污泥沉降比的问题
- 格式:docx
- 大小:10.04 KB
- 文档页数:3
污泥沉降比检测注意的那些事活性污泥沉降比是指:曝气池末端混合液均匀放置在1000mL 的量筒,静置30 分钟,则沉降污泥与所取混合液之体积比为污泥沉降比(%),又称污泥沉降体积(S V30),以m l 表示。
因为污泥沉降30分钟后,一般可达到或接近最大密度,所以普遍以此时间作为该指标测定的标准时间。
检测注意点:1、以曝气池末端混合液作为检测对象主要是因为末端是直接进二沉池待沉降的活性污泥,具有沉降代表性。
2、沉降过程的全程检测30mi n的沉降代表活性污泥在二沉池的沉降过程,一定不能只看沉降结果。
3、沉降检验过程要避免阳光直射与震动阳光直射下混合温度升高,混合液中气体膨胀析出易导致活性污泥上浮,震动更是不利于结果的准确性。
这个调试运行人员最容易犯的错误。
4、重点观察前5mi n的沉降效果前5m i n正常可以完成整个沉降过程的80%,此阶段的沉降值与絮凝性对判断活性污泥性的性能有重要的指导意义。
5、试验所用量筒要保证1000mL1000mL量筒更能反映出混合液在系统中的真实沉降过程,过小容易发生挂壁现象。
6、倒入量筒前要进行必要搅拌因为在倒入量筒前会出现混合液沉淀现象,直接倒入会使测量结果偏小,但搅拌力度要均匀不要过分搅拌,避免污泥絮体切碎。
活性污泥沉降过程活性污泥沉降过程分为三个阶段:即自由沉淀阶段、集团沉淀阶段和压缩沉淀阶段。
针对这三个阶段简短说说观察要点:1、自由沉淀阶段:沉降试验开始活性污泥发生迅速絮凝,出现快速沉降现象,这个阶段称为自由沉降阶段,这个阶段的沉降速度是由污泥特性决定。
好的沉淀在几段的时间(30s)内就可以完成。
如果有夹带气泡,要考虑污泥粘度增高,曝气过度等问题。
2、集团沉降阶段:自由沉淀一旦结束,就可以看到集团沉淀了。
此阶段活性污泥不断的絮凝沉淀下沉,密度增高,拥挤的活性污泥就会成集团式发生同步沉淀现象。
此阶段观察污泥色泽应逐渐的加深,如果没有变化,要考虑活性污泥浓度是否太低,污泥负荷是否太高,无机颗粒是否过多。
污泥沉降比观察法污泥沉降比是指单位时间内污泥的沉降高度与单位时间内泥浆的沉降高度之比。
它反映了污泥的沉降速度和沉降稳定性,是评价污泥脱水性能和污水处理设施性能的指标之一、较高的沉降比表示污泥脱水性能较好,受到污泥颗粒直径、胶体性质、污泥浓度等因素的影响。
1.准备样品:从污水处理设施中取得需要观察的污泥样品,通常是从沉淀池或二沉池中取得。
2.在透明的试管或圆柱形玻璃容器中,加入约为一半容器高度的污泥样品,再加入与样品相同浓度的清水,使试管或容器中的液位接近容器的上边缘。
3.对污泥样品进行搅拌,可以用玻璃棒或磁力搅拌子轻轻搅拌样品,使样品均匀分散。
4.记录开始时间,并仔细观察污泥在容器中的沉降情况。
5.每隔一定时间,如5分钟或10分钟,记录一次污泥的沉降高度。
可以用刻度尺或者放置标尺在容器旁边,以便准确测量。
6.持续观察和记录污泥的沉降情况,直到污泥的沉降高度相对稳定。
7.根据观察到的沉降高度数据,计算出沉降比。
沉降比的计算公式为:沉降比=沉降高度/观察时间。
通过污泥沉降比观察法,可以判断污泥的沉降性能和污水处理设施的处理效果。
一般来说,沉降比大于1时,表示污泥具有较好的沉降性能,脱水能力较强;而沉降比小于1时,表示污泥的沉降效果较差,脱水能力较弱。
然而,需要注意的是污泥沉降比观察法存在一定的局限性。
首先,它只是一种定性的观察方法,并不能提供准确的数值。
其次,它只能评价污泥的沉降性能,对于其他处理效果如COD、氨氮去除率等并不能直接反映。
此外,污泥沉降比观察法还受到观察者主观因素的影响,所以在进行实验时需要保持观察环境的一致性,提高观察的准确性。
