相似三角形的判定1.3 两个三角形相似的判定(1)及答案
- 格式:doc
- 大小:394.50 KB
- 文档页数:10
(一)相似三角形1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形.①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例.2、相似三角形对应边的比叫做相似比.①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似.①定理的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE;(双A型)②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”;③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
可简单说成:两角对应相等,两三角形相似。
例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.例2、如图,E 、F 分别是△ABC 的边BC 上的点,DE ∥AB,DF ∥AC , 求证:△ABC ∽△DEF.判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
相似三角形的判定和判定方法1.边长比较法:通过比较两个三角形的各个边长,可以判断它们是否相似。
如果两个三角形的对应边长成比例关系,即每对对应边长之比相等,那么这两个三角形是相似的。
比如,如果一个三角形的边长是另一个三角形的边长的两倍,那么这两个三角形就是相似的。
2.角度比较法:通过比较两个三角形的各个角度,可以判断它们是否相似。
如果两个三角形的对应角度相等(或互为对应角的补角),那么这两个三角形是相似的。
比如,如果一个三角形的一对内角是另一个三角形的一对内角的两倍,那么这两个三角形就是相似的。
3.角边比较法:通过比较两个三角形的一个角和对边的比值,可以判断它们是否相似。
如果两个三角形的一个角相等,并且对应边长之比相等,那么这两个三角形是相似的。
比如,如果一个三角形的一个角是60度,它的对边长是另一个三角形的一个角是30度,它的对边长的两倍,那么这两个三角形就是相似的。
4.比例关系法:通过使用相似三角形的比例关系,可以判断两个三角形是否相似。
根据数学原理,如果两个三角形的对应边长之比相等,那么它们是相似的。
这个比例关系可以表示为:AB/DE=BC/EF=AC/DF其中AB、BC、AC分别是一个三角形的三条边长,DE、EF、DF分别是另一个三角形的对应边长。
如果这个比例关系满足,那么这两个三角形就是相似的。
需要注意的是,相似三角形的判定必须满足两个条件:对应角度相等(或互为对应角的补角),以及对应边长成比例关系。
如果只满足其中一个条件,那么这两个三角形不是相似的。
此外,还可以根据相似三角形的性质解决一些图像类问题,比如计算物体在投影变换下的大小、角度等。
在计算机图形学和计算机视觉领域,相似三角形的概念被广泛应用于图像识别、图像重建等算法中。
总之,判定两个三角形是否相似有多种方法,包括比较边长、角度和使用比例关系。
通过这些方法,可以解决一些几何和图像问题,应用广泛。
第2课时 相似三角形的判定定理101 基础题知识点 两角分别相等的两个三角形相似1.如图,D 是BC 上的点,∠ADB =∠BAC,则下列结论正确的是(B) A.△ABC ∽△DAC B.△ABC ∽△DBA C.△ABD ∽△ACD D.以上都不对2.如图,在矩形ABCD 中,E 在AD 上,EF ⊥BE,交CD 于F,连接BF,则图中与△ABE 一定相似的三角形是(B)A.△EFBB.△DEFC.△CFBD.△EFB 和△DEF3.∠1=∠2是下列四个图形的共同条件,则四个图中不一定有相似三角形的是(D)4.(长春中考)如图,∠ABD =∠BDC =90°,∠A =∠CBD,AB =3,BD =2,则CD 的长为(B)A.34B.43C.2D.35.如图,锐角△ABC的边AB和AC上的高线CE和BF相交于点D.请写出图中的一对相似三角形:答案不唯一,如△ABF∽△DBE或△ACE∽△DCF或△EDB∽△FDC等.6.如图,∠C=∠E=90°,AD=10,DE=8,AB=5,则AC=3.7.(怀化中考)如图,已知在△ABC与△DEF中,∠C=54°,∠A=47°,∠F=54°,∠E=79°,求证:△ABC∽△DEF.证明:在△ABC中,∠B=180°-∠A-∠C=79°,∴∠B=∠E.又∵∠C=∠F,∴△ABC∽△DEF.8.如图,点B.D.C.F在一条直线上,且AB∥EF,AC∥DE,求证:△ABC∽△EFD.证明:∵AB∥EF,AC∥DE,∴∠B=∠F,∠ACB=∠EDF.∴△ABC∽△EFD.02 中档题9.(江阴模拟)下列条件中,能判定两个等腰三角形相似的是(C)A.都含有一个30°的内角B.都含有一个45°的内角C.都含有一个60°的内角D.都含有一个80°的内角10.(安徽中考)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为(B)A.4B.4 2C.6D.4 311.如图,∠1=∠2,请补充一个条件:∠C=∠E或∠B=∠ADE(答案不唯一),使△ABC∽△ADE.12.如图,等边三角形ABC的边长为3,点P为BC边上一点,且BP=1,点D为AC边上一点,若∠APD=60°,则CD的长为23 .13.如图,AD.BE 是钝角△ABC 的边BC.AC 上的高,求证:AD BE =ACBC.证明:∵AD.BE 是钝角△ABC 的高,∴∠BEC =∠ADC =90°. 又∵∠DCA =∠ECB, ∴△DAC ∽△EBC. ∴AD BE =AC BC. 14.如图,在矩形ABCD 中,E 为BC 上一点,DF ⊥AE 于点F. (1)△ABE 与△DFA 相似吗?请说明理由;(2)若AB =6,AD =12,AE =10,求DF 的长. 解:(1)△ABE ∽△DFA. 理由:∵四边形ABCD 是矩形, DF ⊥AE,∴∠B =∠DFA =90°.∴∠FAD +∠FDA =90°,∠BAE +∠FAD =90°. ∴∠BAE =∠FDA. ∴△ABE ∽△DFA. (2)∵△ABE ∽△DFA,∴AB DF =AE AD. ∴DF =AB·AD AE =6×1210=7.2.03 综合题15.在△ABC 中,P 为边AB 上一点.(1)如图1,若∠ACP =∠B,求证:AC 2=AP·AB; (2)若M 为CP 的中点,AC =2.①如图2,若∠PBM =∠ACP,AB =3,求BP 的长;②如图3,若∠ABC =45°,∠A =∠BMP =60°,直接写出BP 的长. 解:(1)证明:∵∠ACP =∠B,∠BAC =∠CAP, ∴△ACP ∽△ABC. ∴AC AB =APAC . ∴AC 2=AP·AB .(2)①作CQ∥BM 交AB 的延长线于点Q. ∴∠PBM=∠AQC . ∵∠PBM=∠ACP , ∴∠AQC=∠ACP . 又∵∠PAC=∠CAQ , ∴△APC∽△ACQ .∴AC AP =AQAC .∴AC 2=AP·AQ .∵M为PC的中点,BM∥CQ,∴PBPQ=PMPC=12.设BP=x,则PQ=2x,BQ=x,∴22=(3-x)(3+x),解得x1=5,x2=-5(不合题意,舍去). ∴BP= 5.②BP=7-1.。
4.4相似三角形的判定相似三角形的判定定理1.(一)相似三角形判定的预备定理平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
2.判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.3.判定定理2:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.要点:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的.4.判定定理3:如果两个三角形的三组对应边的比相等,那么这两个三角形相似.一、单选题1.如图,AD ,BC 相交于点O ,由下列条件仍不能判定△AOB 与△DOC 相似的是( )A .AB ∥CD B .∠C =∠B C .OA OBOD OC= D .OA ABOD CD= 【解答】D【提示】本题中已知∠AOB =∠DOC 是对顶角,应用两三角形相似的判定定理,即可作出判断. 【详解】解:A 、由AB ∥CD 能判定△AOB ∽△DOC ,故本选项不符合题意. B 、由∠AOB =∠DOC 、∠C =∠B 能判定△AOB ∽△DOC ,故本选项不符合题意.C 、由OA OBOD OC = 、∠AOB =∠DOC 能判定△AOB ∽△DOC ,故本选项不符合题意. D 、已知两组对应边的比相等:OA ABOD CD = ,但其夹角不一定对应相等,不能判定△AOB 与△DOC 相似,故本选项符合题意. 故选:DAB CDED EACB【点睛】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.2.如图,D 是ABC 的边BC 上的一点,那么下列四个条件中,不能够判定△ABC 与△DBA 相似的是( )A .C BAD ∠=∠B .BAC BDA ∠=∠ C .AC ADBC AB = D .2AB BD BC =⋅【解答】C【提示】由相似三角形的判定定理即可得到答案.【详解】解:C BAD ∠=∠,B B ∠=∠,ABC ∽DBA ,故选项A 不符合题意;BAC BDA ∠=∠,B B ∠=∠,ABC ∽DBA ,故选项B 不符合题意;AC ADBC AB =,但无法确定ACB ∠与BAD ∠是否相等,所以无法判定两三角形相似,故选项C 符合题意;2AB BD BC =⨯即AB BCBD AB =,B B ∠=∠,ABC ∽DBA ,故选项D 不符合题意.故选:C .【点睛】本题考查相似三角形的判定定理,熟练掌握相关定理是解题的关键. 3.下列各种图形中,有可能不相似的是( ) A .有一个角是45的两个等腰三角形 B .有一个角是60的两个等腰三角形 C .有一个角是110的两个等腰三角形 D .两个等腰直角三角形【解答】A【提示】本题每一个选项都跟等腰三角形相似有关,注意的是一个角是一个角是45°,这个角可能是顶角或者底角,有一个角是60,这个三角形就是等边三角形,一个角是110,这个角一定是顶角,若是底角则不满足三角形内角和等于180°.等腰直角三角形的的底角是45°顶角是90°为固定值. 【详解】A .各有一个角是45°的两个等腰三角形,有可能是一个为顶角,另一个为底角,此时不相似,故此选项符合题意;B .各有一个角是60°的两个等腰三角形是等边三角形,两个等边三角形相似,故此选项不合题意;C .各有一个角是110°的两个等腰三角形,此角必为顶角,则底角都为35°,则这两个三角形必相似,故此选项不合题意;D .两个等腰直角三角形,底角是45°顶角是90°,为固定值,此三角形必相似,故此选项不合题意; 故选A .【点睛】本题解题关键在于,找准一个角是45,60,110的等腰三角形有几种情况,再就是等腰直角三角形的每个角的角度是固定的.4.下列条件,能使ABC 和111A B C △相似的是( )A .1111112.5,2,3;3,4,6AB BC AC A B B C AC ======B .11111192,3,4;3,6,2AB BC AC A B B C AC ======C.11111110,8;AB BC AC A B BCAC =====D.1111111,3;AB BC AC A B BCAC ====【解答】B【提示】根据相似三角形的判定定理进行判断.【详解】解:A 、11112.55213642AB BC A B B C ==≠==,不能使ABC ∆和△111A B C 相似,错误; B 、11111123242933632AB BC AC A B A C B C =======,能使ABC ∆和△111A B C 相似,正确;C、1111AB BC A B B C ≠=,不能使ABC ∆和△111A B C 相似,错误; D、1111AB BC A C B C =≠=ABC ∆和△111A B C 相似,错误; 故选B.【点睛】本题考查了相似三角形的判定.识别三角形相似,除了要掌握定义外,还要注意正确找出三角形的对应边、对应角.5.下列能判定ABC DEF ∽△△的条件是( ) A .AB AC DE DF = B .AB ACDE DF =,A F ∠=∠ C .AB AC DE DF =,B E ∠=∠ D .AB ACDE DF =,A D ∠=∠ 【解答】D【提示】利用相似三角形的判定定理:两边对应成比例且夹角相等的三角形相似,逐项判断即可得出答案.【详解】解:A.AB ACDE DF =,A D ∠=∠,则ABC DEF ∽△△,故此选项错误; B. AB ACDE DF =,A D ∠=∠,则ABC DEF ∽△△,故此选项错误; C.AB ACDE DF =,A D ∠=∠,则ABC DEF ∽△△,故此选项错误; D.AB ACDE DF =,A D ∠=∠,则ABC DEF ∽△△,故此选项正确; 故选:D .【点睛】本题考查的知识点是相似三角形的判定定理,熟记定理内容是解此题的关键. 6.如图,要使ACD ABC △△∽,需要具备的条件是( )A .AC ABAD BC = B .CD BCAD AC = C .2AC AD AB =⋅D .2CD AD BD =⋅【解答】C【提示】题目中隐含条件∠A =∠A ,根据有两边对应成比例,且夹角相等的两三角形相似,得出添加的条件只能是AC ADAB AC =,根据比例性质即可推出答案. 【详解】解:∵在△ACD 和△ABC 中,∠A =∠A ,∴根据有两边对应成比例,且夹角相等的两三角形相似,得出添加的条件是:AC ADAB AC =, ∴2AC AD AB ⋅= . 故选:C .【点睛】本题考查了相似三角形的判定,注意:有两边对应成比例,且夹角相等的两三角形相似. 7.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,下列条件不能满足△ADE ∽△ACB 的条件是( )A .∠AED=∠B B .AD AEAC AB = C .AD·BC= DE·AC D .DE//BC【解答】C【提示】根据相似三角形的判定定理去判断分析即可. 【详解】∵∠AED=∠B ,∠A=∠A , ∴△ADE ∽△ACB , 故A 不符合题意; ∵AD AEAC AB =,∠A=∠A , ∴△ADE ∽△ACB , 故B 不符合题意;∵AD·BC= DE·AC ,无夹角相等, ∴不能判定△ADE ∽△ACB , 故C 符合题意; ∵DE//BC , ∴△ADE ∽△ACB , 故D 不符合题意; 故选C .【点睛】本题考查了三角形相似的判定条件,熟练掌握判定三角形相似的基本方法是解题的关键. 8.如图,等边ABC 中,点E 是AB 的中点,点D 在AC 上,且2DC DA =,则( )A .AED BED ∽△△ B .AED CBD ∽△△ C .AED ABD ∽△△ D .BAD BCD ∽△△ 【解答】B【提示】由等边三角形的性质,中点的定义得到2BC AB AE ==,60A C ∠=∠=︒,结合2DC DA =,得到12AE AD CB CD ==,即可得到AED CBD ∽△△. 【详解】解:∵ABC 是等边三角形, ∴BC AB =,60A C ∠=∠=︒, ∵点E 是AB 的中点, ∴2BC AB AE ==, ∵2DC DA =, ∴12AE AD CB CD ==,∵60A C ∠=∠=︒,∴AED CBD ∽△△. 故选:B .【点睛】本题考查了相似三角形的判定,等边三角形的性质,解题的关键是掌握相似三角形的判定进行判断.9.如图,在ACB △中,90,ACB AF ∠=︒是BAC ∠的平分线,过点F 作FE AF ⊥,交AB 于点E ,交AC 的延长线于点D ,则下列说法正确的是( )A .CDF EBF ∽B .ADF ABF ∽C .ADF CFD ∽D .ACF AFE ∽【解答】D【提示】根据相似三角形的判定方法AA 解题. 