+y 212=1,得x 21=4-2y 21, 代入③式,得-2(y 21-1)(x 2-2)=(y 2-1)(y 21-1).当y 21-1≠0时,有2x 2+y 2=5,当y 21-1=0时,点P (-2,-1)或P (2,1),此时点Q 对应的坐标分别为(2,1)或(-2,-1),其坐标也满足方程2x 2+y 2=5.当点P 与点A 重合时,即点P (-2,1),由②得y =2x -3.解方程组⎩⎨⎧2x 2+y 2=5,y =2x -3,得点Q 的坐标为(2,-1)或⎝⎛⎭⎫22,-2. 同理,当点P 与点B 重合时,可得点Q 的坐标为(-2,1)或⎝⎛⎭⎫-22,2. ∴点Q 的轨迹方程为2x 2+y 2=5,除去四个点(2,-1),⎝⎛⎭⎫22,-2,(-2,1),⎝⎛⎭⎫-22,2. (3)点Q 到直线AB :x +2y =0的距离为|x +2y |3. △ABQ 的面积为S =12(2+2)2+(-1-1)2·|x +2y |3=|x +2y |=x 2+2y 2+22xy . 而22xy =2×(2x )×⎝⎛⎭⎫y 2≤4x 2+y 22(当且仅当2x =y 2时等号成立), ∴S =x 2+2y 2+22xy ≤ x 2+2y 2+4x 2+y 22 = 5x 2+52y 2=522(当且仅当2x =y 2时,等号成立). 由⎩⎪⎨⎪⎧ 2x =y 2,2x 2+y 2=5,解得⎩⎪⎨⎪⎧ x =22,y =2,或⎩⎪⎨⎪⎧ x =-22,y =-2.∴△ABQ 的面积的最大值为522,此时,点Q 的坐标为⎝⎛⎭⎫22,2或⎝⎛⎭⎫-22,-2.。
山东省东营市(新版)2024高考数学人教版能力评测(冲刺卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题如图,在正三棱柱中,点,分别是棱,的中点,连接,,,点是线段的中点,点是线段上靠近点的四等分点,则下列说法不正确的是()A.平面平面B.三棱锥的体积与正三棱柱的体积之比为C.直线与平面所成的角为D.若,则过三点作平面,截正三棱柱所得截面图形的面积为第(2)题已知为虚数单位,复数的共轭复数为,则()A.B.C.D.第(3)题已知长方体中,,点E,F分别是线段BC,的中点,则异面直线,DF所成角的余弦值为()A.B.C.D.第(4)题设复数是纯虚数,则的值可以为()A.B.C.D.第(5)题如图是根据的观测数据得到的散点图,可以判断变量,具有线性相关关系的图是()A.①②B.③④C.②③D.①④第(6)题已知是虚数单位,复数()A.B.C.D.第(7)题已知直线与圆,过直线上的任意一点向圆引切线,设切点为,若线段长度的最小值为,则实数的值是()A.B.C.D.第(8)题如图是一个几何体的三视图,则该几何体的体积是()A.432B.216C.144D.72二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知三棱锥的四个顶点都在球的球面上,且,,球的表面积为,三棱锥的体积为,记点到平面的距离为,则()A.B.C.D.第(2)题已知复数z在复平面内对应的点为,则()A.B.C.D.第(3)题定义复数的大小关系:已知复数,,,,,.若或(且),称.若且,称.共余情形均为.复数u,v,w分别满足:,,,则()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在△ABC中,若a=2,b+c=7,,则b=_________________第(2)题已知分别是双曲线上的三点,且满足,若直线的斜率分别为,成立,其中,则渐近线方程为___________.第(3)题已知曲线与直线相切,则______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,在直三棱柱中,点E,F分别是,中点,平面平面.(1)证明:;(2)若,平面平面,且,求直线l与平面所成角的余弦值.第(2)题已知的内角A,,所对的边分别为,,,的最大值为.(1)求角;(2)若点在上,满足,且,,解这个三角形.第(3)题在平面直角坐标系中,已知椭圆的左焦点为,过点且与轴垂直的直线被椭圆截得的线段长为.(1)求椭圆的标准方程;(2)已知直线与椭圆相切,与圆相交于两点,设为圆上任意一点,求的面积最大时直线的斜率.第(4)题已知直线l:为双曲线C:的一条渐近线,且双曲线C经过点.(1)求双曲线C的方程;(2)设A,B是双曲线右支上两点,若直线l上存在点P,使得为正三角形,求直线AB的斜率的取值范围.第(5)题已知正项数列的前项和为,首项.(1)若,求数列的通项公式;(2)若函数,正项数列满足:.(i)证明:;(ii)证明:.。
滕州一中2012年12月份单元过关检测数学(文)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。
考试时间120分钟。
注意事项:1.考生务必将姓名、准考证号、考试科目、试卷类型填涂在答题卡、纸规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试卷上。
3.第Ⅱ卷答案必须写在答题纸各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案。
不按以上要求作答的答案无效。
