(完整版)纸张结构及性能
- 格式:ppt
- 大小:1.17 MB
- 文档页数:35
纸的结构与性能详解纸是一种由纤维素纤维构成的薄片状材料,由于其具有轻便、易于加工和可再生等特点,在人类社会中被广泛应用。
纸的结构和性能对其使用的场合和用途有着重要影响。
本文将详细介绍纸的结构和性能。
纸的结构主要由纤维、胶凝物和填料组成。
纤维是纸的主要成分,常用的纤维素纤维包括木质纤维、棉纤维和麻醉纤维等。
纤维的形状、长度和直径等参数会影响纸的结构和性能。
纤维的长度越长,纸的强度和透明度越高,但易于产生结聚现象;纤维的直径越细,纸的紧密程度越高,但易于断裂。
胶凝物是纤维之间的粘合剂,可以提高纸的强度和稳定性。
填料是增加纸的厚度和光泽度的材料,可以是无机物如粉状石灰、粉状白云石等,也可以是有机物如淀粉、天然胶等。
纸的性能主要包括机械性能、光学性能和化学性能。
1.机械性能:纸的机械性能是指其在受力时的表现。
纸的强度是衡量其机械性能的重要指标,主要有拉伸强度、撕裂强度、抗弯刚度等。
拉伸强度是指纸在一定宽度条件下,经受拉力时的最大承载力。
撕裂强度是指纸在撕裂方向上承受的最大力。
抗弯刚度是指纸在弯曲时所用的力和弯曲角度之间的关系。
纸的机械强度受纤维的长度、纤维之间的结合力以及纤维的排列方式等多个因素的影响。
2.光学性能:纸的光学性能是指其在光线照射下的表现。
透明度是衡量纸光学性能的重要指标,表示光线穿透纸的能力。
通常,纸的透明度与纤维的排列和纤维之间的结合力有关,透明度越高,纸的质量越好。
另外,纸的光泽度和白度也是光学性能的重要指标。
3.化学性能:纸的化学性能主要包括耐水性、耐酸碱性和保鲜性等。
耐水性是指纸对水的抵抗能力,其取决于纸的纤维和胶凝物的组成。
耐酸碱性是指纸对酸和碱的抵抗能力,纸的pH值决定其耐酸碱性。
保鲜性是指纸对食品等物体的保护能力,要求纸不能释放有害物质。
纸的结构和性能直接影响其在不同领域的应用。
根据不同的需求,纸可以制成各种类型的纸张,如普通纸、卫生纸、包装纸、卡纸等。
不同类型的纸有不同的结构和性能要求。
《纸页的结构与性能》-------摘要1 在造纸领域,植物纤维经不断回用后,纤维的细胞壁发生了不可逆的变化-纤维的角质化。
二次纤维的角质化现象宏观表现为纤维润张能力,表面条件等纤维性能的劣化,以及再生纸页强度的衰变。
2 纤维发生角质化后,纤维润张能力下降,弹性模量增大,整根纤维挺硬,均一性差。
3 干纸是一种具有明显强度性质的非触变性结构。
只有在不会引起不可逆的范围内增加负荷时,纸才会表现出高度弹性的性质。
而在应力的作用下,纸页的变形由以下几种变形组成:(1)在纸的结构中,纤维素的分子及单根纤维之间的距离发生变化为特征的弹性变形。
(2)弹塑性变形,也称为弹性后效变形,产生这种变形时,组成纤维的大分子结构和纤维相互联结的分子之间的氢键发生改变,部分氢键发生破坏,纤维发生局部交错滑动。
(3)塑性变形,在产生这种变形时,纤维之间产生不可逆的位移,并且伴随纤维间氢键结合的大量破坏。
4 材料的5种损伤:4.1 延性、塑性损伤:微孔洞和微裂纹的形成和发展,使材料产生塑性应变,最后导致塑性断裂。
这类损伤的表现形式主要是微孔洞、微裂纹的萌生、成长和聚合。
主要发生在塑性材料。
4.2 蠕变损伤:在长期载荷作用或高温环境下,伴随着蠕变变形会发生蠕变损伤,其宏观表现为微裂纹、微孔洞,蠕变损伤的扩展导致材料的耐久性下降。
蠕变损伤使蠕变变形增加,最后导致裂纹。
4.3 疲劳损伤:在循环载荷作用下,材料性能逐渐劣化。
在每一步载荷循环中的损伤累计起来,将导致材料的寿命减少,导致疲劳破坏。
有趣的是纸页开始受到第一轮低应力循环载荷后其抗张强度反而有一定的提高。
4 .4 动态损伤:在动态载荷如冲击载荷作用下,材料内部会有大量的微孔纹形成并且扩展。