【详解】解:EF AF ⊥90AFE ∴∠=︒90ACB AFE ∴∠=∠=︒AF 是BAC ∠的平分线,CAF FAE ∴∠=∠()ACFAFE AA ∴故选项D 符合题意,选项A 、B 、C 均不符合题意,故选:D .【点睛】本题考查相似三角形的判定方法,角平分线的性质等知识,是重要考点,掌握相关知识是解题关键.10.如图,四边形ABCD 的对角线,AC BD 相交于点O ,且将这个四边形分成四个三角形,若::OA OC OB OD =,则下列结论中正确的是( )A .△AOB ∽△AOD B .△AOD ∽△BOC C .△AOB ∽△BOCD .△AOB ∽△COD 【解答】D【提示】根据相似三角形的判定定理:两边对应成比例且夹角相等,即可判断△AOB ∽△COD . 【详解】解:∵四边形ABCD 的对角线,AC BD 相交于点O , ∴∠AOB=∠COD , 在△AOB 和△COD 中, =OA OBOC OD AOB COD ⎧⎪⎨⎪∠=∠⎩∴△AOB ∽△COD . 故选:D .【点睛】本题考查相似三角形的判定.熟练掌握两边对应成比例且夹角相等则这两个三角形相似是解题的关键.二、填空题11.如图,在ABC 中,点D 在AB 边上,点E 在AC 边上,请添加一个条件_________,使ADE ABC △△∽.【解答】∠ADE=∠B (答案不唯一).【提示】已知有一个公共角,则可以再添加一个角从而利用有两组角对应相等的两个三角形相似来判定或添加夹此角的两边对应成比例也可以判定. 【详解】解∶∵∠A=∠A ,∴根据两角相等的两个三角形相似,可添加条件∠ADE=∠B 或∠AED=∠C 证ADE ABC △△∽相似; 根据两边对应成比例且夹角相等,可添加条件AD AEAB AC =证ADE ABC △△∽相似. 故答案为∶∠ADE =∠B (答案不唯一).【点睛】此题考查了本题考查了相似三角形的判定,解题的关键是掌握相似三角形的判定方法. 12.图,在ABC 中,AB AC >,点D 在AB 上(点D 与A ,B 不重合),若再增加一个条件就能使ACD ABC △∽△,则这个条件是________(写出一个条件即可).【解答】ACD ABC ∠=∠(答案不唯一)【提示】两个三角形中如果有两组角对应相等,那么这两个三角形相似,据此添加条件即可. 【详解】解:添加ACD ABC ∠=∠,可以使两个三角形相似. ∵CAD BAC ∠=∠,ACD ABC ∠=∠, ∴ACD ABC △∽△.故答案为:ACD ABC ∠=∠(答案不唯一)【点睛】本题考查相似三角形的判定定理,两组角对应相等的两个三角形相似.理解和掌握三角形相似的判定是解题的关键.13.如图,∠1=∠2,请补充一个条件:________________,使△ABC ∽△ADE .【解答】∠C =∠E 或∠B =∠ADE(答案不唯一)【提示】再添加一组角可以利用有两组角对应相等的两个三角形相似来进行判定. 【详解】∵∠1=∠2 ∴∠1+∠DAC=∠DAC+∠2 ∴∠BAC =∠DAE又∵∠C =∠E (或∠B =∠ADE ) ∴△ABC ∽△ADE .故答案为:∠C =∠E 或∠B =∠ADE (答案不唯一).【点睛】本题考查了相似三角形的判定,熟悉相似三角形的几个判定定理是关键. 14.如图,在ABC 中,点D 为边AC 上的一点,选择下列条件:①2A ∠=∠;②1CBA ∠=∠;③BC CDAC AB =;④BC CD DB AC BC AB ==中的一个,不能得出ABC 和BCD △相似的是:__________(填序号).【解答】③【提示】根据相似三角形的判定定理可得结论.【详解】解:①2A ∠=∠,C C ∠=∠时,ABC BDC ∆∆∽,故①不符合题意; ②1CBA ∠=∠,C C ∠=∠时,ABC BDC ∆∆∽,故②不符合题意; ③BC CDAC AB =,C C ∠=∠时,不能推出ABC BDC ∆∆∽,故③符合题意; ④BC CD DBAC BC AB ==,C C ∠=∠时,ABC BDC ∆∆∽,故④不符合题意, 故答案为:③【点睛】本题考查了相似三角形的判定,解题的关键是掌握两组对应边对应成比例且夹角相等的两个三角形相似;有两角对应相等的两个三角形相似.15.如图,在ABC 中,DE BC ∥,DE 分别交AB 、AC 于点D 、E ,DC 、BE 交于点O ,则相似三角形有______.【解答】ADE∽ABC,DOE∽COB△【提示】根据DE BC∥,找出相等的角,进而得到相似三角形.【详解】解:∵DE BC∥,∴∠ADE=∠ABC,∠AED=∠ACB,∴ADE∽ABC,∵DE BC∥,∴∠EDO=∠BCO,∠DEO=∠CBO,∴DOE∽COB△,故答案为ADE∽ABC,DOE∽COB△.【点睛】本题考查了平行线的性质以及相似三角形的判定,解题的关键是掌握:一个三角形的两个角与另一个三角形的两个角对应相等,这两个三角形相似.16.如图,在△ABC中,AB=10,AC=5,AD是角平分线,CE是高,过点D作DF⊥AB,垂足为F,若DF=83,则线段CE的长是______.【解答】4【提示】延长AC,作DG⊥AC,根据根据角平分线的性质得到FD=GD,再根据三角形的面积公式即可求解.【详解】解:延长AC,作DG⊥AC,∵AD平方∠BAC,∴FD=DG,∴S△ABC= S△ABD+ S△ADC=12AB FD⨯⨯+12AC GD⨯⨯=12AB EC⨯⨯即111105883310222EC⨯⨯+⨯⨯=⨯⨯ 解得EC=4.【点睛】本题考查了角平分线的性质,角的平分线上的点到角的两边的距离相等与三角形的面积公式. 17.如图,在ABC 中,8AB cm =,16BC cm =,动点P 从点A 开始沿AB 边运动,速度为2/cm s ;动点Q 从点B 开始沿BC 边运动,速度为4/cm s ;如果P 、Q 两动点同时运动,那么经过______秒时QBP △与ABC 相似.【解答】0.8或2##2或0.8【提示】设经过t 秒时,QBP △与ABC 相似,则2AP tcm =,(82)BP t cm =-,4BQ tcm =,利用两组对应边的比相等且夹角对应相等的两个三角形相似进行分类讨论:BP BQBA BC =时,BPQ BAC ∽,即824816t t -=;当BP BQ BCBA =时,BPQ BCA △∽△,即824168t t -=,然后解方程即可求出答案. 【详解】解:设经过t 秒时,QBP △与ABC 相似, 则2AP tcm =,(82)BP t cm =-,4BQ tcm =, ∵PBQ ABC ∠=∠,∴当BP BQBA BC =时,BPQ BAC ∽, 即824816t t -=, 解得:2t =;当BP BQ BC BA =时,BPQ BCA △∽△,即824168t t-=, 解得:0.8t =;综上所述:经过0.8s 或2s 秒时,QBP △与ABC 相似,【点睛】本题考查了相似三角形的判定:两组对应边成比例且夹角相等的两个三角形相似,解题的关键是准确分析题意列出方程求解.18.如图,正方形ABCD 的边长为2,连接BD ,点P 是线段AD 延长线上的一个动点,45PBQ ∠=︒,点Q 是BQ 与线段CD 延长线的交点,当BD 平分PBQ ∠时,PD ______QD (填“>”“<”或“=”):当BD 不平分PBQ ∠时,PD QD ⋅=__________.【解答】 = 8【提示】①先证明△ABP ≌△CBQ,再证明△QBD ≌△PBD,即可得出PD=QD;②证明△BQD ∽△PBD,即可利用对应边成比例求得PD·QD. 【详解】解:①当BD 平分∠PBQ 时, ∠PBQ=45°,∴∠QBD=∠PBD=22.5°, ∵四边形ABCD 是正方形,∴AB=BC ,∠A=∠C=90°,∠ABD=∠CBD=45°, ∴∠ABP=∠CBQ=22.5°+45°=67.5°, 在△ABP 和△CBQ 中,A C AB BCABP CBQ ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABP ≌△CBQ (ASA ), ∴BP=BQ ,在△QBD 和△PBD 中,BQ BP QBD PBD BD BD =⎧⎪∠=∠⎨⎪=⎩∴△QBD ≌△PBD (SAS ), ∴PD=QD;②当BD 不平分∠PBQ 时, ∵AB ∥CQ , ∴∠ABQ=∠CQB ,∵∠QBD+∠DBP=∠QBD+∠ABQ=45°, ∴∠DBP=∠ABQ=∠CQB ,∵∠BDQ=∠ADQ+∠ADB=90°+45°=135°,∠BDP=∠CDP+∠BDC=90°+45°=135°, ∴∠BDQ=∠BDP, ∴△BQD ∽△PBD ,∴BD QDPD BD =,∴PD·QD=BD2=22+22=8, 故答案为:=,8.【点睛】本题考查三角形的全等和相似,关键在于熟悉基础知识,利用条件找到对应三角形.三、解答题19.已知:D 、E 是△ABC 的边AB 、AC 上的点,AB =8,AD =3,AC =6,AE =4,求证:△ABC ∽△AED .【解答】见解析【提示】根据已知线段长度求出AB ACAE AD =,再根据∠A=∠A 推出相似即可. 【详解】证明:在△ABC 和△AED 中, ∵824AB AE ==,623AC AD ==,∴AB ACAE AD =, 又∵∠A =∠A ,∴△ABC ∽△AED .【点睛】本题考查了相似三角形的判定定理的应用,注意:有两边的对应成比例,且夹角相等的两三角形相似.20.已知:在△ABC 和△A′B′C′中, AB BC ACA B B C A C '''='''=.求证:△ABC ∽△A′B′C′.【解答】证明见解析【提示】先在△ABC 的边AB ,AC (或它们的延长线)上截取AD=A′B′,AE=A′C′,然后证明△ABC ∽△ADE ,再△ADE ≌△A′B′C′即可.【详解】在△ABC 的边AB ,AC (或它们的延长线)上截取AD=A′B′,AE=A′C′,连接DE . ∵AB ACA B A C ='''',AD=A′B′,AE=A′C′, ∴AB ACAD AE = 而∠BAC=∠DAE ,∴△ABC ∽△ADE (两边成比例且夹角相等的两个三角形相似). ∴AB BCAD DE = 又AB BCA B B C ='''',AD= A′B′, ∴ AB BCAD B C ='' ∴BC BCDE B C =''∴DE=B′C′,∴△ADE ≌△A′B′C′, ∴△ABC ∽△A′B′C′.【点睛】本题考查了相似三角形的判定,三边对应成比例的两个三角形相似,灵活运用两边对应成比例且夹角相等的两个三角形相似,全等三角形的判定是解决本题的关键. 21.已知:如图,在ABC 和A B C '''中,,A A B B ∠=∠∠=∠''. 求证:ABC A B C '''∽△△.【解答】见解析【提示】在ABC 的边AB (或它的延长线)上截取AD A B ='',过点D 作BC 的平行线,交AC 于点E ,过点D 作AC 的平行线,交BC 于点F ,容易得到ADE ABC △△∽,然后证明ADE A B C '''≌,从而即可得到ABC A B C '''∽△△.【详解】证明:在ABC 的边AB (或它的延长线)上截取AD A B ='',过点D 作BC 的平行线,交AC 于点E ,则,ADE B AED C ∠=∠∠=∠,AD AEAB AC =(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例).过点D 作AC 的平行线,交BC 于点F ,则AD CFAB CB =(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ∴AE CFAC CB =. ∵//,//DE BC DF AC , ∴四边形DFCE 是平行四边形. ∴DE CF =.∴AEDEAC CB =. ∴ADAE DEAB AC BC ==.而,,ADE B DAE BAC AED C ∠=∠∠=∠∠=∠, ∴ADE ABC △△∽.∵,,A A ADE B B AD A B ∠=∠∠=∠=∠='''', ∴ADE A B C '''≌. ∴ABC A B C '''∽△△.【点睛】本题是教材上相似三角形的判定定理的证明,熟读教材是解题的关键. 22.如图,Rt ABC 中,CD 是斜边AB 上的高.求证:(1)ACD ABC △∽△; (2)CBD ABC ∽△△. 【解答】(1)见解析;(2)见解析【提示】(1)根据有两组角对应相等的两个三角形相似进行证明即可. (2)根据有两组角对应相等的两个三角形相似进行证明即可. 【详解】证明:(1)∵CD 是斜边AB 上的高, ∴∠ADC =90°,∴∠ADC =∠ACB =90°, ∵∠A =∠A , ∴△ACD ∽△ABC .(2)∵CD 是斜边AB 上的高, ∴∠BDC =90°,∴∠BDC =∠ACB =90°, ∵∠B =∠B , ∴△CBD ∽△ABC .【点睛】本题考查了相似三角形的判定定理;熟记有两组角对应相等的两个三角形相似是解决问题的关键.23.如图,D 为△ABC 内一点,E 为△ABC 外一点,且∠ABC =∠DBE ,∠3=∠4. 求证:(1)△ABD ∽△CBE ; (2)△ABC ∽△DBE .【解答】(1)证明见解析;(2)证明见解析;【提示】(1)根据有两组角对应相等的两个三角形相似可判断△ABD∽△CBE;(2)先利用得到∠1=∠2得到∠ABC=∠DBE,再利用△ABD∽△CBE得AB BDBC BE=, 根据比例的性质得到AB BCBD BE=, 然后根据两组对应边的比相等且夹角对应相等的两个三角形相似可判断△ABC与△DBE相似.【详解】(1)相似.理由如下:∵∠1=∠2,∠3=∠4.∴△ABD∽△CBE;(2)相似.理由如下:∵∠1=∠2,∴∠1+∠DBC=∠2+DBC,即∠ABC=∠DBE,∵△ABD∽△CBE,∴=,∴=,∴△ABC∽△DBE.【点睛】本题考查了三角形相似的判定,熟练掌握三角形相似的判定方法是解题关键.24.已知如图所示,AF⊥BC,CE⊥AB,垂足分别是F、E,试证明:(1)△BAF∽△BCE.(2)△BEF∽△BCA.【解答】(1)答案见解析;(2)答案见解析【提示】(1)根据两角相等,两个三角形相似即可得出结论;(2)根据(1)得到△BAF ∽△BCE ,再由相似三角形的对应边成比例,得到BF :BE=BA :BC ,由两边对应成比例,夹角相等两个三角形相似,即可得出结论. 【详解】(1)∵AF ⊥BC ,CE ⊥AB ,∴∠AFB=∠CEB=90°. ∵∠B=∠B ,∴△BAF ∽△BCE ;(2)∵△BAF ∽△BCE ,∴BF :BE=BA :BC . ∵∠B=∠B ,∴△BEF ∽△BCA .【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.25.如图,在△ABC 和△ADE 中,AB BC ACAD DE AE ==,点B 、D 、E 在一条直线上,求证:△ABD ∽△ACE .【解答】证明见解析;【提示】根据三边对应成比例的两个三角形相似可判定△ABC ∽△ADE ,根据相似三角形的性质可得∠BAC=∠DAE ,即可得∠BAD=∠CAE ,再由AB AC AD AE =可得AB ADAC AE =,根据两边对应成比例且夹角相等的两个三角形相似即可判定△ABD ∽△ACE .【详解】∵在△ABC 和△ADE 中,AB BC ACAD DE AE ==, ∴△ABC ∽△ADE , ∴∠BAC=∠DAE , ∴∠BAD=∠CAE , ∵AB ACAD AE =, ∴AB ADAC AE =, ∴△ABD ∽△ACE .【点睛】本题考查了相似三角形的判定与性质,熟知相似三角形的判定方法是解决本题的关键. 26.如图,△ABC 与 △ADE 中,∠ACB=∠AED=90°,连接BD 、CE ,∠EAC=∠DAB.(1)求证:△ABC ∽△ADE ; (2)求证:△BAD ∽△CAE ;(3)已知BC=4,AC=3,AE=32.将△AED 绕点A 旋转,当点E 落在线段CD 上时,求 BD 的长.【解答】(1)详见解析;(2)详见解析;(3)BD=53.【提示】(1)由已知可得∠CAB=∠EAD ,∠ACB=∠AED=90°,则结论得证; (2)由(1)知AC AEAB AD =,∠EAC=∠DAB ,则结论得证; (3)先证△ABC ∽△ADE ,求出AE 、AD 的长,则BD 可求. 【详解】证明:(1)∵∠EAC=∠DAB , ∴∠CAB=∠EAD , ∵∠ACB=∠AED=90°, ∴△ABC ∽△ADE ;(2)由(1)知△ABC ∽△ADE , ∴AC AEAB AD =, ∵∠EAC=∠BAD , ∴△BAD ∽△CAE ;(3)∵∠ACB=90°,BC=4,AC=3,∴2222=43BC AC ++,∵△ABC ∽△ADE , ∴AC AB AE AD =, ∴AD=5=•2AB AE AC , 如图,将△AED 绕点A 旋转,当点E 落在线段CD 上时,∠AEC=∠ADB=90°,∴222255=()=3225AB AD--【点睛】本题考查相似三角形的判定和性质、旋转的性质等知识,解题的关键是熟练掌握基本知识.。
