防爆电器基础知识(精选)
- 格式:ppt
- 大小:889.00 KB
- 文档页数:16
防爆电器基础知识:名词术语2008-9-13防爆电气设备:在规定条件下不会引起周围爆炸性环境点燃的电气设备。
爆炸性环境:在大气条件下,气体、蒸气、薄雾、粉尘或纤维状的可燃物质与空气形成混合物,点燃后,燃烧传至全部未燃混合物的环境。
爆炸性气体环境:在大气条件下,气体、蒸气或薄雾状的可燃物质与空气形成混合物,点燃后,燃烧传至全部未燃混合物的环境。
爆炸性粉尘环境:在大气条件下,粉尘或纤维状的可燃物质与空气形成混合物,点燃后,燃烧传至全部未燃混合物的环境。
含有爆炸性粉尘混合物的环境。
防爆型式:为防止点燃周围爆炸性环境而对电气设备采取各种专门措施的型式。
电气设备类别:根据电气设备使用的爆炸性环境而划分的类别。
注:GB3836将防爆电气设备划分为两类:Ⅰ类:煤矿井下用电气设备;Ⅱ类:除煤矿井下之外所有其他爆炸性气体环境用电气设备。
这类设备再划分为几个级别。
最高表面温度:电气设备在规定范围内的最不利条件下运行时,可能引起周围爆炸性环境点燃的电气设备任何部件或电气设备的任何表面所达到的最高温度。
温度组别:爆炸性环境用电气设备按其最高表面温度划分的组别。
引燃温度:可燃物质以气体或蒸气形态与空气形成的混合物,在规定条件下被热表面引燃的最低温度。
爆炸性混合物:在爆炸上、下限之间的可燃性气体、蒸气、薄雾、粉尘或纤维与空气的混合物。
基本防爆型式2008-9-11(1) 隔爆型“d”隔爆型防爆型式是把设备可能点燃爆炸性气体混合物的部件全部封闭在一个外壳内,其外壳能够承受通过外壳任何接合面或结构间隙,渗透到外壳内部的可燃性混合物在内部爆炸而不损坏,并且不会引起外部由一种、多种气体或蒸气形成的爆炸性环境的点燃(参见GB 3836. 2标准)。
把可能产生火花、电弧和危险温度的零部件均放入隔爆外壳内,隔爆外壳使设备内部空间与周围的环境隔开。
隔爆外壳存在间隙,因电气设备呼吸作用和气体渗透作用,使内部可能存在爆炸性气体混合物,当其发生爆炸时,外壳可以承受产生的爆炸压力而不损坏,同时外壳结构间隙可冷却火焰、降低火焰传播速度或终止加速链,使火焰或危险的火焰生成物不能穿越隔爆间隙点燃外部爆炸性环境,从而达到隔爆目的。
电气防爆知识点总结一、电气防爆的概念电气防爆是指在易燃易爆气体、蒸气、粉尘等可燃物质环境中,防止电气设备产生火花或高温引发爆炸的防护措施。
电气防爆是工业生产中的重要安全措施之一,主要是为了避免因电气设备的使用引发火灾或爆炸。
二、电气防爆的分类1. 根据防爆方式的不同,电气防爆可以分为防爆型和隔爆型两种。
2. 防爆型是指电气设备本身具有防爆性能,能够在易燃易爆环境中安全使用。
3. 隔爆型是指将易燃易爆环境与非易燃易爆环境进行隔离,使电气设备在非易燃易爆环境中安全使用。
三、电气防爆的等级和组别1. 根据爆炸气体和粉尘的分布和存在时间长短,将防爆环境划分为不同的等级和组别。
2. 爆炸气体分为I、II、III三类,粉尘分为A、B、C、D四类,根据不同等级和组别,选择适合的防爆电气设备。
四、电气防爆的原理1. 防爆电气设备能够在易燃易爆环境中安全使用的原理,在于其对电气设备的外壳、内部元件和电气连接部件进行了特殊设计和处理,防止火花、高温和弧光的产生。
