Relaxation of surface charge on rotating dielectric spheres Implications on dynamic electro
- 格式:pdf
- 大小:135.75 KB
- 文档页数:12
半导体工艺中的英语词汇..AAbrupt junction 突变结Accelerated testing 加速实验Acceptor 受主Acceptor atom 受主原子Accumulation 积累、堆积Accumulating contact 积累接触Accumulation region 积累区Accumulation layer 积累层Active region 有源区Active component 有源元Active device 有源器件Activation 激活Activation energy 激活能Active region 有源(放大)区Admittance 导纳Allowed band 允带Alloy-junction device合金结器件Aluminum(Aluminium)铝Aluminum - oxide 铝氧化物Aluminum passivation 铝钝化Ambipolar 双极的Ambient temperature 环境温度Amorphous 无定形的,非晶体的Amplifier 功放扩音器放大器Analogue(Analog)comparator 模拟比较器Angstrom 埃Anneal 退火Anisotropic 各向异性的Anode 阳极Arsenic (AS)砷Auger 俄歇Auger process 俄歇过程Avalanche 雪崩Avalanche breakdown 雪崩击穿Avalanche excitation雪崩激发BBackground carrier 本底载流子Background doping 本底掺杂Backward 反向Backward bias 反向偏置Ballasting resistor 整流电阻Ball bond 球形键合Band 能带Band gap 能带间隙Barrier 势垒Barrier layer 势垒层Barrier width 势垒宽度Base 基极Base contact 基区接触Base stretching 基区扩展效应Base transit time 基区渡越时间Base transport efficiency基区输运系数Base-width modulation基区宽度调制Basis vector 基矢Bias 偏置Bilateral switch 双向开关Binary code 二进制代码Binary compound semiconductor 二元化合物半导体Bipolar 双极性的Bipolar Junction Transistor (BJT)双极晶体管Bloch 布洛赫Blocking band 阻挡能带Blocking contact 阻挡接触Body - centered 体心立方Body-centred cubic structure 体立心结构Boltzmann 波尔兹曼Bond 键、键合Bonding electron 价电子Bonding pad 键合点Bootstrap circuit 自举电路Bootstrapped emitter follower 自举射极跟随器Boron 硼Borosilicate glass 硼硅玻璃Boundary condition 边界条件Bound electron 束缚电子Breadboard 模拟板、实验板Break down 击穿Break over 转折Brillouin 布里渊Brillouin zone 布里渊区Built-in 内建的Build-in electric field 内建电场Bulk 体/体内Bulk absorption 体吸收Bulk generation 体产生Bulk recombination 体复合Burn - in 老化Burn out 烧毁Buried channel 埋沟Buried diffusion region 隐埋扩散区CCan 外壳Capacitance 电容Capture cross section 俘获截面Capture carrier 俘获载流子Carrier 载流子、载波Carry bit 进位位Carry-in bit 进位输入Carry-out bit 进位输出Cascade 级联Case 管壳Cathode 阴极Center 中心Ceramic 陶瓷(的)Channel 沟道Channel breakdown 沟道击穿Channel current 沟道电流Channel doping 沟道掺杂Channel shortening 沟道缩短Channel width 沟道宽度Characteristic impedance 特征阻抗Charge 电荷、充电Charge-compensation effects 电荷补偿效应Charge conservation 电荷守恒Charge neutrality condition 电中性条件Charge drive/exchange/sharing/transfer/storage 电荷驱动/交换/共享/转移/存储Chemmical etching 化学腐蚀法Chemically-Polish 化学抛光Chemmically-Mechanically Polish (CMP)化学机械抛光Chip 芯片Chip yield 芯片成品率Clamped 箝位Clamping diode 箝位二极管Cleavage plane 解理面Clock rate 时钟频率Clock generator 时钟发生器Clock flip-flop 时钟触发器Close-packed structure 密堆积结构Close-loop gain 闭环增益Collector 集电极Collision 碰撞Compensated OP-AMP 补偿运放Common-base/collector/emitter connection 共基极/集电极/发射极连接Common-gate/drain/source connection 共栅/漏/源连接Common-mode gain 共模增益Common-mode input 共模输入Common-mode rejection ratio (CMRR)共模抑制比Compatibility 兼容性Compensation 补偿Compensated impurities 补偿杂质Compensated semiconductor 补偿半导体Complementary Darlington circuit 互补达林顿电路Complementary Metal-Oxide-Semiconductor Field-Effect-Transistor(CMOS)互补金属氧化物半导体场效应晶体管Complementary error function 余误差函数Computer-aided design (CAD)/test(CAT)/manufacture (CAM)计算机辅助设计/ 测试/制造Compound Semiconductor 化合物半导体Conductance 电导Conduction band (edge)导带(底)Conduction level/state 导带态Conductor 导体Conductivity 电导率Configuration 组态Conlomb 库仑Conpled Configuration Devices 结构组态Constants 物理常数Constant energy surface 等能面Constant-source diffusion恒定源扩散Contact 接触Contamination 治污Continuity equation 连续性方程Contact hole 接触孔Contact potential 接触电势Continuity condition 连续性条件Contra doping 反掺杂Controlled 受控的Converter 转换器Conveyer 传输器Copper interconnection system 铜互连系统Couping 耦合Covalent 共阶的Crossover 跨交Critical 临界的Crossunder 穿交Crucible坩埚Crystal defect/face/orientation/lattice 晶体缺陷/晶面/晶向/晶格Current density 电流密度Curvature 曲率Cut off 截止Current drift/dirve/sharing 电流漂移/驱动/共享Current Sense 电流取样Curvature 弯曲Custom integrated circuit 定制集成电路Cylindrical 柱面的Czochralshicrystal 直立单晶Czochralski technique 切克劳斯基技术(Cz法直拉晶体J)DDangling bonds 悬挂键Dark current 暗电流Dead time 空载时间Debye length 德拜长度De.broglie 德布洛意Decderate 减速Decibel (dB)分贝Decode 译码Deep acceptor level 深受主能级Deep donor level 深施主能级Deep impurity level 深度杂质能级Deep trap 深陷阱Defeat 缺陷Degenerate semiconductor 简并半导体Degeneracy 简并度Degradation 退化Degree Celsius(centigrade)/Kelvin 摄氏/开氏温度Delay 延迟Density 密度Density of states 态密度Depletion 耗尽Depletion approximation 耗尽近似Depletion contact 耗尽接触Depletion depth 耗尽深度Depletion effect 耗尽效应Depletion layer 耗尽层Depletion MOS 耗尽MOSDepletion region 耗尽区Deposited film 淀积薄膜Deposition process 淀积工艺Design rules 设计规则Die 芯片(复数dice)Diode 二极管Dielectric 介电的Dielectric isolation 介质隔离Difference-mode input 差模输入Differential amplifier 差分放大器Differential capacitance 微分电容Diffused junction 扩散结Diffusion 扩散Diffusion coefficient 扩散系数Diffusion constant 扩散常数Diffusivity 扩散率Diffusion capacitance/barrier/current/furnace 扩散电容/势垒/电流/炉Digital circuit 数字电路Dipole domain 偶极畴Dipole layer 偶极层Direct-coupling 直接耦合Direct-gap semiconductor 直接带隙半导体Direct transition 直接跃迁Discharge 放电Discrete component 分立元件Dissipation 耗散Distribution 分布Distributed capacitance 分布电容Distributed model 分布模型Displacement 位移Dislocation 位错Domain 畴Donor 施主Donor exhaustion 施主耗尽Dopant 掺杂剂Doped semiconductor 掺杂半导体Doping concentration 掺杂浓度Double-diffusive MOS(DMOS)双扩散MOS.Drift 漂移Drift field 漂移电场Drift mobility 迁移率Dry etching 干法腐蚀Dry/wet oxidation 干/湿法氧化Dose 剂量Duty cycle 工作周期Dual-in-line package (DIP)双列直插式封装Dynamics 动态Dynamic characteristics 动态属性Dynamic impedance 动态阻抗EEarly effect 厄利效应Early failure 早期失效Effective mass 有效质量Einstein relation(ship)爱因斯坦关系Electric Erase Programmable Read Only Memory(E2PROM)一次性电可擦除只读存储器Electrode 电极Electrominggratim 电迁移Electron affinity 电子亲和势Electronic -grade 电子能Electron-beam photo-resist exposure 光致抗蚀剂的电子束曝光Electron gas 电子气Electron-grade water 电子级纯水Electron trapping center 电子俘获中心Electron Volt (eV)电子伏Electrostatic 静电的Element 元素/元件/配件Elemental semiconductor 元素半导体Ellipse 椭圆Ellipsoid 椭球Emitter 发射极Emitter-coupled logic 发射极耦合逻辑Emitter-coupled pair 发射极耦合对Emitter follower 射随器Empty band 空带Emitter crowding effect 发射极集边(拥挤)效应Endurance test =life test 寿命测试Energy state 能态Energy momentum diagram 能量-动量(E-K)图Enhancement mode 增强型模式Enhancement MOS 增强性MOS Entefic (低)共溶的Environmental test 环境测试Epitaxial 外延的Epitaxial layer 外延层Epitaxial slice 外延片Expitaxy 外延Equivalent curcuit 等效电路Equilibrium majority /minority carriers 平衡多数/少数载流子Erasable Programmable ROM (EPROM)可搽取(编程)存储器Error function complement (erfc)余误差函数Etch 刻蚀Etchant 刻蚀剂Etching mask 抗蚀剂掩模Excess carrier 过剩载流子Excitation energy 激发能Excited state 激发态Exciton 激子Extrapolation 外推法Extrinsic 非本征的Extrinsic semiconductor 杂质半导体FFace - centered 面心立方Fall time 下降时间Fan-in 扇入Fan-out 扇出Fast recovery 快恢复Fast surface states 快界面态Feedback 反馈Fermi level 费米能级Fermi-Dirac Distribution 费米-狄拉克分布Femi potential 费米势Fick equation 菲克方程(扩散)Field effect transistor 场效应晶体管Field oxide 场氧化层Filled band 满带Film 薄膜Flash memory 闪烁存储器Flat band 平带Flat pack 扁平封装Flicker noise 闪烁(变)噪声Flip-flop toggle 触发器翻转Floating gate 浮栅Fluoride etch 氟化氢刻蚀Forbidden band 禁带Forward bias 正向偏置Forward blocking /conducting正向阻断/导通Frequency deviation noise频率漂移噪声Frequency response 频率响应Function 函数GGain 增益Gallium-Arsenide(GaAs)砷化钾Gamy ray r 射线Gate 门、栅、控制极Gate oxide 栅氧化层Gauss(ian)高斯Gaussian distribution profile 高斯掺杂分布Generation-recombination 产生-复合Geometries 几何尺寸Germanium(Ge)锗Graded 缓变的Graded (gradual)channel 缓变沟道Graded junction 缓变结Grain 晶粒Gradient 梯度Grown junction 生长结Guard ring 保护环Gummel-Poom model 葛谋-潘模型Gunn - effect 狄氏效应HHardened device 辐射加固器件Heat of formation 形成热Heat sink 散热器、热沉Heavy/light hole band 重/轻空穴带Heavy saturation 重掺杂Hell - effect 霍尔效应Heterojunction 异质结Heterojunction structure 异质结结构Heterojunction Bipolar Transistor(HBT)异质结双极型晶体High field property 高场特性High-performance MOS.(H-MOS)高性能MOS. Hormalized 归一化Horizontal epitaxial reactor 卧式外延反应器Hot carrior 热载流子Hybrid integration 混合集成IImage - force 镜象力Impact ionization 碰撞电离Impedance 阻抗Imperfect structure 不完整结构Implantation dose 注入剂量Implanted ion 注入离子Impurity 杂质Impurity scattering 杂质散射Incremental resistance 电阻增量(微分电阻)In-contact mask 接触式掩模Indium tin oxide (ITO)铟锡氧化物Induced channel 感应沟道Infrared 红外的Injection 注入Input offset voltage 输入失调电压Insulator 绝缘体Insulated Gate FET(IGFET)绝缘栅FET Integrated injection logic集成注入逻辑Integration 集成、积分Interconnection 互连Interconnection time delay 互连延时Interdigitated structure 交互式结构Interface 界面Interference 干涉International system of unions国际单位制Internally scattering 谷间散射Interpolation 内插法Intrinsic 本征的Intrinsic semiconductor 本征半导体Inverse operation 反向工作Inversion 反型Inverter 倒相器Ion 离子Ion beam 离子束Ion etching 离子刻蚀Ion implantation 离子注入Ionization 电离Ionization energy 电离能Irradiation 辐照Isolation land 隔离岛Isotropic 各向同性JJunction FET(JFET)结型场效应管Junction isolation 结隔离Junction spacing 结间距Junction side-wall 结侧壁LLatch up 闭锁Lateral 横向的Lattice 晶格Layout 版图Lattice binding/cell/constant/defect/distortion 晶格结合力/晶胞/晶格/晶格常熟/晶格缺陷/晶格畸变Leakage current (泄)漏电流Level shifting 电平移动Life time 寿命linearity 线性度Linked bond 共价键Liquid Nitrogen 液氮Liquid-phase epitaxial growth technique 液相外延生长技术Lithography 光刻Light Emitting Diode(LED)发光二极管Load line or Variable 负载线Locating and Wiring 布局布线Longitudinal 纵向的Logic swing 逻辑摆幅Lorentz 洛沦兹Lumped model 集总模型MMajority carrier 多数载流子Mask 掩膜板,光刻板Mask level 掩模序号Mask set 掩模组Mass - action law质量守恒定律Master-slave D flip-flop主从D触发器Matching 匹配Maxwell 麦克斯韦Mean free path 平均自由程Meandered emitter junction梳状发射极结Mean time before failure (MTBF)平均工作时间Megeto - resistance 磁阻Mesa 台面MESFET-Metal Semiconductor金属半导体FETMetallization 金属化Microelectronic technique 微电子技术Microelectronics 微电子学Millen indices 密勒指数Minority carrier 少数载流子Misfit 失配Mismatching 失配Mobile ions 可动离子Mobility 迁移率Module 模块Modulate 调制Molecular crystal分子晶体Monolithic IC 单片IC MOSFET金属氧化物半导体场效应晶体管Mos. Transistor(MOST )MOS. 晶体管Multiplication 倍增Modulator 调制Multi-chip IC 多芯片ICMulti-chip module(MCM)多芯片模块Multiplication coefficient倍增因子NNaked chip 未封装的芯片(裸片)Negative feedback 负反馈Negative resistance 负阻Nesting 套刻Negative-temperature-coefficient 负温度系数Noise margin 噪声容限Nonequilibrium 非平衡Nonrolatile 非挥发(易失)性Normally off/on 常闭/开Numerical analysis 数值分析OOccupied band 满带Officienay 功率Offset 偏移、失调On standby 待命状态Ohmic contact 欧姆接触Open circuit 开路Operating point 工作点Operating bias 工作偏置Operational amplifier (OPAMP)运算放大器Optical photon =photon 光子Optical quenching光猝灭Optical transition 光跃迁Optical-coupled isolator光耦合隔离器Organic semiconductor有机半导体Orientation 晶向、定向Outline 外形Out-of-contact mask非接触式掩模Output characteristic 输出特性Output voltage swing 输出电压摆幅Overcompensation 过补偿Over-current protection 过流保护Over shoot 过冲Over-voltage protection 过压保护Overlap 交迭Overload 过载Oscillator 振荡器Oxide 氧化物Oxidation 氧化Oxide passivation 氧化层钝化PPackage 封装Pad 压焊点Parameter 参数Parasitic effect 寄生效应Parasitic oscillation 寄生振荡Passination 钝化Passive component 无源元件Passive device 无源器件Passive surface 钝化界面Parasitic transistor 寄生晶体管Peak-point voltage 峰点电压Peak voltage 峰值电压Permanent-storage circuit 永久存储电路Period 周期Periodic table 周期表Permeable - base 可渗透基区Phase-lock loop 锁相环Phase drift 相移Phonon spectra 声子谱Photo conduction 光电导Photo diode 光电二极管Photoelectric cell 光电池Photoelectric effect 光电效应Photoenic devices 光子器件Photolithographic process 光刻工艺(photo)resist (光敏)抗腐蚀剂Pin 管脚Pinch off 夹断Pinning of Fermi level 费米能级的钉扎(效应)Planar process 平面工艺Planar transistor 平面晶体管Plasma 等离子体Plezoelectric effect 压电效应Poisson equation 泊松方程Point contact 点接触Polarity 极性Polycrystal 多晶Polymer semiconductor聚合物半导体Poly-silicon 多晶硅Potential (电)势Potential barrier 势垒Potential well 势阱Power dissipation 功耗Power transistor 功率晶体管Preamplifier 前置放大器Primary flat 主平面Principal axes 主轴Print-circuit board(PCB)印制电路板Probability 几率Probe 探针Process 工艺Propagation delay 传输延时Pseudopotential method 膺势发Punch through 穿通Pulse triggering/modulating 脉冲触发/调制Pulse Widen Modulator(PWM)脉冲宽度调制punchthrough 穿通Push-pull stage 推挽级QQuality factor 品质因子Quantization 量子化Quantum 量子Quantum efficiency量子效应Quantum mechanics 量子力学Quasi - Fermi-level准费米能级Quartz 石英RRadiation conductivity 辐射电导率Radiation damage 辐射损伤Radiation flux density 辐射通量密度Radiation hardening 辐射加固Radiation protection 辐射保护Radiative - recombination辐照复合Radioactive 放射性Reach through 穿通Reactive sputtering source 反应溅射源Read diode 里德二极管Recombination 复合Recovery diode 恢复二极管Reciprocal lattice 倒核子Recovery time 恢复时间Rectifier 整流器(管)Rectifying contact 整流接触Reference 基准点基准参考点Refractive index 折射率Register 寄存器Registration 对准Regulate 控制调整Relaxation lifetime 驰豫时间Reliability 可*性Resonance 谐振Resistance 电阻Resistor 电阻器Resistivity 电阻率Regulator 稳压管(器)Relaxation 驰豫Resonant frequency共射频率Response time 响应时间Reverse 反向的Reverse bias 反向偏置SSampling circuit 取样电路Sapphire 蓝宝石(Al2O3)Satellite valley 卫星谷Saturated current range电流饱和区Saturation region 饱和区Saturation 饱和的Scaled down 按比例缩小Scattering 散射Schockley diode 肖克莱二极管Schottky 肖特基Schottky barrier 肖特基势垒Schottky contact 肖特基接触Schrodingen 薛定厄Scribing grid 划片格Secondary flat 次平面Seed crystal 籽晶Segregation 分凝Selectivity 选择性Self aligned 自对准的Self diffusion 自扩散Semiconductor 半导体Semiconductor-controlled rectifier 可控硅Sendsitivity 灵敏度Serial 串行/串联Series inductance 串联电感Settle time 建立时间Sheet resistance 薄层电阻Shield 屏蔽Short circuit 短路Shot noise 散粒噪声Shunt 分流Sidewall capacitance 边墙电容Signal 信号Silica glass 石英玻璃Silicon 硅Silicon carbide 碳化硅Silicon dioxide (SiO2)二氧化硅Silicon Nitride(Si3N4)氮化硅Silicon On Insulator 绝缘硅Siliver whiskers 银须Simple cubic 简立方Single crystal 单晶Sink 沉Skin effect 趋肤效应Snap time 急变时间Sneak path 潜行通路Sulethreshold 亚阈的Solar battery/cell 太阳能电池Solid circuit 固体电路Solid Solubility 固溶度Sonband 子带Source 源极Source follower 源随器Space charge 空间电荷Specific heat(PT)热Speed-power product 速度功耗乘积Spherical 球面的Spin 自旋Split 分裂Spontaneous emission 自发发射Spreading resistance扩展电阻Sputter 溅射Stacking fault 层错Static characteristic 静态特性Stimulated emission 受激发射Stimulated recombination 受激复合Storage time 存储时间Stress 应力Straggle 偏差Sublimation 升华Substrate 衬底Substitutional 替位式的Superlattice 超晶格Supply 电源Surface 表面Surge capacity 浪涌能力Subscript 下标Switching time 开关时间Switch 开关TTailing 扩展Terminal 终端Tensor 张量Tensorial 张量的Thermal activation 热激发Thermal conductivity 热导率Thermal equilibrium 热平衡Thermal Oxidation 热氧化Thermal resistance 热阻Thermal sink 热沉Thermal velocity 热运动Thermoelectricpovoer 温差电动势率Thick-film technique 厚膜技术Thin-film hybrid IC薄膜混合集成电路Thin-Film Transistor(TFT)薄膜晶体Threshlod 阈值Thyistor 晶闸管Transconductance 跨导Transfer characteristic 转移特性Transfer electron 转移电子Transfer function 传输函数Transient 瞬态的Transistor aging(stress)晶体管老化Transit time 渡越时间Transition 跃迁Transition-metal silica 过度金属硅化物Transition probability 跃迁几率Transition region 过渡区Transport 输运Transverse 横向的Trap 陷阱Trapping 俘获Trapped charge 陷阱电荷Triangle generator 三角波发生器Triboelectricity 摩擦电Trigger 触发Trim 调配调整Triple diffusion 三重扩散Truth table 真值表Tolerahce 容差Tunnel(ing)隧道(穿)Tunnel current 隧道电流Turn over 转折Turn - off time 关断时间UUltraviolet 紫外的Unijunction 单结的Unipolar 单极的Unit cell 原(元)胞Unity-gain frequency 单位增益频率Unilateral-switch单向开关VVacancy 空位Vacuum 真空Valence(value)band 价带Value band edge 价带顶Valence bond 价键Vapour phase 汽相Varactor 变容管Varistor 变阻器Vibration 振动Voltage 电压WWafer 晶片Wave equation 波动方程Wave guide 波导Wave number 波数Wave-particle duality 波粒二相性Wear-out 烧毁Wire routing 布线Work function 功函数Worst-case device 最坏情况器件Yield 成品率Zener breakdown 齐纳击穿。
化学专业术语英语对照来源:发布时间:2011年4月7日爆炸界限explosionlimits霍根-华森图Hougen-WatsonChart德拜和法尔肯哈根效应DebyeandFalkenhageneffect德拜-休克尔极限公式Debye-Huckel’slimitingequation 德拜立方公式Debyecubicformula聚沉值coagulationvalue聚沉coagulation聚(合)电解质polyelectrolyte精馏rectify键焓bondenthalpy触变thixotropy解离化学吸附dissociationchemicaladsorption简并度degeneracy感胶离子序lyotropicseries催化剂catalyst隔离法theisolationmethod隔离系统isolatedsystem道尔顿定律Daltonlaw道尔顿分压定律Daltonpartialpressurelaw超电势overpotential缔合化学吸附associationchemicaladsorption 等温等容位Helmholtzfreeenergy等温等压位Gibbsfreeenergy等温方程equationatconstanttemperature等焓线isenthalpicline等焓过程isenthalpicprocess等几率定理theoremofequalprobability焦耳定律Joule';slaw焦耳-汤姆生效应Joule-Thomsoneffect焦耳-汤姆生实验Joule-Thomsonexperiment焦耳-汤姆生系数Joule-Thomsoncoefficient焦耳Joule敞开系统opensystem菲克扩散第一定律Fick’sfirstlawofdiffusion 粗分散系统thickdispersesystem第三定律熵third-lawentropy第二类永动机perpetualmachineofthesecondkind 第一类永动机perpetualmachineofthefirstkind 盖斯定律Hesslaw盖·吕萨克定律Gay-Lussaclaw焓enthalpy混合熵entropyofmixing混合物mixture接触角contactangle接触电势contactpotential弹式量热计bombcalorimeter常见术语基态能级energylevelatgroundstate基希霍夫公式Kirchhoffformula基元反应elementaryreactions高会溶点upperconsolutepoint高分子溶液macromolecularsolution胶凝作用demulsification胶核colloidalnucleus胶束micelle胶冻brothjelly胶体粒子colloidalparticles胶体化学collochemistry胶体分散系统dispersionsystemofcolloid胶体colloid胶团micelle积分溶解热integrationheatofdissolution盎萨格电导理论Onsager’s theoryofconductance爱因斯坦-斯托克斯方程Einstein-Stokesequation爱因斯坦光化当量定律Einstein’slawofphotochemicalequivalence浸湿功immersionwettingwork浸湿immersionwetting格罗塞斯-德雷珀定律Grotthus-Draoer’slaw根均方速率root-mean-squarespeed费米-狄拉克统计Fermi-Diracstatistics绝热量热计adiabaticcalorimeter绝热指数adiabaticindex绝热过程adiabaticprocess绝对熵absoluteentropy绝对温标absolutetemperaturescale绝对反应速率理论absolutereactionratetheory结晶热heatofcrystallization结线tieline科尔劳施离子独立运动定律Kohlrausch’sLawofIndependentMigrationofIons 界面张力surfacetension界面interfaces玻色-爱因斯坦统计Bose-Einsteinstatistics玻尔兹曼熵定理Boltzmannentropytheorem玻尔兹曼常数Boltzmannconstant玻尔兹曼分布Boltzmanndistribution玻尔兹曼公式Boltzmannformula独立子系统independentparticlesystem活度activity活化控制activationcontrol活化能activationenergy活化络合物理论activatedcomplextheory标准熵standardentropy标准摩尔燃烧焓standardmolarcombustionenthalpy标准摩尔熵standardmolarentropy标准摩尔焓函数standardmolarenthalpyfunction标准摩尔吉布斯自由能函数standardmolarGibbsfreeenergyfunction 标准摩尔生成焓standardmolarformationenthalpy标准摩尔生成吉布斯函数standardmolarformationGibbsfunction标准摩尔反应熵standardmolarreactionentropy标准摩尔反应焓standardmolarreactionenthalpy标准摩尔反应吉布斯函数standardGibbsfunctionofmolarreaction 标准氢电极standardhydrogenelectrode标准态standardstate标准状况standardcondition标准压力standardpressure标准电极电势standardelectrodepotential标准电动势standardelectromotiveforce标准平衡常数standardequilibriumconstant柯诺瓦洛夫-吉布斯定律Konovalov-Gibbslaw查理定律Charle’slaw挥发度volatility恒容摩尔热容molarheatcapacityatconstantvolume恒容热heatatconstantvolume恒沸混合物constantboilingmixture恒压摩尔热容molarheatcapacityatconstantpressure恒压热heatatconstantpressure恒外压constantexternalpressure封闭系统closedsystem复合反应compositereaction饱和蒸气压saturatedvaporpressure饱和蒸气saturatedvapor饱和液体saturatedliquids饱和吸附量saturatedextentofadsorption非基元反应non-elementaryreactions非依时计量学反应timeindependentstoichiometricreactions 非体积功non-volumework规定熵stipulatedentropy表面活性剂surfactants表面质量作用定律surfacemassactionlaw表面张力surfacetension表面吸附量surfaceexcess表面过程控制surfaceprocesscontrol表面surfaces表观摩尔质量apparentmolecularweight表观活化能apparentactivationenergy表观迁移数apparenttransferencenumber范德华常数vanderWaalsconstant范德华气体vanderWaalsgases范德华方程vanderWaalsequation范德华力vanderWaalsforce范特霍夫渗透压公式van’tH