总之,污泥沉降比观察法是一种简单有效的评估污水处理工艺效果的方法,可以通过观察污泥的沉降情况来评价污泥的沉降性能和污水处理设施的处理效果。
但使用该方法时需要注意其局限性,并结合其他方法和指标进行判断和评估。
转载:影响活性污泥沉降⽐的因素
常见的活性污泥沉降⽐的影响因素主要指的是污⽔处理中活性污泥浓度、活性污泥丝状菌膨胀、曝⽓过量等,引起这三点的主要原因及对策为以下:
1)活性污泥浓度过低影响沉降⽐。
原因:活性污泥浓度过低,在活性污泥沉淀的时候,由于活性污泥絮团间间距相对较⼤,碰撞机会减少,导致初期絮凝不充分,延长了⾃由沉淀阶段的沉淀效果。
对策:确认活性污泥浓度与⾷微⽐及污泥龄的关系,并加以调整。
2)活性污泥浓度过⾼影响沉降⽐。
⾃由沉淀初期由于活性污泥浓度过⾼,在⾃由沉淀还没结束的时候就发⽣集团沉淀了,由此导致只有沉淀区间效果不明显。
对策:确定⾷微⽐及污泥龄以确定⽬前的活性污泥浓度是否合适。
3)活性污泥丝状菌膨胀影响沉降⽐。
原因:丝状菌膨胀后,活性污泥絮团间的吸附能⼒不⾜以抵消丝状菌产⽣的⽀撑膨胀⼒,导致在⾃由沉淀阶段出现弥漫的沉淀效果,其沉淀速度极其缓慢。
对策:抑制丝状菌膨胀。
4)曝⽓过度影响沉降⽐。
原因:曝⽓过度往往导致细⼩的⽓泡夹杂在活性污泥的絮团中,⾃由沉淀初期絮团夹带⽓泡后⽆法快速沉淀,只有等到絮团再次增⼤的时候才会达到沉淀的效果。
对策:降低曝⽓,并减少导致活性污泥粘度增加的因素(如污泥⽼化)。
136********⼴州市清晏环保科技有限公司。
污泥沉降比污泥浓度和沉降指数的测定方法
一、污泥沉降比的测定方法:
1.定义:污泥沉降比是指单位时间内污泥的干固物重量与湿固物重量之比,反映了污泥的固液分离能力。
2.测定步骤:
a.取一定量的湿固物样品,将其加入预先称好的容器中。
b.将容器放入高速离心机,并设置合适的转速和时间。
c.离心结束后,取出容器,并将上层液体去除。
d.将容器放入烘箱中,进行干燥,直至固体完全干燥。
e.将容器取出,称重得到总重量,然后除去容器的重量,得到干固物重量。
f.计算湿固物重量与干固物重量之比,即为污泥沉降比。
二、污泥浓度的测定方法:
1.定义:污泥浓度是指单位体积污泥中固体的含量,常用干固物重量浓度来进行表示。
2.测定步骤:
a.取一定量的污泥样品,放入预先称好的容器中。
b.将容器放入105℃的烘箱中,进行干燥至固体完全干燥。
c.将容器取出,冷却,并称重得到干固物的重量。
d.根据容器的体积和干固物的重量,计算出干固物重量浓度。
三、沉降指数的测定方法:
1.定义:沉降指数是衡量污泥沉降速度的参数,常用来评估污泥的脱水性能。
2.测定步骤:
a.取一定量的粗固物样品,加入预先称好的容器中。
b.用稀释液将粗固物样品稀释,形成一定的浆液。
c.搅拌一段时间,让固体均匀分散。
d.将浆液静置一段时间,观察固体下沉的时间并记录。
e.分别计算出单位体积样品的干固物重量。
f.根据干固物重量和沉降时间,计算出沉降指数。
以上就是污泥沉降比、污泥浓度和沉降指数的测定方法,通过这些方法可以对污泥的物理性质进行有效评估。
1、沉降比取样及观测1、沉降比的取样地点尽量位于曝气池末端曝气均匀位置,这样的水样更具有代表性,沉降过程也更能模拟二沉池沉降环境;2、用取样器或者水舀等工具取样,迅速倒入量筒,防止污泥沉降,如果时间过长,可搅拌后倒入量筒至1000m l刻度处;3、量筒中的污泥混合液用玻璃棒搅拌均匀后静置30分钟后记录沉淀污泥层与上清液交界处的刻度数值就是污泥沉降比。
4、做s v30避免日光照射和振动。
