第四章 输气管的水力计算
- 格式:ppt
- 大小:1.27 MB
- 文档页数:67
燃气管道输送水力计算一、适用公式燃气的管道输配起点压力为10KPa,按《城镇燃气设计规范》,应纳入中压燃气管道的范围。
但本设计认为,虽然成套设备的输出压力为10KPa,出站后,压力即降至10KPa以下。
整个管网系统都在10KPa以下的压力状态下工作,因此,在混空轻烃管道燃气输配过程的水力计算,应采取低压水力计算公式为宜。
二、低压燃气管道水力计算公式:1、层流状态 Re≤2100λ=64/Re Re=dv/γΔP/L=1.13×1010(Q0/d4)γρ0(T/T0)2、临界状态 Re=2100~3500λ=0.03+(Re -2100)/(65 Re-1×105)ΔP/L=1.88×106[1+(11.8 Q0-7×104dγ)/(23.0Q-1×105dγ)](Q02/d5)ρ(T/T)3、紊流状态 Re≥35001)钢管λ=0.11[(Δ/d)+(68/ Re)]0.25ΔP/L=6.89×106[(Δ/d)+192.26(dγ/ Q0)]0.25(Q2/d5)ρ(T/T)2)铸铁管λ=0.102[(1/d)+4960(dγ/ Q)]0.284ΔP/L=6.39×106[(1/d)+4960(dγ/ Q0)]0.284(Q02/d5)ρ0(T/T0)注:ΔP——燃气管道的沿程压力降(Pa) L——管道计算长度(m)λ——燃气管道的摩阻系数 Q——燃气流量(Nm3/h)d——管道内径(mm)ρ——燃气密度(kg/Nm3)γ——0℃和101.325kPa时的燃气运动粘度(m2/s)Δ——管壁内表面的绝对当量粗糙度(mm) Re——雷诺数T——燃气绝对温度(K) T——273Kv——管内燃气流动的平均速度(m/s)(摘自姜正侯教授主编的《燃气工程技术手册》——同济大学出版社1993版P551)二、燃气的输配工况条件起点压力——10KPa 最大流速——10m/s燃气密度——1.658kg/Nm3(20℃和浓度20%时)纯轻烃燃气运动粘度——1.92×10-6m2/s(0℃和101.325kPa时)燃气运动粘度——11.1×10-6m2/s(0℃和101.325kPa时)三、钢管阻力降的计算与查表结果注:1、——*因计算数据与实际数据误差过大,已无计算、列表的必要。
第四章 管内流动和管道水力计算 The Fluid in Pipe and The Hydraulic Calculation第一节 黏性流体总流的伯努利方程 The Bernoulli Equation of Total Real Fluid一、黏性流体总流的伯努利方程(The Bernoulli Equation of Total Real Fluid)在工程流体力学中,采用半理论推导,辅以实验实测的方法,对理想流体总流的伯努力方程进行休修正。
黏性流体总流的伯努力方程:=++gc gp z 221111αρw h gc gp z +++222222αρ式中21,c c ----有效截面的平均流速;21,αα----动能修正系数,它是有效截面上的实际比动能与平均流速比动能之比值。
层流时α=2,紊流时α=1.12-1.02之间,工程管道多为紊流流动,计算时常取α=1wh ----两有效截面之间的水力损失。
二、黏性总流伯努利方程的探讨(discuss of the Bernoulli equation) 1. 方程的物理意义测压水头线和实际总水头线都在沿程下降,这是因为水力损失在沿程积累。
理想总水头线和实际总水头线之间的高度差w h ,就是从管道进口到该截面处的水力损失值。
1) 实际总水头线与测压水头线之间的高度差,是该有效截面上的速度高程g c 2/221α。
2) 沿着管道流程,流动的流体总是受到摩擦力的阻滞,称之为沿程阻力;克服沿程阻力所消耗的能量称为沿程损失;单位质量流体的沿程损失称为沿程水力损失,以f h 表示。