offequationofosmoticpressure 范特霍夫规则van’tHoffrule范特霍夫方程van’tHoffequation环境熵变entropychangeinenvironment环境environment波义尔温度Boyletemperature波义尔点Boylepoint波义尔定律Boylelaw法拉第常数faradayconstant法拉第定律Faraday’slaw泊Poise沸点升高elevationofboilingpoint沸点boilingpoint构型熵configurationalentropy定域子系统localizedparticlesystem定容摩尔热容molarheatcapacityunderconstantvolume 定容温度计ConstantvoIumethermometer定压摩尔热容molarheatcapacityunderconstantpressure 定压温度计constantpressurethermometer孤立系统isolatedsystem固溶胶solidsol固相线solidphaseline固态混合物solidsolution单链反应straightchainreactions单分子层吸附理论monomoleculelayeradsorption单分子反应unimolecularreaction附加压力excesspressure阿累尼乌斯活化能Arrheniusactivationenergy阿累尼乌斯电离理论Arrheniusionizationtheory阿累尼乌斯方程Arrheniusequation阿伏加德罗常数Avogadro’number阿伏加德罗定律Avogadrolaw阿马格定律Amagatlaw沉降电势sedimentationpotential沉降平衡sedimentationequilibrium沉降sedimentation极限摩尔电导率limitingmolarconductivity极化作用polarization极化曲线polarizationcurves极化电极电势polarizationpotentialofelectrode杠杆规则leverrule低熔冰盐合晶cryohydric低共熔混合物eutecticmixture低共熔点eutecticpoint低会溶点lowerconsolutepoint亨利常数Henryconstant亨利定律Henrylaw过程process过渡状态理论transitionstatetheory过热液体overheatedliquid过饱和蒸气oversaturatedvapor过饱和溶液oversaturatedsolution过冷液体overcooledliquid过冷水super-cooledwater负极negativepole负吸附negativeadsorption安托万常数Antoineconstant安托万方程Antoineequation多方过程polytropicprocess多分子层吸附理论adsorptiontheoryofmulti-molecularlayers吉布斯函数判据Gibbsfunctioncriterion吉布斯函数Gibbsfunction吉布斯-杜亥姆方程Gibbs-Duhemequation吉布斯吸附公式Gibbsadsorptionformula吉布斯自由能Gibbsfreeenergy吉布斯-亥姆霍兹方程Gibbs-Helmhotzequation 吉氏函数Gibbsfunction动力学控制kineticscontrol动力学方程kineticequations共轭溶液conjugatesolution共沸温度azeotropictemperature光谱熵spectrum entropy光敏反应photosensitizedreactions光反应photoreaction光化学第二定律thesecondlawofactinochemistry 光化学第一定律thefirstlawofactinochemistry 价数规则ruleofvalence产率yield亥姆霍兹函数判据Helmholtzfunctioncriterion 亥姆霍兹函数Helmholtzfunction亥姆霍兹自由能Helmholtzfreeenergy亥氏函数Helmholtzfunction节流膨胀系数coefficientofthrottlingexpansion节流膨胀throttlingexpansion节流过程throttlingprocess艾林方程Eryingequation电解池electrolyticcell电量计coulometer电渗析electrodialysis电渗electroosmosis电流效率currentefficiency电泳electrophoresis电极种类typeofelectrodes电极电势electrodepotential电极反应reactionsontheelectrode电迁移率electromobility电迁移electromigration电池常数cellconstant电池电动势electromotiveforceofcells电池反应cellreaction电导率conductivity电导conductance电动势的温度系数temperaturecoefficientofelectromotiveforce 电动电势zetapotential电功electricwork电化学极化electrochemicalpolarization电化学electrochemistry甘汞电极calomelelectrode弗罗因德利希吸附经验式Freundlichempiricalformulaofadsorption 布朗运动brownianmovement对称数symmetrynumber对应状态原理principleofcorrespondingstate对行反应reversiblereactions对比摩尔体积reducedmolevolume对比温度reducedtemperature对比体积reducedvolume对比压力reducedpressure卡诺循环Carnotcycle卡诺定理Carnottheorem半衰期halftimeperiod半电池halfcell功函workcontent功work计量系数stoichiometriccoefficient计量式stoichiometricequation比浓粘度reducedviscosity比表面吉布斯函数specificsurfaceGibbsfunction比表面功specificsurfacework开尔文公式Kelvinformula反渗透reverseosmosis反应速率常数constantofreactionrate反应速率rateofreaction反应热heatofreaction反应进度extentofreaction反应级数reactionorders反应分子数molecularity反电动势back化学热力学chemicalthermodynamics化学亲合势chemicalaffinity化学势判据chemicalpotentialcriterion化学势chemicalpotential化学吸附chemisorptions化学动力学chemicalkinetics化学反应进度extentofchemicalreaction化学反应计量系数stoichiometriccoefficientofchemicalreaction 化学反应计量式stoichiometricequationofchemicalreaction分解电压decompositionvoltage分散相dispersionphase分散系统dispersesystem分配定律distributionlaw分体积定律partialvolumelaw分体积partialvolume分压定律partialpressurelaw分压partialpressure分布数distributionnumbers分布distribution分子蒸馏moleculardistillation分子间力intermolecularforce分子反应力学mechanicsofmolecularreactions不可逆相变化irreversiblephasechange不可逆过程热力学thermodynamicsofirreversibleprocesses 不可逆过程irreversibleprocess广度性质extensiveproperty广延量extensivequantity广延性质extensiveproperty几率因子stericfactor二级相变secondorderphasechange二级反应secondorderreaction丁达尔效应Dyndalleffectζ电势zetapotentialpVT性质pVTpropertyHLB法hydrophile-lipophilebalancemethodDLVO理论DLVOtheoryBET公式BETformula可能的电解质potentialelectrolyte可逆电池reversiblecell可逆过程reversibleprocess可逆过程方程reversibleprocessequation可逆体积功reversiblevolumework可逆相变reversiblephasechange克拉佩龙方程Clapeyronequation克劳修斯不等式Clausiusinequality克劳修斯-克拉佩龙方程Clausius-Clapeyronequation控制步骤controlstep库仑计coulometer扩散控制diffusioncontrolled拉普拉斯方程Laplace’sequation拉乌尔定律Raoultlaw兰格缪尔-欣谢尔伍德机理Langmuir-Hinshelwoodmechanism 兰格缪尔吸附等温式Langmuiradsorptionisothermformula 雷利公式Rayleighequation冷冻系数coefficientofrefrigeration冷却曲线coolingcurve离解热heatofdissociation离解压力dissociationpressure离域子系统non-localizedparticlesystems离子的标准摩尔生成焓standardmolarformationofion离子的电迁移率mobilityofions离子的迁移数transportnumberofions离子独立运动定律lawoftheindependentmigrationofions离子氛ionicatmosphere离子强度ionicstrength理想混合物perfectmixture理想气体idealgas理想气体的绝热指数adiabaticindexofidealgases理想气体的微观模型micro-modelofidealgas理想气体反应的等温方程isothermalequationofidealgaseousreactions理想气体绝热可逆过程方程adiabaticreversibleprocessequationofidealgase 理想气体状态方程stateequationofidealgas理想稀溶液idealdilutesolution理想液态混合物perfectliquidmixture粒子particles粒子的配分函数partitionfunctionofparticles连串反应consecutivereactions链的传递物chaincarrier链反应chainreactions量热熵calorimetricentropy量子统计quantumstatistics量子效率quantumyield临界参数criticalparameter临界常数criticalconstant临界点criticalpoint临界胶束浓度criticalmicelleconcentration临界摩尔体积criticalmolarvolume临界温度criticaltemperature临界压力criticalpressure临界状态criticalstate零级反应zeroorderreaction流动电势streamingpotential流动功flowwork笼罩效应cageeffect路易斯-兰德尔逸度规则Lewis-Randallruleoffugacity 露点dewpoint露点线dewpointline麦克斯韦关系式Maxwellrelations麦克斯韦速率分布Maxwelldistributionofspeeds麦克斯韦能量分布MaxwelIdistributionofenergy毛细管凝结condensationincapillary毛细现象capillary phenomena米凯利斯常数Michaelisconstant摩尔电导率molarconductivity摩尔反应焓molarreactionenthalpy摩尔混合熵moleentropyofmixing摩尔气体常数molargasconstant摩尔热容molarheatcapacity摩尔溶解焓moledissolutionenthalpy摩尔稀释焓moledilutionenthalpy内扩散控制internaldiffusionscontrol内能internalenergy内压力internalpressure能级energylevels能级分布energyleveldistribution能量均分原理principleoftheequipartitionofenergy 能斯特方程Nernstequation能斯特热定理Nernstheattheorem凝固点freezingpoint凝固点降低loweringoffreezingpoint凝固点曲线freezingpointcurve凝胶gelatin凝聚态condensedstate凝聚相condensedphase浓差超电势concentrationover-potential浓差极化concentrationpolarization浓差电池concentrationcells帕斯卡pascal泡点bubblepoint泡点线bubblepointline配分函数partitionfunction配分函数的析因子性质propertythatpartitionfunctiontobeexpressedasap roductoftheseparatepartitionfunctionsforeachkindofstate碰撞截面collisioncrosssection碰撞数thenumberofcollisions偏摩尔量partialmolequantities平衡常数(理想气体反应)equilibriumconstantsforreactionsofidealgases 平动配分函数partitionfunctionoftranslation平衡分布equilibriumdistribution平衡态equilibriumstate平衡态近似法equilibriumstateapproximation平衡状态图equilibriumstatediagram平均活度meanactivity平均活度系统meanactivitycoefficient平均摩尔热容meanmolarheatcapacity平均质量摩尔浓度meanmassmolarity平均自由程meanfreepath平行反应parallelreactions破乳demulsification铺展spreading普遍化范德华方程universalvanderWaalsequation其它功theotherwork气化热heatofvaporization气溶胶aerosol气体常数gasconstant气体分子运动论kinetictheoryofgases气体分子运动论的基本方程foundamentalequationofkinetictheoryofgases 气溶胶aerosol气相线vaporline迁移数transportnumber潜热latentheat强度量intensivequantity强度性质intensiveproperty亲液溶胶hydrophilicsol氢电极hydrogenelectrodes区域熔化zonemelting热heat热爆炸heatexplosion热泵heatpump热功当量mechanicalequivalentofheat热函heatcontent热化学thermochemistry热化学方程thermochemicalequation热机heatengine热机效率efficiencyofheatengine热力学thermodynamics热力学第二定律thesecondlawofthermodynamics热力学第三定律thethirdlawofthermodynamics热力学第一定律thefirstlawofthermodynamics热力学基本方程fundamentalequationofthermodynamics 热力学几率thermodynamicprobability热力学能thermodynamicenergy热力学特性函数characteristicthermodynamicfunction 热力学温标thermodynamicscaleoftemperature热力学温度thermodynamictemperature热熵thermalentropy热效应heateffect熔点曲线meltingpointcurve熔化热heatoffusion溶胶colloidalsol溶解焓dissolutionenthalpy溶液solution溶胀swelling乳化剂emulsifier乳状液emulsion润湿wetting润湿角wettingangle萨克尔-泰特洛德方程Sackur-Tetrodeequation 三相点triplepoint三相平衡线triple-phaseline熵entropy熵判据entropycriterion熵增原理principleofentropyincrease渗透压osmoticpressure渗析法dialyticprocess生成反应formationreaction升华热heatofsublimation实际气体realgas舒尔采-哈迪规则Schulze-Hardyrule松驰力relaxationforce松驰时间timeofrelaxation速度常数reactionrateconstant速率方程rateequations速率控制步骤ratedeterminingstep塔费尔公式Tafelequation态-态反应state-statereactions唐南平衡Donnanequilibrium淌度mobility特鲁顿规则Troutonrule特性粘度intrinsicviscosity体积功volumework统计权重statisticalweight统计热力学statisticthermodynamics统计熵statisticentropy途径path途径函数pathfunction外扩散控制externaldiffusioncontrol完美晶体perfectcrystalline完全气体perfectgas微观状态microstate微态microstate韦斯顿标准电池Westonstandardbattery维恩效应Wieneffect维里方程virialequation维里系数virialcoefficient稳流过程steadyflowprocess稳态近似法stationarystateapproximation 无热溶液athermalsolution无限稀溶液solutionsinthelimitofextremedilution物理化学PhysicalChemistry物理吸附physisorptions吸附adsorption吸附等量线adsorptionisostere吸附等温线adsorptionisotherm吸附等压线adsorptionisobar吸附剂adsorbent吸附量extentofadsorption吸附热heatofadsorption吸附质adsorbate析出电势evolutionordepositionpotential析因子性质propertythatpartitionfunctiontobeexpressedasaproductof 稀溶液的依数性colligativepropertiesofdilutesolutions稀释焓dilutionenthalpy系统system系统点systempoint系统的环境environmentofsystem相phase相变phasechange相变焓enthalpyofphasechange相变化phasechange相变热heatofphasechange相点phasepoint相对挥发度relativevolatility相对粘度relativeviscosity相律phaserule相平衡热容heatcapacityinphaseequilibrium相图phasediagram相倚子系统systemofdependentparticles悬浮液suspension循环过程cyclicprocess压力商pressurequotient压缩因子compressibilityfactor压缩因子图diagramofcompressibilityfactor亚稳状态metastablestate盐桥saltbridge盐析saltingout阳极anode杨氏方程Young’sequation液体接界电势liquidjunctionpotential液相线liquidphaselines一级反应firstorderreaction一级相变firstorderphasechange依时计量学反应timedependentstoichiometricreactions逸度fugacity逸度系数coefficientoffugacity阴极cathode荧光fluorescence永动机perpetualmotionmachine永久气体Permanentgas有效能availableenergy原电池primarycell原盐效应salteffect增比粘度specificviscosity憎液溶胶lyophobicsol沾湿adhesionalwetting沾湿功theworkofadhesionalwetting真溶液truesolution真实电解质realelectrolyte真实气体realgas真实迁移数truetransferencenumber振动配分函数partitionfunctionofvibration振动特征温度characteristictemperatureofvibration 蒸气压下降depressionofvaporpressure正常沸点normalpoint正吸附positiveadsorption支链反应branchedchainreactions直链反应straightchainreactions指前因子pre-exponentialfactor质量作用定律massactionlaw制冷系数coefficientofrefrigeration中和热heatofneutralization轴功shaftwork转动配分函数partitionfunctionofrotation转动特征温度characteristictemperatureofvibration 转化率convertratio转化温度conversiontemperature状态state状态方程stateequation状态分布statedistribution状态函数statefunction准静态过程quasi-staticprocess准一级反应pseudofirstorderreaction自动催化作用auto-catalysis自由度degreeoffreedom自由度数numberofdegreeoffreedom自由焓freeenthalpy自由能freeenergy自由膨胀freeexpansion组分数componentnumber最低恒沸点lowerazeotropicpoint最高恒沸点upperazeotropicpoint最佳反应温度optimalreactiontemperature 最可几分布mostprobabledistribution最可几速率mostpropablespeed化学专业术语英语对照来源:发布时间:2011年4月7日爆炸界限explosionlimits霍根-华森图Hougen-WatsonChart德拜和法尔肯哈根效应DebyeandFalkenhageneffect德拜-休克尔极限公式Debye-Huckel’slimitingequation 德拜立方公式Debyecubicformula聚沉值coagulationvalue聚沉coagulation聚(合)电解质polyelectrolyte精馏rectify键焓bondenthalpy触变thixotropy解离化学吸附dissociationchemicaladsorption简并度degeneracy感胶离子序lyotropicseries催化剂catalyst隔离法theisolationmethod隔离系统isolatedsystem道尔顿定律Daltonlaw道尔顿分压定律Daltonpartialpressurelaw超电势overpotential缔合化学吸附associationchemicaladsorption等温等容位Helmholtzfreeenergy等温等压位Gibbsfreeenergy等温方程equationatconstanttemperature等焓线isenthalpicline等焓过程isenthalpicprocess等几率定理theoremofequalprobability焦耳定律Joule';slaw焦耳-汤姆生效应Joule-Thomsoneffect焦耳-汤姆生实验Joule-Thomsonexperiment焦耳-汤姆生系数Joule-Thomsoncoefficient焦耳Joule敞开系统opensystem菲克扩散第一定律Fick’sfirstlawofdiff usion 粗分散系统thickdispersesystem第三定律熵third-lawentropy第二类永动机perpetualmachineofthesecondkind 第一类永动机perpetualmachineofthefirstkind 盖斯定律Hesslaw盖·吕萨克定律Gay-Lussaclaw焓enthalpy混合熵entropyofmixing混合物mixture接触角contactangle接触电势contactpotential弹式量热计bombcalorimeter常见术语基态能级energylevelatgroundstate基希霍夫公式Kirchhoffformula基元反应elementaryreactions高会溶点upperconsolutepoint高分子溶液macromolecularsolution胶凝作用demulsification胶核colloidalnucleus胶束micelle胶冻brothjelly胶体粒子colloidalparticles胶体化学collochemistry胶体分散系统dispersionsystemofcolloid胶体colloid胶团micelle积分溶解热integrationheatofdissolution盎萨格电导理论Onsager’stheoryofconductance爱因斯坦-斯托克斯方程Einstein-Stokesequation爱因斯坦光化当量定律Einstein’slawofphotochemicalequivalence 浸湿功immersionwettingwork浸湿immersionwetting格罗塞斯-德雷珀定律Grotthus-Draoer’slaw根均方速率root-mean-squarespeed费米-狄拉克统计Fermi-Diracstatistics绝热量热计adiabaticcalorimeter绝热指数adiabaticindex绝热过程adiabaticprocess绝对熵absoluteentropy绝对温标absolutetemperaturescale绝对反应速率理论absolutereactionratetheory结晶热heatofcrystallization结线tieline科尔劳施离子独立运动定律Kohlrausch’sLawofIndependentMigrationofIons 界面张力surfacetension界面interfaces玻色-爱因斯坦统计Bose-Einsteinstatistics玻尔兹曼熵定理Boltzmannentropytheorem玻尔兹曼常数Boltzmannconstant玻尔兹曼分布Boltzmanndistribution玻尔兹曼公式Boltzmannformula独立子系统independentparticlesystem活度activity活化控制activationcontrol活化能activationenergy活化络合物理论activatedcomplextheory标准熵standardentropy标准摩尔燃烧焓standardmolarcombustionenthalpy标准摩尔熵standardmolarentropy标准摩尔焓函数standardmolarenthalpyfunction标准摩尔吉布斯自由能函数standardmolarGibbsfreeenergyfunction 标准摩尔生成焓standardmolarformationenthalpy标准摩尔生成吉布斯函数standardmolarformationGibbsfunction标准摩尔反应熵standardmolarreactionentropy标准摩尔反应焓standardmolarreactionenthalpy标准摩尔反应吉布斯函数standardGibbsfunctionofmolarreaction 标准氢电极standardhydrogenelectrode标准态standardstate标准状况standardcondition标准压力standardpressure标准电极电势standardelectrodepotential标准电动势standardelectromotiveforce标准平衡常数standardequilibriumconstant柯诺瓦洛夫-吉布斯定律Konovalov-Gibbslaw查理定律Charle’slaw挥发度volatility恒容摩尔热容molarheatcapacityatconstantvolume恒容热heatatconstantvolume恒沸混合物constantboilingmixture恒压摩尔热容molarheatcapacityatconstantpressure恒压热heatatconstantpressure恒外压constantexternalpressure封闭系统closedsystem复合反应compositereaction饱和蒸气压saturatedvaporpressure饱和蒸气saturatedvapor饱和液体saturatedliquids饱和吸附量saturatedextentofadsorption非基元反应non-elementaryreactions非依时计量学反应timeindependentstoichiometricreactions 非体积功non-volumework规定熵stipulatedentropy表面活性剂surfactants表面质量作用定律surfacemassactionlaw表面张力surfacetension表面吸附量surfaceexcess表面过程控制surfaceprocesscontrol表面surfaces表观摩尔质量apparentmolecularweight表观活化能apparentactivationenergy表观迁移数apparenttransferencenumber范德华常数vanderWaalsconstant范德华气体vanderWaalsgases范德华方程vanderWaalsequation范德华力vanderWaalsforce范特霍夫渗透压公式van’tHoffequationofosmoticpressure 范特霍夫规则van’tHoffrule范特霍夫方程van’tHoffequation环境熵变entropychangeinenvironment环境environment波义尔温度Boyletemperature波义尔点Boylepoint波义尔定律Boylelaw法拉第常数faradayconstant法拉第定律Faraday’slaw泊Poise沸点升高elevationofboilingpoint沸点boilingpoint构型熵configurationalentropy定域子系统localizedparticlesystem定容摩尔热容molarheatcapacityunderconstantvolume定容温度计ConstantvoIumethermometer定压摩尔热容molarheatcapacityunderconstantpressure定压温度计constantpressurethermometer孤立系统isolatedsystem固溶胶solidsol固相线solidphaseline固态混合物solidsolution单链反应straightchainreactions单分子层吸附理论monomoleculelayeradsorption 单分子反应unimolecularreaction附加压力excesspressure阿累尼乌斯活化能Arrheniusactivationenergy阿累尼乌斯电离理论Arrheniusionizationtheory 阿累尼乌斯方程Arrheniusequation阿伏加德罗常数Avogadro’number阿伏加德罗定律Avogadrolaw阿马格定律Amagatlaw沉降电势sedimentationpotential沉降平衡sedimentationequilibrium沉降sedimentation极限摩尔电导率limitingmolarconductivity极化作用polarization极化曲线polarizationcurves极化电极电势polarizationpotentialofelectrode杠杆规则leverrule低熔冰盐合晶cryohydric低共熔混合物eutecticmixture低共熔点eutecticpoint低会溶点lowerconsolutepoint亨利常数Henryconstant亨利定律Henrylaw过程process过渡状态理论transitionstatetheory过热液体overheatedliquid过饱和蒸气oversaturatedvapor过饱和溶液oversaturatedsolution过冷液体overcooledliquid过冷水super-cooledwater负极negativepole负吸附negativeadsorption安托万常数Antoineconstant安托万方程Antoineequation多方过程polytropicprocess多分子层吸附理论adsorptiontheoryofmulti-molecularlayers 吉布斯函数判据Gibbsfunctioncriterion吉布斯函数Gibbsfunction吉布斯-杜亥姆方程Gibbs-Duhemequation吉布斯吸附公式Gibbsadsorptionformula吉布斯自由能Gibbsfreeenergy吉布斯-亥姆霍兹方程Gibbs-Helmhotzequation 吉氏函数Gibbsfunction动力学控制kineticscontrol动力学方程kineticequations共轭溶液conjugatesolution共沸温度azeotropictemperature光谱熵spectrum entropy光敏反应photosensitizedreactions光反应photoreaction光化学第二定律thesecondlawofactinochemistry 光化学第一定律thefirstlawofactinochemistry 价数规则ruleofvalence产率yield亥姆霍兹函数判据Helmholtzfunctioncriterion 亥姆霍兹函数Helmholtzfunction亥姆霍兹自由能Helmholtzfreeenergy亥氏函数Helmholtzfunction节流膨胀系数coefficientofthrottlingexpansion 节流膨胀throttlingexpansion节流过程throttlingprocess艾林方程Eryingequation电解池electrolyticcell电量计coulometer电渗析electrodialysis电渗electroosmosis电流效率currentefficiency电泳electrophoresis电极种类typeofelectrodes电极电势electrodepotential电极反应reactionsontheelectrode电迁移率electromobility电迁移electromigration电池常数cellconstant电池电动势electromotiveforceofcells电池反应cellreaction电导率conductivity电导conductance电动势的温度系数temperaturecoefficientofelectromotiveforce 电动电势zetapotential电功electricwork电化学极化electrochemicalpolarization电化学electrochemistry甘汞电极calomelelectrode弗罗因德利希吸附经验式Freundlichempiricalformulaofadsorption 布朗运动brownianmovement对称数symmetrynumber对应状态原理principleofcorrespondingstate对行反应reversiblereactions对比摩尔体积reducedmolevolume对比温度reducedtemperature对比体积reducedvolume对比压力reducedpressure卡诺循环Carnotcycle卡诺定理Carnottheorem半衰期halftimeperiod半电池halfcell功函workcontent功work计量系数stoichiometriccoefficient计量式stoichiometricequation比浓粘度reducedviscosity比表面吉布斯函数specificsurfaceGibbsfunction比表面功specificsurfacework开尔文公式Kelvinformula反渗透reverseosmosis反应速率常数constantofreactionrate反应速率rateofreaction反应热heatofreaction反应进度extentofreaction反应级数reactionorders反应分子数molecularity反电动势back化学热力学chemicalthermodynamics化学亲合势chemicalaffinity化学势判据chemicalpotentialcriterion化学势chemicalpotential化学吸附chemisorptions化学动力学chemicalkinetics化学反应进度extentofchemicalreaction化学反应计量系数stoichiometriccoefficientofchemicalreaction 化学反应计量式stoichiometricequationofchemicalreaction分解电压decompositionvoltage分散相dispersionphase分散系统dispersesystem分配定律distributionlaw分体积定律partialvolumelaw分体积partialvolume分压定律partialpressurelaw分压partialpressure分布数distributionnumbers分布distribution分子蒸馏moleculardistillation分子间力intermolecularforce分子反应力学mechanicsofmolecularreactions不可逆相变化irreversiblephasechange不可逆过程热力学thermodynamicsofirreversibleprocesses 不可逆过程irreversibleprocess广度性质extensiveproperty广延量extensivequantity广延性质extensiveproperty几率因子stericfactor二级相变secondorderphasechange二级反应secondorderreaction丁达尔效应Dyndalleffectζ电势zetapotentialpVT性质pVTpropertyHLB法hydrophile-lipophilebalancemethodDLVO理论DLVOtheoryBET公式BETformula可能的电解质potentialelectrolyte可逆电池reversiblecell可逆过程reversibleprocess可逆过程方程reversibleprocessequation可逆体积功reversiblevolumework可逆相变reversiblephasechange克拉佩龙方程Clapeyronequation克劳修斯不等式Clausiusinequality克劳修斯-克拉佩龙方程Clausius-Clapeyronequation控制步骤controlstep库仑计coulometer扩散控制diffusioncontrolled拉普拉斯方程Laplace’sequation拉乌尔定律Raoultlaw兰格缪尔-欣谢尔伍德机理Langmuir-Hinshelwoodmechanism 