第五章 输气管的热力计算
- 格式:pdf
- 大小:991.54 KB
- 文档页数:54
1管道总传热系数管道总传热系数是热油管道设计和运行管理中的重要参数。
在热油管道稳态 运行方案的工艺计算中,温降和压降的计算至关重要,而管道总传热系数是影响 温降计算的关键因素,同时它也通过温降影响压降的计算结果。
1.1利用管道周围埋设介质热物性计算K 值管道总传热系数K 指油流与周围介质温差为 1C 时,单位时间通过管道单位 传热表面所传递的热量,它表示油流至周围介质散热的强弱。
当考虑结蜡层的热 阻对管道散热的影响时,根据热量平衡方程可得如下计算表达式:式中:K ――总传热系数,W/( m 2 C );D e ――计算直径,m ;(对于保温管路取保温层外径的平均值, 对于无保 温埋地管路可取沥青层外径); D n ---------- 管道直径,m ; D w ---------- 管道最外层直径,m ;1――油流与管壁放热系数, W/(m 2 C );2 --------管外壁与周围介质的放热系数, W/(m 2 C );i――第i 层相应的导热系数,W/(m ・C );D i ,D i+1 ――管道第i 层的外直径,m 其中i =1,2,3…n ;D L 结蜡后的管径,m为计算总传热系数K ,需分别计算部放热系数1、自管壁至管道最外径的导 热热阻、管道外壁或最大外围至周围环境的放热系数 2。
(1)部放热系数1的确定放热强度决定于原油的物理性质及流动状态,可用1与放热准数N u、自然对流准数G r 和流体物理性质准数P r 间的数学关系式来表示[47] o在层流状态(Re<2000,当GrgPr<500时:2l L-1In D L(1-1 )2l ia d"比=丄=3.65 (1-2)y l在层流状态(Re<2000,当GrgPr>500时:Nu y =a i d= 0.15Re 0.33鬃;43 Gr;1'琪y(1-3)1琪P r b在激烈的紊流状态(Re>10) Pr<2500时:■骣p r0.25a1 = 0.021 - Re;8鬃Pr^4ip (1-4)d 琪Pb在过渡区(2OOO<Re<10)(1-5)式中:N u——放热准数,无因次;——流体物理性质准数,无因次;――自然对流准数,无因次;――雷诺数;K。
安全管理编号:LX-FS-A26163 输气管温度分布规律In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior oractivity reaches the specified standard编写:_________________________审批:_________________________时间:________年_____月_____日A4打印/ 新修订/ 完整/ 内容可编辑输气管温度分布规律使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。
资料内容可按真实状况进行条款调整,套用时请仔细阅读。
输气管段的热力计算主要有两个目的,一是为同一管段的水力计算服务,二是预测管段中出现凝析液及水合物的情况。
由输气管段的流量公式可知:在其他条件一定的前提下,输气管段的流量取决于整个管段中气体的平均温度,而这一平均温度又取决于整个管段沿轴向的温度分布。
另一方面,输气管段的稳态温度分布又取决于该管段的流量。
因此,输气管段的稳态水力计算与热力计算实际上是相互耦合的一对问题。
为了求出一个输气管段的流量与沿线温度分布,需要联立求解输气管段的流量关系式和温度分布关系式。
由于这两个关系式中的气体物性取决于气体温度和压力,故要进行精确的联立求解是相当困难的。
为此,在工程上通常采用近似解法,即:先假定输气管段的平均温度,按该温度计算输气管段中气体的物性参数并计算输气管段的流量,然后根据该流量求出输气管段沿线的温度分布及平均温度,若该平均温度与假设的平均温度之差满足工程精度的要求,则计算结束;否则,以计算出的平均温度作为新的假设平均温度并重复前面的计算过程,直到输气管段平均温度的假设值与新的计算值之差满足工程上的精度要求为止。
输气管道工艺计算第一节 管内气体流动的基本方程1.1气体管流基本方程气体在管内流动时,沿着气体流动方向,压力下降,密度减少,流速不断增大,温度同时也在变化。
在不稳定流动的情况下,这些变化更为复杂。
描述气体管流状态的参数有四个:压力P 、密度ρ、流速v 和温度T 。
为求解这些参数有四个基本方程:连续性方程、运动方程、能量方程和气体状态方程。
1、连续性方程连续性方程的基础是质量守恒定律。
科学实践证明,在运动速度低于光速的系统中,质量不能被创造也不能被消灭,无论经过什么运动形式,其总质量是不变的。
气体在管内流动过程中,系统的质量保持守恒。
对于稳定流,常用的连续性方程为:常数=vA ρ 或 222111A v A v ρρ=2、运动方程运动方程的基础是牛顿第二定律。
也就是控制体内流体的动量改变等于作用该流体上所有力的冲量之和:即()τd N mv d i ∑= 式中:()mv d ——动量的改变量;τd N i∑——流体方向上力的冲量稳定流常用的运动方程为:022=+++ρλρρv D dx ds g dx dv v dx dP 3、能量方程能量方程的基础是能量守恒定律。