5、沉淀前5分钟的观察最重要,可以通过菌胶团絮凝快慢,大小及成层沉淀来判断菌胶团活性等!2、污泥颜色(好氧池原水无色)1、黄色好氧活性污泥正常,含有铁盐的活性污泥会略带点红色;2、活性污泥颜色发黑大多为厌氧或缺氧;3、活性污泥颜色发灰,溶解氧异常升高,可能出现污泥中毒现象;4、活性污泥老化时,污泥呈现黄褐色。
3、气味良好的活性污泥略带泥土香味,闻上去感觉良好,某些工业废水则因本身水中成分不同,气味也不尽相同。
4、污泥形态1、良好的活性污泥形态规则、密实,有坚固的微生物结构,良好的沉降性能,以及较高的微生物量,泥水界面清晰;2、沉降比高,污泥松散,泥水界面不清晰,结合镜检及S V I指数判断是否出现污泥膨胀;3、新生污泥较老化污泥相比而言,颜色略浅,沉降性也差些,污泥部分能见到明显分层,这在培菌初期是污泥启动的表现,说明污泥中的细菌微生物已经开始适应当前水质;4、污泥沉降性良好,上清液清澈,有少量悬浮碎泥,说明有机负荷低或曝气过度;5、污泥性状良好,但上清液浑浊,透明度低,说明有机负荷高,及时采取措施,降低好氧进水负荷;6、污泥经过长时间沉淀,出现块状上浮,上浮污泥中含有细小气泡,则是反硝化现象的表现。
另外,S B R系统通过对污泥沉降的观测,能够粗略判断出泥位深度,为排水提供指导,防止污泥排出,影响出水水质。
沉降比试验因为其参数重要性及所需设备简单(只需一个量筒跟计时工具即可)而被广泛应用,通过对“色香味形”的判断,能够粗略判断好氧系统发生的问题,具体因水质的不同,污泥也会有不同的颜色以及气味,具体问题的判定还应当结合各项实验数据及仪表检测数据。
关于污泥沉降比的问题污泥沉降比(SV30)是指曝气池混合液在量筒静止沉降30min后污泥所占的百分体积,是测定污泥性能最为简便的方法。
但在实际运行中污泥沉降比往往不被重视,相关专业书上对此介绍也很简单。
中国水网的“三丰"曾在其他专业网上开过活性污泥运行管理方面的系列讲座,其中关于污泥沉降方面的内容讲了很长时间,虽然我只看过他的讲座提纲,不知道讲的具体内容,但可以肯定讲得会很精彩,对实践是很有用的,而这些知识是书上没有的或至少是不能直接找到的。
在这里我也结合自己的实践体会来简单说说,供有兴趣的网友参考。
可能有人会问:SV30不就是测定曝气池混合液在量筒静止沉降30min后污泥所占的百分体积吗?仅从污泥沉降比的定义中,确定很容易给人造成误解,似乎测定SV30就是为了解30分钟后的测定结果,有这样的认为的人不少,但这些都是基于理论定义上的理解。
在日常运行中,有些操作人员在测定SV30也往往只看测定的沉降比,而没有观察和了解沉降过程,这就失去了测定污泥沉降的大部分意义。
其实在实际运行管理中,SV30测定方便、快速,有无可替代的作用,除了解污泥的结构和沉降性能外,在无其它异常的情况下,还可作为剩余污泥排放的参考依据。
此外,污泥的一些异常现象也可通过沉降试验反映出来,也就是说,如果操作人员测定时,只了解三十分钟后的沉降比,而没有认真观察和分析污泥沉降测定过程的一些情况,那么在当运行发生异常时,就可能会失去污泥沉降测定过程中所能提示我们的故障信息,而这些信息并不一定能在其它途径及时获得的。
所以有的专业书上把SV30的测定过程称为污泥沉降试验,这是很有道理的。
所以在测定污泥沉降,确切说是进行污泥沉降试验过程中,还要观察沉降速率、污泥外观、泥水界面是否清晰、上层液是否有悬浮物等情况,这些表观情况对于判断的了解运行状态是很有用的。
有经验的操作工,可以不需其他数据,只根据污泥沉降试验就可判断整个生化过程的运行状况。
简述污泥沉降比与污泥体积指数概念
污泥沉降比是一个定量指标,用于衡量污泥中悬浮物的沉降程度。
污泥沉降比与污泥体积指数相关,是衡量污泥稳定性和渗透性的重要参数。
污泥沉降比是污泥中悬浮粒子的沉降速度相对污泥中流体的流