兰格缪尔吸附等温式Langmuiradsorptionisothermformula 雷利公式Rayleighequation冷冻系数coefficientofrefrigeration冷却曲线coolingcurve离解热heatofdissociation离解压力dissociationpressure离域子系统non-localizedparticlesystems离子的标准摩尔生成焓standardmolarformationofion离子的电迁移率mobilityofions离子的迁移数transportnumberofions离子独立运动定律lawoftheindependentmigrationofions离子氛ionicatmosphere离子强度ionicstrength理想混合物perfectmixture理想气体idealgas理想气体的绝热指数adiabaticindexofidealgases理想气体的微观模型micro-modelofidealgas理想气体反应的等温方程isothermalequationofidealgaseousreactions理想气体绝热可逆过程方程adiabaticreversibleprocessequationofidealgase 理想气体状态方程stateequationofidealgas理想稀溶液idealdilutesolution理想液态混合物perfectliquidmixture粒子particles粒子的配分函数partitionfunctionofparticles连串反应consecutivereactions链的传递物chaincarrier链反应chainreactions量热熵calorimetricentropy量子统计quantumstatistics量子效率quantumyield临界参数criticalparameter临界常数criticalconstant临界点criticalpoint临界胶束浓度criticalmicelleconcentration临界摩尔体积criticalmolarvolume临界温度criticaltemperature临界压力criticalpressure临界状态criticalstate零级反应zeroorderreaction流动电势streamingpotential流动功flowwork笼罩效应cageeffect路易斯-兰德尔逸度规则Lewis-Randallruleoffugacity 露点dewpoint露点线dewpointline麦克斯韦关系式Maxwellrelations麦克斯韦速率分布Maxwelldistributionofspeeds麦克斯韦能量分布MaxwelIdistributionofenergy毛细管凝结condensationincapillary毛细现象capillary phenomena米凯利斯常数Michaelisconstant摩尔电导率molarconductivity摩尔反应焓molarreactionenthalpy摩尔混合熵moleentropyofmixing摩尔气体常数molargasconstant摩尔热容molarheatcapacity摩尔溶解焓moledissolutionenthalpy摩尔稀释焓moledilutionenthalpy内扩散控制internaldiffusionscontrol内能internalenergy内压力internalpressure能级energylevels能级分布energyleveldistribution能量均分原理principleoftheequipartitionofenergy 能斯特方程Nernstequation能斯特热定理Nernstheattheorem凝固点freezingpoint凝固点降低loweringoffreezingpoint凝固点曲线freezingpointcurve凝胶gelatin凝聚态condensedstate凝聚相condensedphase浓差超电势concentrationover-potential浓差极化concentrationpolarization浓差电池concentrationcells帕斯卡pascal泡点bubblepoint泡点线bubblepointline配分函数partitionfunction配分函数的析因子性质propertythatpartitionfunctiontobeexpressedasap roductoftheseparatepartitionfunctionsforeachkindofstate碰撞截面collisioncrosssection碰撞数thenumberofcollisions偏摩尔量partialmolequantities平衡常数(理想气体反应)equilibriumconstantsforreactionsofidealgases 平动配分函数partitionfunctionoftranslation平衡分布equilibriumdistribution平衡态equilibriumstate平衡态近似法equilibriumstateapproximation平衡状态图equilibriumstatediagram平均活度meanactivity平均活度系统meanactivitycoefficient平均摩尔热容meanmolarheatcapacity平均质量摩尔浓度meanmassmolarity平均自由程meanfreepath平行反应parallelreactions破乳demulsification铺展spreading普遍化范德华方程universalvanderWaalsequation。
氧气等离子体表面处理负电英文回答:Oxygen Plasma Surface Treatment and Negative Charge.Oxygen plasma surface treatment is a process that uses a plasma to modify the surface of a material. The plasma is created by passing oxygen gas through an electrical field, which causes the gas molecules to become ionized. The ions then bombard the surface of the material, removing contaminants and modifying the surface chemistry.One of the effects of oxygen plasma surface treatment is to create a negative charge on the surface of the material. This negative charge is caused by the accumulation of oxygen ions on the surface. The negative charge can have a number of effects on the material, including:Increased surface energy.Improved wettability.Enhanced adhesion.Increased surface energy.The negative charge on the surface of the material increases the surface energy. Surface energy is a measure of the work required to separate two surfaces. A higher surface energy means that the material is more likely to wet and adhere to other materials.Improved wettability.The negative charge on the surface of the material improves the wettability of the material. Wettability is a measure of the ability of a liquid to spread on a surface.A higher wettability means that the liquid is more likely to spread on the surface and form a uniform film.Enhanced adhesion.The negative charge on the surface of the material enhances the adhesion of the material to other materials. Adhesion is a measure of the strength of the bond between two materials. A higher adhesion means that the two materials are more likely to stick together.中文回答:氧气等离子体表面处理的负电效应。
高分子物理名词解释Θ溶剂(Θ solvent):链段-溶剂相互吸引刚好抵消链段间空间排斥的溶剂,形成高分子溶液时观察不到远程作用,该溶剂中的高分子链的行为同无扰链2.7Θ温度(Θ temperature):溶剂表现出Θ溶剂性质的温度2.7Argon理论(Argon theory):一种银纹扩展过程的模型,描述了分子链被伸展将聚合物材料空化的过程5.3Avrami方程(Avrami equation):描述物质结晶转化率与时间关系的方程:--α,α为转化率,K与n称Avrami常数(Avrami constants) 4.8 =Kt1n)ex p(Bingham流体(Bingham liquid):此类流体具有一个屈服应力σy,应力低于σy时不产生形变,当应力大于σy时才发生流动,应力高于σy的部分与应变速率呈线性关系3.13 Boltzmann叠加原理(Blotzmann superposition principle):Boltzmann提出的粘弹性原理:认为样品在不同时刻对应力或应变的响应各自独立并可线性叠加 3.8Bravais晶格(Bravais lattice):结构单元在空间的排列方式4.1Burger's模型(Burger's model):由一个Maxwell模型和一个Kelvin模型串联构成的粘弹性模型3.7Cauchy应变(Cauchy strain):拉伸引起的相对于样品初始长度的形变分数,又称工程应变3.16Charpy冲击测试(Charpy impact test):样品以简支梁形式放置的冲击强度测试,测量样品单位截面积的冲击能5.4Considère构图(Considère construction):以真应力对工程应作图以判定细颈稳定性的方法5.2Eyring模型(Eyring model):一种描述材料形变过程的分子模型,认为形变是结构单元越过能垒的跳跃式运动5.2Flory-Huggins参数(Flory-Huggins interaction parameter):描述聚合物链段与溶剂分子间相互作用的参数,常用χ表示,物理意义为一个溶质分子被放入溶剂中作用能变化与动能之比2.11.2Flory构图(Flory construction):保持固定拉伸比所需的力f对实验温度作图得到,由截距确定内能对拉伸力的贡献,由斜率确定熵对拉伸力的贡献2.16.2Flory特征比(characteristic ratio):无扰链均方末端距与自由连接链均方末端距的比值2.4 Griffith理论(Griffith theory):一种描述材料断裂机理的理论,认为断裂是吸收外界能量产生新表面的过程5.4Hencky应变(Hencky strain):拉伸引起的相对于样品形变分数积分,又称真应变3.16 Hermans取向因子(Hermans orientation factor):描述结构单元取向程度的参数,是结构单元与参考方向夹角余弦均方值的函数4.8, 4.10Hoffman-Weeks作图法(Hoffman-Weeks plot):一种确定平衡熔点的方法。
半导体一些术语的中英文对照离子注入机ionimplanterLSS理论LindhandScharffandSchiotttheory 又称“林汉德-斯卡夫-斯高特理论”。
沟道效应channelingeffect射程分布rangedistribution深度分布depthdistribution投影射程projectedrange负性光刻胶negativephotoresist正性光刻胶positivephotoresist无机光刻胶inorganicresist多层光刻胶multilevelresist电子束光刻胶electronbeamresistX射线光刻胶X-rayresist刷洗scrubbing甩胶spinning涂胶photoresistcoating后烘postbaking光刻photolithographyX射线光刻X-raylithography电子束光刻electronbeamlithography离子束光刻ionbeamlithography深紫外光刻deep-UVlithography光刻机maskaligner投影光刻机projectionmaskaligner曝光exposure接触式曝光法contactexposuremethod接近式曝光法proximityexposuremethod光学投影曝光法opticalprojectionexposuremethod磷硅玻璃phosphorosilicateglass硼磷硅玻璃boron-phosphorosilicateglass钝化工艺passivationtechnology 多层介质钝化multilayerdielectricpassivation划片scribing电子束切片electronbeamslicing烧结sintering印压indentation热压焊thermocompressionbonding热超声焊thermosonicbonding冷焊coldwelding点焊spotwelding球焊ballbonding楔焊wedgebonding内引线焊接innerleadbonding外引线焊接outerleadbonding梁式引线beamlead装架工艺mountingtechnology附着adhesion封装packaging金属封装metallicpackagingAmbipolar双极的Ambienttemperature环境温度Amorphous无定形的,非晶体的Amplifier功放扩音器放大器Analogue(Analog)comparator模拟比较器Angstrom埃Anneal退火Anisotropic各向异性的Anode阳极Arsenic(AS)砷Auger俄歇Augerprocess俄歇过程Avalanche雪崩Avalanchebreakdown雪崩击穿Avalancheexcitation雪崩激发Backgroundcarrier本底载流子Backgrounddoping本底掺杂Backward反向Backwardbias反向偏置Ballastingresistor整流电阻Ballbond球形键合Band能带Bandgap能带间隙Barrier势垒Barrierlayer势垒层Barrierwidth势垒宽度Base基极Basecontact基区接触Basestretching基区扩展效应Basetransittime基区渡越时间Basetransportefficiency基区输运系数Base-widthmodulation基区宽度调制Basisvector基矢Bias偏置Bilateralswitch双向开关Binarycode二进制代码Binarycompoundsemiconductor二元化合物半导体Bipolar双极性的BipolarJunctionTransistor(BJT)双极晶体管Bloch布洛赫Blockingband阻挡能带Chargeconservation电荷守恒Chargeneutralitycondition电中性条件Chargedrive/exchange/sharing/transfer/storage电荷驱动/交换/共享/转移/存储Chemmicaletching化学腐蚀法Chemically-Polish化学抛光Chemmically-MechanicallyPolish(CMP)化学机械抛光Chip芯片Chipyield芯片成品率Clamped箝位Clampingdiode箝位二极管Cleavageplane解理面Clockrate时钟频率Clockgenerator时钟发生器Clockflip-flop时钟触发器Close-packedstructure密堆积结构Close-loopgain闭环增益Collector集电极Collision碰撞CompensatedOP-AMP补偿运放Common-base/collector/emitterconnection共基极/集电极/发射极连接Common-gate/drain/sourceconnection共栅/漏/源连接Common-modegain共模增益Common-modeinput共模输入Common-moderejectionratio(CMRR)共模抑制比Compatibility兼容性Compensation补偿Compensatedimpurities补偿杂质Compensatedsemiconductor补偿半导体ComplementaryDarlingtoncircuit互补达林顿电路ComplementaryMetal-Oxide-SemiconductorField-Effect-Transistor(CMOS)互补金属氧化物半导体场效应晶体管Complementaryerrorfunction余误差函数Computer-aideddesign(CAD)/test(CAT)/manufacture(CAM)计算机辅助设计/测试/制De.broglie德布洛意Decderate减速Decibel(dB)分贝Decode译码Deepacceptorlevel深受主能级Deepdonorlevel深施主能级Deepimpuritylevel深度杂质能级Deeptrap深陷阱Defeat缺陷Degeneratesemiconductor简并半导体Degeneracy简并度Degradation退化DegreeCelsius(centigrade)/Kelvin摄氏/开氏温度Delay延迟Density密度Densityofstates态密度Depletion耗尽Depletionapproximation耗尽近似Depletioncontact耗尽接触Depletiondepth耗尽深度Depletioneffect耗尽效应Depletionlayer耗尽层DepletionMOS耗尽MOSDepletionregion耗尽区Depositedfilm淀积薄膜Depositionprocess淀积工艺Designrules设计规则Die芯片(复数dice)Diode二极管Dielectric介电的Dielectricisolation介质隔离Difference-modeinput差模输入Differentialamplifier差分放大器Differentialcapacitance微分电容Diffusedjunction扩散结Diffusion扩散Diffusioncoefficient扩散系数Diffusionconstant扩散常数Diffusivity扩散率Diffusioncapacitance/barrier/current/furnace扩散电容/势垒/电流/炉Electrostatic静电的Element元素/元件/配件Elementalsemiconductor元素半导体Ellipse椭圆Ellipsoid椭球Emitter发射极Emitter-coupledlogic发射极耦合逻辑Emitter-coupledpair发射极耦合对Emitterfollower射随器Emptyband空带Emittercrowdingeffect发射极集边(拥挤)效应Endurancetest=lifetest寿命测试Energystate能态Energymomentumdiagram能量-动量(E-K)图Enhancementmode增强型模式EnhancementMOS增强性MOSEntefic(低)共溶的Environmentaltest环境测试Epitaxial外延的Epitaxiallayer外延层Epitaxialslice外延片Expitaxy外延Equivalentcurcuit等效电路Equilibriummajority/minoritycarriers平衡多数/少数载流子ErasableProgrammableROM(EPROM)可搽取(编程)存储器Errorfunctioncomplement余误差函数Etch刻蚀Etchant刻蚀剂Etchingmask抗蚀剂掩模Excesscarrier过剩载流子Excitationenergy激发能Excitedstate激发态Exciton激子Extrapolation外推法Extrinsic非本征的Extrinsicsemiconductor杂质半导体Face-centered面心立方Falltime下降时间Heatsink散热器、热沉Heavy/lightholeband重/轻空穴带Heavysaturation重掺杂Hell-effect霍尔效应Heterojunction异质结Heterojunctionstructure异质结结构HeterojunctionBipolarTransistor(HBT)异质结双极型晶体Highfieldproperty高场特性High-performanceMOS.(H-MOS)高性能MOS.Hormalized归一化Horizontalepitaxialreactor卧式外延反应器Hotcarrior热载流子Hybridintegration混合集成Image-force镜象力Impactionization碰撞电离Impedance阻抗Imperfectstructure不完整结构Implantationdose注入剂量Implantedion注入离子Impurity杂质Impurityscattering杂志散射Incrementalresistance电阻增量(微分电阻)In-contactmask接触式掩模Indiumtinoxide(ITO)铟锡氧化物Inducedchannel感应沟道Infrared红外的Injection注入Inputoffsetvoltage输入失调电压Insulator绝缘体InsulatedGateFET(IGFET)绝缘栅FETIntegratedinjectionlogic集成注入逻辑Integration集成、积分Interconnection互连Interconnectiontimedelay互连延时Interdigitatedstructure交互式结构Interface界面Interference干涉Internationalsystemofunions国际单位制Internallyscattering谷间散射Matching匹配Maxwell麦克斯韦Meanfreepath平均自由程Meanderedemitterjunction梳状发射极结Meantimebeforefailure(MTBF)平均工作时间Megeto-resistance磁阻Mesa台面MESFET-MetalSemiconductor金属半导体FETMetallization金属化Microelectronictechnique微电子技术Microelectronics微电子学Millenindices密勒指数Minoritycarrier少数载流子Misfit失配Mismatching失配Mobileions可动离子Mobility迁移率Module模块Modulate调制Molecularcrystal分子晶体MonolithicIC单片ICMOSFET金属氧化物半导体场效应晶体管Mos.Transistor(MOST)MOS.晶体管Multiplication倍增Modulator调制Multi-chipIC多芯片ICMulti-chipmodule(MCM)多芯片模块Multiplicationcoefficient倍增因子Nakedchip未封装的芯片(裸片)Negativefeedback负反馈Negativeresistance负阻Nesting套刻Negative-temperature-coefficient负温度系数Noisemargin噪声容限Nonequilibrium非平衡Nonrolatile非挥发(易失)性Normallyoff/on常闭/开Numericalanalysis数值分析Occupiedband满带Officienay功率Photoelectriccell光电池Photoelectriceffect光电效应Photoenicdevices光子器件Photolithographicprocess光刻工艺(photo)resist(光敏)抗腐蚀剂Pin管脚Pinchoff夹断PinningofFermilevel费米能级的钉扎(效应)Planarprocess平面工艺Planartransistor平面晶体管Plasma等离子体Plezoelectriceffect压电效应Poissonequation泊松方程Pointcontact点接触Polarity极性Polycrystal多晶Polymersemiconductor聚合物半导体Poly-silicon多晶硅Potential(电)势Potentialbarrier势垒Potentialwell势阱Powerdissipation功耗Powertransistor功率晶体管Preamplifier前置放大器Primaryflat主平面Principalaxes主轴Print-circuitboard(PCB)印制电路板Probability几率Probe探针Process工艺Propagationdelay传输延时Pseudopotentialmethod膺势发Punchthrough穿通Pulsetriggering/modulating脉冲触发/调制Pulse WidenModulator(PWM)脉冲宽度调制Punchthrough穿通Push-pullstage推挽级Qualityfactor品质因子Quantization量子化Schottkybarrier肖特基势垒Schottkycontact肖特基接触Schrodingen薛定厄Scribinggrid划片格Secondaryflat次平面Seedcrystal籽晶Segregation分凝Selectivity选择性Selfaligned自对准的Selfdiffusion自扩散Semiconductor半导体Semiconductor-controlledrectifier可控硅Sendsitivity灵敏度Serial串行/串联Seriesinductance串联电感Settletime建立时间Sheetresistance薄层电阻Shield屏蔽Shortcircuit短路Shotnoise散粒噪声Shunt分流Sidewallcapacitance边墙电容Signal信号Silicaglass石英玻璃Silicon硅Siliconcarbide碳化硅Silicondioxide(SiO2)二氧化硅SiliconNitride(Si3N4)氮化硅SiliconOnInsulator绝缘硅Siliverwhiskers银须Simplecubic简立方Singlecrystal单晶Sink沉Skineffect趋肤效应Snaptime急变时间Sneakpath潜行通路Sulethreshold亚阈的Solarbattery/cell太阳能电池Solidcircuit固体电路SolidSolubility固溶度Sonband子带Transistoraging(stress)晶体管老化Transittime渡越时间Transition跃迁Transition-metalsilica过度金属硅化物Transitionprobability跃迁几率Transitionregion过渡区Transport输运Transverse横向的Trap陷阱Trapping俘获Trappedcharge陷阱电荷Trianglegenerator三角波发生器Triboelectricity摩擦电Trigger触发Trim调配调整Triplediffusion三重扩散Truthtable真值表Tolerahce容差Tunnel(ing)隧道(穿)Tunnelcurrent隧道电流Turnover转折Turn-offtime关断时间Ultraviolet紫外的Unijunction单结的Unipolar单极的Unitcell原(元)胞Unity-gainfrequency单位增益频率Unilateral-switch单向开关Vacancy空位Vacuum真空Valence(value)band价带Valuebandedge价带顶Valencebond价键Vapourphase汽相Varactor变容管Varistor变阻器Vibration振动Voltage电压Wafer晶片Waveequation波动方程Waveguide波导Wavenumber波数CT:ContaminationThreshold??污染阀值Ctrl:Control控制;管理;抑制D:Die芯片DAC igitalAnalogConverter??数字转换器DSP igitalSignalProcessing数字信号处理EFO:ElevtronicFlame-Off电子打火系统FA:FaceAngle顶锥角(面锥角)FAB:FreeAirBall空气球FD:FloppyDisk软盘,软式磁碟片Frd:Forward??前进GEM:GenericHi:HightMagnification高倍率Hybd:Hybrid混合动力/混合式Impd:Impedence阻抗Ins:Inspection检查,检验L/F eadFrame框架Lo:LowMagnification低倍率PM reventiveMaintenance??PR atternRecognitionT/P:TopPlate??顶板UPH:UnitPerHour??每小时产量UTI:UltrasonicTransducerInterface超声波传感受器接口VLL:VisualLeadLocator导脚定位W/C:WireClamp??线夹W/H:WorkHolder??轨道W/S:WireSpool??线轴ESD:ElectroStaticDischarge静电释放EPa:ESDProtectedarea??静电防护区ESDS??????????????????????静电敏感设备BM:BreakdownMaintenance事后维修CM:CorrectiveMaintenance改良保养PVM:PreventiveMaintenance预防保养MP:MaintencePreventive保养预防PM:ProductionMaintenance生产保养BG:backgrinding??背部研磨DS:diesaw????将wafer切die DA:dieattach??=DB:diebond??装片WB:wirebond焊线????。
第 29 卷第 1 期分析测试技术与仪器Volume 29 Number 1 2023年3月ANALYSIS AND TESTING TECHNOLOGY AND INSTRUMENTS Mar. 2023大型仪器功能开发(30 ~ 36)正负压一体式无空气X射线光电子能谱原位转移仓的开发及研制章小余,赵志娟,袁 震,刘 芬(中国科学院化学研究所,北京 100190)摘要:针对空气敏感材料的表面分析,为了获得更加真实的表面组成与结构信息,需要提供一个可以保护样品从制备完成到分析表征过程中不接触大气环境的装置. 通过使用O圈密封和单向密封柱,提出一种简便且有效的设计概念,自主研制了正负压一体式无空气X射线光电子能谱(XPS)原位转移仓,用于空气敏感材料的XPS测试,利用单向密封柱实现不同工作需求下正负压两种模式的任意切换. 通过对空气敏感的金属Li片和CuCl粉末进行XPS分析表明,采用XPS原位转移仓正压和负压模式均可有效避免样品表面接触空气,保证测试结果准确可靠,而且采用正压密封方式转移样品可以提供更长的密封时效性. 研制的原位转移仓具有设计小巧、操作简便、成本低、密封效果好的特点,适合给有需求的用户开放使用.关键词:空气敏感;X射线光电子能谱;原位转移;正负压一体式中图分类号:O657; O641; TH842 文献标志码:B 文章编号:1006-3757(2023)01-0030-07 DOI:10.16495/j.1006-3757.2023.01.005Development and Research of Inert-Gas/Vacuum Sealing Air-Free In-Situ Transfer Module of X-Ray Photoelectron SpectroscopyZHANG Xiaoyu, ZHAO Zhijuan, YUAN Zhen, LIU Fen(Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China)Abstract:For the surface analysis of air sensitive materials, and from the sample preparation to characterization, it is necessary to provide a device that can protect samples from exposing to the atmosphere environment so as to obtain accurate and impactful data of the surface chemistry. Through the use of O-ring and one-way sealing, a simple and effective design concept has been demonstrated, and an inert-gas/vacuum sealing air-free X-ray photoelectron spectroscopic (XPS) in-situ transfer module has been developed to realize the XPS analysis of air sensitive materials. The design of one-way sealing was achieved conveniently by switching between inert-gas and vacuum sealing modes in face of different working requirements. The XPS analysis of air-sensitive metal Li sheets and CuCl powders showed that both the sealing modes (an inert-gas/vacuum sealing) of the XPS in-situ transfer module can effectively avoid air contact on the sample surface, and consequently, can ensure the accuracy and reliability of XPS data. Furthmore, the inert gas sealing mode can keep the sample air-free for a longer time. The homemade XPS in-situ transfer module in this work is characterized by a compact design, convenient operation, low cost and effective sealing, which is suitable for the open access to the users who need it.收稿日期:2022−12−07; 修订日期:2023−01−17.基金项目:中国科学院化学研究所仪器孵化项目[Instrument and Device Functional Developing Project of Institute of Chemistry Chinese Academy of Sciences]作者简介:章小余(1986−),女,硕士,工程师,主要研究方向为电子能谱技术及材料表面分析,E-mail:xyiuzhang@ .Key words:air-sensitive;X-ray photoelectron spectroscopy;in-situ transfer;inert-gas/vacuum sealingX射线光电子能谱(XPS)是一种表面灵敏的分析技术,通常用于固体材料表面元素组成和化学态分析[1]. 作为表面分析领域中最有效的方法之一,XPS广泛应用于纳米科学、微电子学、吸附与催化、环境科学、半导体、冶金和材料科学、能源电池及生物医学等诸多领域[2-3]. 其中在催化和能源电池材料分析中,有一些样品比较特殊,比如碱金属电池[4-6]、负载型纳米金属催化剂[7-8]和钙钛矿材料[9]对空气非常敏感,其表面形态和化学组成接触空气后会迅速发生改变,直接影响采集数据的准确性和有效性,因此这类样品的表面分析测试具有一定难度. 目前,常规的光电子能谱仪制样转移过程通常是在大气环境中,将样品固定在标准样品台上,随后放入仪器进样室内抽真空至1×10−6 Pa,再转入分析室内进行测试. 这种制备和进样方式无法避免样品接触大气环境,对于空气敏感材料,其表面很容易与水、氧发生化学反应,导致无法获得材料表面真实的结构信息.为了保证样品表面状态在转移至能谱仪内的过程中不受大气环境影响,研究人员采用了各种技术来保持样品转移过程中隔绝空气. 比如前处理及反应装置与电子能谱仪腔室间真空传输[10-12]、外接手套箱 [13-14]、商用转移仓[15-16]、真空蒸镀惰性金属比如Al层(1.5~6 nm)[17]等. 尽管上述技术手段有效,但也存在一些缺点,例如配套装置体积巨大、试验过程不易操作、投入成本高等,这都不利于在普通实验室内广泛应用. 而一些电子能谱仪器制造商根据自身仪器的特点也研发出了相应配套的商用真空传递仓,例如Thermofisher公司研发的一种XPS 真空转移仓,转移过程中样品处于微正压密封状态,但其价格昂贵,体积较大,转移过程必须通过手套箱大过渡舱辅助,导致传递效率低,单次需消耗至少10 L高纯氩气,因此购置使用者较少,利用率低.另外有一些国内公司也研发了类似的商品化气体保护原位传递仓,采用微正压方式密封转移样品,但需要在能谱仪器进样室舱门的法兰上外接磁耦合机械旋转推拉杆,其操作复杂且放置样品的有效区域小,单次仅可放置尺寸为3 mm×3 mm的样品3~4个,进样和测试效率较低. 因此,从2016年起本实验团队开始自主研制XPS原位样品转移装置[18],经过结构与性能的迭代优化[19],最终研制出一种正负压一体式无空气XPS原位转移仓[20](本文简称XPS原位转移仓),具有结构小巧、操作便捷、成本低、密封效果好、正压和负压密封两种模式转移样品的特点. 为验证装置的密封时效性能,本工作选取两种典型的空气敏感材料进行测试,一种是金属Li材料,其化学性质非常活泼,遇空气后表面迅速与空气中的O2、N2、S等反应导致表面化学状态改变. 另一种是无水CuCl粉末,其在空气中放置短时间内易发生水解和氧化. 试验结果表明,该XPS 原位转移仓对不同类型的空气敏感样品的无空气转移均可以提供更便捷有效的密封保护. 目前,XPS原位转移仓已在多个科研单位的实验室推广使用,支撑应用涉及吸附与催化、能源环境等研究领域.1 试验部分1.1 XPS原位转移仓的研制基于本实验室ESCALAB 250Xi型多功能光电子能谱仪器(Thermofisher 公司)的特点,研究人员设计了XPS原位转移仓. 为兼顾各个部件强度、精度与轻量化的要求,所有部件均采用钛合金材料.该装置从整体结构上分为样品台、密封罩和紧固挡板三个部件,如图1(a)~(c)所示. 在密封罩内部通过单向密封设计[图1(e)]使得XPS原位转移仓实现正负压一体,实际操作中可通过调节密封罩上的螺帽完成两种模式任意切换. 同时,从图1(e)中可以直观看到,密封罩与样品台之间通过O圈密封,利用带有螺钉的紧固挡板将二者紧密固定. 