濮良贵机械设计第九版课后 习题答案.(DOC)
- 格式:pdf
- 大小:749.23 KB
- 文档页数:27
第三章 机械零件的强度习题答案3-1某材料的对称循环弯曲疲劳极限MPa 1801=-σ,取循环基数60105⨯=N ,9=m ,试求循环次数N 分别为7 000、25 000、620 000次时的有限寿命弯曲疲劳极限。
[解] MPa 6.373107105180936910111=⨯⨯⨯==--N N σσN3-2已知材料的力学性能为MPa260=s σ,MPa1701=-σ,2.0=σΦ,试绘制此材料的简化的等寿命寿命曲线。
[解] )170,0('A )0,260(C得)233.283,233.283(D ',即)67.141,67.141(D '根据点)170,0('A ,)0,260(C ,)67.141,67.141(D '按比例绘制该材料的极限应力图如下图所示3-4 圆轴轴肩处的尺寸为:D =72mm ,d =62mm ,r =3mm 。
如用题3-2中的材料,设其强度极限σB =420MPa ,精车,弯曲,βq =1,试绘制此零件的简化等寿命疲劳曲线。
[解] 因2.14554==d D ,067.0453==d r ,查附表3-2,插值得88.1=ασ,查附图3-1得78.0≈σq ,将所查值代入公式,即查附图3-2,得75.0=σε;按精车加工工艺,查附图3-4,得91.0=σβ,已知1=q β,则根据()()()29.60,67.141,0,260,34.72,0D C A 按比例绘出该零件的极限应力线图如下图3-5 如题3-4中危险截面上的平均应力MPa 20m =σ,应力幅MPa 20a =σ,试分别按①C r =②Cσ=m ,求出该截面的计算安全系数ca S 。
[解] 由题3-4可知35.2,2.0MPa,260MPa,170s 1-====σσK Φσσ(1)C r =工作应力点在疲劳强度区,根据变应力的循环特性不变公式,其计算安全系数 (2)C σ=m工作应力点在疲劳强度区,根据变应力的平均应力不变公式,其计算安全系数第五章螺纹连接和螺旋传动习题答案5-5图5-49是由两块边板和一块承重板焊接的龙门起重机导轨托架。
第三章 机械零件的强度习题答案3-1某材料的对称循环弯曲疲劳极限MPa 1801=-σ,取循环基数60105⨯=N ,9=m ,试求循环次数N 分别为7 000、25 000、620 000次时的有限寿命弯曲疲劳极限。
[解] MPa 6.373107105180936910111=⨯⨯⨯==--N N σσN MPa 3.324105.2105180946920112=⨯⨯⨯==--N N σσN MPa 0.227102.6105180956930113=⨯⨯⨯==--N N σσN 3-2已知材料的力学性能为MPa 260=s σ,MPa 1701=-σ,2.0=σΦ,试绘制此材料的简化的等寿命寿命曲线。
[解] )170,0('A )0,260(C 012σσσΦσ-=- σΦσσ+=∴-1210 MPa 33.2832.0117021210=+⨯=+=∴-σΦσσ 得)233.283,233.283(D ',即)67.141,67.141(D '根据点)170,0('A ,)0,260(C ,)67.141,67.141(D '按比例绘制该材料的极限应力图如下图所示3-4圆轴轴肩处的尺寸为:D=72mm,d=62mm,r=3mm。
如用题3-2中的材料,设其强度极限σB=420MPa,精车,弯曲,βq=1,试绘制此零件的简化等寿命疲劳曲线。
[解] 因2.14554==dD,067.0453==dr,查附表3-2,插值得88.1=ασ,查附图3-1得78.0≈σq,将所查值代入公式,即()()69.1188.178.0111k=-⨯+=-α+=σσσq查附图3-2,得75.0=σε;按精车加工工艺,查附图3-4,得91.0=σβ,已知1=qβ,则35.211191.0175.069.1111k=⨯⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫⎝⎛-+=qσσσσββεK()()()35.267.141,67.141,0,260,35.2170,0DCA∴根据()()()29.60,67.141,0,260,34.72,0DCA按比例绘出该零件的极限应力线图如下图3-5如题3-4中危险截面上的平均应力MPa20m=σ,应力幅MPa20a=σ,试分别按①C r =②C σ=m ,求出该截面的计算安全系数ca S 。