这些微孔纹的数量很大,但一般还来不及出现很大的扩展(因为载荷时间非常短,常常是几微秒)时就导致在一截面上布满微裂纹,断裂就发生了。
4.5 高分子损伤:上述几种损伤在高分子材料中都会发生。
高分子的损伤不同于金属。
纸的定义:从悬浮液中适当处理(如打浆)过的植物纤维、矿物纤维、动物纤维、化学纤维或这些纤维的混合物,沉积到适当的成形设备上,经干燥制成一页均匀的薄片。
纸张的结构特点:1.具有多相复杂的结构要素成分,(长短纤维,填料,胶料,染料)2. 纸和纸板的结构间有结合力(纤维的氢键结合力和机械的互相扭结、物理的相互吸引)3. 具有复杂多孔的结构(网状结构,多孔结构)4.具有三维结构的结构要素:纤维的排列方向不同,不同尺寸的纤维分布不同、辅料的分布不同5..绝大多数纸的结构都具有两面性(成形网对细小纤维及细小物质截留程度的不同而引起的)纸张的功能性质:1.吸湿性显著、吸水性大 2. 有氢键结合3.有一定的强度4.纸张显白色5.具有柔软性6.具有易燃性为什么纸张强度比造纸纤维强度低的多?纸张的强度取决于纤维间的结合强度,纤维间起氢键结合的前提是游离状的羟基,纤维中能够游离出来的羟基只占纤维总羟基的0.5%--2%,而98%的羟基体现纤维本身的强度。
因此纸张的强度小于纤维的强度为什么草浆造纸紧度大?1.半纤维素含量高,纤维间的结合力大;2.草浆纤维短;3.草浆纤维中杂细胞含量高,在纸张中有填充作用;4.纸浆纤维中暴露的羟基多纸张纵向:与纸机运行平行的方向横向:与造纸机运行方向垂直影响纸的方向性的主要因素1.纤维有方向性的排列所影响:网面纤维纵向排列明显,正面纤维纵向排列不明显造成纸张正反面纤维纵横向分布差的原因是:纸页在抄造过程中,受到铜网的加速作用,形成了纵向剪切,使纤维沿着纵向排列,靠近铜网网面的纤维,受到加速作用大,故纤维排列的方向性明显,距成型网愈远这种加速作用愈弱,故正面纤维排列方向性较弱2.受牵引力大小的影响, :,为了避免纸幅的产生皱褶,,必须以一定的牵引力来维持纸幅的前进,牵引力大些,方向性也大些,反之亦然3.受浆速与网速关系的影响速度差小,方向性小些,反之亦然4.网案振动网案的振动是沿着纸机横向运动,可以使顺着纸料流动方向排列的纤维,在横动的牵引力下,改变其排列方向,降低纤维排列的方向性5.纸机的形式:圆网纸机长网纸机夹网纸机,大多数纸张要求纵横向性质比较接近减少纸张纵横向差别的主要途径对于中低速长网造纸机1..调整浆速与网速的关系,根据纸张的品种,造纸机的车速和纸料的性质等因素进行调节R=浆速/网速R 增大浆速增大速度差减小纤维横向排列增大,方向性降低;R减小浆速减小速度差增大纤维间纵向排列增大匀度增大印刷纸书写纸R=0.87—0.93纸袋纸胶版纸R=1.0—1.05 纸绳纸电缆纸R=0.83—0.872采用网案摇振并合理调节振幅和振次3调节干燥过程中纸幅的牵引力和干毯的张紧程度对于圆网纸机,网案的振动是不可控的,浆速和网速的调节也是很有限。
纸的定义:从悬浮液中适当处理(如打浆)过的植物纤维、矿物纤维、动物纤维、化学纤维或这些纤维的混合物,沉积到适当的成形设备上,经干燥制成一页均匀的薄片。
纸张的结构特点:1.具有多相复杂的结构要素成分,(长短纤维,填料,胶料,染料)2. 纸和纸板的结构间有结合力(纤维的氢键结合力和机械的互相扭结、物理的相互吸引)3. 具有复杂多孔的结构(网状结构,多孔结构)4.具有三维结构的结构要素:纤维的排列方向不同,不同尺寸的纤维分布不同、辅料的分布不同5..绝大多数纸的结构都具有两面性(成形网对细小纤维及细小物质截留程度的不同而引起的)纸张的功能性质:1.吸湿性显著、吸水性大 2. 有氢键结合3.有一定的强度4.纸张显白色5.具有柔软性6.具有易燃性为什么纸张强度比造纸纤维强度低的多?纸张的强度取决于纤维间的结合强度,纤维间起氢键结合的前提是游离状的羟基,纤维中能够游离出来的羟基只占纤维总羟基的0.5%--2%,而98%的羟基体现纤维本身的强度。
