第4讲 二次根式
- 格式:doc
- 大小:200.50 KB
- 文档页数:4
数的开方与二次根式知识点:平方根、立方根、算术平方根、二次根式、二次根式性质、最简二次根式、 同类二次根式、二次根式运算、分母有理化教学目标:1.理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根;会求实数的平方根、算术平方根和立方根;2.了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式;掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;3.掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。
教学重难点:1.平方根、算术平方根、立方根的概念(有关试题在试题中出现的频率很高,习题类型多为选择题或填空题);2.最简二次根式、同类二次根式概念(有关习题经常出现在选择题中);3.二次根式的计算或化简求值(有关问题在中考题中出现的频率非常高,在选择题和中档解答题中出现的较多)。
教学过程:1、知识要点:考点1 平方根、算术平方根与立方根:若)0(2≥=a a x ,则x 叫做a 的平方根,记作a ±;正数a 的正的平方根叫做a 的算术平方根,0的算术平方根是0。
当0≥a 时,a 的算术平方根记作a 。
注意:1、非负数是指正数或0,常见的非负数有:(1)绝对值:0≥a ;(2)实数的平方:02≥a ;(3) 算术平方根:)0(0≥≥a a 。
2、如果a 、b 、 c 是实数,且满足02=++c b a , 则有0=a,0=b ,0=c考点2 二次根式的有关概念:1、二次根式:式子)0(≥a a 叫做二次根式(注意被开方数只能是正数或0); 二次根式a 定义中的“a ≥0”是定义的一个重要组成部分,不可以省略,因为负数没有平方根,所以当a<0时,没有意义.在具体问题中,一旦出现了二次根式a ,就意味着a ≥0,这通常作为一个重要的隐含条件来应用;被开方数a 既可以是具体的数,也可以是单项式或多项式,如:3、ab (ab ≥0)、3+x (x ≥-3)都是二次根式.2、最简二次根式:被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式;最简二次根式,满足两个条件:①被开方数不含分母;②被开方数中不含开得尽方的因数或因式.3、同类二次根式:①化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式; ②二次根式的性质: )0()(2≥=a a a ⎩⎨⎧<-≥==)0()0(||2a a a a a a )0;0(≥≥⋅=b a b a ab )0;0(>≥=b a ba b a 考点3 二次根式的运算:1、二次根式的加减:二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并;2、二次根式的乘法: 二次根式相乘,等于各个因式的被开方数的积的算术平方根,即 ).0,0(≥≥=⋅b a ab b a(二次根式的和相乘,可参照多项式的乘法进行;两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个二次根式互为有理化因式);3、二次根式的除法:二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分);把分母的根号化去,叫做分母有理化。
二次根式教学课件一、引言二次根式作为数学中重要的内容之一,往往在初中阶段引入。
本教学课件旨在帮助学生理解和掌握二次根式的概念、性质以及相关运算方法,进一步提升他们的数学能力。
二、二次根式的概念1. 二次根式的定义二次根式是指形如√a的数,其中a为非负实数。
√a表示非负实数x,使得x²=a。
例如,√9=3,√16=4。