第三章 机械零件的强度习题答案3-1某材料的对称循环弯曲疲劳极限MPa 1801=-σ,取循环基数60105⨯=N ,9=m ,试求循环次数N分别为7 000、25 000、620 000次时的有限寿命弯曲疲劳极限。
[解] MPa 6.373107105180936910111=⨯⨯⨯==--N N σσN MPa 3.324105.2105180946920112=⨯⨯⨯==--N N σσN MPa 0.227102.6105180956930113=⨯⨯⨯==--N N σσN 3-2已知材料的力学性能为MPa 260=s σ,MPa 1701=-σ,2.0=σΦ,试绘制此材料的简化的等寿命寿命曲线。
[解] )170,0('A )0,260(C 012σσσΦσ-=-Θ σΦσσ+=∴-121MPa 33.2832.0117021210=+⨯=+=∴-σΦσσ得)233.283,233.283(D ',即)67.141,67.141(D '根据点)170,0('A ,)0,260(C ,)67.141,67.141(D '按比例绘制该材料的极限应力图如下图所示3-3一圆轴轴肩处的尺寸为:D =72mm ,d =62mm ,r =3mm 。
材料为40CrNi ,设其强度极限σB =900MPa ,屈服极限750MPa s σ=试计算周健的弯曲有效应力集中系数k σ。
[解] 因1.16D d =,0.048rd=,查附表3-2,插值得 1.995σα=,查附图3-1得78.0≈σq ,将所查值代入公式,即()()k 1110.78 1.9951 1.896σσσq α=+-=+⨯-=3-4圆轴轴肩处的尺寸为:D =54mm ,d =45mm ,r =3mm 。
如用题3-2中的材料,设其强度极限σB =420MPa ,试绘制此零件的简化等寿命疲劳曲线。
[解] 因2.14554==d D ,067.0453==d r ,查附表3-2,插值得88.1=ασ,查附图3-1得78.0≈σq ,将所查值代入公式,即()()69.1188.178.0111k =-⨯+=-α+=σσσq查附图3-2,得0.7σε=;按精车加工工艺,查附图3-4,得91.0=σβ,已知1=q β,则k 11 1.691111 2.510.70.911σσσσq K εββ⎛⎫⎛⎫=+-=+-⨯= ⎪ ⎪⎝⎭⎝⎭()()()170141.670,,260,0,141.67,2.512.51A C D ∴根据()()()0,67.73,260,0,141.67,56.44A C D 按比例绘出该零件的极限应力线图如下图3-5 如题3-4中危险截面上的平均应力MPa 20m =σ,应力幅MPa 20a =σ,试分别按①C r =②C σ=m ,求出该截面的计算安全系数ca S 。
第三章 机械零件的强度习题答案3-1某材料的对称循环弯曲疲劳极限MPa 1801=-σ,取循环基数60105⨯=N ,9=m ,试求循环次数N分别为7 000、25 000、620 000次时的有限寿命弯曲疲劳极限。
[解] MPa 6.373107105180936910111=⨯⨯⨯==--N N σσN MPa 3.324105.2105180946920112=⨯⨯⨯==--N N σσN MPa 0.227102.6105180956930113=⨯⨯⨯==--N N σσN 3-2已知材料的力学性能为MPa 260=s σ,MPa 1701=-σ,2.0=σΦ,试绘制此材料的简化的等寿命寿命曲线。
[解] )170,0('A )0,260(C 012σσσΦσ-=- σΦσσ+=∴-121MPa 33.2832.0117021210=+⨯=+=∴-σΦσσ得)233.283,233.283(D ',即)67.141,67.141(D '根据点)170,0('A ,)0,260(C ,)67.141,67.141(D '按比例绘制该材料的极限应力图如下图所示3-3一圆轴轴肩处的尺寸为:D =72mm ,d =62mm ,r =3mm 。
材料为40CrNi ,设其强度极限σB =900MPa ,屈服极限750MPa s σ=试计算周健的弯曲有效应力集中系数k σ。