第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的.1、设全集为R ,集合{}{}11,1A x x B x x =-<<=≥,则R C ()AB 等于( )A 、{|001}x ≤<B 、{|1}x x ≥C 、{|1}x x ≤-D 、{|1}x x >- 2、已知向量,2=2=,且()⊥-,则向量a 与b 的夹角是 A .4π B .2πC .34πD .π3、“2a =”是直线20ax y +=平行于直线1x y +=的( )A 、充分而不必要条件B 、必要而不充分条件C 、充分必要条件D 、既不充分也不必要条件4、已知变量x 、y 满足约束条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最小值为( )A .3B .1C .5-D .6-5、已知圆04222=-+-+my x y x 上两点,M N 关于直线20x y +=对称,则圆的半径为( )A . 9B .3C .23D .2 6、两圆229x y +=和228690x y x y +-++=的位置关系是( ) A 相离 B 相交 C 内切 D 外切7、直线l 与圆22240(3)x y x y a a ++-+=<相交于A 、B 两点,若弦AB 的中点为(-2,3),则直线l 的方程为( )A 、50x y -+=B 、10x y +-=C 、50x y --=D 、30x y +-= 8、在ABC ∆中,角A B C 、、所对的边分别为,,a b c ,则直线0sin =++c ay A x 与直线0sin sin =+-C B y bx 的位置关系是( )A.平行B.垂直C.重合D.相交但不垂直 9、 “0m n >>”是“方程221mx ny +=”表示焦点在y 轴上的椭圆”的( )A 、充分而不必要条件B 、必要而不充分条件C 、充要条件D 、 既不充分也不必要条件10、设P 为双曲线22112y x -=上的一点,12F F ,是该双曲线的两个焦点, 若12||:||3:2PF PF =,则12PF F △的面积为( )A .B .12C ..24 11、若关于x 的方程1log 21-=m mx 在区间(0,1)上有解,则实数m 的取值范围是 A .(0,1) B .(1,2) C .(-∞,0)∪(1,+∞) D .(-∞,1)∪(2,+∞) 12、已知函数3211()2(,,)32f x x ax bx c a b c R =+++∈,且函数()f x 在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,则22(3)z a b =++的取值范围( )A 、(2B 、1(,4)2C 、(1,2) D 、(1,4) 第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每题4分,共16分,把答案写在答题纸上。
13、已知关于x 的不等式0)1)(1(<+-x ax 的解集是),1()1,(+∞--∞ a,则实数a 的取值范围是 .14.已知函数)2,0,0,)(sin()(πϕωϕω<>>∈+=A R x x A x f 的部分图象如图所示,则=-)1(f .15.函数1(01)xy aa a -=>≠,的图象恒过定点A ,若点A 在直线10(0)mx ny mn +-=>上,则11m n+的最小值为 . 16.如图,将全体正整数排成一个三角形数阵:根据以上排列规律,数阵中第)3(≥n n 行的从左至右的第3个数是三、解答题:本题共6个小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤,将解答过程写在答题纸对应题的题框内。
17.(本小题满分12分)设函数()f x a b =⋅,其中向量(2cos ,1)a x =,(cos 2),b x x x R =∈ (1)若函数]3,3[,31)(ππ-∈-=x x f 且,求x ; (2)求函数)(x f y =的单调增区间; 18.(本小题满分12分)在数列}{n a 中,11=a ,并且对于任意n ∈N *,都有121+=+n nn a a a .(1)证明数列}1{na 为等差数列,并求}{n a 的通项公式; (2)设数列}{1+n n a a 的前n 项和为n T ,求使得20111000>n T 的最小正整数n .19.(本小题满分12分)已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线:20l x y -=的距离为55,求该圆的方程. 20(本小题满分12分)在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x 台(x 是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.(1)求该月需用去的运费和保管费的总费用();f x(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由. 21. (本小题满分12分)已知椭圆2222:1(0)x y G a b a b +=>>),斜率为1的直线l 与椭圆G 交与A 、B 两点,以AB 为底边作等腰三角形,顶点为()23,-P . (I )求椭圆G 的方程;(II )求PAB ∆的面积.22.(本小题满分12分) 已知函数()ln ()ln ,x f x x x h x x =-=.(1)求()h x 的最大值;(2)若关于x 的不等式2()212xf x x ax ≥-+-对一切()0,x ∈+∞恒成立, 求实数a 的取值范围;(3)若关于x 的方程()3220f x x ex bx -+-=恰有一解,其中e 为自然对数的底数,求实数b 的值.滕州一中2012年12月份单元过关检测数学(文)试卷答案一、选择题:C A C C B B A B C B C B二、填空题:本大题共4小题,每题4分,共16分,把答案写在答题纸上。