因此纸张的强度小于纤维的强度为什么草浆造纸紧度大?1.半纤维素含量高,纤维间的结合力大;2.草浆纤维短;3.草浆纤维中杂细胞含量高,在纸张中有填充作用;4.纸浆纤维中暴露的羟基多纸张纵向:与纸机运行平行的方向横向:与造纸机运行方向垂直影响纸的方向性的主要因素1.纤维有方向性的排列所影响:网面纤维纵向排列明显,正面纤维纵向排列不明显造成纸张正反面纤维纵横向分布差的原因是:纸页在抄造过程中,受到铜网的加速作用,形成了纵向剪切,使纤维沿着纵向排列,靠近铜网网面的纤维,受到加速作用大,故纤维排列的方向性明显,距成型网愈远这种加速作用愈弱,故正面纤维排列方向性较弱2.受牵引力大小的影响, :,为了避免纸幅的产生皱褶,,必须以一定的牵引力来维持纸幅的前进,牵引力大些,方向性也大些,反之亦然3.受浆速与网速关系的影响速度差小,方向性小些,反之亦然4.网案振动网案的振动是沿着纸机横向运动,可以使顺着纸料流动方向排列的纤维,在横动的牵引力下,改变其排列方向,降低纤维排列的方向性5.纸机的形式:圆网纸机长网纸机夹网纸机,大多数纸张要求纵横向性质比较接近减少纸张纵横向差别的主要途径对于中低速长网造纸机1..调整浆速与网速的关系,根据纸张的品种,造纸机的车速和纸料的性质等因素进行调节R=浆速/网速R 增大浆速增大速度差减小纤维横向排列增大,方向性降低;R减小浆速减小速度差增大纤维间纵向排列增大匀度增大印刷纸书写纸R=0.87—0.93纸袋纸胶版纸R=1.0—1.05 纸绳纸电缆纸R=0.83—0.872采用网案摇振并合理调节振幅和振次3调节干燥过程中纸幅的牵引力和干毯的张紧程度对于圆网纸机,网案的振动是不可控的,浆速和网速的调节也是很有限。
纸和纸板结构与性能.湖北工业大学09轻一第一章纸的含义:根据中华人民共和国国家标准(GB4687-84)规定,所谓纸就是从悬浮液中将植物纤维矿物纤维动物纤维化学纤维或这些纤维的混合物沉积到适当的成型设备上,经干燥制成的一页均匀的薄片。
第一代纸:以纤维素纤维为主构成的纸。
第二代纸:合成纸。
以化工树脂等为基材制成的纸。
成膜→纸型化处理第三代纸:功能纸。
采用某些特殊材料,抄出具有某些性能的新纸种。
如:气味吸收纸、太阳能保温化、金属纤维纸(钢纸)、发热纸、陶瓷纸。
纸张的功能性质纸张的功能性质就是那些与纤维性质有密切关系的性质。
吸湿性显著,吸水性大。
纤维→纤维素→葡萄糖基→游离羟基吸附极性水分子提高纸页的孔隙率,可以抵挡一部分单根纤维对纸页的影响。
有氢键结合;有强度;显白色;有柔软性;易燃性3、纸张结构的特点?(1)具有多相、复杂的结构要素成分。
(2)纸的结构要素之间具有结合力。
(3)具有复杂的多孔结构。
(4)具有三维结构的结构要素。
纤维的排列方向不同,不同尺寸的纤维分布不同,辅料分布不同。
(5)大多数纸的结构都具有两面性。
4 为什么纸张的强度小于造纸纤维的强度?纸张的强度主要取决于纤维间的结合强度;而纤维间氢键结合的前提是具有游离状态的羟基,纤维中能够游离出来的羟基只占纤维总羟基的0.5-2%,而98%的羟基体现的是纤维本身的强度。
因此,纸张强度小于造纸纤维的强度。
1造成纸张纵横向差别的原因。
答:①纤维大多数是纵向排列:(反面:纵向排列纤维数量是横向的10倍;正面:纵向是其他方向的2倍);②在干燥时纵向纸张所受张力交大;③受浆速与网速关系的影响。
由于纸张具有方向性,因此纸张的抗张强度和耐折度,纵向比横向大;撕裂度和伸长率则是横向比纵向大。
2怎样鉴别纸张的纵横向?(1)纸条弯曲法平行切取两条互相垂直的纸条,将其重叠,用手指捏住一端,使另一端自由地弯向左方或右方,如果两个纸条分开,则下面的纸条为纸的横向;如果两个纸条弯向另一方,则上面的纸条为横向。
一、名词解释定量:单位面积纸或纸板的质量。