相似三角形的判定口诀
两角对应相等,两个三角形相似。
两边对应成比例且夹角相等,两个三角形相似。
三边对应成比例,两个三角形相似。
三边对应平行,两个三角形相似。
斜边与直角边对应成比例,两个直角三角形相似。
1.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(简叙为:两角对应相等,两个三角形相似。
)
2.如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。
(简叙为:两边对应成比例且夹角相等,两个三角形相似。
)
3.如果两个三角形的三组对应边成比例,那么这两个三角形相似。
(简叙为:三边对应成比例,两个三角形相似。
)
4.两三角形三边对应平行,则两三角形相似。
(简叙为:三边对应平行,两个三角形相似。
)
5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
(简叙为:斜边与直角边对应成比例,两个直角三角形相似。
)
6.如果两个三角形全等,那么这两个三角形相似(相似比为1:1)。
(简叙为:全等三角形相似)。
学生做题前请先回答以下问题问题1:相似三角形的判定:①________________________________________;②________________________________________;③________________________________________;④_________________________________________________________.在证明两个三角形相似时,首先考虑角度信息,其次考虑对应边成比例.问题2:想一想相似三角形的判定与性质的区别是什么?问题3:如果两个图形___________,而且____________________________,那么这样的两个图形叫做位似图形,这个点叫做________;位似图形上__________________________________________________.相似三角形的判定一、单选题(共9道,每道11分)1.如图,下列条件不能判定△ADB∽△ABC的是( )A.∠ABD=∠ACBB.∠ADB=∠ABCC. D.答案:D解题思路:试题难度:三颗星知识点:相似三角形的判定2.如图,在△ABC中,DE∥BC,,则下列结论中正确的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:相似三角形的判定与性质3.如图,在平行四边形ABCD中,点E在AD边上,连接CE并延长,交BA的延长线于点F,若,CD=3,则AF的长为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:相似三角形的判定与性质4.如图,已知AD为△ABC的角平分线,DE∥AB,交AC于点E,若,则的值为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:相似三角形的判定5.如图,在△ABC中,∠BAC=90°,D是BC中点,AE⊥AD交CB的延长线于点E,则下列结论正确的是( )A.△AED∽△ACBB.△AEB∽△ACDC.△BAE∽△ACED.△AEC∽△DAC答案:C解题思路:试题难度:三颗星知识点:相似三角形的判定6.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是( )A.2DE=3MNB.3DE=2MNC.3∠A=2∠FD.2∠A=3∠F答案:B解题思路:试题难度:三颗星知识点:位似变换7.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大为原来的2倍,得到△.若点A的坐标是(1,2),则点的坐标是( )A.(2,4)B.(-1,-2)C.(-2,-4)D.(-2,-1)答案:C解题思路:试题难度:三颗星知识点:相似三角形的性质和判定8.如图,在△ABC中,AB=6,AC=4,P是AC的中点,过点P的直线交AB于点Q,若以A,P,Q为顶点的三角形和以A,B,C为顶点的三角形相似,则AQ的长为( )A.3B.3或C.3或D.答案:B解题思路:试题难度:三颗星知识点:相似三角形的性质和判定9.如图,在Rt△ABO中,∠AOB=90°,∠ABO=60°,,D为BO的中点,若E是线段AB上的一动点,连接DE,当△BDE与△AOB相似时,点E的坐标为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:相似三角形的性质和判定。
一、基础知识相似三角形的判定(三):如果两个三角形两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
如图在△ABC与△DEF中,∠B=∠E,AB BCDE EF,可判定△ABC∽△DEF。
二、重难点分析本节课的重难点是三角形相似的判定判定方法:如果两个三角形两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
注意:在利用该方法时,相等的角必须是已知两对应边的夹角,才能使这两个三角形相似,不要错误地认为是任意一角对应相等,两个三角形就相似。
例:如图所示,已知在正方形ABCD中,P是BC上的一点,且BP=3PC,Q是CD的中点。
求证:△ADQ∽△QCP.∴DQ=QC=1 2 a三、中考感悟1、(2014•宿迁)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△P AD与△PBC是相似三角形,则满足条件的点P的个数是()A. 1个B. 2个C. 3个D. 4个∴满足条件的点P的个数是3个,【答案】C【点评】本题主要考查了相似三角形的判定及性质,难度适中,进行分类讨论是解题的关键.2、(2014•武汉)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.∴t=,∴PQ的中点在△ABC的一条中位线上.【点评】此题考查了相似形综合,用到的知识点是相似三角形的判定与性质、中位线的性质等,关键是画出图形作出辅助线构造相似三角形,注意分两种情况讨论.四、专项训练(一)基础练习1、如图四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形,若OA∶OC=OB∶OD,则下列结论中一定正确的是().A.①与②相似B.①与③相似C.①与④相似D.②与④相似2、能判定△ABC相似与△A|B|C|的条件是()A.AB ACA B A C=''''B.AB A BAC A C''='', 且A C'∠=∠C.AB BCA B B C='''',且B B'∠=∠D.AB ACA B A C='''',且B B'∠=∠3、如图,若AC2= ,则△ADC∽△ACB。
初三数学---相似三角形和解直角三角形一、相似三角形1.相似三角形判定定理:(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. (2)判定定理1如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.即“两角对应相等,两三角形相似”.(3)判定定理2如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.即“两边对应成比例且夹角相等,两三角形相似”.(4)判定定理3如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.即“三边对应成比例,两三角形相似”.(5)若△1∽△2、△2∽△3、则△1∽△3.对于直角三角形相似,还有如下判定定理:(6)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(7)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.2.相似三角形的性质(1)相似三角形的对应角相等;(2)相似三角形的对应边成比例;(3)相似三角形的对应高的比、对应中线的比与对应角平分线的比都等于相似比;(4)相似三角形周长比等于相似比;(5)相似三角形面积的比等于相似比的平方.二、锐角三角函数1.掌握锐角三角函数的定义,准确地进行计算.2.互余角的三角函数间的关系(1)sin(90°-)=cos;(2)cos(90°-)=sin;(3).3.同角三角函数间的关系(1);(2).三、解直角三角形1.如图,在Rt△ABC中,∠C=90°,(1)三边之间的关系:a2+b2=c2;(2)两锐角之间的关系:∠A+∠B=90°;(3)边与角之间的关系:,,.2.如图,若直角三角形ABC中,CD⊥AB于点D,设CD=h,AD=q,DB=p,则由△CBD∽△ABC,得a2=pc;由△CAD∽△BAC,得b2=qc;由△ACD∽△CBD,得h2=pq;由△ACD∽△ABC或由△ABC的面积,得ab=ch.从三角函数的角度考虑,有由,得a2=pc;同理,得b2=qc;由,得h2=pq;由,得ab=ch.在有关直角三角形的相似问题中,可以尝试运用三角函数的知识来解题,即“三角法”.3.如图1,若CD是直角三角形ABC中斜边上的中线,则(1)CD=AD=BD=;(2)点D是Rt△ABC的外心,外接圆半径.4.如图2,若r是直角三角形ABC的内切圆半径,则.图1 图2 图3 5.直角三角形的面积:(1)如图2,S△ABC.(2)如图3,S△ABC.6B=90°-A,,,由求角A,B=90°-A,由求角A,B=90°-A例题分析例1.如图,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P为下底BC上一点(不与B,C重合),连接AP,过P点作PE交DC于E,使得∠APE=∠B.(1)你认为图中哪两个三角形相似,为什么?(2)当点P在底边BC上自点B向C移动的过程中,是否存在一点P,使得DE∶EC=5∶3?如果存在,求BP的长;如果不存在,请说明理由.例2.如图,正方形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)求证:Rt△ABM∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时,Rt△ABM∽Rt△AMN,并求x的值.例3.如图,在△ABC中,∠BAC=120°,AB=10,AC=5,求sin B·sin C的值.例4.如图,D是AB上一点,且CD⊥AC于C,S△ACD∶S△CDB=2∶3,,AC+CD=18,求tan A的值和AB的长.5.如图,△OAB是边长为2的等边三角形,过点A的直线y=与x轴交于点E.求点E的坐标.6.已知:如图(a),梯形ABCD中,AB∥CD,∠C=90°,AB=BC=4,CD=6.(1)E为BC边上一点,EF∥AD,交CD边于点F,FG∥EA,交AD边于点G,若四边形AEFG为矩形,求BE的长;(2)如图(b),将(1)中的∠AEF绕E点逆时针旋转为∠A′EF′,EF′交CD边于F′点,且F′点与D点不重合,射线EA′交AB边于点M,作F′N∥EA′交AD边于点N,设BM为x,△NF′D中,F′D边上的高为y,求y关于x的函数解析式及自变量x的取值范围.图(a)图(b)答案例1、解:(1)△ABP∽△PCE.其理由是除∠B=∠C外,由于∠APE=∠B=60°,∠APC=∠B+∠BAP=∠APE+∠CPE,∴∠BAP=∠CPE.由“两角对应相等,两三角形相似”可得△ABP∽△PCE.说明:此图形结构可以称为“一线三等角问题”.(2)作DF⊥BC于F,由已知可得CF=,腰长AB=CD=2CF=4,这样原问题转化为在底边BC上是否存在一点P,使得CE=1.5.假设存在P点,使CE=1.5,由△ABP∽△PCE,得,可得BP·PC=AB·CE=6.设BP=x,∵BC=BP+PC=7,∴PC=7-x.∴x(7-x)=6,即x2-7x+6=0.解得x1=1,x2=6.答:当BP=1或BP=6时,使得DE∶EC=5∶3.例2、解:(1)在正方形ABCD中,AB=BC=CD=4,∠B=∠C=90°.∵AM⊥MN,∴∠AMN=90°.∴∠CMN+∠AMB=90°.在Rt△ABM中,∠MAB+∠AMB=90°,∴∠MAB=∠CMN.∴Rt△ABM∽Rt△MCN.(2)∵Rt△ABM∽Rt△MCN,,即...当x=2时,y取最大值,最大值为10.(3)∵∠B=∠AMN=90°,∴要使△ABM ∽△AMN,只需.由(1)知.∴BM=MC.∴当点M运动到BC的中点时,△ABM∽△AMN,此时x=2.例3、分析:为求sin B,sin C,需将∠B,∠C分别置于直角三角形之中,另外已知∠A的邻补角是60°,若要使其充分发挥作用,也需要将其置于直角三角形中,所以应分别过点B,C,向CA,BA的延长线作垂线段,即可顺利求解.解:过点B作BD⊥CA的延长线于点D,过点C作CE⊥BA的延长线于点E.∵∠BAC=120°,∴∠BAD=60°.;.又∵CD=CA+AD=10,,.同理,可求得..说明:由于锐角的三角函数是在直角三角形中定义的,因此若要求某个角的三角函数值,一般可以通过作垂线段等方法将其置于直角三角形中.例4、解:作DE∥AC交CB于E,则∠EDC=∠ACD=90°.∵,设CD=4k(k>0),则CE=5k,由勾股定理得DE=3k.∵△ACD和△CDB在AB边上的高相同,∴AD∶DB=S△ACD∶S△CDB=2∶3..即..∵AC+CD=18,∴5k+4k=18.解得k=2...说明:本章解题的基本思路是将问题转化为解直角三角形的问题,转化的目标主要有两个,一是构造可解的直角三角形;二是利用已知条件通过设参数列方程.在解直角三角形时,常用的等量关系是:勾股定理、三角函数关系式、相等的线段、面积关系等.例5、解:作AF⊥x轴于F.∴OF=OA·cos60°=1,AF=OF·.∴点A坐标为(1,).代入直线解析式,得...当y=0即时,x=4.∴点E坐标为(4,0).例6、解:(1)作AH⊥CD于点H(如图(c))可得∠1=∠2=∠D.由AB=BC=CH=4可得HD=CD-CH=2...∴BE=2,即E为BC的中点.(2)图(d),作NP⊥CD于点P,则PN=y.可得∠4=∠5=∠6,它们的正切值相等.,即.,.,,∵CD=CF′+PF′+PD,,即.整理,得.若点F′与点D重合(见图(e)),则∠BEM=∠EDC,...∴x的取值范围为。