动速度的比值。
这个比值是测量悬浮粒子沉降速度的一个重要技术指标。
污泥沉降比的数值越大,污泥的稳定性就越好,渗透性就越低;相反,污泥沉降比的数值越小,污泥的稳定性就越差,渗透性就越高。
污泥体积指数是污泥中悬浮物和流体的比值,它可以反映污泥的稳定性,也可以反映污泥的浓度。
污泥体积指数越大,污泥的稳定性就越好,意味着污泥的浓度越高;反之,污泥体积指数越小,污泥的稳定性就越差,意味着污泥的浓度越低。
污泥沉降比和污泥体积指数的具体的测量方法有很多,例如重量漂移法、浊度测定法、示功谱法和球度法等。
这些方法都可以用来测量污泥中悬浮物的沉降速率,以及污泥中悬浮物和流体的比率。
污泥沉降比和污泥体积指数是很重要的技术参数,它们可以反映污泥中悬浮物的沉降程度,以及污泥的稳定性和渗透性。
它们的测量方法可以根据实际情况选用。
污泥沉降比和污泥体积指数的有效控制,对于污泥处理、污水处理和水质治理都至关重要。
它们有助于更好地提高污泥处理系统的效率,从而改善水质,提升经济效益。
因此,污泥沉降比和污泥体积指数是重要的污泥处理技术指标,
也是水质治理行业的重要参考值,可以更好地控制污泥的性质,促进水质的改善。
污泥沉降比(SV)的观察要点在污水厂运行班每天都要做沉降比并将结果录入日报表,其实在沉降比实验过程相当重要,一些细微之处往往能告诉我们生化系统的运行状态,从异常现象里及时分析判断做出工艺调整,将生化系统调整到最佳的运行状态中,实验过程如此重要,我们需要重新认识沉降比,从而观察记录实验过程中的细微之处,最短的时间里发现问题及时调整,保证生化池最佳运行。
污泥沉降比的意义去曝气池出口混合液于1000ml量筒中,静止沉淀30分钟后,所沉降的活性污泥体积占整个取样提及的百分数(%)。
从定义上让人误以为,只要最终结果,其实过程也很重要。
沉降比在污水处理厂运行过程中是个非常重要的参数,可以关联SVI、DO、MLSS、F/M、生物相、污泥龄、回流比等许多参数的判断。
沉降比检测方便,沉降比在生化系统中可模拟出二沉池的效果,这项实验过程中可以观察出系统的污泥沉降过程,沉降过程中的各个阶段,为及早发现生化系统问题提供了可能。
除开干扰因素,各个阶段的沉降状态尤为重要。
采样初期混合液处于完全混合状态,初期絮凝状态能够迅速看到絮体间清晰地间隙水,自由沉淀状态可以看到沉降过程了,集团沉淀状态观察到絮体积聚后的整体下沉,压缩沉淀过程状态时沉降过程已不明显,处逐步压缩阶段。
在做沉降比实验时的观察要点有上清液液面、沉降过程、上清液、沉淀物等。
1、仔细观察上清液液面是否有油状物、浮渣、气泡,并要用手轻扇量筒口闻气味。
①油状物通常表现不明显,注意仔细观察朦胧的油状物覆盖液面;油状物存在的原因,进水含有矿物油或乳化油、洗涤剂和消泡剂;进水过少,相对曝气过度活性污泥解体所致;活性污泥老化解体。
②浮渣通常为棕黄色、黑色絮状团浮于液面,存在原因:曝气过度;活性污泥老化;液面油状物所致;污泥中毒;丝状菌膨胀;活性污泥缺氧。
③气泡通常表现为液面与量筒间的成排气泡(较大)或附着与液面浮渣的气泡(较小)。
形成原因:曝气过度;活性污泥老化;液面油状物所致;反硝化所致;丝状菌膨胀。
污泥沉降比与污泥指数测定实验的误差分析和注意事项
污泥沉降比与污泥指数测定实验的误差分析和注意事项如下:
1. 误差分析:
a. 操作误差:在实验过程中,操作不精确可能导致结果的误差,比如加热温度、离心速度等的控制。
b. 仪器误差:实验所用的仪器或设备存在固有的误差,因此需要选择准确的设备进行实验。
c. 环境误差:环境因素的变化,如温度、湿度等,对实验结果也会产生一定的影响,应尽量控制这些因素的变化。
2. 注意事项:
a. 实验前的准备工作十分重要,需要准备好所需的试剂、仪器,确保实验的顺利进行。
b. 每个步骤都需要仔细操作,确保操作的准确性和一致性。
c. 实验过程中,注意控制温度、离心速度等操作参数的准确性,遵循实验方法的要求。
d. 多次进行实验,获取多个数据,进行平均计算,以提高结果的准确性。
e. 在实验结束后,及时清理实验设备,保证实验环境的整洁和安全。
请注意,以上回答仅供参考,具体的误差分析和注意事项还需要根据具体的实验方法和设备来确定。
污泥沉降比在实际生产中的指导作用首先,污泥沉降比可以评估污泥的稠度。
稠度是指污泥的浓度和黏度,是污泥的重要物理性质之一、通过测定和分析污泥沉降比,可以了解污泥的稠度变化,从而判断污泥的含固率和胶结性。
稠度的变化对于一些工艺操作的控制非常重要,如气浮浓缩、压滤和离心脱水等。
通过控制稠度,可以提高浓缩效果和脱水率,减少处理成本。
其次,污泥沉降比可以评估污泥的压缩性。
压缩性是指污泥在受力作用下的体积变化能力,是污泥的重要力学性质之一、通过测定和分析污泥沉降比,可以了解污泥的压缩性变化,从而判断污泥的变形特性和固结规律。
压缩性的变化对于一些工艺操作的控制也非常重要,如污泥压滤、沉淀和干燥等。
通过控制压缩性,可以提高污泥的脱水速度和固体含量,减少处理时间和能耗。
此外,污泥沉降比还可以评估污泥的沉降速度。
沉降速度是指污泥颗粒在液相中下沉的速度,是污泥的重要动力学性质之一、通过测定和分析污泥沉降比,可以了解污泥在不同条件下的沉降速度变化,从而判断污泥的沉降规律和沉淀效果。
沉降速度的变化对于一些分离操作的控制也非常重要,如沉淀、过滤和分级等。
通过控制沉降速度,可以提高分离效果和产能,减少沉澱池的占地面积。
综上所述,污泥沉降比在实际生产中具有重要的指导作用。
通过测定和分析污泥沉降比,可以评估污泥的稠度、压缩性和沉降速度,为工业生产和环境保护提供指导。
通过控制这些因素,可以提高处理效果和降低成本,实现资源的有效利用和减少环境污染。
因此,在实际生产中应重视污泥沉降比的测定和分析,提高工艺操作的控制水平。
关于污泥沉降比的问题
污泥沉降比(SV30)是指曝气池混合液在量筒静止沉降30min后污泥所占的百分体积,是测定污泥性能最为简便的方法。
但在实际运行中污泥沉降比往往不被重视,相关专业书上对此介绍也很简单。
中国水网的“三丰”曾在其他专业网上开过活性污泥运行理方面的系列讲座,其中关于污泥沉降方面的内容讲了很长时间,虽然我只看过他的讲座提纲,不知道讲的具体内容,但可以肯定讲得会很精彩,对实践是很有用的,而这些知识是书上没有的或至少是不能直接找到的。
在这里我也结合自己的实践体会来简单说说,供有兴趣的网友参考。
可能有人会问:SV30不就是测定曝气池混合液在量筒静止沉降30min后污泥所占的百分体积吗?仅从污泥沉降比的定义中,确定很容易给人造成误解,似乎测定SV30就是为了解30分钟后的测定结果,有这样的认为的人不少,但这些都是基于理论定义上的理解。
在日常运行中,有些操作人员在测定SV30也往往只看测定的沉降比,而没有观察和了解沉降过程,这就失去了测定污泥沉降的大部分意义。
其实在实际运行理中,SV30测定方便、快速,有无可替代的作用,除了解污泥的结构和沉降性能外,在无其它异常的情况下,还可作为剩余污泥排放的参考依据。
此外,污泥的一些异常现象也可通过沉降试验反映出来,也就是说,如果操作人员测定时,只了解三十分钟后的沉降比,而没有认真观察和分析污泥沉降测定过程的一些情况,那么在当运行发生异常时,就可能会失去污泥沉降测定过程中所能提示我们的故障信息,而这些信息并不一定能在其它途径及时获得的。
所以有的专业书上把SV30的测定过程称为污泥沉降试验,这是很有道理的。