[解] 因1.16D d =,0.048rd=,查附表3-2,插值得 1.995σα=,查附图3-1得78.0≈σq ,将所查值代入公式,即()()k 1110.78 1.9951 1.896σσσq α=+-=+⨯-=3-4圆轴轴肩处的尺寸为:D =54mm ,d =45mm ,r =3mm 。
如用题3-2中的材料,设其强度极限σB =420MPa ,试绘制此零件的简化等寿命疲劳曲线。
[解] 因2.14554==d D ,067.0453==d r ,查附表3-2,插值得88.1=ασ,查附图3-1得78.0≈σq ,将所查值代入公式,即()()69.1188.178.0111k =-⨯+=-α+=σσσq查附图3-2,得0.7σε=;按精车加工工艺,查附图3-4,得91.0=σβ,已知1=q β,则k 11 1.691111 2.510.70.911σσσσq K εββ⎛⎫⎛⎫=+-=+-⨯= ⎪ ⎪⎝⎭⎝⎭()()()170141.670,,260,0,141.67,2.512.51A C D ∴根据()()()0,67.73,260,0,141.67,56.44A C D 按比例绘出该零件的极限应力线图如下图3-5 如题3-4中危险截面上的平均应力MPa 20m =σ,应力幅MPa 20a =σ,试分别按①C r =②C σ=m ,求出该截面的计算安全系数ca S 。
第三章 机械零件的强度习题答案3-1某材料的对称循环弯曲疲劳极限MPa 1801=-σ,取循环基数60105⨯=N ,9=m ,试求循环次数N分别为7 000、25 000、620 000次时的有限寿命弯曲疲劳极限。
[解] MPa 6.373107105180936910111=⨯⨯⨯==--N N σσN MPa 3.324105.2105180946920112=⨯⨯⨯==--N N σσN MPa 0.227102.6105180956930113=⨯⨯⨯==--N N σσN 3-2已知材料的力学性能为MPa 260=s σ,MPa 1701=-σ,2.0=σΦ,试绘制此材料的简化的等寿命寿命曲线。
[解] )170,0('A )0,260(C 012σσσΦσ-=- σΦσσ+=∴-121MPa 33.2832.0117021210=+⨯=+=∴-σΦσσ得)233.283,233.283(D ',即)67.141,67.141(D '根据点)170,0('A ,)0,260(C ,)67.141,67.141(D '按比例绘制该材料的极限应力图如下图所示3-3一圆轴轴肩处的尺寸为:D =72mm ,d =62mm ,r =3mm 。
材料为40CrNi ,设其强度极限σB =900MPa ,屈服极限750MPa s σ=试计算周健的弯曲有效应力集中系数k σ。
[解] 因1.16D d =,0.048rd=,查附表3-2,插值得 1.995σα=,查附图3-1得78.0≈σq ,将所查值代入公式,即()()k 1110.78 1.9951 1.896σσσq α=+-=+⨯-=3-4圆轴轴肩处的尺寸为:D =54mm ,d =45mm ,r =3mm 。
如用题3-2中的材料,设其强度极限σB=420MPa ,试绘制此零件的简化等寿命疲劳曲线。
[解] 因2.14554==d D ,067.0453==d r ,查附表3-2,插值得88.1=ασ,查附图3-1得78.0≈σq ,将所查值代入公式,即()()69.1188.178.0111k =-⨯+=-α+=σσσq查附图3-2,得0.7σε=;按精车加工工艺,查附图3-4,得91.0=σβ,已知1=q β,则k 11 1.691111 2.510.70.911σσσσq K εββ⎛⎫⎛⎫=+-=+-⨯= ⎪ ⎪⎝⎭⎝⎭()()()170141.670,,260,0,141.67,2.512.51A C D ∴根据()()()0,67.73,260,0,141.67,56.44A C D 按比例绘出该零件的极限应力线图如下图3-5 如题3-4中危险截面上的平均应力MPa 20m =σ,应力幅MPa 20a =σ,试分别按①C r =②C σ=m ,求出该截面的计算安全系数ca S 。
第三章 机械零件的强度习题答案3-1某材料的对称循环弯曲疲劳极限MPa 1801=-σ,取循环基数60105⨯=N ,9=m ,试求循环次数N 分别为7 000、25 000、620 000次时的有限寿命弯曲疲劳极限。