2. 二次根式的性质- 二次根式的值是非负实数- 二次根式的平方等于自身- 两个二次根式的积等于它们各自的积的二次根式- 二次根式的和、差的平方等于它们各自的平方的和、差- ...三、二次根式的化简1. 单项二次根式的化简- 化简含有完全平方因子的二次根式- 用分解质因数法化简二次根式- 解决含有分数指数的二次根式2. 多项式二次根式的化简- 合并同类项- 使用公式简化二次根式- 实际问题中的应用四、二次根式的运算1. 二次根式的加减法- 合并同类项- 化简二次根式- 实际问题中的应用2. 二次根式的乘法- 将二次根式转化为指数形式,进行乘法运算 - 实际问题中的应用3. 二次根式的除法- 将二次根式转化为指数形式,进行除法运算- 实际问题中的应用五、二次根式的应用1. 二次根式在几何中的应用- 面积计算- 勾股定理的应用2. 二次根式在实际问题中的应用- 长方形花坛的边长计算- 图像的缩放比例计算六、总结与延伸通过本次教学课件的学习,相信大家已经基本掌握了二次根式的概念、性质以及运算方法,并能够在实际问题中灵活运用。
对于有兴趣的同学,可以深入学习二次根式的推导过程,探究更多二次根式的性质与应用。
参考资料:[1] 《数学(初中)》-人民教育出版社[2] 《数学必修5》-人民教育出版社以上是二次根式教学课件的内容,希望对你有所帮助,祝你学习进步!。
二次根式课件可以按照以下步骤进行设计:
1. 引入:首先,可以从实际生活中引入二次根式的概念,例如计算某个数的平方根,或者解决一些实际问题,如计算建筑物的占地面积等。
2. 定义:然后,介绍二次根式的定义,即一个数的平方根。
让学生理解二次根式的意义和作用。
3. 性质:接着,介绍二次根式的性质,包括正数有两个平方根,负数没有平方根,以及0的平方根是0等。
这些性质是理解二次根式的基础。
4. 运算:之后,介绍二次根式的运算,包括加减乘除等基本运算。
通过例题和练习题,让学生掌握二次根式的运算方法和技巧。
5. 应用:最后,介绍二次根式在实际生活中的应用,例如计算一些实际问题中的平方根,或者利用二次根式解决一些数学问题。
让学生了解二次根式的实际应用价值。
在课件的设计中,可以结合图片、动画、声音等多种形式,让学生更加直观地理解二次根式的概念和性质。
同时,也可以设计一些互动环节,让学生参与到课堂中来,提高他们的学习兴趣和积极性。
第04讲二次根式的加减与分母有理化【知识梳理】一、二次根式的加减法(1)法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.(2)步骤:①如果有括号,根据去括号法则去掉括号.②把不是最简二次根式的二次根式进行化简.③合并被开方数相同的二次根式.(3)合并被开方数相同的二次根式的方法:二次根式化成最简二次根式,如果被开方数相同则可以进行合并.合并时,只合并根式外的因式,即系数相加减,被开方数和根指数不变.二、分母有理化(1)分母有理化是指把分母中的根号化去.分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.例如:①==;②==.(2)两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.一个二次根式的有理化因式不止一个.例如:﹣的有理化因式可以是+,也可以是a(+),这里的a可以是任意有理数.【考点剖析】题型一:二次根式的加减一.填空题(共7小题)1.(2022秋•浦东新区期中)计算:=.2.(2022秋•普陀区校级期中)计算:﹣=.3.(2022秋•虹口区校级期中)化简:+(5≤x≤8)=.4.(2022秋•嘉定区月考)计算:﹣=.5.(2022秋•宝山区期中)计算:=.6.(2022秋•虹口区校级月考)化简:+(1<x<2)=.7.(2022秋•虹口区校级月考)计算:=.二.解答题(共17小题)8.(2022秋•静安区校级期中)已知y=﹣,化简+﹣.9.(2022秋•嘉定区期中)计算:+﹣m.10.(2022秋•宝山区期中)计算:(6﹣)﹣(+).11.(2022秋•宝山区期中)计算:﹣(﹣).12.(2022秋•浦东新区期中)计算:.13.(2022秋•嘉定区校级月考)计算:+﹣2x2.14.(2022秋•虹口区校级月考)计算:﹣.15.(2022秋•嘉定区月考)计算:.16.(2022秋•闵行区校级期中)计算:.17.(2022秋•徐汇区校级期中)计算:(x>0 ).18.(2022秋•徐汇区校级期末)计算:2+﹣12.19.(2022秋•徐汇区期末)(+2)﹣(﹣)20.(2022秋•徐汇区校级期中)计算:6﹣﹣(4﹣).21.(2022秋•黄浦区月考)计算:.22.(2022秋•浦东新区校级月考)计算:.23.(2022秋•宝山区期中)计算:4mn﹣(﹣m)(n>0).24.(2022秋•宝山区校级期中)计算:+3﹣+3.题型二:分母有理化一.选择题(共2小题)1.(2022秋•奉贤区校级期中)的一个有理化因式是()A.B.C.D.2.(2022秋•浦东新区校级月考)二次根式的一个有理化因式是()A.B.