13.01<≤-a ; 14.1-; 15.4 16. 262n n -+;三、解答题:17.(本题满分12分)解:(1)依题设得x x x f 2sin 3cos 2)(2+=1)62sin(22sin 32cos 1++=++=πx x x…………2分由311)62sin(2-=++πx 得23)62sin(-=+πx65622,33πππππ≤+≤-∴≤≤-x x 362ππ-=+∴x ,即4π-=x …6分(2)222()262k x k k Z πππππ-+≤+≤+∈即)(63Z k k x k ∈+≤≤+-ππππ得函数单调区间为)](6,3[Z k k k ∈++-ππππ …………12分18.解:(1)111=a ,因为121+=+n n n a a a ,所以2111=-+nn a a ,∴数列}1{na 是首项为1,公差为2的等差数列, ∴121-=n a n,从而121n a n =-. ……6分 (2)因为⎪⎭⎫⎝⎛+--=+-=+12112121)12)(12(11n n n n a a n n …… 8分所以13221++++=n n n a a a a a a T⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=121121513131121n n 12+=n n ……10分 由2011100012>+=n n T n ,得111000>n ,最小正整数n 为91. ……12分19.(本题满分12分)解:设所求圆的圆心为(,)P a b ,半径为r ,则P 到x 轴、y 轴的距离分别为||,||b a 由题设圆P 截x 轴所得劣弧所对圆心角为90︒,圆P 截x ,故222r b =,又圆P 截y 轴所得弦长为2,所以有221r a =+,又点(,)P a b 到直线20x y -=距离为5d ==,解得⎩⎨⎧-=-=11b a 或⎩⎨⎧==11b a 2222r b ==所求圆的方程为22(1)(1)2x y +++=或22(1)(1)2x y -+-= 20.(本题满分12分)21.解:(Ⅰ)由已知得c c a ==解得a =, 又2224.b a c =-=所以椭圆G 的方程为221.124x y += …… 4分 (Ⅱ)设直线l 的方程为.m x y +=由⎪⎩⎪⎨⎧=++=141222y x m x y 得.01236422=-++m mx x ……… 6分 设A 、B 的坐标分别为),)(,(),,(212211x x y x y x <AB 中点为E ),(00y x , 则,432210m x x x -=+=400mm x y =+=;……………… 8分因为AB 是等腰△PAB 的底边,所以PE ⊥AB.所以PE 的斜率.143342-=+--=m mk 解得m=2。
此时方程①为.01242=+x x 解得.0,321=-=x x 所以.2,121=-=y y 所以|AB|=23. …………… 10分此时,点P (—3,2)到直线AB :02=+-y x 的距离,2232|223|=+--=d 所以△PAB 的面积S=.29||21=⋅d AB … 12分22.(本题满分14分) 解析:(1)因为()()ln ,0xh x x x=>, 所以()21ln xh x x -'=,…………………………………2分 由()0h x '>,且0>x ,得0x e <<,由()0h x '<,且0>x ,x e >,…………………4分所以函数()h x 的单调增区间是(0,]e ,单调减区间是[,)e +∞, 所以当x e =时,()h x 取得最大值1e;…………5分(2)因为2()212xf x x ax -+-≥对一切),0(+∞∈x 恒成立, 即22ln 212x x x x ax --+-≥对一切),0(+∞∈x 恒成立, 亦即12ln a x x x++≤对一切),0(+∞∈x 恒成立,…………7分 设x x x x 12ln )(++=ϕ,因为222)4)(3(12)(x x x x x x x +-=-+='ϕ,故)(x ϕ在]3,0(上递减,在),3[+∞上递增, 3ln 7)3()(min +==ϕϕx , 所以7ln 3a +≤. …………………………………9分 (3)因为方程02)(23=-+-bx ex x x f 恰有一解,即02ln 23=-+--bx ex x x x 恰有一解,即12ln 2++-=b ex x xx恰有一解, 由(1)知,)(x h 在e x =时,ex h 1)(max =, ……………11分 而函数()122++-=b ex x x k 在],0(e 上单调递减,在),[+∞e 上单调递增,故e x =时,()2min 1e b x k -+=,……………………13分故方程12ln 2++-=b ex x x x 恰有一解当且仅当e e b 112=-+, 即112-+=ee b . …………………14分。