[解] MPa 6.373107105180936910111=⨯⨯⨯==--N N σσN MPa 3.324105.2105180946920112=⨯⨯⨯==--N N σσN MPa 0.227102.6105180956930113=⨯⨯⨯==--N N σσN 3-2已知材料的力学性能为MPa 260=s σ,MPa 1701=-σ,2.0=σΦ,试绘制此材料的简化的等寿命寿命曲线。
[解] )170,0('A )0,260(C 012σσσΦσ-=- σΦσσ+=∴-121MPa 33.2832.0117021210=+⨯=+=∴-σΦσσ得)233.283,233.283(D ',即)67.141,67.141(D '根据点)170,0('A ,)0,260(C ,)67.141,67.141(D '按比例绘制该材料的极限应力图如下图所示3-3一圆轴轴肩处的尺寸为:D =72mm ,d =62mm ,r =3mm 。
材料为40CrNi ,设其强度极限σB =900MPa ,屈服极限750MPa s σ=试计算周健的弯曲有效应力集中系数k σ。
[解] 因1.16D d =,0.048rd=,查附表3-2,插值得 1.995σα=,查附图3-1得78.0≈σq ,将所查值代入公式,即()()k 1110.78 1.9951 1.896σσσq α=+-=+⨯-=3-4圆轴轴肩处的尺寸为:D =54mm ,d =45mm ,r =3mm 。
如用题3-2中的材料,设其强度极限σB=420MPa ,试绘制此零件的简化等寿命疲劳曲线。
[解] 因2.14554==d D ,067.0453==d r ,查附表3-2,插值得88.1=ασ,查附图3-1得78.0≈σq ,将所查值代入公式,即()()69.1188.178.0111k =-⨯+=-α+=σσσq查附图3-2,得0.7σε=;按精车加工工艺,查附图3-4,得91.0=σβ,已知1=q β,则k 11 1.691111 2.510.70.911σσσσq K εββ⎛⎫⎛⎫=+-=+-⨯= ⎪ ⎪⎝⎭⎝⎭()()()170141.670,,260,0,141.67,2.51 2.51A C D ∴ 根据()()()0,67.73,260,0,141.67,56.44A C D 按比例绘出该零件的极限应力线图如下图3-5 如题3-4中危险截面上的平均应力MPa 20m =σ,应力幅MPa 20a =σ,试分别按①C r =②C σ=m ,求出该截面的计算安全系数ca S 。
WORD 格式 可编写第三章 机械部件的强度习题答案3-1 某资料的对称循环波折疲倦极限σ1180MPa ,取循环基数 N 0 5 106 , m 9 ,试求循环次数 N分别为 7 000 、 25 000 、 620 000 次时的有限寿命波折疲倦极限。
[ 解 ]σ1N 1σ1 9N 0 180 95 106373.6MPaN 17 103σ1N 2σ1 9 N 018095 106324.3MPaN 22.5 10 4σ1N 3σ19 N 018095 106227.0MPaN 36.2 10 53-2 已知资料的力学性能为 σs260MPa , σ1 170MPa , Φσ 0.2 ,试绘制此资料的简化的等寿命寿命曲线。
[ 解 ]A ' (0,170)C( 260,0)σ1σΦσ2 0σ0σ2σ11 Φσσ2σ1 2 170283.33MPa1 Φσ 1 0.2得 D '(283.332 ,283.332) ,即 D ' (141.67,141.67)依照点 A ' (0,170) , C (260,0) , D ' (141.67,141.67) 按比率绘制该资料的极限应力求以以下列图所示3-3 一圆轴轴肩处的尺寸为: D =72mm , d =62mm , r =3mm 。
资料为 40CrNi ,设其强度极限σB=900MPa ,信服WORD 格式可编写极限 σ750MPa 试计算周健的波折有效应力集中系数k 。
s[解] 因D1.16 ,r0.048 ,查附表 3-2 ,插值得σ1.995 ,查附图 3-1 得 q σ0.78 ,将所查值dd代入公式,即k σ 1 q σ σ 1 1 0.78 1.995 1 1.8963-4 圆轴轴肩处的尺寸为: D =54mm , d =45mm , r =3mm 。
如用题 3-2 中的资料,设其强度极限σ B=420MPa ,试绘制此部件的简化等寿命疲倦曲线。