专题11 相似三角形及其判定知识网络重难突破知识点相似三角形的判定一、相似三角形的判定方法①定义:各角对应相等,各边对应成比例.②平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.③有两个角对应相等.④两边对应成比例,且夹角相等.⑤三边对应成比例.二、相似三角形基本图形1、8字型有一组隐含的等角(对顶角),此时需从已知条件或图中隐含条件通过证明得另一对角相等(AB、CD不平行,∠A=∠C)(AB∥CD)2.A字型有一个公共角(图①、图②)或角有公共部分(图③,∠DAF+∠BAD=∠DAF+∠EAF),此时需要找另一对角相等或相等角的两边对应成比例3.双垂直型有一个公共角及一个直角 (图①为母子型的特殊形式AC2=AD·AB仍成立,另CD2=AD·BD)4.三垂直型结论推导,如图①,∠D+∠DBA=∠E+∠EBC=∠DBA+∠EBC=90°,∴∠EBC=∠D,∠E=∠DBA,且一组直角相等,用任意两组等角即可证得三角形相似【典例1】(2019秋•保山期末)如图,在△ABC中,点P在边AB上,则在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC与△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③【点拨】根据有两组角对应相等的两个三角形相似可对①②进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对③④进行判断.【解析】解:当∠ACP=∠B,∵∠A=∠A,所以△APC∽△ACB;当∠APC=∠ACB,∵∠A=∠A,所以△APC∽△ACB;当AC2=AP•AB,即AC:AB=AP:AC,∵∠A=∠A所以△APC∽△ACB;当AB•CP=AP•CB,即PC:BC=AP:AB,而∠P AC=∠CAB,所以不能判断△APC和△ACB相似.故选:D.【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.【典例2】如图,BD、CE是△ABC的两条高,AM是∠BAC的平分线,交BC于M,交DE于N,求证:(1)△ABD∽△ACE;(2)=.【点拨】(1)先根据有两组角对应相等的两个三角形相似,判定△ABD∽△ACE;(2)先相似三角形的性质,得出=,再根据∠DAE=∠BAC,判定△ADE∽△ABC,进而得到=,再根据∠CAM=∠EAN,判定△ACM∽△AEN,得到=,最后等量代换即可得到=.【解析】证明:(1)∵BD、CE是△ABC的两条高,∴∠ADB=∠AEC=90°,∵∠DAE=∠BAC,∴△ABD∽△ACE;(2)∵△ABD∽△ACE,∴=,即=,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴=,且∠ACB=∠AED,∵AM是∠BAC的平分线,∴∠CAM=∠EAN,∴△ACM∽△AEN,∴=,∴=.【点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:有两组角对应相等的两个三角形相似,两组对应边的比相等且夹角对应相等的两个三角形相似.【典例3】(2019秋•七里河区期末)如图所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t(s)(0<t<10),解答下列问题:(1)当t为何值时,△BDE的面积为7.5cm2;(2)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.【点拨】(1)根据等腰三角形的性质和相似三角形的判定和性质求三角形BDE边BE的高即可求解;(2)根据等腰三角形和相似三角形的判定和性质分两种情况说明即可.【解析】解:(1)分别过点D、A作DF⊥BC、AG⊥BC,垂足为F、G如图∴DF∥AG,=∵AB=AC=10,BC=16∴BG=8,∴AG=6.∵AD=BE=t,∴BD=10﹣t,∴=解得DF=(10﹣t)∵S△BDE=BE•DF=7.5∴(10﹣t)•t=15解得t=5.答:t为5秒时,△BDE的面积为7.5cm2.(2)存在.理由如下:①当BE=DE时,△BDE∽△BCA,∴=即=,解得t=,②当BD=DE时,△BDE∽△BAC,=即=,解得t=.答:存在时间t为或秒时,使得△BDE与△ABC相似.【点睛】本题考查了相似三角形的判定和性质、等腰三角形的性质,解决本题的关键是动点变化过程中形成不同的等腰三角形.【变式训练】1.(2020•浙江自主招生)如图,在4×4的正方形网格中,画2个相似三角形,在下列各图中,正确的画法有()A.1个B.2个C.3个D.4个【点拨】根据相似三角形的判定定理逐一判断即可得.【解析】解:第1个网格中两个三角形对应边的比例满足==,所以这两个三角形相似;第2个网格中两个三角形对应边的比例==,所以这两个三角形相似;第3个网格中两个三角形对应边的比例满足===,所以这两个三角形相似;第4个网格中两个三角形对应边的比例==,所以这两个三角形相似;故选:D.【点睛】本题考查了相似三角形的判定,熟练掌握三角形相似的判定并根据网格结构判断出三角形的三边的比例是解题的关键2.(2019秋•奉化区期末)如图,P为线段AB上一点,AD与BC交与点E,∠CPD=∠A=∠B,BC交PD与点F,AD交PC于点G,则下列结论中错误的是()A.△CGE∽△CBP B.△APD∽△PGD C.△APG∽△BFP D.△PCF∽△BCP【点拨】由相似三角形的判定依次判断可求解.【解析】解:∵∠CPD=∠A=∠B,且∠APD=∠B+∠PFB=∠APC+∠CPD,∴∠APC=∠BFP,且∠A=∠B,∴△APG∽△BFP,故选项C不合题意,∵∠A=∠CPD,∠D=∠D,∴△APD∽△PGD,故选项B不合题意,∵∠B=∠CPD,∠C=∠C,∴△PCF∽△BCP,故选项D不合题意,由条件无法证明△CGE∽△CBP,故选项A符合题意,故选:A.【点睛】本题考查了相似三角形的判定,牢固掌握相似三角形的判定是本题的关键.3.(2019秋•萧山区期末)如图,∠ACB=∠BDC=90°.要使△ABC∽△BCD,给出下列需要添加的条件:①AB∥CD;②BC2=AC•CD;③,其中正确的是()A.①②B.①③C.②③D.①②③【点拨】利用相似三角形的判定依次判断即可求解.【解析】解:①若AB∥CD,∴∠ABC=∠BCD,且∠ACB=∠BDC=90°,∴△ABC∽△BCD,故①符合题意;②若BC2=AC•CD,∴,且∠ACB=∠BDC=90°,无法判定△ABC∽△BCD,故②不符合题意;③若,且∠ACB=∠BDC=90°,∴△ABC∽△BCD,故③符合题意;故选:B.【点睛】本题考查了相似三角形的判定,灵活掌握相似三角形的判定方法是本题的关键.4.(2019秋•新华区校级月考)如图,四边形ABGH,四边形BCFG,四边形CDEF都是正方形,图中与△HBC相似的三角形为()A.△HBD B.△HCD C.△HAC D.△HAD【点拨】设正方形ABGH的边长为1,先运用勾股定理分别求出HB、HC的长,将其三边按照从大到小的顺序求出比值,再分别求出四个选项中每一个三角形三边的比值,根据三组对应边的比相等的两个三角形相似求解即可.【解析】解:设正方形ABGH的边长为1,运用勾股定理得HB=,HC=,则HC:HB:BC=::1.A、∵HB=,BD=2,HD=,∴HD:BD:HB=:2:=::1,∴HC:HB:BC=HD:BD:HB,∴△HBC∽△DBH,故本选项正确;B、∵HC=,CD=1,HD=,∴HD:HC:CD=::1,∴HC:HB:BC≠HD:HC:CD,∴△HBC与△HCD不相似,故本选项错误;C、∵HA=1,AC=2,HC=,HC:AC:HA=:2:1,∴HC:HB:BC≠HC:AC:HA,∴△HBC与△HAC不相似,故本选项错误;D、∵HA=1,AD=3,HD=,HD:AD:HA=:3:1,∴HC:HB:BC≠HD:AD:HA,∴△HBC与△HAD不相似,故本选项错误.故选:A.【点睛】本题考查了相似三角形的判定,判定两个三角形相似的一般方法有:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.本题还可以利用方法(3)进行判定.5.(2018秋•秀洲区期末)如图,点D在△ABC的边AC上,若要使△ABD与△ACB相似,可添加的一个条件是∠ABD=∠C(答案不唯一)(只需写出一个).【点拨】两组对应角相等,两三角形相似.在本题中,两三角形共用一个角,因此再添一组对应角即可【解析】解:要使△ABC与△ABD相似,还需具备的一个条件是∠ABD=∠C或∠ADB=∠ABC等.故答案为:∠ABD=∠C(答案不唯一).【点睛】此题考查了相似三角形的判定.注意掌握有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似定理的应用.6.(2019秋•崇川区校级月考)如图,∠A=∠B=90°,AB=7,BC=3,AD=2,在边AB上取点P,使得△P AD与△PBC相似,则满足条件的AP长为 2.8或1或6.【点拨】根据相似三角形的性质分两种情况列式计算:①若△APD∽△BPC②若△APD∽△BCP.【解析】解:∵∠A=∠B=90°①若△APD∽△BPC则=∴=解得AP=2.8.②若△APD∽△BCP则=∴=解得AP=1或6.∴则满足条件的AP长为2.8或1或6.故答案为:2.8或1或6.【点睛】本题考查了相似三角形的判定与性质,明确相关判定与性质及分类讨论,是解题的关键.7.(2019秋•临安区期末)如图,点B、D、E在一条直线上,BE交AC于点F,=,且∠BAD=∠CAE.(1)求证:△ABC∽△ADE;(2)求证:△AEF∽△BCF.【点拨】(1)根据相似三角形的判定定理证明;(2)根据相似三角形的性质定理得到∠C=∠E,结合图形,证明即可.【解析】(1)∵∠BAD=∠CAE∴∠BAD+∠CAD=∠CAE+∠CAD即∠BAC=∠DAE在△ABC和△ADE中=,∠BAC=∠DAE,∴△ABC∽△ADE;(2)∵△ABC∽△ADE,∴∠C=∠E、在△AEF和△BFC中,∠C=∠E,∠AFE=∠BFC,∴△AEF∽△BCF.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.8.(2019春•广陵区校级月考)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM∽Rt△MCN;(2)当M点运动到什么位置时Rt△ABM∽Rt△AMN,并请说明理由.【点拨】(1)理由等角的余角相等证明∠MBA=∠NMC,然后根据直角三角形相似的判定方法可判断Rt△ABM∽Rt△MCN;(2)利用勾股定理可得到AM=2,由于Rt△ABM∽Rt△MCN,利用相似比可计算出MN=,接着证明=,从而可判断Rt△ABM∽Rt△AMN.【解析】(1)证明:∵四边形ABCD为正方形,∴∠B=∠C=90°,∵AM⊥MN,∴∠AMN=90°,∴∠AMB+∠NMC=90°,而∠AMB+∠MAB=90°,∴∠MBA=∠NMC,∴Rt△ABM∽Rt△MCN;(2)解:当M点运动到BC为中点位置时,Rt△ABM∽Rt△AMN.理由如下:,∵四边形ABCD为正方形,∴AB=BC=4,BM=MC=2,∴AM=2,∵Rt△ABM∽Rt△MCN,∴==2,∴MN=AM=,∵==,==,∴=,而∠ABM=∠AMN=90°,∴Rt△ABM∽Rt△AMN.【点睛】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.两组对应边的比相等且夹角对应相等的两个三角形相似.也考查了正方形的性质.巩固训练1.(2019•崇明区一模)如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE 的是()A.∠B=∠D B.∠C=∠AED C.=D.=【点拨】根据已知及相似三角形的判定方法对各个选项进行分析,从而得到最后答案.【解析】解:∵∠BAD=∠CAE,∴∠DAE=∠BAC,∴A,B,D都可判定△ABC∽△ADE选项C中不是夹这两个角的边,所以不相似,故选:C.【点睛】此题考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.2.(2020•上虞区校级一模)已知△ABC是正三角形,点D是边AC上一动点(不与A、C重合),以BD为边作正△BDE,边DE与边AB交于点F,则图中一定相似的三角形有()对.A.6 B.5 C.4 D.3【点拨】根据相似三角形的判定定理,两个等边三角形的3个角分别相等,可推出△ABC∽△EDB,根据对应角相等推出△BDC∽△BFE∽△DF A.△BDF∽△BAD.【解析】解:图中的相似三角形是△ABC∽△EDB,△BDC∽△BFE,△BFE∽△DF A,△BDC∽△DF A,△BDF∽△BAD.理由:∵△ABC和△BDE是正三角形,∴∠A=∠C=∠ABC=60°,∠E=∠BDE=∠EBD=60°,∴△ABC∽△EDB,可得∠EBF=∠DBC,∠E=∠C,∴△BDC∽△BFE,∴∠BDC=∠BFE=∠AFD,∴△BDC∽△DF A,∴△BFE∽△DF A,∵∠DBF=∠ABD,∠BDF=∠BAD,∴△BDF∽△BAD.故选:B.【点睛】本题主要考查相似三角形的判定定理及有关性质的运用,关键在于根据图中两个等边三角形,找出相关的相等关系,然后结合已知条件,得出结论.3.(2019秋•市中区期末)如图,Rt△ABC中,∠C=90°,∠B=60°,BC=4,D为BC的中点,E为AB 上的动点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<12),连接DE,当△BDE与△ABC相似时,t的值为4或7或9.【点拨】由条件可求得AB=8,可知E点的运动路线为从A到B,再从B到AB的中点,当△BDE为直角三角形时,当∠EDB=90°或∠DEB=90°,得出△BDE和△ABC相似,可求得BE的长,则可求得t的值.【解析】解:在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4,∴AB=2BC=8,∵D为BC中点,∴BD=2,∵0≤t<12,∴E点的运动路线为从A到B,再从B到AB的中点,按运动时间分为0≤t≤8和8<t<12两种情况,①当0≤t≤8时,AE=t,BE=BC﹣AE=8﹣t,当∠EDB=90°时,则有AC∥ED,∴△BDE∽△BCA,∵D为BC中点,∴E为AB中点,此时AE=4,可得t=4;当∠DEB=90°时,∵∠DEB=∠C,∠B=∠B,∴△BED∽△BCA,∴,即,解得t=7;②当8<t<12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;综上可知t的值为4或7或9,故答案为:4或7或9.【点睛】本题主要考查相似三角形的判定和性质,用t表示出线段的长,化动为静,再根据相似三角形的对应边成比例找到关于t的方程是解决这类问题的基本思路.4.(2019秋•海淀区期末)如图,⊙O是△ABC的外接圆,D是的中点,连结AD,BD,其中BD与AC 交于点E.写出图中所有与△ADE相似的三角形:△CBE,△BDA.【点拨】根据两角对应相等的两个三角形相似即可判断.【解析】解:∵=,∴∠ABD=∠DBC,∵∠DAE=∠DBC,∴∠DAE=∠ABD,∵∠ADE=∠ADB,∴△ADE∽△BDA,∵∠DAE=∠EBC,∠AED=∠BEC,∴△AED∽△BEC,故答案为△CBE,△BDA.【点睛】本题考查相似三角形的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(2020•成都模拟)如图,BC是⊙O的弦,A是劣弧BC上一点,AD⊥BC于D,若AB+AC=10,⊙O的半径为6,AD=2,则BD的长为2或4.【点拨】作直径AE,连接CE,证明△ABD∽△AEC,得,设AB=x,则AC=10﹣x,列方程可得AB的长,最后利用勾股定理可解答.【解析】解:作直径AE,连接CE,∴∠ACE=90°,∵AD⊥BC,∴∠ADB=90°,∴∠ADB=∠ACE,∵∠B=∠E,∴△ABD∽△AEC,∴,设AB=x,则AC=10﹣x,∵⊙O的半径为6,AD=2,∴,解得:x1=4,x2=6,当AB=4时,BD===2,当AB=6时,BD===4,∴BD的长是2或4;故答案为:2或4.【点睛】本题考查了圆周角定理,相似三角形的性质和判定,正确作辅助线,构建相似三角形是本题的关键.6.(2020•雨花区校级一模)如图,AB为⊙O的直径,点C、D在⊙O上,AC=3,BC=4,且AC=AD,弦CD交直径AB于点E.(1)求证:△ACE∽△ABC;(2)求弦CD的长.【点拨】(1)由垂径定理可知∠AEC=90°,然后根据相似三角形的判定即可求出答案.(2)根据相似三角形的性质可知AC2=AE•AB,从而可求出AE=,再由勾股定理以及垂径定理即可求出CD的长度.【解析】解:(1)∵AC=AD,AB是⊙O的直径,∴CD⊥AB,∴∠AEC=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE+∠BAC=∠BAC+∠B=90°,∴∠ACE=∠B,∴△ACE∽△ABC.(2)由(1)可知:,∴AC2=AE•AB,∵AC=3,BC=4,∴由勾股定理可知:AB=5,∴AE=,∴由勾股定理可知:CE=,∴由垂径定理可知:CD=2CE=.【点睛】本题考查相似三角形,解题的关键是熟练运用勾股定理,相似三角形的性质与判定,圆周角定理,本题属于中等题型.7.(2018秋•姜堰区校级月考)如图,点B、D、E在一条直线上,BE与AC相交于点F,==.