所以在测定污泥沉降,确切说是进行污泥沉降试验过程中,还要观察沉降速率、污泥外观、泥水界面是否清晰、上层液是否有悬浮物等情况,这些表观情况对于判断的了解运行状态是很有用的。
有经验的操作工,可以不需其他数据,只根据污泥沉降试验就可判断整个生化过程的运行状况。
在SV30的测定中,排除上层液的状况,仅从沉降速率来说可分为沉降速率快和慢二种污泥,沉降速度快的污泥不一定都好,沉降速度慢的污泥也不一定都不好,当然这种所谓的“慢”是相对而言的,如:正常的活性污泥沉降速率比老化污泥慢,膨胀污泥沉降速率比正常活性污泥慢;沉降速率快的污泥又可分为低负荷污泥和高负荷污泥,其中高负荷污泥的沉降性能又比低负荷污泥好,但这是二种不同性质的污泥。
这些只是对沉降速率而言,只是正确
观察污泥沉降性能的最基本内容之一,知道了这些后就要进一步了解这些不同沉降速率污泥的特性及成因,根据本单位的工艺特性和运行情况来衡量其是否在正常范围内。
操作人员在做沉降试验时,也要注意观察沉降初期的沉降情况和单位时间内的污泥沉降速率。
如果二种污泥SV30相同,而初始阶段五分钟或十分钟的沉降速度不同,其沉降性能也是不同的。
有专家建议采用SV5,即5min的污泥沉降体积来判断污泥沉降性能,是很有道理的。
虽然污泥沉降的测定时间都统一定为30分钟,但在应用时可以根据实际情况来定。
如沉淀池池面有污泥伴随气泡上浮是否是沉淀池是否发生反硝化引起的,就可延长沉降试验时间来判断并确认,因为在有硝酸的情况下,将三十分钟沉将试验结束,再继续让其静止一段时间后下沉的污泥会在缺氧时伴随便气泡沫上浮,这种判断方法书上倒有介绍。
但问题是:在负荷较高的活性污泥系统中,在气温高,污泥在沉淀池停留时间过长而发生酸化时,也会有气泡沫伴随便污泥上浮,这些气泡通常是酸化过程中产生的氨引起的;还有当曝气量过大,而混合液进入沉淀池后空气不能充分释放,也会造成沉淀池漂泥等现象。
所以还需根据其他情况来分析。
SV30测定一般要用1000毫升的量筒(或量杯),有些单位用100毫升量筒测定,这会产生误差,因小量筒直径较小,对污泥沉降有阻滞效应,测得的值将偏高,在污泥结构较松时,误差会更大。
本人曾作过对不同沉降性能的污泥分别用1000亳升和100亳升量筒进行对照试验,试验表明:对沉降性能好的污泥,二者的测定结果相差不大(小量筒要高约5~10%),膨胀污泥的测定值相差很多,最大的误差达40%,也就是说在污泥发生膨胀时,小量筒测的SV30比大量筒高出很多。
活性污泥SV30值只能大致反映污泥的沉降性能,污泥结构的松紧和沉降性能是用污泥指数(SVI)来衡量的,而污泥指数是根据污泥浓度和污泥沉降比计算得来的,污泥沉降的测定误差会造成污泥指数的计算误差,很容易引起误导。
本人还作过一个很有意思的试验,分别用1000亳升和100亳升量筒测定混合液的污泥沉降比,不同的是将小量筒的混合液加自来水稀释一倍,将测定的值乘以2,其结果等于大量筒的污泥沉降比,多次试验的结果都基本相同。
这对有些化验室离处理装置现场较远的单位,为了取样方便,如要用小量筒测定污泥沉降的话,可用本法试试。
还要说说SV30与沉淀池实际污泥沉降效果差异方面的问题。
一般来说沉降比低的污泥在沉淀池的泥水分离效果也好,反之则泥水分离效果差。
但在实际运行中有时会出现不一致
的情况,主要原因是:SV30是在静止状态下测定的,而沉淀池处于连续进水和出水状态;沉淀池的沉淀时间要长很多;沉淀池的运行工况受很多因素的影响,其中主要是进水水能对污泥层产生的扰动和污泥层的控制等。
从上可知,如果沉淀池运行理不当,即使污泥沉降性能好,也会场造成出水带泥,反之,在污泥沉降性能差的情况下,通过沉淀池的泥层等控制要素进行有效调节和控制,也可改善沉淀效率,避免或减轻沉淀池出水带泥。