其大小为)2/)(/(2g c d l h f λ=式中f h ---沿程水力损失,g p h f f ρ∆/=f p ∆----两有效截面之间的压强差l ----计算的管段长度d----管道内径c ----管道截面上流体的平均流速 λ ----沿程阻力系数沿程阻力损失是由于流体各流层之间及流体与固体壁面之间因流速不同,产生内摩擦力而造成的,其作用存在于整个流动过程中。
输气管第四章输气管的水力计算输气管的水力计算是为了确定输气管道的流动特性、确定管道尺寸以及检验管道的设计是否合理。
下面将从流速、流量、摩擦损失和水头损失等方面进行详细介绍。
首先,我们需要确定输气管道的设计流速。
设计流速主要取决于输气管内气体的流动性质和管道周围环境的要求。
一般来说,设计流速不宜过高,以避免管道磨损、能耗增加和安全隐患。
在确定设计流速时,需要考虑输气管道的用途、输送气体的特性以及管道运行条件等因素,常见的设计流速范围为20-40m/s。
其次,根据设计流速和管道尺寸,我们可以计算出设计流量。
设计流量是指单位时间内通过管道的气体体积。
通常采用流量计来直接测量,但在没有流量计的情况下,可以根据公式Q=V×A计算,其中Q为流量,V 为流速,A为流道截面积。
接下来,我们需要计算输气管道的摩擦损失。
摩擦损失是指气体由于与管壁之间的摩擦力而损失的能量。
摩擦损失随着管道长度增加而增大,并且与气体流速、管道直径和壁面粗糙度等因素有关。
常用的计算摩擦损失的方法有达西方程和柯西方程。
使用这些方程可以计算得到管道单位长度的摩擦损失,然后乘以管道长度,即可得到总的摩擦损失。
最后,我们需要计算输气管道的水头损失。
水头损失是指流体由于通过管道和附件等部位而损失的动能。
水头损失分为局部损失和分布损失两部分。
局部损失是指由于管道的突变或附属装置如弯头、阀门等引起的附加阻力。
分布损失是指由于摩擦、扩散和转化等引起的管道本体的阻力。
在进行水头损失的计算时,可以使用马克斯韦方程、伯努利方程以及能量守恒等原理,结合管道的几何形状和流动特性进行计算。
综上所述,输气管道的水力计算是一个复杂的过程,需要考虑多个因素来确定管道的流动特性和尺寸。
通过合理的流速选择、流量计算以及摩擦损失和水头损失的计算,可以确保输气管道的安全运行和经济性。
第四章输气管的水力计算输气管的水力计算是为了确定管道中气体流动时产生的压力损失和流速等水力参数,从而有效地设计输气系统。
本文将从输气管的水力原理、水力计算公式以及实际应用中的注意事项等方面进行详细探讨。
一、水力原理输气管的水力原理主要依据流体的连续性方程、能量方程和阻力方程。
其中连续性方程描述了输气管中气体流动的连续性,能量方程用于计算气体在管道中的能量变化,而阻力方程则是根据经验公式,计算气体流动产生的摩阻力。
二、水力计算公式1.压力损失计算公式:压力损失(ΔP)=λ×L/D×(ρv^2/2)其中,λ为摩阻系数,L为管道长度,D为管道直径,ρ为气体密度,v为气体流速。
2.流速计算公式:流速(v)=Q/(πD^2/4)其中,Q为气体流量,D为管道直径。
3.管径计算公式:D=0.613×(Q/P)^(1/2)其中,Q为气体流量,P为设计压力。
三、实际应用注意事项1.摩阻系数的选择:摩阻系数的选择会直接影响到压力损失的计算结果,需要根据具体情况进行合理的选择,可以参考相关经验数据或者进行实验研究。
2.流量和压力的测量:水力计算需要准确的流量和压力数据,因此在实际应用中需要使用合适的流量计和压力计进行测量。
同时,还需要考虑测量误差的影响,并进行相应的修正。
3.管道布置和管径设计:在输气管的水力计算中,需要合理布置管道和选择合适的管径,以便满足系统的流量和压力要求,并减小压力损失。
在实际应用中应进行综合考虑,根据具体情况进行设计优化。
4.防止压力过高:在输气管的水力计算中,需要考虑到气体在流动过程中的压力变化,防止压力过高对设备和管道造成损坏。
因此,在设计过程中需要合理选择设计参数,进行安全性评估。
总结:输气管的水力计算是设计输气系统中重要的一环,通过合理的水力计算可以确保输气管道的正常运行。
对于水力计算公式的使用和实际应用中的注意事项,设计人员需要充分理解,并综合考虑实际情况,确保设计的合理性和安全性。
精心整理一、管路水力计算的基本原理1、一般管段中水的质量流量G,kg/h,为已知。