+C.﹣D.2二.填空题(共10小题)3.(2022秋•徐汇区校级期中)的倒数是.4.(2022秋•徐汇区期末)计算:=.5.(2022秋•长宁区校级期中)分母有理化:=.6.(2022秋•虹口区校级期中)写出a+b的一个有理化因式:.7.(2022秋•嘉定区期中)若两个代数式M与N满足M•N=﹣1,则称这两个代数式为“互为友好因式”,则的“互为友好因式”是.8.(2022秋•普陀区期中)2+的有理化因式可以是.(只需填一个)9.(2022秋•虹口区校级月考)设x=,y=,当t为时,代数式20x2+62xy+20y2=2022.10.(2022秋•奉贤区校级期中)不等式x>2+2x的解集是.11.(2021秋•松江区期末)不等式的解集是.12.(2022秋•奉贤区期中)的有理化因式可以是.三.解答题(共1小题)13.(2022秋•宝山区校级期中)已知:x=,y=,求x2+xy+y2的平方根.【过关检测】一、单选题n a ++=(n 八年级校考期中)m二、填空题“”三、解答题。
估算一、专题精讲题型一、估算无理数在哪两个整数之间例1.(1)判断×之值会介于下列哪两个整数之间?()A.22、23 B.23、24 C.24、25 D.25、26考点:估算无理数的大小.分析:先算出与的积,再根据所得的值估算出在哪两个整数之间,即可得出答案.解答:解:∵×=,又∵24<25,∴×之值会介于24与25之间,故选C.点评:本题考查了估算无理数大小,掌握的大约值是解题的关键,是一道基础题.(2)如果m=,那么m的取值范围是()A.0<m<1 B.1<m<2 C.2<m<3 D.3<m<4考点:估算无理数的大小.分析:先估算出在2与3之间,再根据m=,即可得出m的取值范围.解答:解:∵2<3,m=,∴m的取值范围是1<m<2;故选B.点评:此题考查了估算无理数的大小,解题关键是确定无理数的整数部分,是一到基础题.变式训练1.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间解答:解:∵2=<=3,∴3<<4,故选B.2.若n=﹣6,则估计n的值所在范围,下列最接近的是()A.4<n<5 B.3<n<4 C.2<n<3 D.1<n<2解答:解:∵49<59<64,∴7<<8,∴7﹣6<﹣6<8﹣6,即1<n<2.故选D.题型二、按要求估算例2.(1)估算下列各数的大小.(1)(误差小于0.1);(2)(误差小于1).考点:估算无理数的大小.分析:(1)(2)借助“夹逼法”先将其范围确定在两个整数之间,再通过取中点的方法逐渐逼近要求的数值,当其范围符合要求的误差时,取范围的中点数值,即可得到答案. 解答:解:(1)∵有62=36,6.52=42.25,72=49, ∴估计在6.5到7之间,6.62=43.56,6.72=44.89;∴≈6.65;(2)∵43=64,53=125, ∴4.53=91.125,4.43=85.184,∴≈4.45.点评:此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.变式训练1、估算下列数的大小.(1)(误差小于0.1) ; (2)(误差小于1). 解答:(1) ∵3.6<<3.7,∴≈3.6或3.7(只要是3.6与3.7之间的数都可以). (2) ∵9<<10,∴≈9或10(只要是9与10之间的数都可以).题型三、用估算比较两个数大小例3.(1)通过估算,比较下面各数的大小. (1)与 ; (2)与3.85. 解答: (1)∵<2,∴-1<1,即<. (2)∵3.85=14.8225,∴>3.85.变式训练1.(2010•杭州二模)估计大小关系是﹣1________ 0.5. 解答:解:∵0.5=﹣1,<3.∴﹣1<0.5.题型四、用估算法求解实际问题的近似解例4.(1)某小区有一块长为8米、宽为4米的长方形草坪,计划在草坪面积不减少的情况 下,把它改造成一个正方形,如果改造后的正方形草坪的边长为x 米.求正方形的边长(估 算到0.1)考点:算术平方根;估算无理数的大小.分析:根据面积相等列出关系式,解得x ,进即可得到正方形的边长.13.6380013.613.63800380031212153331212215解答:解:根据题意得:x2=8×4=32 x≈5.6.答:正方形的边长约为5.6米.点评:本题主要考查长方形、正方形的面积,根据面积相等得到方程是解题的关键.变式训练1.能否用面积为400cm2的正方形纸片裁出面积为300cm2且长、宽之比为3:2的长方形纸片?