第十六保角变换法求解定解问题-PPT精选文档
- 格式:ppt
- 大小:645.50 KB
- 文档页数:36
1 应用原理及特点在矿场水力压裂中,如何针对有效渗透率和厚 度不等的特定储层,设计出缝长和导流能力的优化 方案, 是应考虑的首要问题之一。
另外需要一种计算裂缝井产能的简易方法。
应用保角变换方法研究压裂井产能,其原理及特点是:①能将 z 平面上特别复杂的渗流问题转化为平面上一相对简单和易于求解的渗流问题;② 可准确地描述井筒附近较为复杂的流动型态( 裂缝 内流动和非裂缝区域拟径向流动) 对压裂后产能的贡献,而且能对不同导流能力造成的复杂流线型态 统一转化,因而具有广泛的适应性;③经过保角变换后假设的缝端封闭边界条件更符合实际,因保角变换后, 裂缝端部位于主流线上。
以此为基础,应用质量守衡定律和达西运动方程,推导出了裂缝内原油 流动所满足的压力二阶微分方程, 并进行了产量的 求解,与现有的典型曲线对比,一致性程度较好。
2 数学模型2、1模拟的假设条件 模拟的假设条件是: ①垂直裂缝 , 且对称分布于油井的两边; ②假设裂缝剖面为矩形, 高度恒定, 并等于油层厚度 ; ③裂缝宽度相对油藏的供给半径来 说非常小,即在进行保角变换时可忽略不记; ④裂缝 内导流能力可以是有限导流, 也可以是无限导流; ⑤油藏及裂缝内为单相流动,且符合达西线性定律; ⑥稳态渗流,且不考虑地层的垂向流动; ⑦不考虑地层和裂缝内的污染。
2、2模型 的建立在 z 平面上建立 一 Y 坐标系,保角变换转化为平面 r — s 坐标系( 图1 )图一 保角变换示意图取保角变换为:chw L z f =2ww e e chw -+=式中:z 为Z 平面上的复变函数,i y x z +=,f L 为裂缝半长,m;w 为变换后的W 平面,''i y x w +=。
裂缝井的渗流问题从而演变为带状地层向中心 线A 的单向渗流问题。
由于对称性 , 只研究 平 面中图示阴影部分的单向渗流问题。
其中'O 为''B A 的中点 , 即2''π=A O 。
Mathematical Methods for Physics第二篇数学物理方程Mathematical Equations for Physics要想探索自然界的奥秘就得解微分方程。
-牛顿中心:将物理问题翻译成数学语言 目的:1、如何用数理方程研究物理问题2、如何导出方程3、能正确写出定解问题§ 6.1 引言Introduction第六章 定解问题Mathematical Problem1、数学物理方程概念:数学物理方程是指从物理、工程问题中,导出的反映客观物理量在各个地点、时刻之间相互制约关系的一些偏微分方程。
数学物理方程 ♣ 线性方程♦♥ 非线性方程一、数理方程简介:§ 6.1 引言一、数理方程简介§ 6.1 引言ttu =a2⊗u +fut=D⊗u +f2、数理方程的产生和发展:(1)十八世纪初期(2)十九世纪中期三类数学物理方程:波动方程u -波动,a-波速,f-与源有关的函数输运方程u -浓度,D-系数,f -与源有关的已知量泊松方程h-与源有关的已知量,u-表示稳定物理量+fxx2Taylor :utt=a u⊗u =-h一、数理方程简介:§ 6.1 引言a u2、数理方程的产生和发展:(3)十九世纪末到二十世纪初高阶方程(梁的横振动):utt= 2xxxxf ( x, t )非线性方程KdV:ut+σuux+uxxx= 0∂ψh2schro&-dinger:i h∂t=-Δψ2μ+U(r)ψ+1、写出定解问题♣ 泛定方程:数理方程(一般规律)♦♥ 定解条件:初始、边界、衔接条件(个性)如:y '(t) - 4 y = 0♣y ' -4y = 0 -泛定方程♠y(0) = 0 ↔ y = C e 2t+ C e -2t♦ ← -定解条件 12-通解♠♥y '( 0) = 4↑♦1、写出定解问题2、求解:求解方法: 行波法、分离变量法、积分变换法、格林函数法、保角变换法、复变函数法、变分法 ♣ 物理意义3、分析解答:♠♠ ♣存在 ♠♥ 适定性 ♦唯一♠♥稳定数学物理方法物理(内容)桥梁数学(成果)、数理方法的特点三 § 6.1 引言。