此外,为确保样品台与密封罩对接方位正确,本设计使用定向槽定位样品台与密封罩位置,保证XPS原位转移仓顺利传接到仪器进样室.XPS原位转移仓使用的具体流程:在手套箱中将空气敏感样品粘贴至样品台上,利用紧固挡板使样品台和密封罩固定在一起,通过调节密封罩上的螺帽将样品所在区域密封为正压惰性气氛(压强为300 Pa、环境气氛与手套箱内相同)或者负压真空状态,其整体装配实物图如图1(d)所示. 该转移仓结构小巧,整体尺寸仅52 mm×58 mm×60 mm,可直接放入手套箱小过渡舱传递. 由于转移仓尺寸小,其第 1 期章小余,等:正负压一体式无空气X射线光电子能谱原位转移仓的开发及研制31原料成本大大缩减,整体造价不高. 转移仓送至能谱仪进样室后,配合样品停放台与进样杆的同时双向对接,将转移仓整体固定在进样室内,如图1(f )所示. 此时关闭进样室舱门开始抽真空,当样品台与密封罩内外压强平衡后密封罩自动解除真空密封,但仍然处于O 圈密闭状态. 等待进样室真空抽至1×10−4Pa 后,使用能谱仪进样室的样品停放台摘除脱离的密封罩[如图1(g )所示],待真空抽至1×10−6Pa ,即可将样品送入分析室进行XPS 测试.整个试验过程操作便捷,实现了样品从手套箱转移至能谱仪内不接触大气环境.1.2 试验过程1.2.1 样品准备及转移试验所用手套箱是布劳恩惰性气体系统(上海)有限公司生产,型号为MB200MOD (1500/780)NAC ;金属Li 片购自中能锂业,纯度99.9%;CuCl 购自ALFA 公司,纯度99.999%.金属Li 片的制备及转移:将XPS 原位转移仓整体通过手套箱过渡舱送入手套箱中,剪取金属Li 片用双面胶带固定于样品台上,分别采用正压、负压两种密封模式将XPS 原位转移仓整体从手套箱中取出,分别在空气中放置0、2、4、8、18、24、48、72 h 后送入能谱仪内,进行XPS 测试.CuCl 粉末的制备及转移:在手套箱中将CuCl 粉末压片[21],使用上述同样的制备方法,将XPS 原位转移仓整体在空气中分别放置0、7、24、72 h 后送入能谱仪内,进行XPS 测试.1.2.2 样品转移方式介绍样品在手套箱中粘贴完成后,分别采用三种方式将其送入能谱仪. 第一种方式是在手套箱内使用标准样品台粘贴样品,将其装入自封袋密封,待能谱仪进样室舱门打开后,即刻打开封口袋送入仪器中开始抽真空等待测试,整个转移过程中样品暴露空气约15 s. 第二种方式是使用XPS 原位转移仓负压密封模式转移样品,具体操作步骤:利用紧固挡板将样品台和密封罩固定在一起,逆时针(OPEN )旋动螺帽至顶部,放入手套箱过渡舱并将其抽为真空,此过程中样品所在区域也抽至负压. 取出整体装置后再顺时针(CLOSE )旋动螺帽至底部,将样品所在区域进一步锁死密封. 样品在负压环境中转移至XPS 实验室,拆卸掉紧固挡板,随即送入能谱仪进样室内. 第三种方式是使用XPS 原位转移仓正压密封模式转移样品,具体操作步骤:利用紧固挡板将样品台和密封罩固定在一起,顺时针(CLOSE )旋螺帽抽气管限位板单向密封柱密封罩主体O 圈样品台紧固挡板(e) 密封罩对接停放台机械手样品台对接进样杆(a)(b)(c)(d)(g)图1 正负压一体式无空气XPS 原位转移仓系统装置(a )样品台,(b )密封罩,(c )紧固挡板,(d )整体装配实物图,(e )整体装置分解示意图,(f )样品台与密封罩在进样室内对接完成,(g )样品台与密封罩在进样室内分离Fig. 1 System device of inert-gas/vacuum sealing air-free XPS in-situ transfer module32分析测试技术与仪器第 29 卷动螺帽至底部,此时样品所在区域密封为正压惰性气氛. 直至样品转移至XPS 实验室,再使用配套真空抽气系统(如图2所示),通过抽气管将样品所在区域迅速抽为负压,拆卸掉紧固挡板,随即送入能谱仪进样室内.图2 能谱仪实验室内配套真空抽气系统Fig. 2 Vacuum pumping system in XPSlaboratory1.2.3 XPS 分析测试试验所用仪器为Thermo Fisher Scientific 公司的ESCALAB 250Xi 型多功能X 射线光电子能谱仪,仪器分析室基础真空为1×10−7Pa ,X 射线激发源为单色化Al 靶(Alk α,1 486.6 eV ),功率150 W ,高分辨谱图在30 eV 的通能及0.05 eV 的步长等测试条件下获得,并以烃类碳C 1s 为284.8 eV 的结合能为能量标准进行荷电校正.2 结果与讨论2.1 测试结果分析为了验证XPS 原位转移仓的密封性能,本文做了一系列的对照试验,选取空气敏感的金属Li 片和CuCl 粉末样品进行XPS 测试,分别采用上述三种方式转移样品,并考察了XPS 原位转移仓密封状态下在空气中放置不同时间后对样品测试结果的影响.2.1.1 负压密封模式下XPS 原位转移仓对金属Li片的密封时效性验证将金属Li 片通过两种(标准和负压密封)方式转移并在空气中放置不同时间,对这一系列样品进行XPS 测试,Li 1s 和C 1s 高分辨谱图结果如图3(a )(b )所示,试验所测得的Li 1s 半峰宽值如表1所列. 根据XPS 结果分析,金属Li 片采用标准样品台进样(封口袋密封),短暂暴露空气约15 s ,此时Li 1s 的半峰宽为1.62 eV. 而采用XPS 原位转移仓负压密封模式转移样品时,装置整体放置空气18 h 内,Li 1s 的半峰宽基本保持为(1.35±0.03) eV. 放置空气24 h 后,Li 1s 的半峰宽增加到与暴露空气15 s 的金属Li 片一样,说明此时原位转移仓的密封性能衰减,金属Li 片与渗入内部的空气发生反应生成新物质导致Li 1s 半峰宽变宽. 由图3(b )中C 1s 高分辨谱图分析,结合能位于284.82 eV 的峰归属为C-C/污染C ,位于286.23 eV 的峰归属为C-OH/C-O-CBinding energy/eVI n t e n s i t y /a .u .Li 1s半峰宽增大暴露 15 s密封放置 24 h 密封放置 18 h 密封放置 8 h 密封放置 4 h 密封放置 0 h6058565452Binding energy/eVI n t e n s i t y /a .u .C 1s(a)(b)暴露 1 min 暴露 15 s 密封放置 24 h 密封放置 18 h 密封放置 0 h292290288284282286280图3 金属Li 片通过两种(标准和负压密封)方式转移并在空气中放置不同时间的(a )Li 1s 和(b )C 1s 高分辨谱图Fig. 3 High-resolution spectra of (a) Li 1s and (b) C 1s of Li sheet samples transferred by two methods (standard andvacuum sealings) and placed in air for different times第 1 期章小余,等:正负压一体式无空气X 射线光电子能谱原位转移仓的开发及研制33键,位于288.61~289.72 eV的峰归属为HCO3−/CO32−中的C[22]. 我们从C 1s的XPS谱图可以直观的看到,与空气短暂接触后,样品表面瞬间生成新的结构,随着暴露时间增加到1 min,副反应产物大量增加(HCO3−/CO32−). 而XPS原位转移仓负压密封模式下在空气中放置18 h内,C结构基本不变,在空气中放置24 h后,C结构只有微小变化. 因此根据试验结果分析,对于空气极其敏感的材料,在负压密封模式下,建议XPS原位转移仓在空气中放置时间不要超过18 h. 这种模式适合对空气极其敏感样品的短距离转移.表 1 通过两种(标准和负压密封)方式转移并在空气中放置不同时间的Li 1s的半峰宽Table 1 Full width at half maxima (FWHM) of Li 1stransferred by two methods (standard and vacuum sealings) and placed in air for different times样品说明进样方式半峰宽/eV密封放置0 h XPS原位转移仓负压密封模式转移1.38密封放置2 h同上 1.39密封放置4 h同上 1.36密封放置8 h同上 1.32密封放置18 h同上 1.32密封放置24 h同上 1.62暴露15 s标准样品台进样(封口袋密封)1.622.1.2 正压密封模式下原位转移仓对金属Li片的密封时效性验证将金属Li片通过两种(标准和正压密封)方式转移并在空气中放置不同时间,对这一系列样品进行XPS测试,Li 1s高分辨谱图结果如图4所示,所测得的Li 1s半峰宽值如表2所列. 根据XPS结果分析,XPS原位转移仓正压密封后,在空气中放置72 h内,Li 1s半峰宽基本保持为(1.38±0.04) eV,说明有明显的密封效果,金属Li片仍然保持原有化学状态. 所以对于空气极其敏感的材料,在正压密封模式下,可至少在72 h内保持样品表面不发生化学态变化. 这种模式适合长时间远距离(可全国范围内)转移空气敏感样品.2.1.3 负压密封模式下XPS原位转移仓对空气敏感样品CuCl的密封时效性验证除了金属Li片样品,本文还继续考察XPS原位转移仓对空气敏感样品CuCl的密封时效性. 图5为CuCl粉末通过两种(标准和负压密封)方式转移并在空气中放置不同时间的Cu 2p高分辨谱图. XPS谱图中结合能[22]位于932.32 eV的峰归属为Cu+的Cu 2p3/2,位于935.25 eV的峰归属为Cu2+的Cu 2p3/2,此外,XPS谱图中位于940.00~947.50 eV 处的峰为Cu2+的震激伴峰,这些震激伴峰被认为是表 2 通过两种(标准和正压密封)方式转移并在空气中放置不同时间的Li 1s的半峰宽Table 2 FWHM of Li 1s transferred by two methods(standard and inert gas sealings) and placed in air fordifferent times样品说明进样方式半峰宽/eV 密封放置0 h XPS原位转移仓正压密封模式转移1.42密封放置2 h同上 1.35密封放置4 h同上 1.35密封放置8 h同上 1.34密封放置18 h同上 1.38密封放置24 h同上 1.39密封放置48 h同上 1.42密封放置72 h同上 1.38暴露15 s标准样品台进样(封口袋密封)1.62Binding energy/eVIntensity/a.u.Li 1s半峰宽比正压密封的宽半峰宽=1.62 eV半峰宽=1.38 eV暴露 15 s密封放置 72 h密封放置 48 h密封放置 24 h密封放置 18 h密封放置 0 h605856545250图4 金属Li片通过两种(标准和正压密封)方式转移并在空气中放置不同时间的Li 1s高分辨谱图Fig. 4 High-resolution spectra of Li 1s on Li sheet samples transferred by two methods (standard and inert gas sealings) and placed in air for different times34分析测试技术与仪器第 29 卷价壳层电子向激发态跃迁的终态效应所产生[23],而在Cu +和Cu 0中则观察不到.根据XPS 结果分析,CuCl 在XPS 原位转移仓保护(负压密封)下,即使放置空气中72 h ,测得的Cu 2p 高分辨能谱图显示只有Cu +存在,说明CuCl 并未被氧化. 若无XPS 原位转移仓保护,CuCl 粉末放置空气中3 min 就发生了比较明显的氧化,从测得的Cu 2p 高分辨能谱图能够直观的看到Cu 2+及其震激伴峰的存在,并且随着放置时间增加到40 min ,其氧化程度也大大增加. 因此,对于空气敏感的无机材料、纳米催化剂和钙钛矿材料等,采用负压密封模式转移就可至少在72 h 内保持样品表面不发生化学态变化.3 结论本工作中自主研制的正负压一体式无空气XPS原位转移仓在空气敏感样品转移过程中可以有效隔绝空气,从而获得样品最真实的表面化学结构.试验者可根据样品情况和实验室条件选择转移模式,并在密封有效时间内将样品从实验室转移至能谱仪中完成测试. 综上所述,该XPS 原位转移仓是一种设计小巧、操作简便、密封性能优异、成本较低的样品无水无氧转移装置,因此非常适合广泛开放给有需求的试验者使用. 在原位和准原位表征技术被广泛用于助力新材料发展的现阶段,希望该设计理念能对仪器功能的开发和更多准原位表征测试的扩展提供一些启示.参考文献:黄惠忠. 论表面分析及其在材料研究中的应用[M ].北京: 科学技术文献出版社, 2002: 16-18.[ 1 ]杨文超, 刘殿方, 高欣, 等. X 射线光电子能谱应用综述[J ]. 中国口岸科学技术,2022,4(2):30-37.[YANG Wenchao, LIU Dianfang, GAO Xin, et al.TheapplicationofX -rayphotoelectronspectroscopy [J ]. China Port Science and Technology ,2022,4 (2):30-37.][ 2 ]郭沁林. X 射线光电子能谱[J ]. 物理,2007,36(5):405-410. [GUO Qinlin. X -ray photoelectron spectro-scopy [J ]. Physics ,2007,36 (5):405-410.][ 3 ]Malmgren S, Ciosek K, Lindblad R, et al. Con-sequences of air exposure on the lithiated graphite SEI [J ]. Electrochimica Acta ,2013,105 :83-91.[ 4 ]Zhang Y H, Chen S M, Chen Y, et al. Functional poly-ethylene glycol-based solid electrolytes with enhanced interfacial compatibility for room-temperature lithium metal batteries [J ]. Materials Chemistry Frontiers ,2021,5 (9):3681-3691.[ 5 ]周逸凡, 杨慕紫, 佘峰权, 等. X 射线光电子能谱在固态锂离子电池界面研究中的应用[J ]. 物理学报,2021,70(17):178801. [ZHOU Yifan, YANG Muzi,SHE Fengquan, et al. Application of X -ray photoelec-tron spectroscopy to study interfaces for solid-state lithium ion battery [J ]. Acta Physica Sinica ,2021,70(17):178801.][ 6 ]Huang J J, Song Y Y, Ma D D, et al. The effect of thesupport on the surface composition of PtCu alloy nanocatalysts: in situ XPS and HS-LEIS studies [J ].Chinese Journal of Catalysis ,2017,38 (7):1229-1236.[ 7 ]Koley P, Shit S C, Sabri Y M, et al. Looking into moreeyes combining in situ spectroscopy in catalytic bio-fuel upgradation with composition-graded Ag-Co core-shell nanoalloys [J ]. ACS Sustainable Chemistry &Engineering ,2021,9 (10):3750-3767.[ 8 ]Opitz A K, Nenning A, Rameshan C, et al. Enhancingelectrochemical water-splitting kinetics by polarization-driven formation of near-surface iron(0): an in situ XPS study on perovskite-type electrodes [J ]. Ange-wandte Chemie (International Ed in English),2015,54(9):2628-2632.[ 9 ]Czekaj I, Loviat F, Raimondi F, et al. Characterization[ 10 ]Binding energy/eVI n t e n s i t y /a .u .Cu 2pCu +Cu 2+暴露 3 min暴露 40 min 密封放置 7 h 密封放置 72 h 密封放置 24 h密封放置 0 h960950945935925955940930920图5 CuCl 粉末通过两种(标准和负压密封)方式转移并在空气中放置不同时间的Cu 2p 高分辨谱图Fig. 5 High-resolution spectra of Cu 2p on CuCl powder samples transferred by two methods (standard and vacuumsealings) and placed in air for different times第 1 期章小余,等:正负压一体式无空气X 射线光电子能谱原位转移仓的开发及研制35of surface processes at the Ni-based catalyst during the methanation of biomass-derived synthesis gas: X -ray photoelectron spectroscopy (XPS)[J ]. Applied Cata-lysis A:General ,2007,329 :68-78.Rutkowski M M, McNicholas K M, Zeng Z Q, et al.Design of an ultrahigh vacuum transfer mechanism to interconnect an oxide molecular beam epitaxy growth chamber and an X -ray photoemission spectroscopy analysis system [J ]. Review of Scientific Instruments ,2013,84 (6):065105.[ 11 ]伊晓东, 郭建平, 孙海珍, 等. X 射线光电子能谱仪样品前处理装置的设计及应用[J ]. 分析仪器,2008(5):8-11. [YI Xiaodong, GUO Jianping, SUN Haizhen, et al. Design of a sample pretreatment device for X -ray photoelectron spectrometer [J ]. Analytical Instrumentation ,2008 (5):8-11.][ 12 ]Aurbach D, Weissman I, Schechter A, et al. X -ray pho-toelectron spectroscopy studies of lithium surfaces pre-pared in several important electrolyte solutions. A comparison with previous studies by Fourier trans-form infrared spectroscopy [J ]. Langmuir ,1996,12(16):3991-4007.[ 13 ]Światowska-Mrowiecka J, Maurice V, Zanna S, et al.XPS study of Li ion intercalation in V 2O 5 thin films prepared by thermal oxidation of vanadium metal [J ].Electrochimica Acta ,2007,52 (18):5644-5653.[ 14 ]Weingarth D, Foelske-Schmitz A, Wokaun A, et al. Insitu electrochemical XPS study of the Pt/[BF 4]system [J ]. Electrochemistry Communications ,2011,13 (6):619-622.[ 15 ]Schneider J D, Agocs D B, Prieto A L. Design of asample transfer holder to enable air-free X -ray photo-electron spectroscopy [J ]. Chemistry of Materials ,2020,32 (19):8091-8096.[ 16 ]Karamurzov B S, Kochur A G, Misakova L B, et al.Calculation of the pure surface composition of the bin-ary alloy according to XPS data obtained after the al-loy surface contact with air [J ]. Journal of Structural Chemistry ,2015,56 (3):576-581.[ 17 ]章小余, 赵志娟. 一种半原位XPS 样品转移装置: 中国, 201620925237.5[P ]. 2017-02-15.[ 18 ]章小余, 袁震, 赵志娟. 一种半原位X 射线光电子能谱分析仪的样品转移装置: 中国, 201720056623.X [P ]. 2017-12-08.[ 19 ]袁震, 章小余, 赵志娟. 一种样品转移装置及转移方法: 中国, 2011203822.1[P ]. 2022-03-01.[ 20 ]刘芬, 赵志娟, 邱丽美, 等. XPS 分析固体粉末时的样品制备法研究[J ]. 分析测试技术与仪器,2007,13(2):107-109. [LIU Fen, ZHAO Zhijuan, QIU Limei, et al. Study of sample preparation method for XPS analysis of powdered samples [J ]. Analysis and Testing Technology and Instruments ,2007,13 (2):107-109.][ 21 ]Wagner C D, Riggs W M, Davis L E, et al. Handbookof X -ray photoelectron spectroscopy [M ]. Eden Prair-ie, Minnesota, 1978.[ 22 ]Watts J F, Wolstenholme J. 表面分析(XPS 和AES)引论[M ]. 吴正龙, 译. 上海: 华东理工大学出版社,2008.[ 23 ]36分析测试技术与仪器第 29 卷。
常用名词1.化学腐蚀chemical corrosion金属在非电化学作用下的腐蚀(氧化)过程。
通常指在非电解质溶液及干燥气体中,纯化学作用引起的腐蚀。
2.双电层electric double layer电极与电解质溶液界面上存在的大小相等符号相反的电荷层。
3.双极性电极bipolar electrode一个不与外电源相连的,浸入阳极与阴极间电解液中的导体。
靠近阳极的那部分导体起着阴极的作用,而靠近阴极的部分起着阳极的作用。
4.分散能力throwing power在特定条件下,一定溶液使电极上(通常是阴极)镀层分布比初次电流分布所获得的结果更为均匀的能力。
此名词也可用于阳极过程,其定义与上述者类似。
5.分解电压decomposition voltage其定义与上述者类似。
能使电化学反应以明显速度持续进行的最小电压(溶液的欧姆电压降不包括在内)。
6.不溶性阳极(惰性阳极)inert anode在电流通过时,不发生阳极溶解反应的阳极。
7.电化学electrochemistry研究电子导体和离子导体的接触界面性质及其所发生变化的科学。
8.电化学极化(活化极化)activation polarization由于电化学反应在进行中遇到困难而引起的极化。
9.电化学腐蚀electrochemical corrosion在卑解质溶掖中或金属表面上的液膜中,服从于电化学反应规律的金属腐蚀(氧化)过程10.电化当量electrochemical equivalent在电极上通过单位电量(例如1安时,1库仑或1法拉第时),电极反应形成产物之理论重量。
通常以克/库仑或克/安时表示。
11 电导率(比电导)conductivity单位截面积和单位长度的导体之电导,通常以S/m表示。
12 电泳electrophoresis液体介质中带电的胶体微粒在外电场作用下相对液体的迁移现象。
13 电动势electromotive force原电池开路时两极间的电势差。
常用CT 造影相关血管的英文简称上腔静脉SVC 下腔静脉IVC 颈总动脉CCA 颈内动脉ICA 颈外动脉ECA 大脑前动脉ACA 大脑中动脉MCA 大脑后动脉PCA 前交通动脉ACoA 后交通动脉PCoA 椎动脉VA 基底动脉BA 无名动脉IA 锁骨下动脉SCA 腹腔干CA 门静脉PoV(PV) 肝动脉HA 脾动脉SP 肾动脉RA 肾静脉RV 副肾动脉ARA 肠系膜上动脉SMA 肠系膜上静脉SMV 肠系膜下动脉IMA 股动脉FA 主动脉AONMR 中常用的英文缩写和中文名称 APT Attached Proton Test 质子连接实验ASIS Aromatic Solvent Induced Shift 芳香溶剂诱导位移 BBDR Broad Band Double Resonance 宽带双共振 BIRD Bilinear Rotation Decoupling 双线性旋转去偶(脉冲) COLOC Correlated Spectroscopy for Long Range Coupling远程偶合相关谱COSY( Homonuclear chemical shift ) COrrelation SpectroscopY(同核化学位移)相关谱CP Cross Polarization 交叉极化 CP/MAS Cross Polarization / Magic Angle Spinning 交叉极化魔角自旋CSA Chemical Shift Anisotropy 化学位移各向异性CSCM Chemical Shift Correlation Map 化学位移相关图CW continuous wave 连续波 DD Dipole-Dipole 偶极 - 偶极DECSY Double-quantum Echo Correlated Spectroscopy 双量子回波相关谱DEPT Distortionless Enhancement by Polarization Transfer 无畸变极化转移增强2DFTS two Dimensional FT Spectroscopy 二维傅立叶变换谱 DNMR Dynamic NMR 动态 NMR DNP Dynamic Nuclear Polarization动态核极化 DQ (C )Double Quantum (Coherence ) 双量子(相干)DQD Digital Quadrature Detection 数字正交检测DQF Double Quantum Filter 双量子滤波Experiment 稀核双量子转移实验(简称双量子实验,或双量子谱) INDORInternuclear Double Resonance核间双共振INEPT Insensitive Nuclei Enhanced by Polarization 非灵敏核极化转移增强 INVERSE H,X correlation via 1H detection检测 1H 的 H,X 核相关DQF-COSY DRDS EXSY FFT FID H,C-COSY关谱H,X-COSY移相关谱HETCOR Double Quantum Filtered COSY双量子滤波 COSYDouble Resonance Difference Spectroscopy 双共振差谱 Exchange Spectroscopy 交换谱 Fast Fourier Transformation 快速傅立叶变换Free Induction Decay 自由诱导衰减1H,13C chemical-shift COrrelation SpectroscopY 1H,13C1H,X-nucleus chemical-shift COrrelation SpectroscopY 1H,X- 化学位移相核化学位HMBC HMQC HOESY HOHAHAHeteronuclear Correlation Spectroscopy Heteronuclear Multiple-Bond Correlation Heteronuclear Multiple Quantum Coherence Heteronuclear Overhauser Effect Spectroscopy HR HSQC INADEQUATE Homonuclear Hartmann-Hahn spectroscopyHigh Resolution 高分辨 Heteronuclear Single Quantum Coherence Incredible Natural Abundance 异核相关谱 异核多键相关异核多量子相干异核 Overhause 效应谱 同核 Hartmann-Hahn 谱异核单量子相干 Double Quantum TransferIR Inversion-Recovery 反(翻)转回复JRES J-resolved spectroscopy J- 分解谱LIS Lanthanide (chemical shift reagent ) Induced Shift 镧系(化学位移试剂)诱导位移LSR Lanthanide Shift Reagent 镧系位移试剂MAS Magic-Angle Spinning 魔角自旋MQ(C) Multiple-Quantum ( Coherence )多量子(相干)MQF Multiple-Quantum Filter 多量子滤波MQMAS Multiple-Quantum Magic-Angle Spinning 多量子魔角自旋MQS Multi Quantum Spectroscopy 多量子谱NMR Nuclear Magnetic Resonance 核磁共振NOE Nuclear Overhauser Effect 核Overhauser 效应(NOE )NOESY Nuclear Overhauser Effect Spectroscopy 二维NOE 谱NQR Nuclear Quadrupole Resonance 核四极共振PFG Pulsed Gradient Field 脉冲梯度场PGSE Pulsed Gradient Spin Echo 脉冲梯度自旋回波PRFT Partially Relaxed Fourier Transform 部分弛豫傅立叶变换PSD Phase-sensitive Detection 相敏检测PW Pulse Width 脉宽RCT Relayed Coherence Transfer 接力相干转移RECSY Multistep Relayed Coherence Spectroscopy 多步接力相干谱REDOR Rotational Echo Double Resonance 旋转回波双共振RELAY Relayed Correlation Spectroscopy 接力相关谱RF Radio Frequency 射频ROESY Rotating Frame Overhauser Effect Spectroscopy 旋转坐标系NOE 谱ROTO ROESY-TOCSY Relay ROESY-TOCSY 接力谱SC Scalar Coupling 标量偶合SDDS Spin Decoupling Difference Spectroscopy 自旋去偶差谱SE Spin Echo 自旋回波SECSY Spin-Echo Correlated Spectroscopy 自旋回波相关谱SEDOR Spin Echo Double Resonance 自旋回波双共振SEFT Spin-Echo Fourier Tran sform Spectroscopy (with J modulati on)(J-调制)自旋回波傅立叶变换谱SELINCOR Selective Inverse Correlation 选择性反相关SELINQUATE Selective INADEQUATE 选择性双量子(实验)SFORD Single Frequency Off-Resonance Decoupling 单频偏共振去偶SNR or S/N Signal-to-noise Ratio 信/ 燥比SQF Single-Quantum Filter 单量子滤波SR Saturation-Recovery 饱和恢复TCF Time Correlation Function 时间相关涵数TOCSY Total Correlation Spectroscopy 全(总)相关谱TORO TOCSY-ROESY Relay TOCSY-ROESY 接力TQF Triple-Quantum Filter 三量子滤波WALTZ-16A broadband decoupling sequence 宽带去偶序列WATERGATE Water suppression pulse sequence 水峰压制脉冲序列WEFT Water Eliminated Fourier Transform 水峰消除傅立叶变换ZQ(C) Zero-Quantum (Coherence) 零量子相干ZQF Zero-Quantum Filter 零量子滤波T1 Longitudinal (spin-lattice) relaxation time for MZ 纵向(自旋-晶格)弛豫时间T2 Transverse (spin-spin) relaxation time for Mxy 横向(自旋-自旋)弛豫时间tm mixing time 混合时间TC rotati onal correlati on time 旋转相关时间磁共振常用英文缩写含义AACR 美国放射学会ADC 模数转换器、表面扩散系数BBBB 血脑屏障BOLD 血氧合水平依赖性(成像法)CCBF 脑血流量CBV 脑血容量CE 对比度增强CSI 化学位移成像CHESS 化学位移选择性(波谱分析法)CNR 对比度噪声比CNS 中枢神经系统Cr 肌酸CSF 脑脊液DDAC 数模转换器DDR 偶极-偶极驰豫、对称质子驰豫DICOM 医学数字成像和通信标准DTPA 对二亚乙基三胺五乙酸DWI 扩散加权成像DSA 数字减影成像术DRESS 磷谱研究所用空间定位法,又称深度分辨表面线圈波普E EPI 回波平面成像TE 回波时间ETL 回波链长度ETS 回波间隔时间EVI 回波容积成像EDTA 乙二胺四乙酸ETE 有效回波时间EPR 电子顺磁共振ESR 电子自旋共振FFFT 快速傅里叶变换FLASH 快速小角度激发FSE 快速自旋回波FE 场回波FID 自由感应衰减FOV 成像野FISP 稳定进动快速成像FLAIR 液体抑制的反转恢复fMRI 功能磁共振成像FID 自由感应衰减信号FIS 自由感应信号FT 傅里叶变换FWHH 半高宽GGM 灰质GMC 梯度矩补偿GMN 梯度矩置零GMR 梯度矩重聚GRE 梯度回波HHPG-MRI 超极化气体磁共振成像术IIR 反转序列IRSE 反转恢复自旋回波序列KK-space K 空间LLMR 定域磁共振MMRA 磁共振血管成像MRCM 磁共振对比剂MRI 磁共振成像MRM 磁共振微成像MRS 磁共振波谱学MRSI 磁共振波谱成像MRV 磁共振静脉造影MT 磁化转移MTC 磁化转移对比度MAST 运动伪影抑制技术MIP 最大密度投影法MTT 平均转运时间MESA 多回波采集MPR 多平面重建MP-RAGE 磁化准备的快速采集梯度回波序列MS-EPI 多次激发的EPINNEX 激励次数NMR 核磁共振NMRS 核磁共振波谱学NSA 信号(叠加)平均次数NV 信号采集次数PPCM 顺磁性对比度增强剂PEACH 突出化学位移的顺磁性增强PS 部分饱和PSSE 部分饱和自旋回波PC 相位对比PCr 磷酸肌酸PCSI 信号强度变化率PD 质子密度PDW 质子密度加权PEDRI 质子电子双共振成像RRF 射频脉冲RARE 驰豫增强的快速采集方法ROI 感兴趣区SSAR (射频)特定吸收率SR 饱和恢复序列SE 自旋回波SNR,S/N 信噪比SS-EPI 单激发EPISPIR 谱预饱和反转恢复SSFP 稳态自由进动SSI 固态成像STE 受激回波SSC 稳定状态相干技术STEAM 空间定域的受激回波采集序列STIR 短TI 反转恢复TTE 回波时间TI 反转时间TOF 时间飞越效应TMR 局部磁共振(波谱法)TSE 快速自旋回波VVOI 感兴趣空间VSE 容积选择性激发WWI 加权像WM 白质磁共振临床应用手册磁共振成像技术(核磁共振,MRI )是与CT 几乎同步发展起来的医学成像技术。
用vasp计算硅的能带结构在最此次仿真之前,因为从未用过vasp软件,所以必须得学习此软件及一些能带的知识。
vasp是使用赝势和平面波基组,进行从头量子力学分子动力学计算的软件包。
用vasp计算硅的能带结构首先要了解晶体硅的结构,它是两个嵌套在一起的FCC布拉菲晶格,相对的位置为(a/4,a/4,a/4), 其中a=5.4A是大的正方晶格的晶格常数。
在计算中,我们采用FCC的原胞,每个原胞里有两个硅原子。
VASP计算需要以下的四个文件:INCAR(控制参数), KPOINTS(倒空间撒点), POSCAR(原子坐标), POTCAR(赝势文件)为了计算能带结构,我们首先要进行一次自洽计算,得到体系正确的基态电子密度。
然后固定此电荷分布,对于选定的特殊的K点进一步进行非自洽的能带计算。
有了需要的K点的能量本征值,也就得到了我们所需要的能带。
步骤一.—自洽计算产生正确的基态电子密度:以下是用到的各个文件样本:INCAR 文件:SYSTEM = SiStartparameter for this run:NWRITE = 2; LPETIM=F write-flag & timerPREC = medium medium, high lowISTART = 0 job : 0-new 1-cont 2-samecutICHARG = 2 charge: 1-file 2-atom 10-constISPIN = 1 spin polarized calculation?Electronic Relaxation 1NELM = 90; NELMIN= 8; NELMDL= 10 # of ELM stepsEDIFF = 0.1E-03 stopping-criterion for ELMLREAL = .FALSE. real-space projectionIonic relaxationEDIFFG = 0.1E-02 stopping-criterion for IOMNSW = 0 number of steps for IOMIBRION = 2 ionic relax: 0-MD 1-quasi-New 2-CGISIF = 2 stress and relaxationPOTIM = 0.10 time-step for ionic-motionTEIN = 0.0 initial temperatureTEBEG = 0.0; TEEND = 0.0 temperature during runDOS related values:ISMEAR = 0 ; SIGMA = 0.10 broadening in eV -4-tet -1-fermi 0-gausElectronic relaxation 2 (details)Write flagsLWAVE = T write WAVECARLCHARG = T write CHGCARVASP给INCAR文件中的很多参数都设置了默认值,所以如果你对参数不熟悉,可以直接用默认的参数值。