说明理由.(友情提示:不能对裁出的长方形进行拼接)解答:答:不能.理由:设长方形纸片的长为3xcm,宽为2xcm.依题意,得3x•2x=300,6x2=300,x2=50,∴x=或x=﹣(舍去),∴长方形纸片的长为,∵50>49,∴>7,∴3>21,∴长方形纸片的长应该大于21cm,又∵已知正方形纸片的边长大只有20cm,∴不能用这块正方形纸片裁出符合要求的长方形纸片.题型五、表示一个无理数的小数部分例5.(1)(2010•巫山县模拟)已知,m、n分别是的整数部分和小数部分,那么,2m﹣n的值是()A.B.C.D.考点:估算无理数的大小.专题:探究型.分析:先估算出的值,进而可得出m、n的值,再代入2m﹣n进行计算即可.解答:解:∵≈1.732,∴6﹣的整数部分为4,小数部分为6﹣﹣4,即n=2﹣,∴2m﹣n=8﹣2+=6+.故选B.点评:本题考查的是估算无理数的大小,熟记≈1.732是解答此题的关键.(2)(1)已知数M的平方根是a+5及﹣3a+11,求M.(2)已知5+与5﹣的小数部分分别是a、b,求3a+2b的值.考点:估算无理数的大小;平方根.专题:探究型.分析:(1)由于M的平方根是a+5及﹣3a+11,所以这两个数互为相反数,据此可求出a的值,进而得出数M;(2)先估算出的取值范围,再得出a、b的值,代入所求代数式进行计算即可.解答:解:(1)∵M的平方根是a+5及﹣3a+11,∴a+5=3a﹣11,解得a=8,∴a+5=8+5=13,∴M=132=169;(2)∵3<<4,∴5+的小数部分是﹣3;5﹣的小数部分是,4﹣,∴a=﹣3,b=4﹣,∴3a+2b=3(﹣3)+2(4﹣)=﹣1.点评:本题考查的是估算无理数的大小及平方根的定义,在解答(2)时要先估算出的大小,再进行计算.变式训练1.(2013•吴江市模拟)3+的整数部分是a ,3﹣的小数部分是b ,则a+b 等于__________.解答:解:∵1<<2,∴4<3+<5, ∴3+的整数部分a=4; ∵1<<2, ∴﹣2<﹣<﹣1, ∴1<3﹣<2,设3﹣的整数部分为m ,则m=1, ∴3﹣的小数部分b=3﹣﹣m=2﹣, ∴a+b=4+2﹣=6﹣.故答案为6﹣.2.设x 是的整数部分,y 是的小数部分,化简|x ﹣y ﹣3|. 解答:解:∵<<, ∴5<<6, ∴x=5,y=﹣5, ∴|x ﹣y ﹣3|=|5﹣(﹣5)﹣3|=|7﹣|=7﹣.二次根式的化简及计算一、专题精讲题型一:二次根式的概念例1.(1)下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x ≥0,y•≥0). 分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.解:二次根式有:、(x>0)、、-、(x ≥0,y ≥0);不是二次根式的有:、、、. 例2.当x 是多少时,在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,•才能有意义.解:由3x-1≥0,得:x ≥2331xx 04221x y+x y +2x 02x y +331x421x y+31x -31x -13A . 3到4之间B . 4到5之间C . 5到6之间D . 6到7之间解答:解:∵正方形的面积为28,∴它的边长为, 而5<<6. 故选C .2、(宝坻区二模)估算的值在( ) A .在4和5之间 B .在5和6之间 C .在6和7之间 D .在7和8之间 解答:解:∵<<, ∴2<<3,∴5+2<5+<5+3, 即7<5+<8, 故选:D .3、通过估算比较大小: _________.解答:解:∵2<<3, ∴0<﹣2<1, ∴<.4.化简:=-2)3(π 。
第4讲 二次根式的加减乘除运算以及混合运算.考查形知识梳理 一、二次根式 1.概念形如________的式子叫做二次根式. 2.二次根式有意义的条件要使二次根式a 有意义,则a ≥0. 二、二次根式的性质 1.(a )2=a (______).2.a 2=|a |=⎩⎪⎨⎪⎧(a ≥0), (a <0).3.ab =______(a ≥0,b ≥0).4.a b=______(a ≥0,b >0).三、最简二次根式、同类二次根式 1.概念我们把满足被开方数不含分母,被开方数中不含能开得尽方的______或______的二次根式,叫做最简二次根式.2.