厚度:在一定的单位面积压力下,纸和纸板两个表面间的垂直距离。
紧度:单位体积的纸或纸板的质量。
松厚度:单位质量的纸或纸板的体积。
干纸强度:纸张经过干燥以后的强度。
(干度﹥50%)湿纸强度:在抄造过程中,干度在35——50%以前纸张的强度。
湿强度:纸张经干燥以后再浸湿所具有的强度,一般只保持干纸强度的4——10%。
静态强度:纸或纸板在缓慢受力的情况下所显示出来的强度。
动态强度:纸或纸板所能经受瞬时冲击的程度,即表示纸或纸板受力后瞬时扩散而破裂的动态情况。
抗张强度:纸或纸板能够承受的最大张力。
环压强度:一定尺寸的环形试样在一定的加压速度下平行受压,当压力增大至样品压溃时所能承受的最大压力。
撕裂度:撕裂预先切口的纸或纸板至一定长度所需要的力。
耐折度:纸或纸板在一定张力下所能经受往复折叠的能力,以往复折叠的次数的对数表示。
挺度:纸或纸板的抗弯曲能力。
测定时是将规定尺寸的试样一端夹紧,另一端受力弯曲至一定角度所需的力或力矩。
透气度:在规定的条件下,在单位时间和单位压力差情况下,单位面积的纸或纸板所通过的平均空气量。
白度:对波长为457nm蓝光的反射因数。
透明度:单层试样反映被覆盖物影响的显著程度。
不透明度:单页纸张在“全吸收”的背衬标准黑垫的反射率与完全不透明的一叠同种纸张做衬垫的单页纸的反射率的比率。
形稳性:纸或纸板被水浸湿或在增湿或减湿的环境中形状尺寸的伸缩性变化。
平滑度:在一定的真空度下,一定体积的空气通过受一定压力、一定面积的试样与玻璃面之间的间隙所需的时间。
匀度:纸或纸板中纤维及其他固体物质分散的相对均匀程度。
脆性:纸或纸板使用过程,经弯曲、压折时易断、易产生裂口、易碎,或韧性欠佳,承受冲击能力差,易受外力冲击而破裂或破碎即脆。
柔软度:在一定作用力下,把一定宽度和长度的试样压入一定宽度的缝隙中一定深度时,试样本身抗弯曲力和试样与仪器缝隙之间摩擦阻力的矢量和。
《纸页的结构与性能》-------摘要1 在造纸领域,植物纤维经不断回用后,纤维的细胞壁发生了不可逆的变化-纤维的角质化。
二次纤维的角质化现象宏观表现为纤维润张能力,表面条件等纤维性能的劣化,以及再生纸页强度的衰变。
2 纤维发生角质化后,纤维润张能力下降,弹性模量增大,整根纤维挺硬,均一性差。
3 干纸是一种具有明显强度性质的非触变性结构。
只有在不会引起不可逆的范围内增加负荷时,纸才会表现出高度弹性的性质。
而在应力的作用下,纸页的变形由以下几种变形组成:(1)在纸的结构中,纤维素的分子及单根纤维之间的距离发生变化为特征的弹性变形。
(2)弹塑性变形,也称为弹性后效变形,产生这种变形时,组成纤维的大分子结构和纤维相互联结的分子之间的氢键发生改变,部分氢键发生破坏,纤维发生局部交错滑动。
(3)塑性变形,在产生这种变形时,纤维之间产生不可逆的位移,并且伴随纤维间氢键结合的大量破坏。
4 材料的5种损伤:4.1 延性、塑性损伤:微孔洞和微裂纹的形成和发展,使材料产生塑性应变,最后导致塑性断裂。
这类损伤的表现形式主要是微孔洞、微裂纹的萌生、成长和聚合。
主要发生在塑性材料。
4.2 蠕变损伤:在长期载荷作用或高温环境下,伴随着蠕变变形会发生蠕变损伤,其宏观表现为微裂纹、微孔洞,蠕变损伤的扩展导致材料的耐久性下降。
蠕变损伤使蠕变变形增加,最后导致裂纹。
4.3 疲劳损伤:在循环载荷作用下,材料性能逐渐劣化。
在每一步载荷循环中的损伤累计起来,将导致材料的寿命减少,导致疲劳破坏。
有趣的是纸页开始受到第一轮低应力循环载荷后其抗张强度反而有一定的提高。
4 .4 动态损伤:在动态载荷如冲击载荷作用下,材料内部会有大量的微孔纹形成并且扩展。
这些微孔纹的数量很大,但一般还来不及出现很大的扩展(因为载荷时间非常短,常常是几微秒)时就导致在一截面上布满微裂纹,断裂就发生了。
4.5 高分子损伤:上述几种损伤在高分子材料中都会发生。
高分子的损伤不同于金属。