第一章electric field 电场(强度)electric potential 电势potential difference 电势差charge 电荷volume charge density 体电荷密度term 术语find 求uniformly distribute 均匀分布located at 位于circular arc 圆弧semicircle 半圆radius 半径magnitude 大小,数量direction 方向conducting 导电的spherical shell 球壳positive 正negative 负value 值grounded sphere 接地球vacuum 真空electrostatic potential 静电势第二章 / 第三章spherical capacitor 球形电容器concentric spherical shells 同心球壳capacitance 电容量reduce 简化parallel-plate capacitor 平板电容器dielectrics 电介质area 面积separation 间隔,间距battery 电池disconnected 断开连接slab 厚板thickness 厚度dielectric constant 介电常数,电容率calculate 计算energy 能量neglect 忽略ignore 忽略end effects 边缘效应edge effects 边缘效应surface charge density 面电荷密度interface 分界面cylindrical capacitor 圆柱形电容器nonconducting material 非导电材料force 力fringing fields 边缘场第四章Current 电流steady current 稳恒电流current density 电流密度resistor 电阻器resistance 电阻resistivity 电阻率conductivity 电导率wire 电线assume 假定,设想truncated 切去顶端的right-circular cone 正圆锥altitude 高度length 长度taper 锥度,坡度cross section 横截面special case 特殊情况closed circuit 闭合电路magnetic dipole moment 磁偶极矩mass 质量lead 导线,铅第五章 / 第六章magnetic field 磁场tension 张力rectangular loop 矩形回路N close-packed turns N密绕匝coil of n turns n 匝线圈rotate 旋转long straight wire 长直导线copper rod 铜棒horizontal rails 水平轨道coefficient of static friction 静摩擦系数vertical 竖直,垂直slide 滑动switch 电键,开关function 函数,功能coaxial cable 同轴电缆cylinder 圆柱体per unit length 单位长度self-inductance 自感mutual inductance 互感diameter 直径perpendicular to 垂直于angular velocity 角速度externally applied torque 外加力矩maintain 保持rotation 旋转transient effects 暂态效应axis 轴beam of particles 粒子束momentum 动量impinge on 撞击focus to 聚焦于approximation 近似scatter 散射focal length 焦距第八章Power 功率Cycle 周期Qualitatively 定量地Semi-infinite 半无限electrical network 电路网络inductance 感应terminal 终端alternating voltage 交流电压winding 绕组transformer 变压器第九章Circular 圆形的Voltage 电压Retardation 延迟Maxwell’s equations 麦克斯韦方程组Symmetry 对称region 区域discontinuity 不连续surface current 面电流emit 发射pulse 脉冲frequency 频率dispersion 扩散interstellar medium 星际介质measure 测量distance 距离hint 暗示response 响应。
二氧化钛吸附金属离子原理英文回答:Electrostatic Interactions.Electrostatic interactions occur when the surface of TiO2 adsorbent particles has a net electrical charge, which can attract oppositely charged metal ions in the solution. The electrostatic attraction is strong when the charge on the TiO2 surface is high and the charge on the metal ions is high. The pH of the solution can influence the electrostatic interactions, as it can affect the surface charge of TiO2 and the speciation of the metal ions.Ligand Exchange.Ligand exchange involves the replacement of surface ligands on the TiO2 surface with metal ions. This occurs when the metal ions have a higher affinity for the surface ligands than the original ligands. Ligand exchange is acommon mechanism for the adsorption of metal ions onto TiO2, particularly for metal ions that form strong complexes with oxygen-containing ligands.Surface Complexation.Surface complexation involves the formation of chemical bonds between metal ions and surface functional groups on the TiO2 surface. These bonds can be covalent orelectrostatic in nature. Surface complexation is often the dominant mechanism for the adsorption of metal ions ontoTiO2 at low pH, where the surface of TiO2 is positively charged.Ion Exchange.Ion exchange involves the exchange of metal ions between the solution and the TiO2 surface. This occurs when the metal ions have a higher affinity for the ion exchange sites on the TiO2 surface than the ions originally present. Ion exchange is a common mechanism for the adsorption of metal ions onto TiO2, particularly for metal ions that formstable complexes with exchange sites.中文回答:静电作用。
SVET method for characterizing anti-corrosion performance of metal-rich coatingsMaocheng Yan *,Victoria J.Gelling **,Brian R.Hinderliter,Dante Battocchi,Dennis E.Tallman,Gordon P.BierwagenDepartment of Coatings and Polymeric Materials,North Dakota State University,Fargo,ND 58108,USAa r t i c l e i n f o Article history:Received 17January 2010Accepted 12April 2010Available online 28April 2010Keywords:A.Metal-rich coating A.SteelB.SVETB.Microelectrode techniqueC.Galvanic interactiona b s t r a c tThe galvanic interaction between a metal-rich coating and the underlying metal substrate was character-ized by a new analysis method based on the scanning vibrating electrode technique (SVET).The total ano-dic current at various immersion periods was evaluated by integrating the anodic current density on SVET maps.Zinc-rich paints (ZRPs)coated on a steel panel were used to demonstrate the experimental approach.The anti-corrosion performance of the ZRP was analyzed based on the integrated anodic cur-rent and the experimental E OC –i Int diagram.Closely correlative behaviour was found between the inte-grated anodic current and the open-circuit potential.Published by Elsevier Ltd.1.IntroductionAs one of the most cost effective methods for corrosion protec-tion of metallic objects,organic coatings provide corrosion protec-tion mainly by four ways:a barrier effect,sacrificial cathodic protection,corrosion inhibitor release,and anodic protection.Metal-rich coatings (MRCs)[1,2]are a class of corrosion protection coatings containing sacrificial metal pigments that are more elec-trochemically reactive than the underlying metal substrate,which inhibit corrosion by providing sacrificial/cathodic protection to the metal substrate.MRCs are generally designed with high volume fraction of metal pigment (near critical pigment volume concentra-tion,CPVC)dispersed in non-conductive polymer or inorganic matrix.The most effective and commonly used MRCs for steels are Zn-rich primer (ZRP)coatings [3–5].Most recently,Mg-rich coatings have been developed and found to provide similar protec-tion to aerospace Al alloys [6–8].Various electrochemical methods have been employed to assess the anti-corrosion performance of metal-rich coatings,such as cor-rosion potential measurements,electrochemical impedance spec-troscopy (EIS)[3,9–12],electrochemical noise methods (ENM)and galvanic coupling measurement [3,13].Murray [9,14]reviewed electrochemical methods used for evaluating organic anti-corrosion coatings.Sekine [15]gave a review on characteristics of various electrochemical measurement methods and even their correlations.The development of microelectrode techniques and scanning elec-trode techniques has made it possible to measure electrochemical processes on a local scale,which has yielded new types of informa-tion relevant to the local electrochemical processes on corroding surfaces and advanced the investigations of localized corrosion.Among all the techniques are the Scanning Vibrating Electrode Tech-nique (SVET),the Scanning Reference Electrode Technique (SRET),Local Electrochemical Impedance Spectroscopy (LEIS),and the Scan-ning Kelvin Probe (SKP).SVET was originally devised for detecting the extra-cellular cur-rent near living cells in the 1970s [16].It was firstly developed to study localized corrosion processes by Isaacs in the 1980s [17,18].The electrochemical process of corrosion contains an ionic current flow in the electrolyte balanced by the electron flow through the metal.The ionic current flow causes a potential gradi-ent to exist in the solution at the electrochemically active site.SVET was designed to detect the potential gradient via a movable vibrating microelectrode.The electrode potential difference between the two extreme points of its vibration,r /,is recorded at the extremes of the vibration amplitude,generating a sinusoidal AC signal.The AC signal is then converted to the ion current density (i )by a calibration procedure [10,19].The local current is related to r /and the electrolyte conductivity k by Ohm’s law [20]i ¼Àj r /ð1ÞSVET systems are designed to oscillate the probe in a Lissajous mode so that both parallel component i x and perpendicular compo-nent i z of the current can be obtained by partial differentiation of (1)with respect to x or z .0010-938X/$-see front matter Published by Elsevier Ltd.doi:10.1016/j.corsci.2010.04.012*Corresponding author.Tel.:+17012318027;fax:+17012318439.**Corresponding author.E-mail addresses:Maocheng.Yan@ (M.Yan),V.J.Gelling@ (V.J.Gelling).Corrosion Science 52(2010)2636–2642Contents lists available at ScienceDirectCorrosion Sciencej o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c o r s ci1.1.SVET for characterizing anti-corrosion performance of coatingsSVET has enjoyed wide acceptance as a powerful electrochemi-cal technique for evaluation of corrosion inhibitor,detection of cor-rosion activity and quantification of corrosion defects in coatings. SVET has been used in the research of various types of corrosion, such as pitting[21],cut-edge corrosion[22–24],galvanic corrosion [18],microbiologically influenced corrosion(MIC)[25],weld corro-sion,and stress corrosion cracking(SCC)[26].In the case of corro-sion of a coated metal,SVET is able to give detailed insights into the electrochemical interactions between a coating and its sub-strate at a defect,which has been provided valuable information on the anti-corrosion mechanism by a coating,including the gener-ation and development of defects,and the influence of pigments/ inhibitors on corrosion of substrate at a defect[27,28].In previous studies from this laboratory,series of coatings for Al alloy(AA)2024-T3has been characterized by SVET.To monitor both the corrosion activity of the substrate and the possible gal-vanic interaction between the coating and the substrate,the mea-surement was conducted in the vicinity of a scratch exposing the underlying substrate.The SVET results for polypyrrole deposited on AA2024-T3showed that a large anodic current occurred at the defect due to anodic dissolution of the alloy and that the catho-dic current was rather uniformly distributed over the polymer sur-face,which implies that a p-doped CP would promote active dissolution of the AA2024-T3substrate at the defect if the passiv-ation could not be obtained[29,30].Most recently,interesting interactions between neutral or n-doped poly(2,3-dihexylthieno-[3,4-b]pyrazine)and AA2024-T3has been demonstrated by SVET [31].The n-doped conjugated polymer exhibited the ability to sac-rificially protect the exposed Al alloy in a defect.For a redox inactive barrier coating,such as a plain epoxy coat-ing on steel or AA2024-T3,the SVET showed that both anodic cur-rent and cathodic current were located at the scribe[32].Due to the high impedance/low-conductivity of the intact barrier coating, a complete corrosion cell,if any,would be established within the defect,and no current was distributed on the coating.In the case of metal-rich coatings,such as Mg-rich primer coated on Al alloys, the SVET results exhibited a well-defined cathodic current peak above the scratch.The anodic current(related to the anodic disso-lution of the sacrificial pigment)distributed on the primer,which demonstrates that the sacrificial pigment functions by the cathodic protection mechanism[1,33,34].In this work,a SVET method is provided for further understand-ing the galvanic interaction between a metal-rich coating and the metal substrate,and evaluating the anti-corrosion performance of the metal-rich coating.A zinc-rich primer(ZRP)coated on steel was examined to demonstrate the efficacy of the method.Several characteristic indexes are obtained from the SVET current density map to characterize the galvanic interaction between the ZRP and its substrate.The total anodic current(and hence the corrosion rate)over the scan area is evaluated by integration of the overall anodic current density on the SVET maps.The variations of the to-tal anodic current and that of open-circuit potential(E OC)were analyzed as a function of the immersion time.Additionally,the SVET current indexes were compared with the galvanic current ob-tained by zero resistance amperometry(ZRA).2.Experimental2.1.Materials and electrode preparationAn epoxy resin(Epon828,from Hexion)and a modified poly-amide(Epikure3175,from Hexion)curing agent were mixed in a 1:1.1stoichiometric ratio.This ratio results in the optimal barrier properties and hardness of the primer by giving near to the max-imum amount of crosslinking.Methyl isobutyl ketone(MIBK) was used as solvent.Then,zinc powder was added to the solu-tion and was stirred to form a thick mortar-like mixture.A steel panel(R-35,from Q-Panel)was pretreated by grinding with400-and600-grit SiC sandpaper,followed by degreasing with hexane. The coatings were applied using a drawn down bar at a wet thickness of200l m.The coated panels were placed in a convec-tion oven at70°C for24h afterflashing off for approximately 30min.For the primers of pigment volume concentration(PVC) lower than25%,the zinc pigment wasfirstly dispersed in MIBK for full dispersion.The dryfilm thicknesses were in the range of140–190l m.2.2.SVET measurement and data analysisThe current distribution over the interface of solution/ZRP(67% PVC,subsequently referred to as ZRP67)was measured using a SVET system from Applicable Electronics(USA).The Pt–Ir microelectrode (Microprobe Inc.)with a10l m diameter tip which was platinized to a20l m diameter sphere.The microprobe was vibrated$200l m above the samples with the amplitude20l m along the X and Y directions.A pair of platinized platinum wires was used as both the reference and bath ground electrodes.The probe made20Â20 measurements in each scan($600s),generating a400-point mesh across the surface.Scans were initiated5min after immersion and repeated every60min.The ZRP67sample(1Â1cm2)was masked by a polyester tape,exposing an open area of3Â3mm2as the scan-ning area.An artificial scratch was introduced in the center of the scanning area.For comparison,the same SVET measurement was also conducted on an unscratched ZRP67.All SVET measurements were performed at the free-corrosion condition in a cell containing $5mL3.5wt.%NaCl aqueous solution.The SVET current density mapping and the statistical analysis of the data were performed with Origin software.The current densi-ties were displayed in three-dimensional(3D)maps,showing the spatial distribution of the current density as a function of the(x, y)position in the scan region on ZRP.The current values in the SVET map are positive for anodic currents and negative for catho-dic currents.The contour map of the current densities is at the bot-tom of the3D map.The SVET current density vector images superimposing the measured current vector onto an optical image of the sample showed images of the sample surface as well as the locations of anodic/cathodic area.Based on the SVET current density map,the anodic current den-sity peak(i A,max),the cathodic current density peak(i C,max),the average current density(i Ave)and the integrated anodic current (I Int)were used to characterize the anti-corrosion properties of the coating.I Int was evaluated by integration of the overall anodic current(I A)on a SVET current density map,which is theoretically equal to the total cathodic current(I C)over the ZRP surface.Split-ting the scan area(S,3Â3mm2)into20Â20small squares,we calculate the anodic or cathodic current on each square,and sum all the resulting currents to obtain I Int(l A)on the scan area,as shown byI Int¼SPi An¼ÀSPi Cnð2Þwhere i A is the anodic current density(i A P0),i C the cathodic cur-rent density(i C<0)and n the number of measurement points in each scan(n=400).2.3.Galvanic coupling measurementGalvanic coupling(both the mixed potential,E Mix,and the cou-pling current)between the coated metal and the bare substrateM.Yan et al./Corrosion Science52(2010)2636–26422637was measured using a Gamry PC4/300potentiostat in a zero resis-tance ammeter(ZRA)mode.The experiments were carried out in a two-compartment enclosed cell described in our previous work [29].The two-compartment cell permitted careful control of the atmospheric conditions in each compartment.The working elec-trode in one compartment was ZRP67-coated on the steel(subse-quently referred to as the ZRP-compartment)and the working electrode in the other compartment was the bare steel(subse-quently referred to as the steel-compartment).The exposed area of ZRP67was 1.0cm2and the bare steel was in a pinhole of 0.04cm2(simulating a coating defect),yielding an area ratio (ZRP67to steel)of ca.25.To simulate the condition for a top-coated sample,where a topcoat would protect the primer from di-rect oxygen access,the solution in the coating-compartment was purged with N2,while the solution in the alloy-compartment was purged with air.3.Results and discussion3.1.SVET current density mapsThe SVET current density maps for the bare steel in3.5%NaCl solution,as presented in Fig.1,showed several anodic current peaks that appear after several minutes,due to possible pitting nucleation.After30min,these anodic current peaks combined into one broad anodic peak,where dark corrosion products began to ap-pear on the steel surface.Fig.2displays SVET current density maps above the defect on the scratched ZRP67(67%PVC)after various immersion periods in3.5%NaCl solution.The cathodic current was mainly located at the scratch where a well-defined cathodic peak existed throughout the5-day immersion period.The anodic area appeared at different sites on ZRP67during the immersion.At the beginning of the immersion from0.1to4h,anodic areas were found to initiate only at the corners of the scratch,as shown in Fig.2a and b.After5h of the immersion,anodic areas were scattered around the scratch (Fig.2c).After10h of the immersion,significant changes occurred both in current distribution and in value,as presented in Fig.2d. The anodic activity moved from one area to another near the scratch;the cathodic area included to almost all the scratch and a well-defined cathodic peak was observed.After20h of the immersion(Fig.2e and f),the cathodic current decreased with time,and the anodic current was evenly distributed over the sur-face of the primer.The variations of the anodic current peak(i A,max),the cathodic current peak(i C,max)and the average current density(i Ave)in SVET maps are shown in Fig.3.The i A,max decreased over the immersion time on the whole,except for two peaks appearing at3and10h. The SVET experiment was conducted under free-corrosion condi-tion(without external polarization applied)where the anodic cur-rents and cathodic currents above the ZRP67are balanced and the net current should be zero.It should be note that,in a scanning plane above the free-corro-sion surface,the integrated anodic current I A should be theoreti-cally equal to the integrated cathodic current I C in the