(1)求证:∠BAD=∠CAE;(2)若∠BAD=21°,求∠EBC的度数:(3)若连接EC,求证:△ABD∽△ACE.【点拨】(1)根据相似三角形的性质定理得到∠BAC=∠DAE,结合图形,证明即可;(2)根据相似三角形的性质即可得到结论;(3)根据相似三角形的判定和性质即可得到结论.【解析】(1)证明:∵==.∴△ABC~△ADE;∴∠BAC=∠DAE,∴∠BAC﹣∠DAF=∠DAE﹣∠DAF,即∠BAD=∠CAE;(2)解:∵△ABC~△ADE,∴∠ABC=∠ADE,∵∠ABC=∠ABE+∠EBC,∠ADE=∠ABE+∠BAD,∴∠EBC=∠BAD=21°;(3)证明:连接CE,∵△ABC~△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAF=∠DAE﹣∠DAF,即∠BAD=∠CAE,∵=.∴△ABD∽△ACE.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.8.(2019秋•江阴市期中)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)试探究t为何值时,△BPQ的面积是cm2;(3)直接写出t为何值时,△BPQ是等腰三角形;(4)连接AQ,CP,若AQ⊥CP,直接写出t的值.【点拨】(1)由勾股定理可求AB的长,分两种情况讨论,由相似三角形的性质可求解;(2)过点P作PE⊥BC于E,由平行线分线段成比例可得PE=3t,由三角形的面积公式列出方程可求解;(3)分三种情况讨论,由等腰三角形的性质可求解;(4)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,根据△ACQ∽△CMP,得出AC:CM=CQ:MP,代入计算即可.【解析】解:(1)∵∠ACB=90°,AC=6cm,BC=8cm,∴AB===10cm,∵△BPQ与△ABC相似,且∠B=∠B,∴或,当时,∴,∴t=1,当,∴,∴t=;(2)如图1,过点P作PE⊥BC于E,∴PE∥AC,∴,∴PE==3t,∴S△BPQ=×(8﹣4t)×3t=,∴t1=或t2=;(3)①当PB=PQ时,如图1,过P作PE⊥BQ,则BE=BQ=4﹣2t,PB=5t,由(2)可知PE=3t,∴BE===4t,∴4t=4﹣2t,∴t=②当PB=BQ时,即5t=8﹣4t,解得:t=,③当BQ=PQ时,如图2,过Q作QG⊥AB于G,则BG=PB=t,BQ=8﹣4t,∵△BGQ∽△ACB,∴,∴解得:t=.综上所述:当t=或或时,△BPQ是等腰三角形;(3)过P作PM⊥BC于点M,AQ,CP交于点N,如图3所示:则PB=5t,∵AC⊥BC∴△PMB∽△ACB,∴=∴BM=4t,PM=3t,且BQ=8﹣4t,BC=8,∴MC=8﹣4t,CQ=4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM,∵∠ACQ=∠PMC,∴△ACQ∽△CMP,∴,∴∴t=【点睛】此题是相似形综合题,主要考查了相似三角形的判定与性质,勾股定理,直角三角形的性质,等腰三角形的性质,由三角形相似得出对应边成比例是解题的关键.。
25.4 相似三角形的判定河北省任丘市北汉中学李莉一、教材分析相似图形是对两个图形间的关系的进一步研究.全等图形研究的是两个完全重合的图形,既要考虑图形的形状,又要考虑图形的大小.而相似图形只考虑图形的形状,而不考虑图形的大小.因此,全等图形是特殊的相似图形,相似图形是全等图形的进一步“推广”.因此,探究相似三角形的判定定理的方式,可采用类比全等三角形的判定,获得猜想,再进行验证、证明.本节课只探究相似三角形的第一个判定定理——两角相等的两个三角形相似.二、教学目标知识与技能:掌握两角对应相等的两个三角形相似的判定方法.过程与方法:经历从三角形全等的判定出发探索相似三角形判定定理的过程,培养学生“发现、提出问题,分析、解决问题”的能力.情感态度与价值观:在探究过程中培养学生合作交流的能力.问题解决:运用类比思想解决问题.三、教学重点判定定理——“两角对应相等的两个三角形相似”的获得.四、教学难点两角相等的两个三角形相似的发现与证明.五、教学过程教学环节师生活动设计意图复习提问教师提问:1. 什么叫作相似三角形?怎样判定相似三角形?2.全等三角形是相似三角形吗?如果是,相似比是多少?如何判定全等三角形?学生思考并回答:教师对全等三角形的判定可以表示为:两角及一边对应相等A A'∠=∠,B B'∠=∠,1ABA B=''复习相似三角形的有关内容,作为判定相似三角形的依据.复习全等三角形的判定,为获得相似三角形的判定作好铺垫,并引出课两边及夹角对应相等1AB ACA B A C=='''',A A'∠=∠三边对应相等1AB BC ACA B B C A C===''''''题.提出问题类比猜想教师提出问题,导入新课.两个三角形具备哪些条件才能相似呢?活动1:请你类比全等三角形的判定,猜想一下相似三角形的判定条件.学生根据全等三角形的判定,可猜想相似三角形判定为:两角对应相等A A'∠=∠,B B'∠=∠两边对应成比例,夹角相等AB ACA B A C='''',A A'∠=∠三边对应成比例AB BC ACA B B C A C==''''''类比是获得猜想的重要手段之一,全等三角形是相似比为1的相似三角形,因此,通过学生类比全等三角形的条件,获得相似三角形的条件.观察思考检验猜想教师:我们的猜想正确吗?需要进行检验、验证、证明.我们先来验证第一个猜想的正确性.能举出例子说明这个猜想是正确的吗?活动2:1.如图,这两个等腰直角三角形相似吗?并说明理由.2.如图,这两个直角三角形相似吗?并说明理由.3.有两组对应角相等的两个三角形吗?让学生用两个特殊的三角形对猜想的正确性进行初步的检验.动手操作验证猜想教师:有两组对应角相等的两个三角形吗?仅从两个特例的检验是不够的,还需对一般的三角形进行验证.如何进行验证呢?活动3:已知∠α,∠β,如图.(1)分别以∠α,∠β为两个内角,任意画出一个三角形,与同桌所画的三角形对比,直观感受两个三角形是否相似;对一般的三角形无法精确计算边的比,但可用合情推理进行验证.虽然这种验证是不可靠的,但让学生经历这样的过程对猜想的正确性得到了进一步的确认.αβ运用定理巩固提高证明:∵DE∥BC,∴∠ADE=∠B,又∵DF∥AC,∴∠A=∠BDF.∴△ADE∽△DBF.活动6:已知:如图,点D在△ABC 的边AB上,过点D作直线截△ABC,使截得的三角形与原三角形相似,你认为满足条件的直线有几条?能把这些直线画出来吗?这是一道开放性很强的题目,应放手让学生去做,教师组织交流、总结.如何把这些直线都找到,可以引导学生进行分析:过D点截△ABC的边,可以截边AC,也可以截边BC.对于截边AC的情况,∠A公用,只需再有一角相等.于是∠ADE=∠B,或∠ADF=∠C.对于截边BC的情况,类似地有∠BDG=∠A,或∠BDH=∠C.这样满足条件的直线有4条.练习1,2.进一步理解相似三角形判定定理的“两角对应相等”,灵活运用判定定理进行判定.小结与作业1.小结本节课通过类比全等三角形的条件,获得了相似三角形判定的三个条件,并经历验证、证明了第一个猜想的正确性,将作为相似三角形的一个判定定理,这个判定定理的条件和结论分别是什么?另外两个猜想是否正确呢?有待于我们进一步的验证、证明.2.作业教科书第75页习题A组和B组1题,B组2题选作.及时对获得定理的过程及定理进行反思,进一步感悟思想方法,帮助积累活动经验,加深对定理的理解.巩固用判定定理对相似三角形进行判定.DCBAEFHGEDCBAFDCBA感谢您的阅读,祝您生活愉快。
相似三角形的判定在几何学中,相似三角形是指具有相同形状但可能不同尺寸的三角形。
判定两个三角形是否相似是几何学中的基本问题之一。
本文将介绍相似三角形的定义以及常用的判定方法。
一、相似三角形的定义两个三角形相似的条件是它们的对应角度相等且对应边的比例相等。
根据这个定义,我们可以得出相似三角形的三个基本判定定理。
1. AA相似定理:如果两个三角形的两个角分别相等,则这两个三角形相似。
2. SSS相似定理:如果两个三角形的三条边的比例相等,则这两个三角形相似。
3. SAS相似定理:如果两个三角形中有两个对应边的比例相等,并且这两个对应边夹角相等,则这两个三角形相似。
二、相似三角形的判定方法1. 角角判定法:使用AA相似定理,当我们知道两个三角形的两个角分别相等时,就可以判定它们相似。
具体判定方法是测量三角形的两个角,并将其与另一个三角形对应的两个角进行比较。
如果它们相等,则两个三角形相似。
2. 边边判定法:使用SSS相似定理,当我们知道两个三角形的三条边的比例相等时,可以判定它们相似。
具体判定方法是测量两个三角形的三条边,并将其比较。
如果它们的比例相等,则两个三角形相似。
3. 边角边判定法:使用SAS相似定理,当我们知道两个三角形有两个对应边的比例相等,并且这两个对应边夹角相等时,可以判定它们相似。
具体判定方法是测量两个三角形的两个对应边的比例,并测量它们对应的夹角,将其与另一个三角形对应的两个对应边的比例和夹角进行比较。
如果它们相等,则两个三角形相似。
三、相似三角形的应用相似三角形在几何学中有广泛的应用。
一些常见的应用包括:1. 测量高度:通过测量阴影的长度和实物的长度,我们可以利用相似三角形的性质计算出物体的高度。
2. 估算距离:在实际测量中,通过相似三角形的比例关系,我们可以利用已知的距离来估算其他无法直接测量的距离。
3. 图像变换:相似三角形的性质在图像变换中也有应用。
例如,图像的缩放、旋转和翻转等操作都可以通过相似三角形来实现。
相似三角形的判定及性质学习目标:1.掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).2.会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题.3.掌握两个直角三角形相似的判定条件,并能解决简单的问题.4.掌握相似三角形的性质定理,并能解决简单的问题.知识梳理:(1)相似三角形的判定定义:对应角________,对应边_________的两个三角形叫做相似三角形.相似三角形对应边的比值叫做_________.预备定理:_____于三角形一边的直线和_________(或两边的_________)相交,所构成的三角形与原三角形相似.引理:如果一条直线截三角形的两边(或两边的延长线)所的的线段______________那么这条直线平行于__________.判定定理1:如果一个三角形的__________与另一个三角形的两个角__________,那么这两个三角形相似.(简叙为:______________________________).判定定理2:如果一个三角形的__________与另一个三角形的两边__________,并且__________,那么这两个三角形相似.(简叙为:___________________________________).判定定理3:如果一个三角形的__________与另一个三角形的三条边__________,那么这两个三角形相似.(简叙为:______________________________).直角三角形相似的判定定理1:①如果两个直角三角形_____________________,那么它们相似.②如果两个直角三角形_____________________,那么它们相似.定理2:①如果一个直角三角形的________________与另一个直角三角形的斜边和一条直角边__________,那么这两个直角三角形相似.(2)相似三角形的性质①相似三角形的对应线的比,对应线的比和对应线的比都等于相似比;②相似三角形的的比等于相似比;③相似三角形的的比等于相似比的.④相似三角形外接圆的直径比、周长比等于,外接圆的面积比等于.三角形相似的关系证明:AD2=DC·AC例2.如图所示,已知在△ABC中,AB=AC,AD是BC边上的中线,CF∥BA,BF交AD 于点P,交AC于点E.求证:BP2=PE·PF.例3.如图所示,在△ABC中,∠ACB=90°,CD⊥AB于点D,AE是∠CAB的角平分线,CD与AE相交于点F,EG⊥AB于点G. 求证:EG2=FD·EB例4.如图所示,在△ABC中,DE∥BC,S△ADE∶S△ABC =4∶9.(1)求AE∶EC.(2)求S△ADE∶S△CDE.A.有两边成比例及一个角相等的两个三角形相似B.有两边成比例的两个等腰三角形相似C.有三边分别对应平行的两个三角形相似D.有两边及一边上的高对应成比例的两个三角形相似2.如图所示,△ABC∽△AED∽△AFG,DE是△ABC的中位线,△ABC与△AFG的相似比是3∶2,则△ADE与△AFG的相似比是()A.3∶4B.4∶3C.8∶9D.9∶83.如图所示,在△ABC中,点M在BC上,点N在AM上,CM=CN,且AM BM= AN CN下列结论正确的是()A.△ABM∽△ACBB.△ANC∽△AMBC.△ANC∽△ACMD.△CMN∽△BCA4.如图所示,BD、CE是△ABC的高,BD、CE交于点F,写出图中所有与△ACE相似的三角形:__________.5.如图所示,AB=8,AD=3,AC=6,当AE=____时,△ADE∽△ACB.6.在△ABC中,点D、E分别是边AB、AC上的点,且DE∥BC,若AE∶EC=1∶2,且AD=4 cm,则DB等于()A.2 cm B.6 cmC.4 cm D.8 cm7.在△ABC中,AB=9,AC=12,BC=18,D为AC上一点,DC=AC,在AB上取一点E,得到△ADE,若△ADE与△ABC相似,则DE的长为()A.6 B.8C.6或8 D.148.如图所示,已知在△ABC中,∠C=90°,正方形DEFG内接于△ABC,DE∥AC,EF∥BC,AC=1,BC=2,则AF∶FC等于()A.1∶3B.1∶4C.1∶2D.2∶39.两相似三角形的相似比为1∶3,则其周长之比为______,内切圆面积之比为______.10.如图所示,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE =______.11.如图所示,已知边长为12的正三角形ABC,DE∥BC,S△BCD∶S△BAC=4∶9,求CE的长.相似三角形的判定和性质答案 例1. 证明:∵∠A =36°,AB =AC ,∴∠ABC =∠C =72°.又∵BD 平分∠ABC ,∴∠ABD =∠CBD =36°.∴AD =BD =BC ,且△ABC ∽△BCD .∴BC ∶AB =CD ∶BC .∴BC 2=AB ·CD , ∴AD=BC,AB=AC.∴AD 2=AC ·CD例2. 证明:如图,连接PC ,在△ABC 中,∵AB =AC ,D 为BC 中点,∴AD 垂直平分BC .∴PB =PC ,∠1=∠2.∵AB =AC ,∴∠ABC =∠ACB .∴∠ABC -∠1=∠ACB -∠2.∴∠3=∠4.∵CF ∥AB ,∴∠3=∠F .∴∠4=∠F .又∵∠EPC =∠CPF .∴△PCE ∽△PFC .∴ = .∴PC 2=PE ·PF .∵PC =PB .∴PB 2=PE ·PF例3.证明:∵∠ACE =90°,CD ⊥AB ,∴∠CAE +∠AEC =90°,∠F AD +∠AFD =90°. ∵∠AFD =∠CFE ,∴∠F AD +∠CFE =90°.又∵∠CAE =∠F AD ,∴∠AEC =∠CFE ,∴CF =CE .∵AE 是∠CAB 的平分线,EG ⊥AB ,EC ⊥AC ,∴EC =EG ,∴CF =EG .∵∠B +∠CAB =90°,∠ACF +∠CAB =90°,∴∠ACF =∠B .PC PE PFPC ∵∠CAF =∠BAE ,∴△AFC ∽△AEB ,AF AE =CF EB . ∵CD ⊥AB ,EG ⊥AB ,∴Rt △ADF ∽Rt △AGE . ∴AF AE =FD EG ,∴CF EB =FD EG.例4.当堂检测:1.C2.A3.B4. △FCD 、△FBE 、△ABD5.46.D7.C8.C9.1:3 1:9 10. 211. 如图所示,过点D 作DF ⊥BC 于点F ,过点A 作AG ⊥BC 于点G ,S △BCD = BC ·DF ,S △BAC = BC ·AG ,∵S △BCD ∶S △BAC =4∶9,∴DF ∶AG =4∶9.∵△BDF ∽△BAG ,∴BD ∶BA =DF ∶AG =4∶9.∵AB =12,∴CE =BD =解析:(1)∵DE ∥BC , ∴△ADE ∽△ABC . ADE ABC S S =2AE AC ⎛⎫ ⎪⎝⎭=49, ∴AE AC =23,∴AE EC =21=2. (2)如图所示,作DF ⊥AC ,垂足为F .则S △ADE =12DF ⋅AE ,S △CDE =12DF ⋅EC . ∴ADE CDE S S =1212DF AE DF EC ⋅⋅=AE EC=21=2.。