同类二次根式的概念几个二次根式化成________________以后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.四、二次根式的运算 1.二次根式的加减法合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式.2.二次根式的乘除法(1)二次根式的乘法:a ·b =____(a ≥0,b ≥0).(2)二次根式的除法:ab=____(a ≥0,b >0).自主测试1.使3x -1有意义的x 的取值范围是( )A .x >13B .x >-13C .x ≥13D .x ≥-132.已知y =2x -5+5-2x -3,则2xy 的值为( )A .-15B .15C .-152D .1523.下列二次根式中,与3是同类二次根式的是( )A .18B .27C .23D .324.下列运算正确的是( )A .25=±5B .43-27=1C .18÷2=9D .24·32=65.估计11的值( )A .在2到3之间B .在3到4之间C .在4到5之间D .在5到6之间6.化简:27-12+43.考点一、二次根式有意义的条件【例1】若使x +12-x有意义,则x 的取值范围是________.解析:x +1与2-x 都是二次根式的被开方数,都要大于等于零.又因2-x 不能为零,可得不等式组⎩⎪⎨⎪⎧x +1≥0,2-x >0,解得-1≤x <2.答案:-1≤x <2方法总结 利用二次根式有意义的条件求字母的取值范围时,首先考虑被开方数为非负数,其次还要考虑其他限制条件,如分母不等于零,最后解不等式(组).触类旁通1 要使式子a +2a有意义,则a 的取值范围为__________.考点二、二次根式的性质【例2】把二次根式a -1a化简后,结果正确的是( )A .-aB .--aC .-aD .a解析:要使a -1a 有意义,必须-1a>0,即a <0.所以a -1a =a -a a 2=a -a-a=--a .答案:B方法总结 如果题目中对根号内的字母给出了取值范围,那么应在这个范围内对根式进行化简,如果题目中没有给出明确的取值范围,那么应注意对题目条件的挖掘,把隐含在题目条件中所限定的取值范围显现出来,在允许的取值范围内进行化简.触类旁通2 如果(2a -1)2=1-2a ,则( )A .a <12B .a ≤12C .a >12D .a ≥12考点三、最简二次根式与同类二次根式【例3】(1)下列二次根式中,最简二次根式是( )A .2x 2B .b 2+1C .4aD .1x(2)在下列二次根式中,与a 是同类二次根式的是( ) A .2a B .3a 2 C .a 3 D .a 4解析:(1)A 选项中的被开方数中含开得尽方的因式,C 选项中的被开方数中含开得尽方的因数,D 选项中的被开方数中含有分母,故B 选项正确;(2)将各选项中能化简的二次根式分别化简后,可得出3a 2=3|a |,a 3=a a ,a 4=a 2,结合同类二次根式的概念,可得出a 3与a 是同类二次根式.答案:(1)B (2)C方法总结 1.最简二次根式的判断方法: 最简二次根式必须同时满足如下条件:(1)被开方数的因数是整数,因式是整式(分母中不应含有根号);(2)被开方数中不含开方开得尽的因数或因式,即被开方数的因数或因式的指数都为1. 2.判断同类二次根式的步骤:先把所有的二次根式化成最简二次根式;再根据被开方数是否相同来加以判断.要注意同类二次根式与根号外的因式无关.触类旁通3 若最简二次根式a +b3a 与a +2b 是同类二次根式,则ab =__________. 考点四、二次根式的运算【例4】计算:(50-8)÷ 2.解:原式=(52-22)÷2=32÷2=3.方法总结 1.二次根式加减法运算的步骤:(1)将每个二次根式化成最简二次根式;(2)找出其中的同类二次根式;(3)合并同类二次根式.2.二次根式乘除法运算的步骤:先利用法则将被开方数化为积(或商)的二次根式,再化简;最后结果要化为最简二次根式或整式或分式.1.(2012湖南株洲)要使二次根式2x -4有意义,那么x 的取值范围是( ) A .x >2 B .x <2 C .x ≥2 D .x ≤22.(2012浙江义乌)一个正方形的面积是15,估计它的边长大小在( ) A .2与3之间 B .3与4之间 C .4与5之间 D .5与6之间3.(2012浙江杭州)已知m =⎝⎛⎭⎫-33×(-221),则有( )A .5<m <6B .4<m <5C .-5<m <-4D .-6<m <-54.