2. 通过使用防爆隔离开关、防爆灯具、防爆电机等防爆电气设备,能够有效地防止火花和高温引发爆炸。
五、电气防爆的应用范围1. 电气防爆主要应用于石油、化工、航天航空、煤矿等易燃易爆场所,包括石油钻采平台、炼油厂、化工厂、航天发射场、煤矿井下等。
2. 除了工业领域外,一些特殊场所如医疗、实验室等也需要使用防爆电气设备,以确保安全生产和工作环境。
六、电气防爆的标志标识1. 防爆电气设备的标志标识是电气防爆领域的重要内容,主要包括防爆标志、防爆等级、防爆组别、防爆证书标志等,用于指示和识别防爆电气设备的类型和性能。
2. 防爆标志一般包括Ex标志、防爆等级和组别标志、防爆证书标志等,用户在选用和使用防爆电气设备时,应注意防爆标志的含义和使用范围。
七、电气防爆的选用原则1. 在选择使用防爆电气设备时,应根据工作场所的爆炸环境等级和组别,结合实际情况选择合适的防爆电气设备。
电气防爆常识一、电气爆炸的条件引发电气爆炸事故必须同时存在以下条件:1、存在易燃气体、易燃液体的蒸气和薄雾;2、上述物质与空气混合浓度在爆炸极限以内;3、存在足以点燃爆炸性数量级气体的火花、电弧和过热。
二、电气设备防爆类型分类1、隔爆型(d)是指把能点燃爆炸性混合物的部件封闭在一个外壳内,该外壳能承受内部爆炸性混合物的爆炸压力,并阻止向周围的爆炸性混合物传爆的电气设备。
2、增安型(e)在正常运行条件下,不会产生点燃爆炸性混合物的火花或危险温度,并在结构上采取措施,提高其安全程度,以避免在正常和规定过载条件下出现点燃现象的电气设备。
3、本质安全型( i )在正常运行或在标准试验条件下,所产生的火花或热效应均不能点燃爆性混合物的电气设备,分为a类(ia)和b类(ib)。
4、正压型(p)具有保护正压外壳,且壳内充有保护气体,其压力保持高于周围爆炸性混合物的气体压力,以避免外部爆炸性混合物进入内部的电气设备。
有两种型式:1)正压通风型采取保护性气体连续通过正压外壳的方法,使壳内保持正压,以达到阻止外部环境中的爆炸性气体混合物进入壳内与点火源接触。
2)正压补偿型采取在各个排气口封闭时,对正压外壳和管道内保持气体不可避免的泄露进行补偿的方法,使壳内保持正压,以阻止外部环境中的爆炸性气体混合物进入壳内与点火源接触。
保护性气体为空气或不可燃气体。
5、油浸型(o)全部或某些带电部件浸在油中,使之不能点燃油面以上或外壳周围爆炸性混合物的电气设备。
6、充砂型(q)外壳内充填细颗粒材料,以便在规定使用条件下,外壳内产生的电弧、火焰传播、壳壁和颗粒材料表面的过热温度均不能点燃周围爆炸性混合物的电气设备。
7、无火花型(n)在正常运行条件下不产生电弧或火花,也不产生能够点燃周围爆炸性混合物的高温表面或灼热点,且一般不会发生有点燃作用故障的电气设备。
8、浇封型(m)9、防爆特殊型(s)三、爆炸性危险场所的区域分类1、I类煤矿甲烷类(煤矿环境)。
电气防爆知识
众所周知,易燃易爆气体、液体及粉尘,在与空气(氧化剂)混合达到一定浓度的情况下,在一定的温度或者点火能量下就可能剧烈燃烧发生爆炸。
所以,在爆炸危险区域内,所有的电气应使用防爆电气。
关于防爆电气,您了解哪些呢?