相似三角形的判定(一)学习目标:1.经历“有两个角对应相等的两个三角形相似”及其推论的探索过程. 2.能运用“有两个角对应相等”及其推论的判定两个三角形相似. 3.发展同学们合情推理与数学说理能力。
学习过程:一、创设情境,引入新课:问题:如果两个三角形的对应边 ,对应角 ,那么这两个三角形相似。
结合我们学习全等三角形的判定,是否存在判定两个三角形相似的简便方法呢?如果有,包括哪几种情况?写下来:二、合作交流,探究新知: 探究一:相似三角形的判定方法1(1)请同学们观察你与同伴的直角三角尺,同样角度的三角尺是否相似?你能提出什么猜想?(2)由此我们发现:如果一个三角形的三个角分别与另一个三角形的三个角对应相等,那么 。
(3)如果两个三角形的两对角分别对应相等,这两个三角形是否相似?为什么?归纳:由此我们得到判定两个三角形相似的方法1: 。
∴ 如图,∵∠A =∠A ′,∠B =∠B ′∴△ABC ∽△A ′B ′C ′(4)独立思考:如果两个三角形仅有一对角对应相等,它们是否一定相似?举反例说明。
探究二:如图甲与图乙,若DE ∥BC,则△ADE 与△ABC 有什么关系,你能写出证明过程吗?归纳:由此我们得到判定两个三角形相似的方法1的推论: 平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.∵AC ∥DB ∴△ADE ∽△ABC 探究三:ABCA ′B ′C ′A BCDE 图甲ABCDE图乙除了以上常见的基本图形外,能利用本节判定方法的基本图形如下 (1)如图1,若∠AED =∠B,则△ADE ∽△ACB ; (2)如图2,若∠ACD =∠B,则△ACD ∽△ABC ;(3)如图3,若∠BAC =90°,AD ⊥BC,则△ABC ∽△DBA ∽△DAC. 重要方法:1、有一个锐角相等的两个直角三角形相似;2、识别三角形相似的常用思路:(1)当条件中有平行线时,找两对对应角相等;(2)当条件中有一对相等的角(对顶角或公共角)时,可考虑再找一对相等的角; (3)两个等腰三角形,可以找顶角相等或找一对底角相等. 三:应用新知,体验成功:例1、已知△ABC 中,AB =AC ,∠A =36°,BD 是角平分线,求证:△ABC ∽△BDC.例题2.如图,在边长为4的等边三角形ABC 中,D 、E 分别在线段BC ,AC 上运动,在运动过程中始终保持∠ADE =60°,求证:△ABD ∽△DCE.例3、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
第4讲 相似三角形的判定1.相似三角形的定义 如果一个三角形的三个角与另一个三角形的三个角对应相等,且它们各有的三边对应成比例,那么这两个三角形叫做相似三角形.由相似三角形的定义,可知这两个三角形相似.用符号来表示,记作ADE ∆∽ABC ∆,其中点A 与点A 、点D 与点B 、点E 与点C 分别是对应顶点;符号“∽”读作“相似于”.用符号表示两个相似三角形时,通常把对应顶点的字母分别写在三角形记号“∆”后相应的位置上. 根据相似三角形的定义,可以得出:(1)相似三角形的对应角相等,对应边成比例;两个相似三角形的对应边的比,叫做这两个三角形的相似比(或相似系数).(2)如果两个三角形分别与同一个三角形相似,那么这两个三角形也相似.知识梳理(3)设ABC ∆与E D A '''∆的相似比为k ,E D A '''∆与ABC ∆的相似比为k1,当两个相似三角形的相似比k =1时,这两个三角形就成为全等三角形.全等三角形一定是相似三角形,全等三角形是相似三角形的特例.注意:两个相似三角形的相似比与表述这两个三角形相似的顺序..有关. 2.相似三角形具有传递性...(判定方法): 如果两个三角形分别与同一个三角形相似,那么这两个三角形也相似.符号语言:∵ABC ∆∽111C B A ∆,111C B A ∆∽222C B A ∆,∴ABC ∆∽222A B C ∆(相似三角形的传递性)3.相似三角形的预备定理平行于三角形一边的直线截其他两边所在的直线,截得的三角形与原三角形相似.4.相似三角形判定定理1如果一个三角形的两角与另一个三角形的两角对应相等,那么这两个三角形相似.可简述为:两角对应相等,两个三角形相似.如图,在ABC ∆与111A B C ∆中,如果1A A ∠=∠、1B B ∠=∠,那么ABC ∆∽111A B C ∆.5.相似三角形判定定理2如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似. 可简述为:两边对应成比例且夹角相等,两个三角形相似.如上图,在ABC ∆与111A B C ∆中,1A A ∠=∠,1111AB AC A B AC =,那么ABC ∆∽111A B C ∆. 常见模型:题型一、相似三角形的判定与证明【例1】(1)根据下列条件判定ABC ∆与DEF ∆是否相似,并说明理由;如果相似,那么用符号表示出来.(1)70A D ∠=∠=︒,60B ∠=︒,50E ∠=︒; (2)40A ∠=︒,80B ∠=︒,80E ∠=︒,60F ∠=︒.【答案】(1)相似,ABC ∆∽DFE ∆;(2)相似,ABC ∆∽DEF ∆.【解析】(1)因为三角形内角和180︒,可得50C E ∠=︒=∠,又因为70A D ∠=∠=︒,在ABC ∆和DFE ∆中,C =E A=D⎧⎨⎩∠∠∠∠,所以ABC ∆∽DFE ∆; 题型探究(2)因为三角形内角和180︒,可得60C F ∠=︒=∠,又80B E ∠=∠=︒,在ABC ∆和DFE ∆中,C =F B =E⎧⎨⎩∠∠∠∠,所以ABC ∆∽DFE ∆; (2)如图,E 是平行四边形ABCD 的边BA 延长线上的一点,CE 交AD 于点F .图中有哪几对相似三角形?【答案】3对,EAF ∆∽EBC ∆,AEF ∆∽DCF ∆,EBC ∆∽CDF ∆.【解析】∵□ABCD ∴//AB CD ,//AD BC∴E DCF ∠=∠,EAF EBC ∠=∠∴EBC D ∠=∠在AEF ∆和DCF ∆中,E =DCF EFA=DFC⎧⎨⎩∠∠∠∠,∴AEF ∆∽DCF ∆(两角对应相等,两个三角形相似); 在BCE ∆和DFC ∆中,E =DCF EBC =D⎧⎨⎩∠∠∠∠,∴BCE ∆∽DFC ∆(两角对应相等,两个三角形相似); ∴△AFE ∽△CFD ∽△BCE故答案为:3.A B C DEF(3)如图,四边形ABCD 的对角线AC 与BD 相交于点O ,2OA =,3OB =,6OC =,4OD =. 求证:OAD ∆与OBC ∆是相似三角形.【答案】证明过程见解析. 【解析】证明:2OA =,3OB =,6OC =,4OD =,242363OA OD OB OC ∴===,, OA OC OB OD∴=. 在OAD ∆与OBC ∆中,OA OD =OB OC AOD=BOC⎧⎪⎨⎪⎩∠∠,∴OAD ∆∽OBC ∆(两边对应成比例且夹角相等,两个三角形相似). (4)如图,点D 是ABC ∆的边AB 上的一点,且2AC AD AB =.求证:ACD ∆∽ABC ∆.【答案】证明过程见解析.【解析】证明:2AC AD AB =, AD AC AC AB ∴=,AB CD在ACD ∆与ABC ∆中, AD AC =AC AB A=A⎧⎪⎨⎪⎩∠∠,∴OAD ∆∽OBC ∆(两边对应成比例且夹角相等,两个三角形相似). 举一反三1.如图,1=2=3∠∠∠,那么图中相似的三角形有哪几对?【答案】ADE ∆∽ABC ∆,ADE ∆∽ACD ∆,ABC ∆∽ACD ∆,BCD ∆∽CDE ∆.【解析】因为1=2=3∠∠∠,同时有A ∠公共角必相等,根据相似三角形判定定理1,可得ADE ∆∽ABC ∆, ADE ∆∽ACD ∆,ABC ∆∽ACD ∆;同时由1=3∠∠, 可得://DE BC ,进而EDC DCB ∠=∠,又23∠=∠,根据相似三角形判定定理1,可得:BCD ∆∽CDE ∆.2.根据下列条件,判断和是否是相似三角形;如果是,那么用符号表示出来.(1)45A ∠=︒,12AB cm =,15AC cm =,45D ∠=︒,16DE cm =,20DF cm =;(2)45A ∠=︒,12AB cm =,15AC cm =,45E ∠=︒,20ED cm =,16EF cm =;(3)45A ∠=︒,12AB cm =,15AC cm =,AB CD E1 2345D ∠=︒,16ED cm =,20EF cm =.【答案】(1)相似,ABC ∆∽DEF ∆;(2)相似,ABC ∆∽EFD ∆;(3)不相似【解析】根据相似三角形判定定理2即可知对应边成比例,且夹角相等即相似,(1)(2)均符合题意,但需确立好对应关系;(3)中相等两角非夹角,不相似.3.(2020年九年级上课时练习)如图,BD 、AC 相交于点P ,连接BC 、AD ,且∠1=∠2,求证:△ADP ∽△BCP .【答案】证明过程见解析 【解析】证明:在△ADP 和△BCP 中,12,DPA CPB∠=∠⎧⎨∠=∠⎩ ∴△ADP ∽△BCP(两角对应相等,两个三角形相似).4.如图,ABC ∆∽''AB C ∆,点'B 、'C 分别对应点B 、C .求证:'ABB ∆∽'ACC ∆.AB C B ’C ’【答案证明过程见解析. 【解析】证明:ABC ∆∽''AB C ∆, ''''AB AC BAC B AC AB AC ∴=∠=∠,, ''''AB AB BAB CAC AC AC ∴=∠=∠,, ∴'ABB ∆∽'ACC ∆.题型二、选择或补充条件使三角形相似【例2】(1)(2020·上海九年级月考)如图,∠DAB=∠CAE ,请补充一个条件:________________,使△ABC ∽△ADE .【答案】∠D=∠B 或∠AED=∠C .【解析】解:∵∠DAB=∠CAE∴∠DAE=∠BAC∴当∠D=∠B 或∠AED=∠C 或AD :AB=AE :AC 或AD•AC=AB•AE 时两三角形相似.故答案为∠D=∠B (答案不唯一). (2)(2021·北京九年级一模)如图,ABC 中,BC BA >,点D 是边BC 上的一个动点(点D 与点,B C 不重合),若再增加一个条件,就能使ABD △与ABC 相似,则这个条件可以是__ __(写出一个即可).【答案】答案不唯一,如:BAD C∠=∠【解析】∵∠DBA=∠CBA,根据两边对应成比例及其夹角相等的两个三角形相似,∴添加的条件是DB:BA=AB:BC;∵∠DBA=∠CBA,根据两组对应角对应相等相等的两个三角形相似,∴添加的条件是BAD C∠=∠;故答案为:DB:BA=AB:BC或BAD C∠=∠.(3)(2020·上海九年级一模)如图,点D、E分别在△ABC的AB、AC边上,下列条件中:①∠ADE=∠C;②AE DEAB BC=;③AD AEAC AB=.使△ADE与△ACB一定相似的是()A.①②B.②③C.①③D.①②③【答案】C【解析】∵∠DAE=∠BAC,∴当ADE=∠C时,△ADE∽△ACB,故①符合题意,当AE DEAB BC=时,∵∠B不一定等于∠AED,∴△ADE 与△ACB 不一定相似,故②不符合题意, 当AD AE AC AB =时,△ADE ∽△ACB .故③符合题意, 综上所述:使△ADE 与△ACB 一定相似的是①③,故选:C .(4)(2021·陕西高新一中八年级期末)如图,D 是ABC 边AB 上一点,添加一个条件后,仍不能使ACD ABC △∽△的是( )A .ACDB ∠=∠B .ADC ACB ∠=∠ C .2AC AD AB =⋅ D .AD CD AC BC= 【答案】D 【解析】A 、当ACD B ∠=∠时,再由A A ∠=∠,可得出ACD ABC ∆∆∽,故此选项不合题意;B 、当ADC ACB ∠=∠时,再由A A ∠=∠,可得出ACD ABC ∆∆∽,故此选项不合题意;C 、当2AC AD AB =⋅时,即AC AD AB AC=,再由A A ∠=∠,可得出ACD ABC ∆∆∽,故此选项不合题意; D 、当AD CD AC BC=时,无法得出ACD ABC ∆∆∽,故此选项符合题意. 故选:D .(5)(2021·广西九年级期末)如图,AD ,BC 相交于点O ,由下列条件仍不能判定△AOB 与△DOC 相似的是( )A .AB ∥CDB .∠C =∠B C .OA OB OD OC = D .OA AB OD CD= 【答案】D 【解析】A 、由AB ∥CD 能判定△AOB ∽△DOC ,故本选项不符合题意.B 、由∠AOB =∠DOC 、∠C =∠B 能判定△AOB ∽△DOC ,故本选项不符合题意.C 、由OA OB OD OC= 、∠AOB =∠DOC 能判定△AOB ∽△DOC ,故本选项不符合题意. D 、已知两组对应边的比相等:OA AB OD CD = ,但其夹角不一定对应相等,不能判定△AOB 与△DOC 相似,故本选项符合题意.故选:D举一反三1.(2021·湖南九年级期末)如图,点P 在ABC ∆的边AC 上,要判断ABPACB ∆∆,还请你添加一个条件:__________.【答案】ABP C ∠=∠【解析】解:∵∠A =∠A∴要使得△ABP ∽△ACB ,只需要利用三个角都相等的方法即可∴可以添加的条件为:∠ABP =∠C故答案为:∠ABP =∠C .2.(2021·上海九年级一模)如图,点D 在ABC 的AB 边上,当AD AC =______时,ACD △与ABC 相似.【答案】AC AB【解析】由∠BAC=∠CAD 共用, 当AD AC AC AB =时, ACD △∽ABC .故答案为:AC AB. 3.(2019·上海)如图所示,给出下列条件:①B ACD ∠∠=;②ADC ACB ∠∠=;③AC AB CD BC =;④2AC AD AB =⋅,其中单独能够判定ABC ACD ∽的个数为( )A .4B .3C .2D .1【答案】B【解析】 解::①∵B ACD ∠=∠,∠A 为公共角,∴A ABC CD ∽△△;②∵ACB ADC ∠=∠,∠A 为公共角,∴A ABC CD ∽△△; ③虽然AC AB CD BC =,但∠A 不是已知的比例线段的夹角,所以两个三角形不相似; ④∵2AC AD AB =⋅,∴AC AB AD AC =,又∵∠A 为公共角,∴A ABC CD ∽△△. 综上,单独能够判定A ABC CD ∽△△的个数有3个,故选B. 4.(2021·北京清华附中九年级期末)如图,点D 在ABC 的边AC 上,要判定ADB △与ABC 相似,需添加一个条件,则以下所添加的条件不正确的是( )A .ABD C ∠=∠B .ADB ABC ∠=∠ C .AD AB AB AC = D .AB DB AC BC= 【答案】D 【解析】解:∵ABD C ∠=∠,BAD CAB ∠=∠,∴ABD ACB △△,故A 正确;∵ADB ABC ∠=∠,BAD CAB ∠=∠,∴ABD ACB △△,故B 正确;∵AD AB AB AC =,BAD CAB ∠=∠, ∴ABD ACB △△,故C 正确;D 选项的条件不可以证明,它不满足相似三角形的判定条件.故选:D .题型三、利用相似三角形证线段成比例、求长度、角度等【例3】(1)如图,D 、E 分别是ABC ∆的边AB 、AC 上的点,且AED B ∠=∠.求证:AE AC AD AB =.【答案】证明过程见解析.【解析】证明:AED B A A ∠=∠∠=∠,,AED ∴∆∽ABC ∆, AD AE AC AB ∴=, 即AE AC AD AB =.(2)如图,Rt ABC ∆在中,90C ∠=︒,CD AB ⊥于点D ,且:9:4AD BD =,求:AC BC 的值.【答案】3:2. 【解析】90ACB ∠=︒,即90ACD BCD ∠+∠=︒,AB CDEAB D C又CD AB ⊥,可得90ACD A ∠+∠=︒.A BCD ∴∠=∠.又90ADC BDC ∠=∠=︒,ACD ∴∆∽CBD ∆, AD DC AC DC BD BC ∴==. :9:4AD BD =,设()90AD k k =>,则4BD k =,代入可得:6DC k =.::9:63:2AC BC AD DC k k ∴===.