(2012广东)若x ,y 为实数,且满足|x -3|+y +3=0,则⎝⎛⎭⎫x y 2 012的值是__________. 5.(2012四川德阳)有下列计算:①(m 2)3=m 6,②4a 2-4a +1=2a -1,③m 6÷m 2=m 3,④27×50÷6=15,⑤212-23+348=143,其中正确的运算有__________.(填序号)1.下列各式计算正确的是( )A .2+3= 5B .2+2=2 2C .32-2=2 2D .12-102=6- 52.估计8×12+3的运算结果在( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间3.若a <1,化简(a -1)2-1等于( ) A .a -2 B .2-a C .a D .-a4.已知实数a 满足|2 011-a |+a -2 012=a ,则a -2 0112的值是( )A .2 011B .2 010C .2 012D .2 0095.计算212-613+8的结果是( )A .32-2 3B .5- 2C .5- 3D .2 26.若x +1+(y -2 012)2=0,则x y =__________.7.当-1<x <3时,化简:(x -3)2+x 2+2x +1=__________.8.如果代数式4x -3有意义,则x 的取值范围是________.9.计算:(-3)0+12×3=__________.10.计算:⎝⎛⎭⎫13-1-23-(π-2)0+|-1|.11.计算:(3+2)(3-2)-|1-2|.12.计算:(-3)0-27+|1-2|+13+2.参考答案导学必备知识 自主测试1.C 由题意得3x -1≥0,所以x ≥13.2.A 由题意得2x -5≥0且5-2x ≥0,解得x =52,此时y =-3,所以2xy =2×52×(-3)=-15.3.B 18=32,27=33,23=63,32=62.4.D 25=5,43-27=43-33=3,18÷2=9=3,24·32=24×32=36=6.5.B 因为3=9,4=16,9<11<16,所以11在3到4之间.6.解:原式=33-23+233=⎝⎛⎭⎫3-2+233=533. 探究考点方法触类旁通1.a ≥-2且a ≠0 由题意,得⎩⎪⎨⎪⎧a +2≥0,a ≠0,解得a ≥-2且a ≠0.触类旁通2.B 因为二次根式具有非负性,所以1-2a ≥0,解得a ≤12,故选B.触类旁通3.1 由题意,得⎩⎪⎨⎪⎧ a +b =2,3a =a +2b ,解得⎩⎪⎨⎪⎧a =1,b =1.∴ab =1.品鉴经典考题1.C 因为二次根式有意义,则2x -4≥0,所以x ≥2.2.B 因为面积是15,则边长为15,则边长大小在3与4之间.3.A m =⎝⎛⎭⎫-33×(-221)=233×21=23×37=27=28,∵25<28<36,∴5<28<6,即5<m <6,故选A.4.1 由题意得x -3=0,y +3=0,则x =3,y =-3,所以⎝⎛⎭⎫x y 2 012=(-1)2 012=1. 5.①④⑤ ②4a 2-4a +1=(2a -1)2=|2a -1|,③m 6÷m 2=m 6-2=m 4,这两个运算是错误的.研习预测试题 1.C A 项中2与3不是同类二次根式,B 项中2与2不是同类二次根式,C 项中32-2=(3-1)2=22,D 项中原式=124-104=3-52=3-102.2.C 原式=2+3,1<3<2,所以3<2+3<4. 3.D (a -1)2-1=|a -1|-1=1-a -1=-a .4.C 由算术平方根的意义知,a ≥2 012,则2 011-a <0, ∴a -2 011+a -2 012=a .∴a -2 012=2 011. ∴a -2 012=2 0112, ∴a -2 0112=2 012.5.A 原式=2×22-6×33+22=2-23+22=32-2 3.6.1 因为由题意得x +1=0,y -2 012=0,所以x =-1,y =2 012,所以x y =(-1)2 012=1.7.4 原式=(x -3)2+(x +1)2=|x -3|+|x +1|=3-x +x +1=4. 8.x >39.解:原式=1+23×3=1+6=7. 10.解:原式=3-23-1+1=- 3.11.解:原式=(3)2-(2)2-(2-1)=3-2-2+1=2- 2. 12.解:原式=1-33+2-1+3-2=-2 3.。
二次根式知识点归纳二次根式是指含有平方根的式子,一般形式为√a,其中a为非负实数。