西北工业大学蒲良贵主编《机械设计》新版第九版齿轮章节例题课堂讲解及习题解答(与原来第八版数表图均有不同)上海工程技术大学机械设计教研室陆宁编写sm n d v t /.311==1t226.2650.221==Fa Fa Y Ysa sa Y Y教材例题:试设计一对齿轮,输入功率P 1=10kw,小齿轮转速N1=960r/min,齿数比u=3.2,传动平稳,转向不变,c 齿轮相对于轴承为非对称布置.MPa H 540][1=σMPaH 523][2=σMPa F 57.303][1=σMPaF 86.238][2=σ初选Z1=24 Z2=77O14=β7级精度14634.901=d 2=m 4632.45/Z 11→==m d 圆整:以下不再赘述以下是教材计算题的解答过程10/29/201510-6 设计铣床中的一对直齿圆柱齿轮,已知P1=7.5kw ,n1=1450r/min,小齿轮相对于其轴的支撑为非对称布置,传动比要求u=2.08。
有轻微冲击,试设计这对齿轮。
补充条件:初选Kt=1.8 ,小齿轮齿数Z1=26,大齿轮齿数Z2=54.许用应力为:Mpa Mpa Mpa Mpa F F H 213][,220][,599][,600][2121H ====σσσσ补充作业(斜齿轮)前10-6习题中其他条件不变,按斜齿轮设计,初设螺旋角O 10=β8.10)625.2/(146/=⨯=h b 按轻微冲击,查表10-2得1.25K A =查图10-815.1=v K 查表10-34.1K K F ==ααH 查表10-43755.1=βH K 查图10-131.31K F =β载荷系数为:2.64k k K K K 2.77k k K K K F F V A F H H V A H ====βαβα查图10-2047.2=H z 钢材8.189=E z。
第三章机械零件的强度习题答案3-1某材料的对称循环弯曲疲劳极限,取循环基数,,试求循环次数N分别为7 000、25 000、620 000次时的有限寿命弯曲疲劳极限。
[解]3-2已知材料的力学性能为,,,试绘制此材料的简化的等寿命寿命曲线。
[解]得,即根据点,,按比例绘制该材料的极限应力图如下图所示3-3一圆轴轴肩处的尺寸为:D=72mm,d=62mm,r=3mm。
材料为40CrNi,设其强度极限σB=900MPa,屈服极限试计算周健的弯曲有效应力集中系数。
[解] 因,,查附表3-2,插值得,查附图3-1得,将所查值代入公式,即3-4圆轴轴肩处的尺寸为:D=54mm,d=45mm,r=3mm。
如用题3-2中的材料,设其强度极限σB=420MPa,试绘制此零件的简化等寿命疲劳曲线。
[解] 因,,查附表3-2,插值得,查附图3-1得,将所查值代入公式,即查附图3-2,得;按精车加工工艺,查附图3-4,得,已知,则根据按比例绘出该零件的极限应力线图如下图3-5 如题3-4中危险截面上的平均应力,应力幅,试分别按①②,求出该截面的计算安全系数。
[解] 由题3-4可知(1)工作应力点在疲劳强度区,根据变应力的循环特性不变公式,其计算安全系数(2)工作应力点在疲劳强度区,根据变应力的平均应力不变公式,其计算安全系数第五章螺纹连接和螺旋传动5-6 已知一个托架的边板用6个螺栓及相邻的机架相连接。
托架受一及边板螺栓组的垂直对称轴线相平行、距离为250mm、大小为60kN的载荷作用。
现有如图5-50所示的两种螺栓布置形式,设采用铰制孔用螺栓连接,试问哪一种布置形式所用的螺栓直径最小?为什么?[解] 螺栓组受到剪力F和转矩,设剪力F分在各个螺栓上的力为,转矩T 分在各个螺栓上的分力为(a)中各螺栓轴线到螺栓组中心的距离为r,即r=125mm由(a)图可知,最左的螺栓受力最大(b)方案中由(b)图可知,螺栓受力最大为第八章带传动8-1 V带传动的,带及带轮的当量摩擦系数,包角,初拉力。
第三章 机械零件的强度欧阳家百(2021.03.07)习题答案3-1某材料的对称循环弯曲疲劳极限MPa 1801=-σ,取循环基数60105⨯=N ,9=m ,试求循环次数N 分别为7 000、25 000、620 000次时的有限寿命弯曲疲劳极限。
[解] MPa 6.373107105180936910111=⨯⨯⨯==--N N σσN 3-2已知材料的力学性能为MPa 260=s σ,MPa 1701=-σ,2.0=σΦ,试绘制此材料的简化的等寿命寿命曲线。
[解] )170,0('A )0,260(C得)233.283,233.283(D ',即)67.141,67.141(D '根据点)170,0('A ,)0,260(C ,)67.141,67.141(D '按比例绘制该材料的极限应力图如下图所示3-4 圆轴轴肩处的尺寸为:D =72mm ,d =62mm ,r =3mm 。