absolute value and hence the average current density(i Ave)should be zero. But deviations between I A and I C are usually obtained by SVET, which causes i Ave to deviate from zero.The deviations may be attributed to the fact that the current density on a SVET map was not taken at the same time.The corrosion behaviour and current distribution on the scan area are changing during scanning(one scan takes$10min).3.2.Integrated anodic current of the ZRP obtained by SVETThe ZRP paints under study here are heterogeneous systems with pores and zinc particles distributed randomly in the binder. The probable reactions on the primer in an electrolyte are as fol-lows:Zinc dissolution to the oxide(ZnO)/polymeric-binderfilm, electrochemical dissolution of the active zinc particles,and oxygen reduction on zinc particles or on the substrate through pores[35].A key aspect of the above mentioned mechanisms is the galvanic interaction between ZRP and the metal substrate.The galvanic interaction between ZRP and substrate may be influenced by any or all of the following factors:the electrochemical state of zinc par-ticles at ZRP/solution interface,reactive Zn/Fe area ratio(S Zn/Fe) interface,as well as the diffusion process through the coating and the deposit of Zn corrosion products[3,12].The electrochem-ical behaviour and cathodic protection performance of ZRPs have been well studied by corrosion potential monitoring[3],EIS [3,12,36],conductive atomic force microscopy(AFM)[2],as well as the scanning electron microscopy(SEM)[4,12].In this work, the electrochemical and corrosion performance of the ZRP was characterized by the SVET method.The integrated anodic current I Int above the ZRP67obtained by the SVET method is presented in Fig.4as a function of the immer-sion time,together with E OC measured under the same conditions. For the scratched ZRP67,closely correlative behaviour was found between E OC and the total anodic current.Most obviously,two sig-nificant anodic current peaks appeared during the immersion ex-actly before and after the E OC peak occurred.For comparison,I Int and E OC for the unscratched ZRP67are also presented in Fig.4. The trend of I Int of the unscratched ZRP67was similar to that of the scratched ZRP67but with much lower amplitude.The most2638M.Yan et al./Corrosion Science52(2010)2636–2642positive potential of ZRPs(unscratched)reached at$3h immersion and this potential was observed to depend significantly on the PVC, as shown in Fig.5.The most positive potentials for ZRPs with PVC5%,15%,45%and67.5%were0.166,0.00,À0.60andÀ0.91V,respec-tively.The following several stages were clearly recognized from both I Int and E OC shown in Fig.4for the scratched ZRP67.distributions over an artificial line scratch on ZRP(67%superimposed with current vectors(right of a and f)M.Yan et al./Corrosion Science52(2010)2636–264226393.2.1.The activating stageThe E OC(ca.À0.9V initially)shifted gradually towards negative direction during thefirst1h immersion as a result of the activation of Zn particles through dissolving ZnOfilm or soaking the binder film,approximatingÀ1.0V(E OC of the zinc particles)at$1h.In the following3h,the E OC shifted in the positive direction,implying that the steel substrate began to be wetted by the electrolyte through pores(decreasing the ratio of S Zn/Fe).The I Int($1.2Â10À2l A initially)slightly decreased in thefirst 1h immersion.Then,it gradually increased as a result of the disso-lution of ZnO/zinc particles at the ZRP surface.From3h immer-sion,I Int decreased sharply accompanying with the rapid increase of E OC due to the wetting process of the steel substrate until E OC reaching a peak(À0.71V)at5h,where the steel substrate was ex-pected to be totally wetted.A current valley(7.3l A)exactly corre-sponded to the E OC peak at5h.Once the substrate was wetted, galvanic interaction between zinc particles and steel substrate would be expected to occur.The period of the beginning$5h immersion can be referred to as the activating stage,where the main process was the dissolution of the ZnOfilm and then the zinc particles reaction with the electrolyte.In the activating stage,the electrochemical reaction process mainly occurred on the ZRP/solu-tion interface.3.2.2.The sacrificial protection stageEven after the steel surface became completely wetted at$5h in Fig.4,some zinc particles were still covered by thick oxides or by binderfilms.Zinc particles continued to be activated by the dis-solution of the ZnOfilm and/or galvanically coupling to the sub-strate.At the beginning of the galvanic stage,corrosion product was formed in pores in the primer,which tended to seal the pores, reducing the number and size of pores[3].This process shifted E OC toward negative directions and increased I Int sharply until attain-ing2.3Â10À2l A at$11h.Thefluctuation of E OC in the range ofÀ0.78toÀ0.87V in the vicinity of9h and the significant decrease in I Int at$10h might be attributed to the accumulation of Zn corrosion product which improved the barrier property of the coating.For the unscratched ZRP67,the E OCfluctuation at$8h immersion disappeared,which further implied that the E OCfluctuation might be related to the de-posit of the zinc corrosion product in the defect and its adhesion to the surface.3.2.3.The barrier stageThe E OC continued to decay,with somefluctuations,beginning from$11h(Fig.4).I Int decayed to a low value of1.2Â10À2l A, where it remained for the following duration of the experiment. The distinct decrease in I Int may be attributed to the zinc depleting and/or the improved barrier property of the primer.The barrier properties of the primer would improve by deposit of the corrosion product on the primer.The zinc corrosion product also trends to improve barrier effect by sealing pores in the primer,as has been proposed and observed by other authors[3,4,36].3.2.4.E OC–i Int diagramThe evolution of the E OC–i Int results for the scribed ZRP67is shown in Fig.6,with the numbers indicating the immersion time (in hour)and the dashed lines showing the shifting direction of the E OC–i Int points.Several stages(the wetting stage,the cathodic protection stage and the barrier stage)were demonstrated in the E OC–i Int evolution for the scratched ZRP67during the immersion period.Almost all the conventional electrochemical measurements re-quire an externally imposed polarization which would possibly have an unfavorable effect on the specimen.By contrast,SVET al-lows to measure integrated corrosion current at the free-corrosion condition(without external polarization applied)which is benefi-cial,especially for the highly active metal-rich coatings.2640M.Yan et al./Corrosion Science52(2010)2636–26423.3.Galvanic coupling between ZRP and the bare steelThe coupling current and mixed potential for ZRP67(1.0cm2,N2 purged)coupled with bare steel(0.04cm2,air purged)in3.5%NaCl solution are shown in Fig.7.The coupling current started at 4Â10À3l A and rapidly increased to12Â10À3l A at$25min.After immersion,the zinc particles were gradually activated through dis-solution of the oxide(ZnO)surface and water penetration through polymeric-binderfilm.The zinc particles were fully activated at the end of1h,where the mixed potential attained the lowest value and the coupling current was highest.Then the mixed potential in-creased and the coupling current declined steadily.At$26h,the E Mix attainedÀ0.85V,and the coupling current was6.9Â10À3l A.In the case of the galvanic coupling measurement in the two-compartment cell,the bare steel pinhole(simulating coating de-fect)is separated in another cell,where the bare steel was not af-fected by the deposit of the zinc corrosion product in the defect. The depletion of the zinc particles and the lack of the corrosion product deposit may lead to the steady decrease of the coupling current,which was a fundamental difference from the case of the SVET measurement,where the barrier stage was clearly observed as the result of a barrier effect of the Zn products deposit.4.ConclusionsBy integrating the overall anodic current density measured by scanning vibrating electrode technique(SVET),the total anodic current(and therefore the corrosion rate)over the coating surface was obtained and used to evaluate the galvanic interaction be-tween coatings and substrates.This SVET method allows the mea-surement of corrosion current at the free-corrosion condition (without external polarization applied),which is highly beneficial, especially for active metal-rich coatings.For the zinc-rich primer, several stages during immersion were distinctly recognized by the SVET method:the activating stage,the sacrificial protection stage and the barrier stage.Closely correlative behaviour was found between the total anodic current and the open-circuit poten-tial.This SVET analysis method may provide a new insight for the corrosion protection performance and even the service life of me-tal-rich coatings.AcknowledgmentThe authors would like to thank the US Army Research Labora-tory(Contract#W911NF-04-2-0029)for sponsoring this research. References[1]G.Bierwagen,D.Battocchi,A.Simoes,A.Stamness,D.Tallman,The use ofmultiple electrochemical techniques to characterize Mg-rich primers for A1 alloys,.Coat.59(2007)172–178.[2]G.Bierwagen,K.Allahar,B.Hinderliter,H.Jung,Zn-rich coatings revisited,in:Tri-Service Corrosion Conference,Denver,Co.,2007.[3]C.M.Abreu,M.Izquierdo,M.Keddam,X.R.Novoa,H.Takenouti,Electrochemical behaviour of zinc-rich epoxy paints in3%NaCl solution, Electrochim.Acta41(1996)2405–2415.[4]M.Morcillo,R.Barajas,S.Feliu,J.M.Bastidas,A SEM study on the galvanicprotection of zinc-rich paints,J.Mater.Sci.25(1990)2441–2446.[5]C.Hare,Corrosion control of steel by organic coatings,in:R.W.Revie(Ed.),Uhlig’s Corrosion Handbook,John Wiley&Sons,New York,2000,pp.1023–1038.[6]M.E.Nanna,G.P.Bierwagen,Mg-rich coatings:a new paradigm for Cr-freecorrosion protection of Al aerospace alloys,JCT Res.1(2004)69–80.[7]D.Battocchi, A.M.Simoes, D.E.Tallman,G.P.Bierwagen,Electrochemicalbehaviour of a Mg-rich primer in the protection of Al alloys,Corros.Sci.48 (2006)1292–1306.[8]G.Bierwagen,R.Brown,D.Battocchi,S.Hayes,Observations on the Testing ofMg-rich Primers for Totally Chromate-free Corrosion Protection of Aerospace Alloys,Department of Defense Corrosion Conference,Gaylord National, Washington DC,2009.[9]J.N.Murray,Electrochemical test methods for evaluating organic coatings onmetals:an update.Part III:multiple test parameter measurements,.Coat.31(1997)375–391.[10]G.Grundmeier,W.Schmidt,M.Stratmann,Corrosion protection by organiccoatings:electrochemical mechanism and novel methods of investigation, Electrochim.Acta45(2000)2515–2533.[11]F.Mansfeld,Use of electrochemical impedance spectroscopy for the study ofcorrosion protection by polymer-coatings,J.Appl.Electrochem.25(1995) 187–202.[12]J.R.Vilche,E.C.Bucharsky,C.A.Giudice,Application of EIS and SEM to evaluatethe influence of pigment shape and content in ZRP formulations on the corrosion prevention of naval steel,Corros.Sci.44(2002)1287–1309. [13]S.E.Faidi,J.D.Scantlebury,P.Bullivant,N.T.Whittle,R.Savin,Anelectrochemical study of zinc-containing epoxy coatings on mild steel, Corros.Sci.35(1993)1319–1328.[14]J.N.Murray,Electrochemical test methods for evaluating organic coatings onmetals:an update.Part II:single test parameter measurements,.Coat.31(1997)255–264.[15]I.Sekine,Recent evaluation of corrosion protective paintfilms byelectrochemical methods,.Coat.31(1997)73–80.[16]L.F.Jaffe,R.Nuccitelli,An ultrasensitive vibrating probe for measuring steadyextracellular currents,J.Cell Biol.63(1974)614–628.[17]H.S.Isaacs,Initiation of stress corrosion cracking of sensitized type304stainless steel in dilute thiosulfate solution,J.Electrochem.Soc.135(1988) 2180–2183.[18]H.S.Isaacs,The measurement of the galvanic corrosion of soldered copperusing the scanning vibrating electrode technique,Corros.Sci.28(1988)547–558.[19]J.Elvins,J.H.Sullivan,J.A.Spittle,D.A.Worsley,Short term predictive testingfor cut edge corrosion resistance in zinc–aluminium alloy galvanised steels, Corros.Eng.Sci.Tech.40(2005)43–50.[20]J.He,Applications of the Scanning Vibrating Electrode Technique to the Studyof Corrosion Protection by Conductive Polymers,Ph.D.Thesis,North Dakota State University,2002.[21]H.Krawiec,V.Vignal,R.Oltra,Use of the electrochemical microcell techniqueand the SVET for monitoring pitting corrosion at MnS inclusions,Electrochem.Commun.6(2004)655–660.M.Yan et al./Corrosion Science52(2010)2636–26422641。
乙腈不同温度下的表面蒸气压概述及解释说明1. 引言1.1 概述乙腈(化学式CH3CN)是一种常用的有机溶剂,广泛应用于化学实验室、工业生产和科研领域。
乙腈的表面蒸气压是其在不同温度下从液态向气态转变时产生的压强。
了解乙腈在不同温度下的表面蒸气压变化规律对于科学研究及工业应用有着重要意义。
1.2 文章结构本文将首先介绍乙腈的物性特点,包括分子结构、物理性质和化学性质等方面。
接着将对表面蒸气压的概念进行解释,并探讨影响乙腈表面蒸气压变化的因素。
最后,通过实验方法与结果分析,详细讨论不同温度下乙腈表面蒸气压的变化规律,并总结归纳实验结果。
1.3 目的本文旨在深入探讨乙腈在不同温度下的表面蒸气压变化规律,并通过实验结果分析验证相关理论模型。
通过研究乙腈的表面蒸气压,可以拓宽我们对乙腈及相关有机溶剂的认识,并为实验室操作、工业生产以及科学研究提供技术参考和应用前景展望。
2. 正文2.1 乙腈的物性介绍乙腈是一种常见的有机溶剂,化学式为CH3CN。
它具有无色、透明、有刺激性气味以及良好的溶解性等特点,在化工、制药等多个领域广泛应用。
乙腈的分子量为41.05 g/mol,密度为0.786 g/cm^3。
它的沸点为81.6°C,熔点为-45°C。
2.2 表面蒸气压的概念和影响因素表面蒸气压指在一定温度下,液体与其饱和蒸气之间达到动态平衡时所对应的气相压强。
表面蒸气压受多种因素影响,包括温度、分子间吸引力以及液体分子挥发速率等。
较高温度和较强分子间相互作用力会提高液体表面上的分子挥发速率,从而增加表面蒸气压。
2.3 不同温度下乙腈表面蒸气压的变化规律随着温度升高,乙腈的表面蒸气压将增加。
根据饱和蒸气压与温度之间的关系,一般而言,液体的饱和蒸气压随着温度的升高而增加。
对于乙腈来说也是如此。
以常规大气压下为例,乙腈在25°C时的表面蒸气压约为76.15 mmHg,在50°C时增至131.3 mmHg。
表面等离子体共振英文Surface plasmon resonance (SPR) is a phenomenon that occurs when polarized light hits a metal-dielectric interface at a specific angle, causing the electrons on the metal surface to oscillate in resonance with the light wave. This interaction leads to the generation of surface plasmons, which are coherent delocalized electron oscillations that exist at the interface between two materials where the real part of the dielectric function changes sign across the interface.The significance of SPR lies in its sensitivity to changes in the refractive index of the material close to the metal surface. This sensitivity makes SPR an invaluable tool in various fields, particularly in biosensing, where it is used to detect the binding of molecules to the metal surface. The binding event causes a change in the refractive index at the surface, which in turn alters the resonance condition. By measuring this change, one can infer details about the molecular interaction, such as the binding kinetics and affinity.In a typical SPR experiment, a thin metal film, usually gold or silver, is deposited on a glass substrate. The metal film is then exposed to a polarized light source, and the angle of incidence is varied until the resonance condition is met. At resonance, there is a significant reduction in the reflected light intensity, which is detected by a photodetector. The angle at which this dip in reflectivity occurs is referred to as the resonance angle and is highly sensitive to the refractive index of the material in contact with the metal film.The applications of SPR are vast and diverse. In the field of biochemistry, it is used to study protein-protein interactions, DNA hybridization, and the binding of small molecules to proteins. In environmental monitoring, SPR sensors can detect the presence of pollutants and pathogens. The technology is also employed in the pharmaceutical industry for drug discovery and the characterization of biomolecular interactions.One of the key advantages of SPR is that it allows for real-time monitoring of binding events without the need for labeling the interacting molecules. This non-invasivenature preserves the biological activity of the molecules and provides a more accurate representation of the interaction as it occurs in vivo.Recent advancements in SPR technology have led to the development of localized SPR (LSPR), which operates on the same principles but at a much smaller scale. LSPR is associated with nanostructures, such as nanoparticles, and offers enhanced sensitivity and spatial resolution. This miniaturization has opened up new possibilities for the integration of SPR sensors into microfluidic systems and the potential for high-throughput analysis.In conclusion, surface plasmon resonance is a powerful analytical technique that has revolutionized the way we study and understand molecular interactions. Its ability to provide real-time, label-free analysis makes it an indispensable tool in scientific research and various industries. As technology continues to advance, we can expect SPR to play an even more significant role in the fields of biosensing, environmental monitoring, and beyond.。