下面将对二次根式的知识点进行归纳:1. 二次根式的定义:二次根式是指形如√a的式子,a为非负实数。
2. 简化二次根式:对于二次根式√a,如果a可以写成两个数的乘积,其中一个因数的平方是a,那么就可以将二次根式简化为这个因数。
3. 二次根式的运算:- 加减法:只有当二次根式的根数相同才能相加或相减。
即√a ± √b = √a ±√b。
- 乘法:二次根式的乘法可以按照分配律进行计算,即√a * √b = √(a * b)。
- 除法:二次根式的除法可以借助有理化的方法进行计算,即√a / √b = √(a / b)。
4. 二次根式的合并:- 同根式的合并:当两个二次根式的根数相同且系数相同时,可以合并为一个二次根式。
例如:3√2 + 2√2 = 5√2。
- 合并同类项:当两个二次根式的根数和系数都相同时,可以合并为一个二次根式。
5. 化简含有二次根式的表达式:- 分解因式法:对于含有二次根式的表达式,可以利用分解因式的方法将其化简为乘积的形式。
- 有理化法:利用有理化的方法将含有二次根式的分母有理化,即将分母中的二次根式去除。
6. 二次根式的平方与立方:- 二次根式的平方:(√a)^2 = a。
- 二次根式的立方:(√a)^3 = a * √a。
7. 二次根式的应用:- 几何意义:二次根式可以用来表示一些几何问题中的长度或面积,例如表示一个正方形的对角线长度。
- 物理意义:在物理问题中,二次根式可以用来表示某些量的大小,例如速度的大小。
以上是关于二次根式的一些基本知识点的归纳总结。
掌握这些知识点,可以帮助我们更好地理解和运用二次根式。
二次根式知识点二次根式是在数学中常见的一种形式,它是指一个数的平方根或者一个方程的解的形式。
在二次根式中,常用的符号是“√”,表示平方根。
二次根式的定义是:对于非负实数a,√a表示满足b^2=a的非负实数b。
例如,√4=2,因为2^2=4。
二次根式中的运算规则是:1. 常数与二次根式的相乘:√a * √b = √(a * b)。
2. 二次根式之间的乘法:√a * √a = a 。
3. 二次根式与二次根式的相乘:√a * √b = √(a * b)。
4. 二次根式的乘法公式:(a + b) * (a + b) = a^2 + 2ab + b^2。
在二次根式的化简中,常用的方法有:1. 合并同类项:将具有相同根号内的数字合并在一起,例如√2 + √3可以合并为√2 + √3。
2. 分解因数法:找出根式中的因式,然后利用分解因式的方法化简。
3. 有理化分母:通过乘以分子分母的相等值,将分母中的二次根式化为整数。
二次根式在实际问题中的应用非常广泛,特别是在几何问题中。
例如,在计算三角形的周长或面积时,经常会出现二次根式的形式。
在求解二次方程的根时,二次根式也会被使用。
对于形如ax^2 + bx + c = 0的二次方程,其中a、b、c为已知实数,x为未知数,可以使用二次根式来求解方程的根。
此外,二次根式也在科学计算、工程设计和金融等领域中得到广泛应用。
在计算机科学中,二次根式常用于算法的复杂度分析和性能优化。
在金融领域中,二次根式用于计算复利和贷款利率等金融问题。
总结起来,二次根式是数学中一个重要的概念。
通过了解二次根式的定义、运算规则和化简方法,我们可以更好地理解二次根式的性质和应用。
在解决实际问题时,我们可以利用二次根式的知识,进行高效的计算和分析。
第4 讲 二次根式
一、知识提要 1.概念:
一般地,式子)0(≥a a 叫做二次根式,a 可以是数,也可以是整式、分式等代数式,但必须是非负数,)0(≥a a 也是一个非负数。
2.二次根式的性质: (1))0(,)(2≥=a a a (2)||2a a = (3))0,0(≥≥=
b a b a
ab
(4))0,0(,>≥=
b a b
a b
a
3.二次根式的运算法则: (1)c b a c b c a )(+=+; (2)ab b a =
⋅;
(3))0,0(,>≥=b a b
a b
a ;
2
1=
2
24
22
1=
=
(4))0()(≥=
a a a n
n ;
(5)若,0≥≥b a 则b a ≥
;
(6)设n d c b a ,,,,是有理数,且n 不是完全平方数,则当且仅当d b c a ==,时,
n d
c n b a +=+; (7)形如b a y b a x -
=+
=,的两个根式称为共轭根式,它们的乘积不含有二次根式,
4.化简二次根式的常用方法:
因式分解、公式法、换元法、利用非负数的性质等.