根据G查询热水采暖系统管道水力计算表,查表确定比摩阻R后,该管段的沿程压力损失P y=Rl 就可以确定出来。
局部压力损失按下式计算Σξ----(2(式中ξd——当量局部阻力系数。
计算管段的总压力损失ΔP可写成(5)令ξzh=ξd+Σξ式中ξzh|——管段的这算阻力系数(6)又(7)则(8)设3、当是假设(式中l dΔP=P y+P j=Rl+Rl d=Rl zh(11)式中l z h为管段的折算长度,m。
当量长度法一般多用于室外供热管路的水力计算上。
二、热水采暖系统水力计算的方法1、热水采暖系统水力计算的任务a、已知各管段的流量和循环作用压力,确定各管段管径。
常用于工程设计。
b、已知各管段的流量和管径,确定系统所需的循环作用压力。
常用于校核计算。
c、已知各管段管径和该管段的允许压降,确定该管段的流量。
常用于校核计算。
2、等温降法水力计算方法2-1最不利环路计算(1)最不利环路的选择确定采暖系统是由各循环环路所组成的,所谓最不利环路,就是允许平均比摩阻最小一般就(2式t g—t g—(3式ΔP(4)根据R pj和各管段流量,查表选出最接近的管径,确定该管径下管段的实际比摩阻和实际流速v。
(5)确定各管段的压力损失,进而确定系统总的压力损失。
2-2其他环路计算其他环路的计算是在最不利环路计算的基础上进行的。
应遵循并联环路压力损失平衡的规律,来进行各环路的计算。
应用等温降法进行水力计算时应注意:(1)如果系统位置循环作用压力,可在总压力损失之上附加10%确定。
(2)各并联循环环路应尽量做到阻力平衡,以保证各环路分配的流量符合设计要求。
(但各并联环路的阻力做到绝对平衡是不可能的,允许有一个差额,但不能过大,否则会造成严重失调。
(3)散热器的进流系数跨越式热水采暖系统中,由于一部分直接经跨越管流入下层散热器,散热器立管中的出现近下进行算方法使设计开始。
输水管道水力计算公式1.常用的水力计算公式:供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有:达西(DARCY )公式:g d v l h f 22**=λ (1)谢才(chezy )公式:i R C v **= (2)海澄-威廉(HAZEN-WILIAMS )公式:87.4852.1852.167.10d C l Q h h f ***= (3) 式中 h f -----------沿程损失,mλ----------沿程阻力系数l -----------管段长度,md-----------管道计算内径,mg-----------重力加速度,m/s 2C-----------谢才系数i------------水力坡降;R-----------水力半径,mQ-----------管道流量m/s 2v------------流速 m/sC n -----------海澄―威廉系数其中达西公式、谢才公式对于管道和明渠的水力计算都适用。
海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。
三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。
2.规范中水力计算公式的规定3.查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1:表1 各规范推荐采用的水力计算公式3.1达西公式达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。
公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。
舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。
舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用较广.柯列勃洛可公式)Re 51.27.3lg(21λλ+∆*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000<Re<108。