back-gate:背栅ballistic transport:弹道输运;body Effect:体效应,衬底偏置效应,衬偏效应Bonding:键合breakdown:击穿Buried channels:埋沟cat’s whisker detector:触须式检波器channel length modulation:沟道长度调制;chip: 芯片computer-aided design (CAD):计算机辅助设计CVD (chemical vapor deposition) :化学气相淀积Dangling bond: 悬挂键dangling silicon bond :悬挂键;deep submicrometer:深亚微米;degradation:退化;Degrade:退化dehydration:脱水Depletion-mode:耗尽型器件deposited uniformly:均匀淀积deposited uniformly:均匀淀积;development:显影DIBL (drain-induced barrier lowering):漏至势垒降低效应;die: 裸片dielectric constant:介电常数dielectric constant:介电常数;Dielectric:电介质Diffusion:扩散DMOS (double-diffused MOS) :双扩散MOS dopant:掺杂剂doping fluctuations:掺杂工艺的波动Drain:漏(区)Electrode:电极Electron affinity :电子亲和能electron beam lithographic:电子束光刻Energy-bands:能带图Enhancement-mode:增强型EOT(equivalent oxide thickness):等效氧化层厚度;epitaxial:外延;epitaxially grown 外延生长;etch stencil :刻蚀模板etch:刻蚀Field oxide :场氧化层Field oxide:场氧化层Flat-Band V oltage :平带电压Flat-Band V oltage 平带电压floating body:体区浮置gate dielectric:栅介质gate stack:栅叠层GIDL (gate-induced drain leakage):栅感应漏电效应;gradual-channel approximation:渐近沟道近似Hot Carriers Effect:热载流子效应hot-carrier effects: 热载流子效应;impact ionization:碰撞电离;induced electric field:感生电场Interconnection:互联interface state:表面态;interface states:界面态intrinsic Fermi level:本征费米能级inversion layer:反型层Ion Implantation:离子注入kinetic energy:动能;latch-up :闩锁;latch-up:闩锁lattice vibration:晶格振动;LDD(lightly doped drain):轻掺杂漏;momentum:动量;MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor):场效应晶体管nano-scale:纳米级;nonvolatile devices:非挥发性器件nonvolatile devices:非挥发性器件oxidation furnace :氧化炉Oxidation:氧化oxide charges:氧化层电荷Pattern: 样式,图形,集成电路设计中指版图phonons:声子;photolithography:光刻Photomasks:光学掩模photoresist strip:剥离光刻胶Photoresist:光刻胶,光致抗蚀剂Pinched-off :夹断planar technology:平面工艺plasma etch :等离子刻蚀Plasma:等离子Polysilicon:多晶硅Process :工艺(过程)punch-through : 穿通PVD (physical vapor deposition):金属物理气相淀积quantum confinement effect:量子限制效应;retrograde channel doping profile:retrograde channel doping profile:具有逆向(峰值不在表面处的)沟道掺杂分布salicide:自对准金属硅化物工艺scaling limit:按比例缩小的极限self-aligned:自对准SEM:扫瞄式电子显微镜(scanning electron microscope)series resistance:串联电阻sheet-resistance:薄层电阻,方块电阻short-channel effects:短沟道效应;short-channel effects:短沟效应silicide:金属硅化物SIMOX (separation by implantation of oxygen):注氧隔离single-crystal ingot:单晶锭single-crystalline silicon:单晶硅;SOI ( Silicon On Insulator):绝缘层上的硅Source:源(区)space charge region:空间电荷区Spacer:侧墙Specification : 规格,规范Sputtering:溅射stepper : 专用步进曝光机Substrate :衬底Subthreshold :亚阈值subthreshold swing:亚阈摆幅subthreshold swing:亚阈值摆动;Surface scattering :表面散射Technology :技术,工艺thermal equilibrium:热平衡thermal oxidation process:热氧化工艺Threshold voltage:阈值电压tunnel:遂穿ULSI:甚大规模集成电路ultraviolet light: 紫外光Vacuum level :真空能级vertical furnace :井式炉VLSI:超大规模集成电路Volume charge:体电荷wafer:晶片Work function :功函数back-gate:背栅ballistic transport:弹道输运;body Effect:体效应,衬底偏置效应,衬偏效应Bonding:键合breakdown:击穿Buried channels:埋沟c at’s whisker detector:触须式检波器channel length modulation:沟道长度调制;chip: 芯片computer-aided design (CAD):计算机辅助设计CVD (chemical vapor deposition) :化学气相淀积Dangling bond: 悬挂键dangling silicon bond :悬挂键;deep submicrometer:深亚微米;degradation:退化;Degrade:退化dehydration:脱水Depletion-mode:耗尽型器件deposited uniformly:均匀淀积deposited uniformly:均匀淀积;development:显影DIBL (drain-induced barrier lowering):漏至势垒降低效应;die: 裸片dielectric constant:介电常数dielectric constant:介电常数;Dielectric:电介质Diffusion:扩散DMOS (double-diffused MOS) :双扩散MOS dopant:掺杂剂doping fluctuations:掺杂工艺的波动Drain:漏(区)Electrode:电极Electron affinity :电子亲和能electron beam lithographic:电子束光刻Energy-bands:能带图Enhancement-mode:增强型EOT(equivalent oxide thickness):等效氧化层厚度;epitaxial:外延;epitaxially grown 外延生长;etch stencil :刻蚀模板etch:刻蚀Field oxide :场氧化层Field oxide:场氧化层Flat-Band V oltage :平带电压Flat-Band V oltage 平带电压floating body:体区浮置gate dielectric:栅介质gate stack:栅叠层GIDL (gate-induced drain leakage):栅感应漏电效应;gradual-channel approximation:渐近沟道近似Hot Carriers Effect:热载流子效应hot-carrier effects: 热载流子效应;impact ionization:碰撞电离;induced electric field:感生电场Interconnection:互联interface state:表面态;interface states:界面态intrinsic Fermi level:本征费米能级inversion layer:反型层Ion Implantation:离子注入kinetic energy:动能;latch-up :闩锁;latch-up:闩锁lattice vibration:晶格振动;LDD(lightly doped drain):轻掺杂漏;momentum:动量;MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor):场效应晶体管nano-scale:纳米级;nonvolatile devices:非挥发性器件nonvolatile devices:非挥发性器件oxidation furnace :氧化炉Oxidation:氧化oxide charges:氧化层电荷Pattern: 样式,图形,集成电路设计中指版图phonons:声子;photolithography:光刻Photomasks:光学掩模photoresist strip:剥离光刻胶Photoresist:光刻胶,光致抗蚀剂Pinched-off :夹断planar technology:平面工艺plasma etch :等离子刻蚀Plasma:等离子Polysilicon:多晶硅Process :工艺(过程)punch-through : 穿通PVD (physical vapor deposition):金属物理气相淀积quantum confinement effect:量子限制效应;retrograde channel doping profile:retrograde channel doping profile:具有逆向(峰值不在表面处的)沟道掺杂分布salicide:自对准金属硅化物工艺scaling limit:按比例缩小的极限self-aligned:自对准SEM:扫瞄式电子显微镜(scanning electron microscope)series resistance:串联电阻sheet-resistance:薄层电阻,方块电阻short-channel effects:短沟道效应;short-channel effects:短沟效应silicide:金属硅化物SIMOX (separation by implantation of oxygen):注氧隔离single-crystal ingot:单晶锭single-crystalline silicon:单晶硅;SOI ( Silicon On Insulator):绝缘层上的硅Source:源(区)space charge region:空间电荷区Spacer:侧墙Specification : 规格,规范Sputtering:溅射stepper : 专用步进曝光机Substrate :衬底Subthreshold :亚阈值subthreshold swing:亚阈摆幅subthreshold swing:亚阈值摆动;Surface scattering :表面散射Technology :技术,工艺thermal equilibrium:热平衡thermal oxidation process:热氧化工艺Threshold voltage:阈值电压tunnel:遂穿ULSI:甚大规模集成电路ultraviolet light: 紫外光Vacuum level :真空能级vertical furnace :井式炉VLSI:超大规模集成电路Volume charge:体电荷wafer:晶片Work function :功函数back-gate:背栅ballistic transport:弹道输运;body Effect:体效应,衬底偏置效应,衬偏效应Bonding:键合breakdown:击穿Buried channels:埋沟cat’s whisker detector:触须式检波器channel length modulation:沟道长度调制;chip: 芯片computer-aided design (CAD):计算机辅助设计CVD (chemical vapor deposition) :化学气相淀积Dangling bond: 悬挂键dangling silicon bond :悬挂键;deep submicrometer:深亚微米;degradation:退化;Degrade:退化dehydration:脱水Depletion-mode:耗尽型器件deposited uniformly:均匀淀积deposited uniformly:均匀淀积;development:显影DIBL (drain-induced barrier lowering):漏至势垒降低效应;die: 裸片dielectric constant:介电常数dielectric constant:介电常数;Dielectric:电介质Diffusion:扩散DMOS (double-diffused MOS) :双扩散MOS dopant:掺杂剂doping fluctuations:掺杂工艺的波动Drain:漏(区)Electrode:电极Electron affinity :电子亲和能electron beam lithographic:电子束光刻Energy-bands:能带图Enhancement-mode:增强型EOT(equivalent oxide thickness):等效氧化层厚度;epitaxial:外延;epitaxially grown 外延生长;etch stencil :刻蚀模板etch:刻蚀Field oxide :场氧化层Field oxide:场氧化层Flat-Band V oltage :平带电压Flat-Band V oltage 平带电压floating body:体区浮置gate dielectric:栅介质gate stack:栅叠层GIDL (gate-induced drain leakage):栅感应漏电效应;gradual-channel approximation:渐近沟道近似Hot Carriers Effect:热载流子效应hot-carrier effects: 热载流子效应;impact ionization:碰撞电离;induced electric field:感生电场Interconnection:互联interface state:表面态;interface states:界面态intrinsic Fermi level:本征费米能级inversion layer:反型层Ion Implantation:离子注入kinetic energy:动能;latch-up :闩锁;latch-up:闩锁lattice vibration:晶格振动;LDD(lightly doped drain):轻掺杂漏;momentum:动量;MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor):场效应晶体管nano-scale:纳米级;nonvolatile devices:非挥发性器件nonvolatile devices:非挥发性器件oxidation furnace :氧化炉Oxidation:氧化oxide charges:氧化层电荷Pattern: 样式,图形,集成电路设计中指版图phonons:声子;photolithography:光刻Photomasks:光学掩模photoresist strip:剥离光刻胶Photoresist:光刻胶,光致抗蚀剂Pinched-off :夹断planar technology:平面工艺plasma etch :等离子刻蚀Plasma:等离子Polysilicon:多晶硅Process :工艺(过程)punch-through : 穿通PVD (physical vapor deposition):金属物理气相淀积quantum confinement effect:量子限制效应;retrograde channel doping profile:retrograde channel doping profile:具有逆向(峰值不在表面处的)沟道掺杂分布salicide:自对准金属硅化物工艺scaling limit:按比例缩小的极限self-aligned:自对准SEM:扫瞄式电子显微镜(scanning electron microscope)series resistance:串联电阻sheet-resistance:薄层电阻,方块电阻short-channel effects:短沟道效应;short-channel effects:短沟效应silicide:金属硅化物SIMOX (separation by implantation of oxygen):注氧隔离single-crystal ingot:单晶锭single-crystalline silicon:单晶硅;SOI ( Silicon On Insulator):绝缘层上的硅Source:源(区)space charge region:空间电荷区Spacer:侧墙Specification : 规格,规范Sputtering:溅射stepper : 专用步进曝光机Substrate :衬底Subthreshold :亚阈值subthreshold swing:亚阈摆幅subthreshold swing:亚阈值摆动;Surface scattering :表面散射Technology :技术,工艺thermal equilibrium:热平衡thermal oxidation process:热氧化工艺Threshold voltage:阈值电压tunnel:遂穿ULSI:甚大规模集成电路ultraviolet light: 紫外光Vacuum level :真空能级vertical furnace :井式炉VLSI:超大规模集成电路Volume charge:体电荷wafer:晶片Work function :功函数back-gate:背栅ballistic transport:弹道输运;body Effect:体效应,衬底偏置效应,衬偏效应Bonding:键合breakdown:击穿Buried channels:埋沟cat’s whisker detector:触须式检波器channel length modulation:沟道长度调制;chip: 芯片computer-aided design (CAD):计算机辅助设计CVD (chemical vapor deposition) :化学气相淀积Dangling bond: 悬挂键dangling silicon bond :悬挂键;deep submicrometer:深亚微米;degradation:退化;Degrade:退化dehydration:脱水Depletion-mode:耗尽型器件deposited uniformly:均匀淀积deposited uniformly:均匀淀积;development:显影DIBL (drain-induced barrier lowering):漏至势垒降低效应;die: 裸片dielectric constant:介电常数dielectric constant:介电常数;Dielectric:电介质Diffusion:扩散DMOS (double-diffused MOS) :双扩散MOS dopant:掺杂剂doping fluctuations:掺杂工艺的波动Drain:漏(区)Electrode:电极Electron affinity :电子亲和能electron beam lithographic:电子束光刻Energy-bands:能带图Enhancement-mode:增强型EOT(equivalent oxide thickness):等效氧化层厚度;epitaxial:外延;epitaxially grown 外延生长;etch stencil :刻蚀模板etch:刻蚀Field oxide :场氧化层Field oxide:场氧化层Flat-Band V oltage :平带电压Flat-Band V oltage 平带电压floating body:体区浮置gate dielectric:栅介质gate stack:栅叠层GIDL (gate-induced drain leakage):栅感应漏电效应;gradual-channel approximation:渐近沟道近似Hot Carriers Effect:热载流子效应hot-carrier effects: 热载流子效应;impact ionization:碰撞电离;induced electric field:感生电场Interconnection:互联interface state:表面态;interface states:界面态intrinsic Fermi level:本征费米能级inversion layer:反型层Ion Implantation:离子注入kinetic energy:动能;latch-up :闩锁;latch-up:闩锁lattice vibration:晶格振动;LDD(lightly doped drain):轻掺杂漏;momentum:动量;MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor):场效应晶体管nano-scale:纳米级;nonvolatile devices:非挥发性器件nonvolatile devices:非挥发性器件oxidation furnace :氧化炉Oxidation:氧化oxide charges:氧化层电荷Pattern: 样式,图形,集成电路设计中指版图phonons:声子;photolithography:光刻Photomasks:光学掩模photoresist strip:剥离光刻胶Photoresist:光刻胶,光致抗蚀剂Pinched-off :夹断planar technology:平面工艺plasma etch :等离子刻蚀Plasma:等离子Polysilicon:多晶硅Process :工艺(过程)punch-through : 穿通PVD (physical vapor deposition):金属物理气相淀积quantum confinement effect:量子限制效应;retrograde channel doping profile:retrograde channel doping profile:具有逆向(峰值不在表面处的)沟道掺杂分布salicide:自对准金属硅化物工艺scaling limit:按比例缩小的极限self-aligned:自对准SEM:扫瞄式电子显微镜(scanning electron microscope)series resistance:串联电阻sheet-resistance:薄层电阻,方块电阻short-channel effects:短沟道效应;short-channel effects:短沟效应silicide:金属硅化物SIMOX (separation by implantation of oxygen):注氧隔离single-crystal ingot:单晶锭single-crystalline silicon:单晶硅;SOI ( Silicon On Insulator):绝缘层上的硅Source:源(区)space charge region:空间电荷区Spacer:侧墙Specification : 规格,规范Sputtering:溅射stepper : 专用步进曝光机Substrate :衬底Subthreshold :亚阈值subthreshold swing:亚阈摆幅subthreshold swing:亚阈值摆动;Surface scattering :表面散射Technology :技术,工艺thermal equilibrium:热平衡thermal oxidation process:热氧化工艺Threshold voltage:阈值电压tunnel:遂穿ULSI:甚大规模集成电路ultraviolet light: 紫外光Vacuum level :真空能级vertical furnace :井式炉VLSI:超大规模集成电路Volume charge:体电荷wafer:晶片Work function :功函数。
弹性力学elasticity弹性理论theory of elasticity均匀应力状态homogeneous state of stress 应力不变量stress invariant应变不变量strain invariant应变椭球strain ellipsoid均匀应变状态homogeneous state ofstrain 应变协调方程equation of straincompatibility 拉梅常量Lame constants各向同性弹性isotropic elasticity旋转圆盘rotating circular disk 楔wedge开尔文问题Kelvin problem 布西内斯克问题Boussinesq problem艾里应力函数Airy stress function克罗索夫--穆斯赫利什维Kolosoff-利法Muskhelishvili method 基尔霍夫假设Kirchhoff hypothesis 板Plate矩形板Rectangular plate圆板Circular plate环板Annular plate波纹板Corrugated plate加劲板Stiffened plate,reinforcedPlate 中厚板Plate of moderate thickness 弯[曲]应力函数Stress function of bending 壳Shell扁壳Shallow shell旋转壳Revolutionary shell球壳Spherical shell [圆]柱壳Cylindrical shell 锥壳Conical shell环壳Toroidal shell封闭壳Closed shell波纹壳Corrugated shell扭[转]应力函数Stress function of torsion 翘曲函数Warping function半逆解法semi-inverse method瑞利--里茨法Rayleigh-Ritz method 松弛法Relaxation method莱维法Levy method松弛Relaxation 量纲分析Dimensional analysis 自相似[性] self-similarity影响面Influence surface接触应力Contact stress赫兹理论Hertz theory协调接触Conforming contact滑动接触Sliding contact滚动接触Rolling contact压入Indentation各向异性弹性Anisotropic elasticity颗粒材料Granular material散体力学Mechanics of granular media 热弹性Thermoelasticity超弹性Hyperelasticity粘弹性Viscoelasticity对应原理Correspondence principle 褶皱Wrinkle塑性全量理论Total theory of plasticity 滑动Sliding微滑Microslip粗糙度Roughness非线性弹性Nonlinear elasticity大挠度Large deflection突弹跳变snap-through有限变形Finite deformation格林应变Green strain阿尔曼西应变Almansi strain弹性动力学Dynamic elasticity运动方程Equation of motion准静态的Quasi-static气动弹性Aeroelasticity水弹性Hydroelasticity颤振Flutter弹性波Elastic wave简单波Simple wave柱面波Cylindrical wave水平剪切波Horizontal shear wave竖直剪切波Vertical shear wave 体波body wave无旋波Irrotational wave畸变波Distortion wave膨胀波Dilatation wave瑞利波Rayleigh wave等容波Equivoluminal wave勒夫波Love wave界面波Interfacial wave边缘效应edge effect塑性力学Plasticity可成形性Formability金属成形Metal forming耐撞性Crashworthiness结构抗撞毁性Structural crashworthiness 拉拔Drawing破坏机构Collapse mechanism 回弹Springback挤压Extrusion冲压Stamping穿透Perforation层裂Spalling塑性理论Theory of plasticity安定[性]理论Shake-down theory运动安定定理kinematic shake-down theorem静力安定定理Static shake-down theorem 率相关理论rate dependent theorem 载荷因子load factor加载准则Loading criterion加载函数Loading function加载面Loading surface塑性加载Plastic loading塑性加载波Plastic loading wave简单加载Simple loading比例加载Proportional loading 卸载Unloading卸载波Unloading wave冲击载荷Impulsive load阶跃载荷step load脉冲载荷pulse load极限载荷limit load中性变载nentral loading拉抻失稳instability in tension 加速度波acceleration wave本构方程constitutive equation 完全解complete solution名义应力nominal stress过应力over-stress真应力true stress等效应力equivalent stress流动应力flow stress应力间断stress discontinuity应力空间stress space主应力空间principal stress space静水应力状态hydrostatic state of stress 对数应变logarithmic strain工程应变engineering strain等效应变equivalent strain应变局部化strain localization应变率strain rate应变率敏感性strain rate sensitivity 应变空间strain space有限应变finite strain塑性应变增量plastic strain increment 累积塑性应变accumulated plastic strain 永久变形permanent deformation内变量internal variable应变软化strain-softening理想刚塑性材料rigid-perfectly plasticMaterial 刚塑性材料rigid-plastic material理想塑性材料perfectl plastic material 材料稳定性stability of material 应变偏张量deviatoric tensor of strain 应力偏张量deviatori tensor of stress 应变球张量spherical tensor of strain 应力球张量spherical tensor of stress 路径相关性path-dependency线性强化linear strain-hardening应变强化strain-hardening随动强化kinematic hardening各向同性强化isotropic hardening强化模量strain-hardening modulus幂强化power hardening 塑性极限弯矩plastic limit bendingMoment 塑性极限扭矩plastic limit torque弹塑性弯曲elastic-plastic bending 弹塑性交界面elastic-plastic interface 弹塑性扭转elastic-plastic torsion粘塑性Viscoplasticity非弹性Inelasticity理想弹塑性材料elastic-perfectly plasticMaterial 极限分析limit analysis极限设计limit design极限面limit surface上限定理upper bound theorem上屈服点upper yield point下限定理lower bound theorem下屈服点lower yield point界限定理bound theorem初始屈服面initial yield surface后继屈服面subsequent yield surface屈服面[的]外凸性convexity of yield surface 截面形状因子shape factor of cross-section沙堆比拟sand heap analogy 屈服Yield 屈服条件yield condition屈服准则yield criterion屈服函数yield function屈服面yield surface塑性势plastic potential 能量吸收装置energy absorbing device 能量耗散率energy absorbing device 塑性动力学dynamic plasticity 塑性动力屈曲dynamic plastic buckling 塑性动力响应dynamic plastic response 塑性波plastic wave运动容许场kinematically admissibleField 静力容许场statically admissibleField 流动法则flow rule速度间断velocity discontinuity滑移线slip-lines滑移线场slip-lines field移行塑性铰travelling plastic hinge 塑性增量理论incremental theory ofPlasticity米泽斯屈服准则Mises yield criterion 普朗特--罗伊斯关系prandtl- Reuss relation 特雷斯卡屈服准则Tresca yield criterion洛德应力参数Lode stress parameter莱维--米泽斯关系Levy-Mises relation亨基应力方程Hencky stress equation赫艾--韦斯特加德应力空Haigh-Westergaard 间stress space洛德应变参数Lode strain parameter德鲁克公设Drucker postulate盖林格速度方程Geiringer velocityEquation结构力学structural mechanics结构分析structural analysis结构动力学structural dynamics拱Arch三铰拱three-hinged arch抛物线拱parabolic arch圆拱circular arch穹顶Dome空间结构space structure空间桁架space truss雪载[荷] snow load风载[荷] wind load土压力earth pressure地震载荷earthquake loading弹簧支座spring support支座位移support displacement支座沉降support settlement超静定次数degree of indeterminacy机动分析kinematic analysis结点法method of joints截面法method of sections结点力joint forces共轭位移conjugate displacement影响线influence line三弯矩方程three-moment equation单位虚力unit virtual force刚度系数stiffness coefficient柔度系数flexibility coefficient力矩分配moment distribution力矩分配法moment distribution method 力矩再分配moment redistribution分配系数distribution factor矩阵位移法matri displacement method 单元刚度矩阵element stiffness matrix 单元应变矩阵element strain matrix总体坐标global coordinates贝蒂定理Betti theorem高斯--若尔当消去法Gauss-Jordan eliminationMethod 屈曲模态buckling mode复合材料力学mechanics of composites复合材料composite material 纤维复合材料fibrous composite单向复合材料unidirectional composite泡沫复合材料foamed composite颗粒复合材料particulate composite 层板Laminate夹层板sandwich panel正交层板cross-ply laminate斜交层板angle-ply laminate 层片Ply多胞固体cellular solid 膨胀Expansion压实Debulk劣化Degradation脱层Delamination脱粘Debond纤维应力fiber stress层应力ply stress层应变ply strain层间应力interlaminar stress比强度specific strength强度折减系数strength reduction factor 强度应力比strength -stress ratio 横向剪切模量transverse shear modulus 横观各向同性transverse isotropy正交各向异Orthotropy剪滞分析shear lag analysis短纤维chopped fiber长纤维continuous fiber纤维方向fiber direction纤维断裂fiber break纤维拔脱fiber pull-out纤维增强fiber reinforcement致密化Densification最小重量设计optimum weight design 网格分析法netting analysis混合律rule of mixture失效准则failure criterion蔡--吴失效准则Tsai-W u failure criterion 达格代尔模型Dugdale model断裂力学fracture mechanics概率断裂力学probabilistic fractureMechanics格里菲思理论Griffith theory线弹性断裂力学linear elastic fracturemechanics, LEFM弹塑性断裂力学elastic-plastic fracturemecha-nics, EPFM 断裂Fracture 脆性断裂brittle fracture解理断裂cleavage fracture蠕变断裂creep fracture延性断裂ductile fracture晶间断裂inter-granular fracture 准解理断裂quasi-cleavage fracture 穿晶断裂trans-granular fracture 裂纹Crack裂缝Flaw缺陷Defect割缝Slit微裂纹Microcrack折裂Kink椭圆裂纹elliptical crack深埋裂纹embedded crack[钱]币状裂纹penny-shape crack预制裂纹Precrack短裂纹short crack表面裂纹surface crack裂纹钝化crack blunting裂纹分叉crack branching裂纹闭合crack closure裂纹前缘crack front裂纹嘴crack mouth裂纹张开角crack opening angle,COA 裂纹张开位移crack opening displacement,COD裂纹阻力crack resistance裂纹面crack surface裂纹尖端crack tip裂尖张角crack tip opening angle,CTOA裂尖张开位移crack tip openingdisplacement, CTOD裂尖奇异场crack tip singularityField裂纹扩展速率crack growth rate稳定裂纹扩展stable crack growth定常裂纹扩展steady crack growth亚临界裂纹扩展subcritical crack growth 裂纹[扩展]减速crack retardation 止裂crack arrest 止裂韧度arrest toughness断裂类型fracture mode滑开型sliding mode张开型opening mode撕开型tearing mode复合型mixed mode撕裂Tearing 撕裂模量tearing modulus断裂准则fracture criterionJ积分J-integralJ阻力曲线J-resistance curve断裂韧度fracture toughness应力强度因子stress intensity factor HRR场Hutchinson-Rice-RosengrenField 守恒积分conservation integral 有效应力张量effective stress tensor 应变能密度strain energy density 能量释放率energy release rate内聚区cohesive zone塑性区plastic zone张拉区stretched zone热影响区heat affected zone, HAZ 延脆转变温度brittle-ductile transitiontempe- rature 剪切带shear band剪切唇shear lip无损检测non-destructive inspection 双边缺口试件double edge notchedspecimen, DEN specimen 单边缺口试件single edge notchedspecimen, SEN specimen 三点弯曲试件three point bendingspecimen, TPB specimen 中心裂纹拉伸试件center cracked tensionspecimen, CCT specimen 中心裂纹板试件center cracked panelspecimen, CCP specimen 紧凑拉伸试件compact tension specimen,CT specimen 大范围屈服large scale yielding 小范围攻屈服small scale yielding 韦布尔分布Weibull distribution 帕里斯公式paris formula空穴化Cavitation应力腐蚀stress corrosion概率风险判定probabilistic riskassessment, PRA 损伤力学damage mechanics 损伤Damage连续介质损伤力学continuum damage mechanics 细观损伤力学microscopic damage mechanics 累积损伤accumulated damage脆性损伤brittle damage延性损伤ductile damage宏观损伤macroscopic damage细观损伤microscopic damage微观损伤microscopic damage损伤准则damage criterion损伤演化方程damage evolution equation 损伤软化damage softening损伤强化damage strengthening损伤张量damage tensor损伤阈值damage threshold损伤变量damage variable损伤矢量damage vector损伤区damage zone疲劳Fatigue 低周疲劳low cycle