(3)(2020·上海市静安区实验中学)已知:在△ABC 中,点D 、E 分别在AC 、AB 边上,且∠ADE=∠B ,若AE=2,BE=3,AD=3,求CD 的长.【答案】CD 的长为13【解析】∵∠ADE=∠B ,∠A=∠A∴△ADE ∽△ABC∴AE AD =AC AB∴23=AC 5 ∴AC=103∴CD=13. (4)(2020·上海市静安区实验中学)在△ABC 中,D 为AB 上一点,过点D 作一条直线截△ABC ,使截得的三角形与△ABC 相似,这样的直线可以作( )A .2条B .3条C .4条D .5条【答案】C 【解析】满足条件的直线有4条,如图所示:如图1,过D 作DE ∥AC ,则有△BDE ∽△BAC ;如图2,过D 作DE ∥BC ,则有△ADE ∽△ABC ;如图3,过D 作∠AED=∠B ,又∠A=∠A ,则有△ADE ∽△ACB ;如图4,过D 作∠BED=∠A ,又∠B=∠B ,则有△BED ∽△BAC ,故选:C .(5)(2020·上海市位育初级中学九年级期中)如图,在ABC ∆中,6,8AB cm AC cm ==,D 是AB 上一点且AD 2cm =,当AE =________cm 时,使得ADE ∆与ABC ∆相似.【答案】83或1.5 【解析】解:分两种情况:第一种情况:如图,过D 作DE||AC 于点E ,则28·863AD AE AC AB ==⨯=; 第二种情况:如图,ΔADE ~ΔACB则2·6 1.58AD AE AB AC ==⨯= 故答案为8 1.53或. (6)(2021·天津九年级期末)如图,F 为四边形ABCD 边CD 上一点,连接AF 并延长交BC 延长线于点E ,已知D DCE ∠=∠. (1)求证:ADF ECF ∽△△; (2)若ABCD 为平行四边形,6AB =,2EF AF =,求FD 的长度.【答案】(1)证明过程见详解;(2)2【解析】(1)证明:∵D DCE ∠=∠,∠AFD=∠EFC ,∴ADF ECF ∽△△; (2)解:∵四边形ABCD 是平行四边形,∴AD ∥BE ,AB =CD =6,∴AF :EF =DF :CF ,又∵EF =2AF ,∴DF :CF =1:2,即DF=13DC =2. 举一反三1.如图,在矩形ABCD 中,点E 是边BC 的中点,且DE AC ⊥,那么:CD AD = .【答案】2:2.【解析】四边形ABCD 是矩形,//90AD BC AD BC ADC BCD ∴=∠=∠=︒,,.DE AC ⊥,EDC DAC ∴∠=∠. ADC ∴∆∽DCE ∆,AD CD CD CE∴=. 设AD a =,则1122CE BC a ==,由此可得:22CD a =,∴2::2:22CD AD a a ==. 2.(2020·上海市静安区实验中学)如图,在矩形ABCD 中,AB=2,BC=1,点E 是DC 上一点,∠DAE=A B C DE∠BAC,则EC的长为________.【答案】3 2【解析】解:矩形ABCD中,DC=AB=2,AD=BC=1.又∵∠DAE=∠BAC,∠D=∠B,∴△ADE∽△ABC,∴AB:AD=BC:DE,∴DE=12,∴EC=DC﹣DE=32.3.(2020·上海市静安区实验中学)在△ABC中,D为AB上一点,且AD=1,AB=4,AC=7,若AC上有一点E,且△ADE与原三角形相似,则AE=________.【答案】74或47【解析】解:(1)如图1,当△ADE∽△ABC时,AE AD AC AB=,即:1 74 AE=,∴74 AE=;(2)如图2,当△ADE∽△ACB时,AE AD AB AC=,即:1 47 AE=,∴47 AE=.故答案为:74或474.(2021·四川九年级一模)在Rt ABC中,9030C A∠=︒∠=︒,,点P为AC中点,经过点P的直线截ABC,使截得的三角形与ABC相似,这样的直线共有______条.【答案】3【解析】解:过点P作PE∥AB交AB于点E,△CPE∽△CA B.过点P作PF∥BC交AB于点F,△APF∽△AC B.过点P作PG⊥AB交AB于点G,△PGA∽△BC A.故满足条件的直线有3条,故答案为:3.5.(2019·上海浦东新区·)如图:四边形ABCD对角线AC与BD相交于点O,OD=2OA,OC=2OB.(1)求证:△AOB∽△DOC;(2)点E在线段OC上,若AB∥DE,求证:OD2=OE•OC.【答案】证明过程见解析【解析】证明:(1)∵OD=2OA ,OC=2OB , 12OA OB OD OC ∴== , 又∠AOB=∠DOC ,∴△AOB ∽△DOC .(2)由(1)得:△AOB ∽△DOC .∴∠ABO=∠DCO .∵AB ∥DE ,∴∠ABO=∠EDO .∴∠DCO=∠EDO .∵∠DOC=∠EOD ,∴△DOC ∽△EOD,∴OD OC OE OD = , 2·OD OE OC ∴=课后作业1.(2020·上海市静安区实验中学)如图,∠ADE =∠ACD =∠ABC ,图中相似三角形共有( )A.1对B.2对C.3对D.4对【答案】D【解析】试题分析:∵∠ADE=∠ACD=∠ABC,∴DE∥BC,∴△ADE∽△ABC,∵DE∥BC,∴∠EDC=∠DCB,∵∠ACD=∠ABC,∴△EDC∽△DCB,同理:∠ACD=∠ABC,∠A=∠A,∴△ABC∽△ACD,∵△ADE ∽△ABC,△ABC∽△ACD,∴△ADE∽△ACD,∴共4对,故选D.2.(2019·上海民办桃李园实验学校九年级月考)如图,在四边形ABCD中,//AD BC,如果添加下列条件,不能使得△ABC∽△DCA成立的是()A.∠BAC=∠ADC B.∠B=∠ACD C.AC2=AD•BC D.DC AB AC BC=【答案】D【解析】解:A.∵AD∥BC,∴∠DAC=∠BCA,当∠BAC=∠ADC时,则△ABC∽△DCA;B.∵AD∥BC,∴∠DAC=∠BCA,当∠B=∠ACD时,则△ABC∽△DCA;C.∵AD∥BC,∴∠DAC=∠BCA,由AC2=AD•BC变形为AC ADBC AC=,则△ABC∽△DCA;D.∵AD∥BC,∴∠DAC=∠BCA,当DC ABAC BC=时,不能判断△ABC∽△DCA.故选择:D.3.(2019·上海九年级期中)如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A.AC ABAD AE=B.AC BCAD DE=C.AC ABAD DE=D.AC BCAD AE=【答案】C【解析】解:∵∠BAC=∠D,AC AB AD DE=∴△ABC∽△ADE.故选C.4.(2019·上海市嘉定区怀少学校)下列命题中,错误的结论是()A.如果两个三角形都是等腰三角形且顶角为100°,那么这两个三角形相似B.如果两个三角形都是直角三角形,那么这两个三角形相似C.如果两个三角形都是等腰直角三角形,那么这两个三角形相似D.如果两个直角三角形都有一个内角等于30°,那么这两个三角形相似【答案】B【解析】解:A.两个顶角为100°的等腰三角形是相似三角形,故正确,B.两个直角三角形的锐角不一定相等,那么这两个三角形不一定相似,故错误,C.两个等腰直角三角形都是相似三角形,故正确,D.有两组角相等的三角形是相似三角形,故正确,故选:B.5.(2019·上海九年级期末)如图,如果BAD CAE∠=∠,那么添加下列一个条件后,仍不能确定ABC和ADE相似的是( ).A .B D ∠=∠B .C AED ∠=∠ C .AB DE AD BC = D .AB AC AD AE= 【答案】C 【解析】∵BAD CAE ∠=∠,∴DAE BAC ∠=∠,∴A ,B 可由两角对应相等的三角形相似,判定ABC ∽ADE ,D 可据一角对应相等夹边成比例判定ABC ∽ADE .选项C 中不是夹这两个角的边,所以不能判定相似.故选:C .6.(2018·上海九年级期中)如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,∠ACD =∠B ,那么下列判断中,不正确的是( )A .△ADE ∽△ABCB .△CDE ∽△BCDC .△ADE ∽△ACD D .△ADE ∽△DBC【答案】D 【解析】∵点D 、E 分别在边AB 、AC 上,DE ∥BC ,∴△ADE ∽△ABC ,故A 正确;∵DE ∥BC ,∴∠BCD=∠EDC ,∵∠B=∠DCE ,∴△CDE ∽△BCD ,故B 正确;∵∠ACD=∠B ,∠A=∠A ,∴△ACD ∽△ABC ,∴△ADE ∽△ACD ,故C 正确;△ADE 与△DBC 不一定相似,故D 不正确; 本题选择不正确的,故选D .7.(2020·上海市静安区实验中学)已知一个三角形的两个内角分别是30,70,另一个三角形的两个内角分别是70,80,则这两个三角形( )A .一定相似B .不一定相似C .一定不相似D .不能确定【答案】A【解析】解:∵ 一个三角形的两个内角分别是30,70,∴ 另一个内角的度数是180307080--=,∴一个三角形的三个内角分别是30,70,80∴ 这两个三角形有两角对应相等∴ 这两个三角形一定相似.故选:A .8.(2020·上海市静安区实验中学九年级专题练习)如图:在ABC ∆中,点D 在边AB 上,且ACD B ∠=∠,过点A作AE∥CB交CD的延长线于点E,那么图中相似三角形共有( )A.6对B.5对C.4对D.3对【答案】C【解析】解:依题意得∠EAD=∠ACD=∠B,∵AE∥CB,∴△AED∽△BCD,∵∠CAD=∠BAC,∴△ACD∽△ABC,∵∠AED=∠CEA,∴△AED∽△CEA,由相似三角形的传递性,得△BCD∽△CEA.故有4对相似三角形.故答案为:C.9.(2018·上海黄浦区·中考模拟)如图,在△ABC中,∠B=80°,∠C=40°,直线l平行于BC.现将直线l 绕点A逆时针旋转,所得直线分别交边AB和AC于点M、N,若△AMN与△ABC相似,则旋转角为()A.20°B.40°C.60°D.80°【答案】B 【解析】因为旋转后得到△AMN 与△ABC 相似,则∠AMN =∠C =40°,因为旋转前∠AMN =80°,所以旋转角度为40°,故选B.10.(2020·上海九年级三模)如图,已知△ABC 与△BDE 都是等边三角形,点D 在边AC 上(不与点A 、C 重合),DE 与AB 相交于点F ,那么与△BFD 相似的三角形是( )A .△BFE ;B .△BDC ; C .△BDA ;D .△AFD .【答案】C 【详解】解: △ABC 与△BDE 都是等边三角形,60,A EDB ∴∠=∠=︒,DBF ABD ∠=∠,BFD BDA ∴∽故选C .11.(2019·上海市育才初级中学九年级月考)已知ABC 中,D 、E 分别在AB 、AC 上,下列条件中,能推断ADE 与ABC 相似的有( )个①∠BDE +∠C =180°;②AD AB AE AC ⋅=⋅;③AD BC AB DE ⋅=⋅;④∠A =90°,且AD AB DE BC = A .1B .2C .3D .4【答案】C【解析】由图可知,∠A 是△ADE 与△ACB 的公共角,①∵∠BDE+∠C=180°,∠ADE+∠BDE=180°,∴∠ADE=∠C ,利用“两组角对应相等,两三角形相似”得到△ADE 与△ACB 相似;②由AD•AB=AE•AC 得到AD AC AE AB =,可以利用“两边对应成比例,夹角相等,两三角形相似”得到△ADE 与△ACB 相似;③由AD•BC=AB•DE 可得到AD AB DE BC=,公共角不是夹角,不能得到△ADE 与△ACB 相似; ④∵AD AB DE BC =,∠A=90°, 利用“斜边和一条直角边对应成比例的两个直角三角形相似”得到△ADE 与△ACB 相似,综上所述,能判断△ADE 与△ACB 相似的是①②④,共3个.故选:C .12.(2021·天津九年级期末)下列条件中可以判定ABC A B C '''∽△△的是( ) A .AB A B AC A C ''='',A A '∠=∠ B .AB A B AC A C ''='',B B '∠=∠ C .AB A B AC A C ''='' D .AB AC A B A C =''''【答案】A【解析】A 、对应边成比例,且夹角相等,所以可判定ABC A B C '''∽△△相似,故选项正确; B 、对应边成比例,但B 不是AB 、AC 的夹角,不能判定ABC A B C '''∽△△相似故选项错误; C 、只有对应边成比例,但夹角不确定,不能判定ABC A B C '''∽△△相似故选项错误;D 、只有对应边成比例,但夹角不确定,不能判定ABC A B C '''∽△△相似故选项错误;故选:A .13.(2021·河北九年级一模)已知图(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB 、CD 交于O 点,对于各图中的两个三角形而言,下列说法正确的是( )A .只有(1)相似B .只有(2)相似C .都相似D .都不相似【答案】C 【解析】解:对于图(1):180°﹣75°﹣35°=70°,则两个三角形中有两组角对应相等,所以(1)图中的两个三角形相似;对于(2)图:由于43OA OD =,84=63OC OB =,OA OC OD OB =,∠AOC =∠DOB ,所以△AOC ∽△DOB . 故选:C .14.如图,D 是ABC 的AB 边上的一点,在直线AC 上找一点E ,使得ADE 与ABC 相似,则满足这样条件的E 点有( )A .0个B .1个C .2个D .1个或2个【答案】D 【解析】解:情况(1):如图,当AB AC ≠时,根据题意得:当//DE BC 时,ADE ABC △△∽;当ADE C ∠=∠时,由A A ∠=∠,可得ADE ABC △△∽.所以当AB AC ≠时,满足这条件的E 点有2个.情况(2):当AB AC =时,情况(1)中两点重合,此时满足这条件的E 点只有1个. 综上所述:使得ADE 与ABC 相似,则满足这样条件的E 点有1个或2个. 故选:D .15.(2021·北京九年级期末)如图,点D ,E 分别在△ABC 的AB ,AC 边上.只需添加一个条件即可证明△ADE ∽△ACB ,这个条件可以是_____.(写出一个即可)【答案】∠ADE=∠C 或∠AED=∠B 或AD AE AC AB = 【解析】∵∠A=∠A ,∴当∠ADE=∠C 或∠AED=∠B 时,ADE ∽△ACB ;当AD AE AC AB =时,ADE ∽△ACB ; 故答案为:∠ADE=∠C 或∠AED=∠B 或AD AE AC AB =.16.(2020·上海市静安区实验中学)点D在ABC的边AB上,且2AC AD AB=⋅,则ABC ACD,理由是_______.【答案】有两边对应成比例且夹角相等的两个三角形相似【解析】依题意,画图如下:2AC AD AB=⋅,即AB AC AC AD=,又A A∠=∠,ABC ACD~∴(有两边对应成比例且夹角相等的两个三角形相似),故答案为:有两边对应成比例且夹角相等的两个三角形相似.17.(2021·上海九年级二模)如图,在矩形ABCD中,AB=3,BC=4,点P为射线BC上的一个动点,过点P的直线PQ垂直于AP与直线CD相交于点Q,当BP=5时,CQ=_____.【答案】5 3【解析】解:如图,∵BP =5,BC =4,∴CP =1,∵PQ ⊥AP ,∴∠APQ =90°=∠ABC ,∴∠APB +∠BAP =90°=∠APB +∠BPQ ,∴∠BAP =∠BPQ ,又∵∠ABP =∠PCQ =90°,∴△ABP ∽△PCQ , ∴AB BP CP CQ =, ∴351CQ= ∴CQ =53, 故答案为:53. 18.(2019·上海第二工业大学附属龚路中学九年级月考)ABC ∆中,10AB =,6AC =,点D 在AC 上,且3AD =,若要在AB 上找一个点E ,使ADE ∆与ABC ∆相似,则AE =__.【答案】5或95【解析】A ∠是公共角,∴当AE AD AB AC =,即3106AE =时,ADE ACB ∆∆∽ 解得:5AE =当AE AD AC AB =,即3610AE =时,ADE ABC ∆∆∽ 解得:95AE = 故答案为:5或9519.(2021·吴江市实验初级中学八年级月考)如图,四边形ABEG 、GEFH 、HFCD 都是正方形.请你在图中找出一对相似比不等于1的相似三角形,并说明理由.