如用题3-2中的材料,设其强度极限σB =420MPa ,精车,弯曲,βq =1,试绘制此零件的简化等寿命疲劳曲线。
[解] 因2.14554==d D ,067.0453==d r ,查附表3-2,插值得88.1=ασ,查附图3-1得78.0≈σq ,将所查值代入公式,即查附图3-2,得75.0=σε;按精车加工工艺,查附图3-4,得91.0=σβ,已知1=q β,则根据()()()29.60,67.141,0,260,34.72,0D C A 按比例绘出该零件的极限应力线图如下图3-5 如题3-4中危险截面上的平均应力MPa 20m =σ,应力幅MPa20a =σ,试分别按①C r =②C σ=m ,求出该截面的计算安全系数ca S 。
[解] 由题3-4可知35.2,2.0MPa,260MPa,170s 1-====σσK Φσσ (1)C r =工作应力点在疲劳强度区,根据变应力的循环特性不变公式,其计算安全系数 (2)C σ=m工作应力点在疲劳强度区,根据变应力的平均应力不变公式,其计算安全系数第五章 螺纹连接和螺旋传动习题答案5-5 图5-49是由两块边板和一块承重板焊接的龙门起重机导轨托架。
第三章 机械零件的强度习题答案3-1某材料的对称循环弯曲疲劳极限MPa 1801=-σ,取循环基数60105⨯=N ,9=m ,试求循环次数N 分别为7 000、25 000、620 000次时的有限寿命弯曲疲劳极限。
[解] MPa 6.373107105180936910111=⨯⨯⨯==--N N σσN MPa 3.324105.2105180946920112=⨯⨯⨯==--N N σσN MPa 0.227102.6105180956930113=⨯⨯⨯==--N N σσN 3-2已知材料的力学性能为MPa 260=s σ,MPa 1701=-σ,2.0=σΦ,试绘制此材料的简化的等寿命寿命曲线。
[解] )170,0('A )0,260(C 012σσσΦσ-=- σΦσσ+=∴-1210 MPa 33.2832.0117021210=+⨯=+=∴-σΦσσ 得)233.283,233.283(D ',即)67.141,67.141(D '根据点)170,0('A ,)0,260(C ,)67.141,67.141(D '按比例绘制该材料的极限应力图如下图所示3-4 圆轴轴肩处的尺寸为:D =72mm ,d =62mm ,r =3mm 。
如用题3-2中的材料,设其强度极限σB =420MPa ,精车,弯曲,βq =1,试绘制此零件的简化等寿命疲劳曲线。
[解] 因2.14554==d D,067.0453==d r ,查附表3-2,插值得88.1=ασ,查附图3-1得78.0≈σq ,将所查值代入公式,即()()69.1188.178.0111k =-⨯+=-α+=σσσq查附图3-2,得75.0=σε;按精车加工工艺,查附图3-4,得91.0=σβ,已知1=q β,则35.211191.0175.069.1111k =⨯⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-+=qσσσσββεK ()()()35.267.141,67.141,0,260,35.2170,0D C A ∴ 根据()()()29.60,67.141,0,260,34.72,0D C A 按比例绘出该零件的极限应力线图如下图3-5 如题3-4中危险截面上的平均应力MPa 20m =σ,应力幅MPa 20a =σ,试分别按①C r =②C σ=m ,求出该截面的计算安全系数ca S 。
机械设计课后习题答案濮良贵第三章机械零件的强度p45习题答案3-1某材料的对称循环弯曲疲劳极限MPa 1801=-ζ,取循环基数60105?=N ,9=m ,试求循环次数N 分别为7 000、25 000、620 000次时的有限寿命弯曲疲劳极限。
[解] MPa 6.373107105180936910111===--N N ζζN M P a 3.324105.2105180946920112===--N N ζζNM P a 0.227102.6105180956930113===--N N ζζN 3-2已知材料的力学性能为MPa 260=s ζ,MPa 1701=-ζ,2.0=ζΦ,试绘制此材料的简化的等寿命寿命曲线。