fatigue应力疲劳stress fatigue随机疲劳random fatigue蠕变疲劳creep fatigue腐蚀疲劳corrosion fatigue疲劳损伤fatigue damage疲劳失效fatigue failure疲劳断裂fatigue fracture 疲劳裂纹fatigue crack疲劳寿命fatigue life疲劳破坏fatigue rupture疲劳强度fatigue strength 疲劳辉纹fatigue striations 疲劳阈值fatigue threshold 交变载荷alternating load 交变应力alternating stress 应力幅值stress amplitude 应变疲劳strain fatigue应力循环stress cycle应力比stress ratio安全寿命safe life过载效应overloading effect 循环硬化cyclic hardening 循环软化cyclic softening 环境效应environmental effect 裂纹片crack gage裂纹扩展crack growth, crackPropagation裂纹萌生crack initiation 循环比cycle ratio实验应力分析experimental stressAnalysis工作[应变]片active[strain] gage基底材料backing material应力计stress gage零[点]飘移zero shift, zero drift 应变测量strain measurement应变计strain gage应变指示器strain indicator应变花strain rosette应变灵敏度strain sensitivity 机械式应变仪mechanical strain gage 直角应变花rectangular rosette引伸仪Extensometer应变遥测telemetering of strain 横向灵敏系数transverse gage factor 横向灵敏度transverse sensitivity 焊接式应变计weldable strain gage 平衡电桥balanced bridge粘贴式应变计bonded strain gage粘贴箔式应变计bonded foiled gage粘贴丝式应变计bonded wire gage 桥路平衡bridge balancing电容应变计capacitance strain gage 补偿片compensation technique 补偿技术compensation technique 基准电桥reference bridge电阻应变计resistance strain gage 温度自补偿应变计self-temperaturecompensating gage半导体应变计semiconductor strainGage 集流器slip ring应变放大镜strain amplifier疲劳寿命计fatigue life gage电感应变计inductance [strain] gage 光[测]力学Photomechanics光弹性Photoelasticity光塑性Photoplasticity杨氏条纹Young fringe双折射效应birefrigent effect等位移线contour of equalDisplacement 暗条纹dark fringe条纹倍增fringe multiplication 干涉条纹interference fringe 等差线Isochromatic等倾线Isoclinic等和线isopachic应力光学定律stress- optic law主应力迹线Isostatic亮条纹light fringe光程差optical path difference 热光弹性photo-thermo -elasticity 光弹性贴片法photoelastic coatingMethod光弹性夹片法photoelastic sandwichMethod动态光弹性dynamic photo-elasticity 空间滤波spatial filtering空间频率spatial frequency起偏镜Polarizer反射式光弹性仪reflection polariscope残余双折射效应residual birefringentEffect 应变条纹值strain fringe value应变光学灵敏度strain-optic sensitivity 应力冻结效应stress freezing effect 应力条纹值stress fringe value应力光图stress-optic pattern暂时双折射效应temporary birefringentEffect 脉冲全息法pulsed holography透射式光弹性仪transmission polariscope 实时全息干涉法real-time holographicinterfero - metry 网格法grid method全息光弹性法holo-photoelasticity 全息图Hologram全息照相Holograph全息干涉法holographic interferometry 全息云纹法holographic moire technique 全息术Holography全场分析法whole-field analysis散斑干涉法speckle interferometry 散斑Speckle错位散斑干涉法speckle-shearinginterferometry, shearography 散斑图Specklegram白光散斑法white-light speckle method 云纹干涉法moire interferometry [叠栅]云纹moire fringe[叠栅]云纹法moire method 云纹图moire pattern离面云纹法off-plane moire method参考栅reference grating试件栅specimen grating分析栅analyzer grating面内云纹法in-plane moire method 脆性涂层法brittle-coating method条带法strip coating method坐标变换transformation ofCoordinates计算结构力学computational structuralmecha-nics 加权残量法weighted residual method 有限差分法finite difference method 有限[单]元法finite element method 配点法point collocation里茨法Ritz method广义变分原理generalized variationalPrinciple 最小二乘法least square method胡[海昌]一鹫津原理Hu-Washizu principle赫林格-赖斯纳原理Hellinger-ReissnerPrinciple 修正变分原理modified variationalPrinciple 约束变分原理constrained variationalPrinciple 混合法mixed method杂交法hybrid method边界解法boundary solution method 有限条法finite strip method半解析法semi-analytical method协调元conforming element非协调元non-conforming element混合元mixed element杂交元hybrid element边界元boundary element 强迫边界条件forced boundary condition 自然边界条件natural boundary condition 离散化Discretization离散系统discrete system连续问题continuous problem广义位移generalized displacement 广义载荷generalized load广义应变generalized strain广义应力generalized stress界面变量interface variable 节点node, nodal point [单]元Element角节点corner node边节点mid-side node内节点internal node无节点变量nodeless variable 杆元bar element桁架杆元truss element 梁元beam element二维元two-dimensional element 一维元one-dimensional element 三维元three-dimensional element 轴对称元axisymmetric element 板元plate element壳元shell element厚板元thick plate element三角形元triangular element四边形元quadrilateral element 四面体元tetrahedral element曲线元curved element二次元quadratic element线性元linear element三次元cubic element四次元quartic element等参[数]元isoparametric element超参数元super-parametric element 亚参数元sub-parametric element节点数可变元variable-number-node element 拉格朗日元Lagrange element拉格朗日族Lagrange family巧凑边点元serendipity element巧凑边点族serendipity family无限元infinite element单元分析element analysis单元特性element characteristics 刚度矩阵stiffness matrix几何矩阵geometric matrix等效节点力equivalent nodal force 节点位移nodal displacement节点载荷nodal load位移矢量displacement vector载荷矢量load vector质量矩阵mass matrix集总质量矩阵lumped mass matrix相容质量矩阵consistent mass matrix 阻尼矩阵damping matrix瑞利阻尼Rayleigh damping刚度矩阵的组集assembly of stiffnessMatrices载荷矢量的组集consistent mass matrix质量矩阵的组集assembly of mass matrices 单元的组集assembly of elements局部坐标系local coordinate system局部坐标local coordinate面积坐标area coordinates体积坐标volume coordinates曲线坐标curvilinear coordinates静凝聚static condensation合同变换contragradient transformation 形状函数shape function试探函数trial function检验函数test function权函数weight function样条函数spline function代用函数substitute function降阶积分reduced integration零能模式zero-energy modeP收敛p-convergenceH收敛h-convergence掺混插值blended interpolation等参数映射isoparametric mapping双线性插值bilinear interpolation小块检验patch test非协调模式incompatible mode节点号node number单元号element number带宽band width带状矩阵banded matrix变带状矩阵profile matrix带宽最小化minimization of band width 波前法frontal method子空间迭代法subspace iteration method 行列式搜索法determinant search method 逐步法step-by-step method纽马克法Newmark威尔逊法Wilson拟牛顿法quasi-Newton method牛顿-拉弗森法Newton-Raphson method 增量法incremental method初应变initial strain初应力initial stress切线刚度矩阵tangent stiffness matrix 割线刚度矩阵secant stiffness matrix 模态叠加法mode superposition method 平衡迭代equilibrium iteration子结构Substructure子结构法substructure technique 超单元super-element网格生成mesh generation结构分析程序structural analysis program 前处理pre-processing后处理post-processing网格细化mesh refinement应力光顺stress smoothing组合结构composite structure。
a r X i v :c o n d -m a t /0109206v 1 [c o n d -m a t .s o f t ] 12 S e p 2001Relaxation of surface charge on rotating dielectric spheres:Implications on dynamic electrorheological effectsJones T.K.Wan 1,K.W.Yu 1and G.Q.Gu 1,21Department of Physics,The Chinese University of Hong Kong,Shatin,New Territories,Hong Kong,China 2College of Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China Abstract We have examined the effect of an oscillatory rotation of a polarized dielectric particle.The rotational motion leads to a re-distribution of the polarization charge on the surface of the particle.We show that the time averaged steady-state dipole moment is along the field direction,but its magnitude is reduced by a factor which depends on the angular velocity of rotation.As a result,the rotational motion of the particle reduces the electrorheological effect.We further assume that the relaxation of polarized charge is arised from a finite conductivity of the particle or host medium.We calculate the relaxation time based on the Maxwell-Wagner theory,suitably generalized to include the rotational motion.Analytic expressions for the reduction factor and the relaxation time are given and their dependence on the angular velocity ofrotation will be discussed.PACS Numbers:83.80.Gv,77.84.Lf,77.22.Gm,41.20.CvTypeset using REVT E XI.INTRODUCTIONThe prediction of the strength of the electrorheological(ER)effect is still a main concern in theoretical investigation of ERfluids[1–5].An ERfluid is a suspension of highly polarized particles in an insulating host.The ER effect originates from the induced interaction between the polarized particles in an ERfluid.Upon the application of an intense electricfield,the particles in ERfluid aggregate into chains and then aggregate into columns in a short response time[3,4].The rapidfield-induced transition between thefluid and solid phase makes this material important both for wide industrial applications and for experimental and theoretical investigation.In deriving the induced interactions between particles,existing theories assume that the particles are at rest[6–10].In a realistic situation,thefluidflow exerts force and torque on the particles,setting the particles in both translational and rotational motions.For instance,the shearflow in an ER suspension exerts a toque on the particles,which leads to a rotational motion of the particles about their centers[11].Recent experiments gave evidences that the induced forces between the rotating particles can be different from the values predicted by existing theories[12].To gain some insight into the phenomenon,we have recently formulated a theoretical model,which describes the relaxation of polarized charge on the surface of a uniformly rotating particle[13].We showed that the rotational motion of the particles reduces the induced forces between the particles.We called the reduction of interparticle forces due to the rotational motion of the particles the dynamic ER effects[13].In this work,we extend the consideration to an arbitrary rotational motion.In particular,we will obtain the steady-state dipole moment of a rotating sphere under a sinusoidal oscillatory shear motion. We further assume that the relaxation of polarized charge is due to afinite conductivity of the particle or host medium.We will derive an analytic expression for the relaxation time. The dependence of the reduction factor and the relaxation time on the angular velocity of rotation will also be calculated.II.STEADY-STATE DIPOLE MOMENTConsider a dielectric sphere under the influence of an electricfield E0=E0ˆz;its induced dipole moment is given by: p0=p0ˆz.Assume that it is under a rotational motion of angular velocity ω=−ωˆy.For a rotating dielectric sphere in an electricfield,the rotational motion leads to a displacement of its polarized charges on the surface of sphere.As a result,there is a change of the dipole moment,described by ω× p.The surface charges also suffer from relaxation of various kinds,and the rate of change of the dipole moment is described by −( p− p0)/τ,whereτis a relaxation time.The two effects have to be balanced against each other,resulting in a steady state dipole moment p,which deviates from the equilibrium dipole moment p0.Let the resultant dipole moment be p=p xˆx+p yˆy+p zˆz.The rate of change of the dipole moment is given by:d pτ( p− p0),(1) where thefirst term on the right hand side is due to the rotational motion and the second term is due to a relaxation process,in which the relaxation timeτis determined by the details of the relaxation process.In component form,the differential equation reads:˙p x=−p xτ,˙p z=ωp x−(p z−p0)dt= iω−1τ.(2)With the initial condition˜p=˜p0when t=0,Eq.(2)admits a standard solution:˜p e I−˜p0=˜p0 t0e Iτ−iω dt,(3)where I is the integration factor.For a uniform rotational motion,ω=ω0is a constant, I=t1−iω0τ 1−iω0τe−t(1−iω0τ)/τ .As t goes to infinity,we obtain the steady-state solution for a uniform rotation:˜p=˜p0τe I˙I =˜p01−iθ0kτcos kt =p0i−θ0kτcos ktp0=0andp zAs a result,the motion of particles reduces the ER effect.We define the reduction factor R as:R = p zσ1+2σm ,(9)where ǫ1,ǫm (σ1,σm )denote the dielectric constant (conductivity)of the sphere and host medium respectively,ǫ0is the permittivity of free space.For typical values of the permittiv-ities and conductivities of common ER fluids,the relaxation time ranges from microseconds to milliseconds,and the dynamic ER effect can be observed in experiments.In order to account for the impact of a rotational motion on the relaxation time,we first replace ǫ1inEq.(9)by ǫ1=1+χ1,where χ1is the susceptibility of the sphere.We already showed that the dipole moment is reduced by a factor R .If we assume that the polarization is uniform throughout the sphere,which can be achieved when the oscillating frequency is high,we may write ǫ1=1+Rχ1in Eq.(9).Physically it means that the effective polarization of the sphere is reduced as a result of the rotational motion,leading to a reduction of the effective dielectric constant of the sphere.After some simplifications,we obtainτ=τ∞+τ0−τ∞1+θ20k 2τ2,(10)whereτ∞=ǫ0 1+2ǫmσ1+2σm.It can be shown thatτ=τ0for kθ0=0andτ→τ∞for kθ0→∞.Eq.(10)is a self-consistent equation forτand we can calculate the relaxation time self-consistently.IV.NUMERICAL RESULTSTo examine the dependence of the reduction factor R on the angular velocity kθ0,we plot R vs.kθ0in Fig.1for several different values ofτ0.Without loss of generality(i.e.,in terms of some unit relaxation time),we chooseτ∞=1andτ0=2,4and8respectively.The reduction factor decreases rapidly with the increase of kθ0,which means that the dipole moment is greatly reduced when both the oscillation frequency k and the oscillation amplitudeθ0 become large.Next we see how the relaxation time depends on kθ0.From Eq.(10),τis bounded between τ0andτ∞.The lower boundτ∞is reached when kθ0tends to infinity,which is achieved at large frequency.For a larger value ofτ0,the relaxation time decreases more rapidly with kθ0.The condition of high oscillation frequency reads:k≫1p0=0andp zHence,on the average, p z /p0must decrease when we increase the oscillation amplitudeθ0.Now we examine the case for a constant amplitudeθ0but varying frequency k.This is a realistic case since in experiment we can hardly increase the amplitude but we can easily change the frequency.In the right panel of Fig.1,we chooseθ0=π/4and k=1and3. The results for constant k and constantθ0show similar time dependence.However,p x and p z show a larger variation in their magnitudes,if we increases the value of k.It should be remarked that we have assumed that the oscillation frequency is high so that the relaxation time is nearly constant during the motion.V.DISCUSSION AND CONCLUSIONHere a few comments on our results are in order.As our steady-state solution is general, one can extend the calculations to an arbitrary rotational motion.We have shown that the motion of particles reduces the strength of the dipole moment.It is natural to further cal-culate the interparticle force between two rotating spheres.We expect that the interparticle force will be reduced substantially because the force between parallel dipoles changes from attractive to repulsive when their orientation varies from the transverse to longitudinalfield case.So far,our derivation of relaxation time is based on the meanfield theory.We may extend the Maxwell-Wagner theory to the polarization relaxation of oscillating particles.In this case,we should add a termρP v to the polarization current density,whereρP is the polarized charge density and v= ω× r is the rotating velocity.However,it is not possible to convert the extra term into a dielectric constant and the generalization becomes more complicated due to the nonuniform polarized charge density inside the rotating spherical inclusions.We are currently examining the solution of the more complicated boundary-value problem.Theflow in ERfluid may be nonsteady in usual operation situations.But the prevailing situation in theory and simulation of ERfluids is to use formulas derived with respect to a steadyflow.To remedy this drawback,we will endeavor to develop calculation methodfor suspension hydrodynamics,and use it to study the interaction between particles and the oscillatingfluid,and derive formulas of the force and torque exerted on particles for a suspension[15].In this work,hydrodynamic(HD)interaction effects have not been considered.However, electrorheologicalfluids are locally very concentrated suspensions and in considering dynamic effects,it seems that HD effects can be strong.And this is a future problem.In conclusion,we have investigated the problem of how the dipole moment of a dielectric sphere varies with time for an arbitrary rotational motion.We have developed a formalism for the rotational motion of the sphere and derived the relaxation time by using the mean field theory.We have shown that the time averaged steady-state dipole moment is along the field direction,but its magnitude is reduced by a factor which depends on the frequency of oscillation.As a result,the motion of particles reduces the ER effect.We further calculate the relaxation time based on the Maxwell-Wagner theory.The dependence of the reduction factor and the relaxation time on the angular velocity of rotation has also been discussed.ACKNOWLEDGEMENTThis work was supported by the Research Grants Council of the Hong Kong SAR Gov-ernment under grant CUHK4284/00P.G.Q.G.acknowledgesfinancial support from the Key Project of the National Natural Science Foundation of China under grant19834070.K. W.Y.thanks Professor Hong Sun for suggestion of the integration factor approach and for many fruitful discussions.REFERENCES[1]P.P.Phul´e and J.M.Ginder,MRS Bulletin23,19(1998).[2]D.J.Klingenberg,MRS Bulletin,23,30(1998).[3]T.C.Halsey and W.Toor,J.Stat.Phys.61,1257(1990).[4]R.Tao and J.M.Sun,Phys.Rev.Lett.67,398(1991).[5]T.C.Halsey,Science258,761(1992).[6]D.J.Klingenberg,F.van Swol,and C.F.Zukoski,J.Chem.Phys.94,6160(1991).[7]D.J.Klingenberg,F.van Swol,and C.F.Zukoski,J.Chem.Phys.91,7888(1989).[8]D.J.Klingenberg and C.F.Zukoski,Langmuir6,15(1990).[9]Z.W.Wang,Z.F.Lin,and R.B.Tao,Int.J.Mod.Phys.B10,1153(1996).[10]Z.W.Wang,Z.F.Lin,and R.B.Tao,J.Phys.D30,1265(1997).[11]dd,J.Chem.Phys.88,5051(1988).[12]L.Lobry and E.Lemaire,J.Electrostat.47,61(1999).[13]Jones T.K.Wan,K.W.Yu and G.Q.Gu,Phys.Rev.E62,in press(November2000).[14]W.B.Russel,D.A.Saville,and W.R.Schowalter,Colloidal Dispersions(CambridgeUniversity Press,Cambridge,England,1989).[15]P.Mazur and D.Bedeaux,Physica76,235(1974).FIGURESFIG.1.The reduction factor R(left panel)and the relaxation time(right panel)τforτ∞=1. The reduction factor decreases drastically for increasing kθ0.The relaxation time reaches its minimum value at large kθ0.FIG.2.The reduced dipole moment p x/p0and p z/p0plotted as a function of time for various frequency dependentτ(τ0=2,τ∞=1).0.0 5.010.015.020.0k θ00.00.20.40.60.81.0Rτ0=2τ0=4τ0=80.0 5.010.015.020.0k θ00.02.04.06.08.0ττ0=2τ0=4τ0=8Fig.1/Wan,Yu and Gu0.00.5 1.0 1.5 2.0t/π0.00.20.40.60.81.0p z /p0.00.5 1.0 1.5 2.0t/π0.00.20.40.60.81.0p z /p0.00.51.01.52.0t/π−1.0−0.50.00.51.0p x /p 0θ0=π/4k=1k=30.00.5 1.0 1.5 2.0t/π−1.0−0.50.00.51.0p x /p 0k=1θ0=π/4θ0=π/2θ0=πFig.2/Wan,Yu and Gu。