【一】什么是电气防爆
电气防爆就是将设备在正常运行时产生电弧、火花的部件放在隔爆外壳内,或采取浇封型、充沙型、充油型或正压型等其它防爆形式以达到防爆目的。
【二】电气防爆原理
在爆炸危险性环境中使用的电气设备,为了防止和减少引爆因素,必须在设备本体防爆和运行防爆两个方面采取必要措施。
电气设备引燃爆炸混合物有两方面原因:1.电气设备产生的火花、电弧。
2.电气设备表面(即是爆炸混合物相接触的表面)发热。
【三】电气防爆措施
1.远离爆炸危险区域。
宜将正常运行时产生火花、电弧和危险温度的电气设备和线路,布置在爆炸危险性较小或没有爆炸危险的环境内。
2.采用防爆的电气设备。
在满足工艺生产及安全的前提下,应减少防爆电气设备的数量。
3.电气接地。
按有关电力设备接地设计技术规程规定的一般情况不需要接地的部分,在爆炸危险区域内仍应接地,电气设备的金属外壳应可靠接地。
4.设置漏电火灾报警和紧急断电装置。
在电气设备可能出现故障之前,采取相应补救措施或自动切断爆炸危险区域电源。
5.安全使用防爆电气设备。
即正确地划分爆炸危险环境类别,正确地选型、安装防爆电气设备,正确地维护检修防爆电气设备。
6.防火花地面。
散发较空气重的可燃气体、可燃蒸气的甲类厂房以及有粉尘、纤维爆炸危险的乙类厂房,应采用不发火花的地面。
一、煤矿井下工作条件对电气设备的要求1、井下环境潮湿,有的地方还有淋水,因此电气设备要求防滴(溅),隔爆外壳及隔爆结合面要求防锈蚀,电气绝缘材料要求耐潮。
此外,井下温度高,故还应对矿用电气设备的绝缘性能进行湿热试验。
2、井下常有煤、岩石冒落、片帮,运动设备的拉、挂、碰、撞,易使设备受损坏,因此要求电气设备具有坚固的外壳。
3、井下采掘工作面经常移动,电气设备也将随着移动,因此要求电气设备选材和结构应便于搬运。
4、井下工作繁重、负荷变化大,因此要求电气设备运行可靠,有一定过负荷能力。
5、井下空间狭窄,照明不足,因此要求电气设备体积小、操作简单、维护方便。
6、井下存在着沼气、煤尘等爆炸性混合物,因此要求使用在爆炸性环境的电气设备具有防爆性。
二、防爆电气设备的类型为了使防爆电气设备的设计、制造标准化,便于检修、使用和维修,我国已制订了完整的防爆电气设备的国家标准,标准号为GB3836。
一、防爆电气设备的形式1、隔爆型电气设备具有隔爆外壳的电气设备称为隔爆型电气设备。
特点是具有耐爆性和不传爆性。
标志符号为“d”。
标准编号GB3836.2---83。
2、增安型电气设备正常运行条件(是指该设备在电气、机械上符合设计规范的要求,并在制造厂规定的限度内使用)下不会产生电弧、火花或可能点燃爆炸性混合物的高温的电气设备,称为增安型电气设备。
标志符号为“e”。
标准编号GB3836.3---83。
3、本质安全型电气设备全部电路均为本质安全电路,是指规定的试验条件下,正常工作或规定的故障状态下产生的电火花和热效应都不能点燃规定的爆炸混合物的电路。
该类电气设备称为本质安全型电气设备。
标志符号为“i(ia、ib)”。
标准编号GB3836.4---83。
4、正压型电气设备具有正压外壳的电气设备称为正压型设备。
正压外壳是指向外壳内通入保护性气体,保持内部保护性气体的压力高于周围爆炸性环境的压力,以阻止外部爆炸性混合物进入壳内的外壳。