根据能量守恒定律,能量既不能被创造,也不能被消灭,而是从一种形式转变为另一种形式,在转换中能量的总量保持不变。
对任何系统而言,各项能量之间的平衡关系一般可表示为:进入系统的能量-离开系统的能量=系统储存能的变化。
稳定流常用的能量方程为:dx dQ dx ds g dx dv v dxdpp h dx dT T h T p -=++⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂ 4、气体状态方程Z R T PV = Z R T P ρ=由连续性方程、运动方程、能量方程、气体状态方程组成的方程组可以用来求解管道中任一断面和任一时间的气体流动参数压力P 、密度ρ、流速v 和温度T 由于这是一组非线性偏微分方程一般情况下没有解析解,因而只能在一定条件下以简化、线性化和数值化的方法求得近似解。
第九节输气管的热力计算这章我们主要讲述在输气管里面,能量的转换,由于输气管的温度和周围环境的温度有温差,这章我们来讲如何计算输气过程中,气体的温度随着输送距离的改变。
实际输气管线都不是等温流动(在第本章前面讲到,假设温度时常数,我们知道这个假设和实际是有出入的,这节就讲我们实际的输气管线温度的变化规律),热力计算的目的:1.计算平均气体温度,和平均压力一起计算z值,即平均温度求Q。
2.根据沿线温降曲线(根据温降曲线结合压降曲线),分析凝析水和水合物可能形成的段落。
在输气管线中一个非常重要的特点就是,在某些压力、温度条件下,如果管线中还有水分的话,它就会形成天然气的水合物,天然气的水合物和凝析水在哪个位置能形成,它们形成的条件,我们就需要通过温降曲线结合压降曲线来进行判断可能形成的区段。
3.为管线热应力计算和绝缘层选材提供依据。
(在设计管线的时候,我们要对管线的局部的一些应力来进行校核,对管线的可靠性来进行校核,如弯头,有跨越的地方等等,校核时候很重要的一个参数就是热应力,因为管线是钢材的,它有一个特性就是热胀冷缩,根据最高温度和最低温度差,当热胀和冷缩的时候他有一个热应力,这时候我们就需要进行计算温度,为计算提供一个基础?的数据;同时根据温度可以选择绝缘层的材料,绝缘层材料是和温度有关系的,温度不同,对绝缘层的要求也不一样)。
一、公式推导由第二章稳定流动的气管能量方程(基础就是前面的三个方程)22V dQ d h sg ⎛⎫=++ ⎪⎝⎭(流体与外界的换热量等于流体自身能量的变化)教材中推导时忽略了后两项一个是动能的变化,另一个是位能的变化。
由热力学第一定律,开口系统(闭口系统和开口系统,这个开口系统他有一个流动功pv ,)稳定过程的能量方程:公式中的h 、是指焓。
dpdQ dh vdp dh ρ=-=-dx 管段上,单位质量气体的热量变化等于焓增dh 减去vdp ,vdp 是气体膨胀功和推动功的代数和,即:211221pdv p v p v =-⎰dQ 包含了两个部分:与外界交换的热量和摩擦生热。
第5章 气体力学计算冶金炉内气体流动的显著特征:第一:炉内气体为热气体(即炉内气体的温度高于周围大气的温度);第二:炉内热气体总是与大气相通的,而且炉内热气体的密度小于周围大气的密度,所以炉内气体的流动状况受大气的影响。
ξ5.1 热气体相对于大气的特殊规律一、热气体的压头单位体积流体的能为:位能:ρgz静压能:P 动能:22 W ρ对于炉内热气体在流动过程中,虽然同样具有这三种能量,但由于周围大气对其流动的影响,这三种能量只能用相对值来表示,即单位(体积)热气体所具有的位能与外界同一平面上单位(体积)大气所具有的位能之差称为位压头。
同理也有动压头和静压头之称呼。
但是在通常情况下,大气的流速比流体的流速小得多,所以热气体的动压头也就是热气体本身所具有的动能。
1.热气体的位压头——几何压头(1)阿基米德浮力原理(2)有效重力设流体的密度为g ρ,体积V ,大气的密度为a ρ,则流体在大气中所受到的浮力为gV a ρ流体本身的重力为gV g ρ有效重力为)gV -(gV -gV a g a g ρρρρ=单位体积流体的有效重力为)g -( a g ρρ当a ρρ>g 时有效重力为正,方向竖直向下,流体在大气中下沉;反之则流体在大气中上浮,由于热气体温度高于大气温度,所以,a g ρρ< 故热气体有效重力为负,方向向上,热气体在大气中有自动上浮的趋势。
(3)热气体的位压头及其分布规律如图5-1-2所示为基准面,则热气体的位压头为-)gH -(gH -gH h a g a g g ρρρρ==当基准面取在上方,高度向下量度时为正,故)g -H()g --H(h g g a a g ρρρρ==(此时H 为正值)分布规律:线性,上小下大注意:由于热气体有自动上升趋势,所以热气体由下向上流动时,位压头是流动的动力。
反之,热气体自上向下流动时,位压头应作阻力来对待。
2.热气体静压头及其分布规律(1)定义:热气体的静压头与同一水平面大气静压头压力之差,即相对压力,常称做表压力,用hs 表示。