二、例题
1.基本概念和基本运算 例1 根式3
11b b
a a ---
化简后的结果是( )
A .b a ---
B .b a --
C .b a +-
D .b a -+--
分析:b a ,的符号
b
a b b b
a
a a
b
b b
a
a a
b b b
a
a a
b b a
a -+--=-----=-⋅
-
-=⋅--
-
=--
-
)(111112
2
2
2
3
例2 若a 为自然数,b 为整数,且满足347)3(2
-=+b a ,则=a 2 ,=b -1 .
⎩⎨
⎧-==+3
4327
322ab b a ⎩⎨
⎧-==+2
7
322ab b a
例3 计算=+-
++
+
2)303223)(532( .
2
)562636)(532(2)303223)(532(+⋅-⋅+⋅++=+-+++2]5)32][(
5)32[(6+-
+
+
+=
2])5()32[(62
2
+-+
2.有限制条件的化简问题 例4 设0,0<<y x ,则y x xy
y
x
y x 3
3
1--
可化简为: .
例5 如果,132+>
x x 那么
2
3
3
)3()2(+-
+x x 等于( )
A .52+x
B .52--x
C .1
D .-1 由,132+>
x x 得3)32()
32)(32(3
23
21-<+-=+
-
+
=
-
<
x
故2
33
)2()2(+-+x x =52)]3([2|3|2+=+--+=+-+x x x x x
3.比较大小 例6 设10=
a ,17+=
b ,23+=
c ,则c b a ,,的大小关系是( )
A .c b a >>
B .a c b >>
C .b a c >>
D .c a b >>
625,728,102
22+=+==c b a
722<
例7 已知2
33
=a ,m
m b ++=
323
,m
m c ++=
233
,其中0>m ,那么c b a ,,的大小关系是
( )
A .c b a >>
B .b a c >>
C .b c a >>
D .a c b >>
18
3)2
3(
3
3
3
>=
=a ,1<b ,1>c
4.求最值
例 8 设c b a ,,均为不小于3的实数,则|11|12--+++-c b a 的最小值是 .
例9 代数式
9)12(42
2
+-+
+x x 的最小值是 .
+
--+-=+-+
+2
2
2
2
)]2(0[)0(9)12(4x x x 2
2)03()12(-+-x
(x,0),(0,-2) (12,3),(x,0)
5.有关根式的代数式求值问题
例10 设2
533-=x ,那么代数式)4)(3)(2)(1(++++x x x x 的值是 .
例11 已知a
a x 1-
=
,那么
x
x x x x x 42422
2
+-
++++的值等于 .
21)1()(2
2
-+
=-
=a
a a
a x
a
a x 12+
=+
x
x x x x x 424222
+-
++++4
)1(14)1(14
)2(24)2(2444244422
2
22
2
2
-+
-
+
-+++=-+-
+-+++=
=-++-+-++++=
a
a a
a a a a a x x x x x x x x x x
=--+-
++=
-
-
+
-++=+
--
++-++=|
1
|1
|
1
|1)
1(1)1(11
211212
2
2
2
2
2
a
a a a a a a a a
a a
a a a a a a
a a
a a a a a 2
22a a
a ==
6.无理方程
例 12 方程1
1|11||11|
-=
+-+--x x x 的解是=x .
(1)若
011≥--x ,则1
11111-=
+-+--x x x ,1
112-=
-x x ,
1)1(43
=-x
(2)若
011<--x ,则1
11111-=
+-+--x x x ,1
12-=
x ,得5.1=x
例 13 方程组⎪⎩
⎪⎨
⎧=+=34119y x xy 得解是 或 .
1999200011999
2000)
19992000)(19992000(1
19992000199920002000
200112000
2001)
20002001)(20002001(12000
200120002001+
=
+
+
-
=
-
=
-
=
+
=++-=-
=-=y x。