[解])170,0('A)0,260(C012ζζζΦζ-=-ζΦζζ+=∴-1210M P a 33.2832.0117021210=+?=+=∴-ζΦζζ 得)233.283,233.283(D ',即)67.141,67.141(D '根据点)170,0('A ,)0,260(C ,)67.141,67.141(D '按比例绘制该材料的极限应力图如下图所示3-4 圆轴轴肩处的尺寸为:D =72mm ,d =62mm ,r =3mm 。
如用题3-2中的材料,设其强度极限σB =420MPa ,精车,弯曲,βq =1,试绘制此零件的简化等寿命疲劳曲线。
[解] 因2.145 54==dD ,067.0453==d r,查附表3-2,插值得88.1=αζ,查附图3-1得78.0≈ζq ,将所查值代入公式,即()()69.1188.178.0111k =-?+=-α+=ζζζq查附图3-2,得75.0=ζε;按精车加工工艺,查附图3-4,得91.0=ζβ,已知1=q β,则35.211191.0175.069.1111k = ??-+= ??-+=q ζζζζββεK ()()()35.267.141,67.141,0,260,35.2170,0D C A ∴根据()()()29.60,67.141,0,260,34.72,0D C A 按比例绘出该零件的极限应力线图如下图3-5 如题3-4中危险截面上的平均应力MPa 20m =ζ,应力幅MPa 20a =ζ,试分别按①C r =②C ζ=m ,求出该截面的计算安全系数ca S 。
第三章 机械零件的强度习题答案3-1某材料的对称循环弯曲疲劳极限MPa 1801=-σ,取循环基数60105⨯=N ,9=m ,试求循环次数N分别为7 000、25 000、620 000次时的有限寿命弯曲疲劳极限。
[解] MPa 6.373107105180936910111=⨯⨯⨯==--N N σσN MPa 3.324105.2105180946920112=⨯⨯⨯==--N N σσN MPa 0.227102.6105180956930113=⨯⨯⨯==--N N σσN 3-2已知材料的力学性能为MPa 260=s σ,MPa 1701=-σ,2.0=σΦ,试绘制此材料的简化的等寿命寿命曲线。
[解] )170,0('A )0,260(C 012σσσΦσ-=-Θ σΦσσ+=∴-121MPa 33.2832.0117021210=+⨯=+=∴-σΦσσ得)233.283,233.283(D ',即)67.141,67.141(D '根据点)170,0('A ,)0,260(C ,)67.141,67.141(D '按比例绘制该材料的极限应力图如下图所示3-3一圆轴轴肩处的尺寸为:D =72mm ,d =62mm ,r =3mm 。
材料为40CrNi ,设其强度极限σB =900MPa ,屈服极限750MPa s σ=试计算周健的弯曲有效应力集中系数k σ。
[解] 因1.16D d =,0.048rd=,查附表3-2,插值得 1.995σα=,查附图3-1得78.0≈σq ,将所查值代入公式,即()()k 1110.78 1.9951 1.896σσσq α=+-=+⨯-=3-4圆轴轴肩处的尺寸为:D =54mm ,d =45mm ,r =3mm 。
如用题3-2中的材料,设其强度极限σB=420MPa ,试绘制此零件的简化等寿命疲劳曲线。
[解] 因2.14554==d D ,067.0453==d r ,查附表3-2,插值得88.1=ασ,查附图3-1得78.0≈σq ,将所查值代入公式,即()()69.1188.178.0111k =-⨯+=-α+=σσσq查附图3-2,得0.7σε=;按精车加工工艺,查附图3-4,得91.0=σβ,已知1=q β,则k 11 1.691111 2.510.70.911σσσσq K εββ⎛⎫⎛⎫=+-=+-⨯= ⎪ ⎪⎝⎭⎝⎭()()()170141.670,,260,0,141.67,2.51 2.51A C D ∴根据()()()0,67.73,260,0,141.67,56.44A C D 按比例绘出该零件的极限应力线图如下图3-5 如题3-4中危险截面上的平均应力MPa 20m =σ,应力幅MPa 20a =σ,试分别按①C r =②C σ=m ,求出该截面的计算安全系数ca S 。