【答案】AEF CEA △∽△,理由见详解【解析】解:AEF CEA △∽△,理由如下:∵四边形ABEG 、GEFH 、HFCD 都是正方形,∴45,AEB BE EF CF ∠=︒==,∴22,2AE BE EF CE EF ===,∴222,2222AE EF EF EF EC EF AE EF====, ∴AE EF EC AE=, ∵AEF CEA ∠=∠,∴AEF CEA△∽△.20.(2020·上海市静安区实验中学)如图,∠C=90°,AC=CD=DE=BE,试找出图中的一对相似三角形,并加以证明.【答案】△ADE∽△BDA【解析】∵∠C=90°,AC=CD=DE=BE,∴AD=2CD,BD=2CD,∴12 ED ADAD BD==,∵∠ADB=∠ADB,∴△ADE∽△BDA.21.(2017·上海九年级期中)已知:如图,在△ABC中,点D、E分别在边AB、AC上,且∠ABE =∠ACD,BE、CD交于点G.(1)求证:△AED∽△ABC;(2)如果BE平分∠ABC,求证:DE=CE.【答案】(1)证明见解析;(2)证明见解析.【解析】解:(1)∵∠ABE =∠ACD ,且∠A 是公共角, ∴△ABE ∽△ACD . ∴AE AB AD AC =,即AE AD AB AC =, 又∵∠A 是公共角,∴△AED ∽△ABC .(2)在BC 上截取BF=BD ,连接EF ,在△BDE 与△BFE 中,BD=BF,∠DBE=∠FBE ,BE=BE , ∴△BDE ≌△BFE ,∴DE=FE ,∠BDE=∠BFE ,∴∠ADE=∠EFC ,∵△AED ∽△ABC ,∴∠ADE=∠ACB ,∴∠EFC=∠ACB ,∴EF=EC ,∴DE =CE .22.如图,在Rt ABC ∆中,AB AC =,45DAE ∠=︒. 求证:(1)ABE ∆∽DCA ∆;(2)22BC BE CD =.AB C D E【答案】证明过程见解析【解析】证明:(1)90AB AC BAC =∠=︒,,45B C ∴∠=∠=︒.45DAE ∠=︒,AED AEB ∠=∠,ABE ∴∆∽DAE ∆,同理可证DAE ∆∽DCA ∆, ∴ABE ∆∽DCA ∆.(2)ABE ∆∽DCA ∆,AB BE CD AC ∴=,即CD BE AB AC ⋅=⋅.90AB AC BAC =∠=︒,, 22222BC AB AC AB AC CD BE ∴=+=⋅=⋅.23.如图,ABC ∆中,AB AC =,点D 是AB 上的动点,作EDC ∆∽ABC ∆. 求证:(1)ACE ∆∽BCD ∆;(2)AE //BC .【答案】证明过程见解析【解析】证明:(1)EDC ∆∽ABC ∆,EC DC AC BC∴=,DCE ACB ∠=∠, 即EC AC DC BC =,ACE ACD ACD BCD ∠+∠=∠+∠, ∴ACE BCD ∠=∠,∴ACE ∆∽BCD ∆.(2)AB AC =,B ACB ∴∠=∠.A B C DEACE∆∽BCD∆,CAE B∴∠=∠.CAE ACB∴∠=∠,∴AE//BC.24.如图,在ABC∆中,AB AC=,AD AB⊥于点A,交BC边于点E,DC BC⊥于点C,与AD交于点D.(1)求证:ACE∆∽ADC∆;(2)如果1CE =,2CD=,求AC的长.【答案】(1)略;(2)253AC=.【解析】(1)证明:AD AB⊥,DC BC⊥,AEB CED∠=∠,∴AEB∆∽CED∆,B D∴∠=∠.AB AC=,B ACE∴∠=∠,D ACE∴∠=∠.CAE CAD∠=∠,∴ACE∆∽ADC∆.(2)解:由(1)可知AEB∆∽CED∆,AB CDEAE ABCE CD∴=.1CE=,2CD=,25 AB AE AC DE∴===,.ACE∆∽ADC∆,AC CEAD CD∴=.即11252ACAC=+、解得:253AC=.。
4.3两个三角形相似的判定(1)【要点预习】相似三角形的判定三角形一边的直线和其他两边相交,所构成的三角形与原三角形 . 有 角对应相等的两个三角形相似.【课前热身】1. 如图,△ABC 中,DE ∥BC ,则下列比例式不成立的是……………………………( )A.AD AE AB AC = B.AD DE AB BC = C.AD DE DB BC = D.AD AEDB EC=答案:C2. 如图,P 是△ABC 的边AB 上一点,若∠1= ,则△APC ∽△ACB .答案:∠ACB 3. 图中x = .答案:24. 如图,AB ∥DC ,AC 交BD 于点O .已知35AO CO =,BO =6,则DO =_________. 答案:10【讲练互动】【例1】 如图, D 为△ABC 的AB 边上一点,过点D 作DE //AC 交 BC 于点E .已知BE ∶CE =2∶1,AC =6cm ,求DE 的长.【分析】先证明△BDE ∽△BAC ,再根据比例线段求出DE 的长. 【解】∵DE ∥AC ,∴ΔBDE ∽ΔBAC ,∴BE DEBC AC=. ∵21BE CE =,∴23BE BC =,∴236DE=,∴DE =4cm. 【绿色通道】利用相似三角形可得到多组比例线段,在运用时要注意结合已知条件及所求的线段来选择相应的比例线段.【变式训练】第1题第2题第3题第4题1. 如图,AB//CD,AE//FD,AE、FD分别交BC于点G、H,则图中共有相似三角形…………………………………………()A. 4对B. 5对C. 6对D. 7对【解析】由已知易得△BFH∽△BAG∽△CEG∽△CDH.【答案】C【例2】如图,已知⊙O是△ABC的外接圆,CD是AB边上的高,AE是⊙O的直径.求证:AC·BC=AE·CD.【分析】先将结论化为比例式AC AECD AB=,因此只须证△ACE∽△CDB.【证明】连结CE. ∵AE是⊙O的直径,∴∠ACE=90°. ∵CD是AB边长的高,∴∠CDB=90°.∴∠ACE=∠CDB. 又∵∠E=∠B,∴△ACE∽△CDB,∴AC AECD AB=,即AC·BC=AE·CD.【绿色通道】已知或求证中出现线段的等积形式时,通常转化为比例式,再考虑比例式所在的三角形相似.【变式训练】2. 将两块完全相同的等腰直角三角板摆放成如图的样子,假设图形中的所有点、线都在同一平面内. 请找出图中的相似(不包括全等)三角形,并证明其中的一对.【解】△ABE∽△DAE∽△DCA.∵∠DAE=∠B=45°,∠AEB=∠DEA,∴△ABE∽△DAE.【例3】如图所示,一圆桌正上方3米处有一灯泡(视为一点),圆桌高1米,圆桌面直径为1米,请你求出圆桌面在水平地面上的投影面积.(图中阴影部分)(圆桌面与地面平行)(π取3.14,答案精确到0.1平方米)【解】建立平面图如图. OA=3,AC=1,AB=1 2 .∵AB∥CD,∴△OAB∽△OCB∴OA ABOC CD=,∴CD=142233AB OCOA⨯⋅==.∴S=π·CD2=3.14×49≈1.4 (m2). 答:圆桌面在地面上的投影面积为1.4 m2.【变式训练】3. 九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度3mCD=,标杆与旗杆的水平距离15mBD=,人的眼睛与OBDCABHGFEDCAABCDOE图7ECAHBG地面的高度 1.6m EF =,人与标杆CD 的水平距离2m DF =,求旗杆AB 的高度.【解】∵CD ∥AB ,∴△ECG ∽△EAH ,∴EG CGEH AH=. ∵EG =DF =2m ,EH=FB=17m ,CG =CD-EF =1.4m , ∴2 1.417AH=,∴AH =11.9m ,∴AB =11.9+1.6=13.5m.【同步测控】基础自测1.如图,在△ABC 中,DE ∥BC ,若13AD AB =,DE =4,则BC =…………( ) A .9 B .10 C . 11 D .122. 有一个角相等的两个等腰三角形…………………………………………………( )A. 一定相似B. 一定不相似C. 不一定相似D. 一定全等 3.如图,CD 是Rt △ABC 斜边上的高,则图中相似三角形的对数有……( )A. 0对B. 1对C. 2对D. 3对4. 如图,在△ABC 中,若∠AED =∠B ,DE =6,AB =10,AE =8,则BC 的长为…( ) A.154 B. 7 C. 152 D. 2455. 如图,∠1=∠2,请补充条件:________________(写一个即可),使△ABC ∽△ADE .答案:∠D =∠B 或∠E =∠C6.如图,∠C =∠E =90°,AD =10,DE =8,AB =5,则AC = .7. 要测量河两岸相对的两点A ,B 间的距离,先从B 处出发与AB 成90°角方向,向前走50米到C 处立一BEDC A第1题第3题BDCA第4题BEDCA第5题第6题第7题根标杆,然后方向不变继续朝前走10米到D处,在D处转90°,沿DE方向再走17米,到达E处,使A(目标物)C(标杆)与E在同一直线上(如图),那么可测得A,B的距离是____________米.8. 如图,D为△ABC中BC边上的一点,∠CAD=∠B,若AD=6,AB=8,BD=7,求DC的长.9.如图,DE∥BC,且DB=AE,若AB=5,AC=10,求AE的长.10. 如图,△ABC内接于⊙O,∠BAC的平分线分别交⊙O,BC于点D,E,连结BD.根据题意条件,找出图中各对相似三角形并加以证明.11.如图,AB ∥CD ,BO ∶CO =1∶4,点E ,F 分别是OC ,OD 的中点,则EF ∶AB 的值为( )A .1B .2C .3D .412. 如图,平行四边形ABCD 中,G 是BC 延长线上一点,AG 与BD 交于点E ,与DC 交于点F ,则图中相似三角形共有( )A. 6对B. 4对C. 5对D. 3对13.如图在ABC △中,90ACB ∠=,CD AB ⊥,DE BC ⊥,那么与ABC △相似的三角形的个数有( ) A .1个B .4个C .3个D .2个14. 要判断如图ΔABC 的面积是ΔPBC 面积的几倍,只用一把仅有刻度的直尺,需要度量的次数最少是………………………………………………………………………………( ) A. 3次 B. 2次 C. 1次 D. 3次以上 15. 如图,已知Rt ABC △的两条直角边AC BC ,的长分别为3,4,以AC 为直径作圆与斜边AB 交于点D ,则AD = . 16. 如图,在△ABC 中,AB =AC ,∠A =36°,BD 是角平分线.(1) 求证:△ABC ∽△BCD ;(2)求证:BC 是CD 与CA 的比例中项.第11题AB OE F CD第12题 第13题第14题17. 已知:如图,△ABC 中,∠C =90°,∠A =30°;△A' B'C'中,∠C'=90°, A'C'=B'C',能否分别将这两个三角形各分割成两个三角形,使△ABC 所分成的每个三角形与△A'B'C'所分成的每个三角形分别对应相似?若能,请设计一种分割方案;若不能,请说明理由.C /B /A /CBA同步测控参考答案基础自测1.如图,在△ABC 中,DE ∥BC ,若13AD AB ,DE =4,则BC =…………( ) A .9 B .10 C . 11 D .12 答案:D2. 有一个角相等的两个等腰三角形…………………………………………………( )A. 一定相似B. 一定不相似C. 不一定相似D. 一定全等 答案:C3.如图,CD 是Rt △ABC 斜边上的高,则图中相似三角形的对数有……( )A. 0对B. 1对C. 2对D. 3对 答案:D4. 如图,在△ABC 中,若∠AED =∠B ,DE =6,AB =10,AE =8,则BC 的长为…( ) A.154 B. 7 C. 152 D. 245答案:C5. 如图,∠1=∠2,请补充条件:________________(写一个即可),使△ABC ∽△ADE .答案:∠D =∠B 或∠E =∠C6.如图,∠C =∠E =90°,AD =10,DE =8,AB =5,则AC =.答案:37. 要测量河两岸相对的两点A ,B 间的距离,先从B 处出发与AB 成90°角方向,向前走50米到C 处立一BEDC A第1题第3题BDCA第4题BEDCA第5题第6题第7题根标杆,然后方向不变继续朝前走10米到D 处,在D 处转90°,沿DE 方向再走17米,到达E 处,使A (目标物)C (标杆)与E 在同一直线上(如图),那么可测得A ,B 的距离是____________米. 答案:858. 如图,D 为△ABC 中BC 边上的一点,∠CAD =∠B ,若AD =6, AB =8,BD =7,求DC 的长.解:∵∠CAD =∠B , ∠C =∠C , ∴△ACD ∽△BCA . ∴AD AC CD AB BC AC ==, ∴687AC CDCD AC==+, ∴()37434CD AC AC CD⎧+=⎪⎨=⎪⎩, 解得912CD AC =⎧⎨=⎩.9.如图,DE ∥BC ,且DB =AE ,若AB =5,AC =10,求AE 的长.解:设DB=AE=x . ∵DE ∥BC , ∴AD AEAB AC=. ∴5510x x -=, 解得x =103, 即AE =103. 10. 如图,△ABC 内接于⊙O ,∠BAC 的平分线分别交⊙O ,BC 于点D ,E ,连结BD .根据题意条件,找出图中各对相似三角形并加以证明.解:相似三角形有:△ACE ∽△ADB ∽△BDE . 证明如下: ∵AD 平分∠BAC , ∴∠1=∠2. 又∠CBD =∠2, ∴∠2=∠1=∠CBD . 又∠C =∠D =∠D , ∴△ACE ∽△ADB ∽△BDE .能力提升11.如图,AB ∥CD ,BO ∶CO =1∶4,点E ,F 分别是OC ,OD 的中点,则EF ∶AB 的值为( )A .1B .2C .3D .4答案:B12. 如图,平行四边形ABCD 中,G 是BC 延长线上一点,AG 与BD 交于点E ,与DC 交于点F ,则图中相似三角形共有…………………………………………………………( ) A. 6对 B. 4对 C. 5对 D. 3对解析:由题设可得以下相似三角形:△ADF ∽△GCF ∽△GBA , △ABE ∽△FDE , △ADE ∽△GBE ,△第11题ABOE F CD第12题第13题第14题ABD ∽△CDB . 答案:A13.如图在ABC △中,90ACB ∠=,CD AB ⊥,DE BC ⊥,那么与ABC △相似的三角形的个数有…………………………………………………………( ) A .1个B .4个C .3个D .2个解析:由题设可得以下相似三角形:△BDE ∽△DCE ∽△BCD ∽△CAD ∽△BAC . 答案:B14. 要判断如图ΔABC 的面积是ΔPBC 面积的几倍,只用一把仅有刻度的直尺,需要度量的次数最少是………………………………………………………………………………( ) A. 3次 B. 2次 C. 1次 D. 3次以上解析:设AP 的延长线交BC 于D . 因此, 只要将刻度尺一端与A 点重合, 置于AD 上, 直接度量一次读出AP 和AD 的长度, 易证ΔABC 的面积是ΔPBC 面积的倍数关系即为AD 与PD 的比值.答案:C15. 如图,已知Rt ABC △的两条直角边AC BC ,的长分别为3,4,以AC 为直径作圆与斜边AB 交于点D ,则AD = .解析:连结CD . ∵AC 是⊙O 的直径, ∴∠ADC =90°. 又∠ACB = 90°, ∠A =∠A , ∴△ACD ∽△ABC ,∴AD ACAC AB=, 结合已知可求得AD 的长. 答案:9516. 如图,在△ABC 中,AB =AC ,∠A =36°,BD 是角平分线.(1) 求证:△ABC ∽△BCD ;(2)求证:BC 是CD 与CA 的比例中项. 证明:(1) ∵AB=AC , ∠A =36°,∴∠ABC =∠ACB =72°. ∵BD 是角平分线, ∴∠ABD =∠CBD =36°. ∴∠BCD=∠A . 又∠C =∠C , ∴△ABC ∽△BCD . (2) ∵△ABC ∽△BCD , ∴BC ACCD BD=. ∵∠C =∠BDC =72°, ∴BD=BC . ∴BC ACCD BC=, 即BC 是CD 与CA 的比例中项. 创新应用17. 已知:如图,△ABC 中,∠C =90°,∠A =30°;△A' B'C'中,∠C'=90°, A'C'=B'C',能否分别将这两个三角形各分割成两个三角形,使△ABC 所分成的每个三角形与△A'B'C'所分成的每个三角形分别对应相似?若能,请设计一种分割方案;若不能,请说明理由.解:如按上图分割.C /B /A /CBA45︒45︒30︒60︒45︒45︒60︒30︒D /D C /B /A /C BA。