19.电磁式继电器
- 格式:pptx
- 大小:971.04 KB
- 文档页数:10
15、热继电器的整定电流值是指热继电器在正常持续工作中而不动作时的最大电流值。
A、先分析交流通路B、先分析直流通路C、先分析主电路、后分析控制电路D、先分析控制电路、后分析主电路6、自动空气开关的电气符号是:(B )A、SBB、QFC、FRD、FU7、下列对PLC软继电器的描述,正确的是:(A )A、有无数对常开和常闭触点供编程时使用B、只有2对常开和常闭触点供编程时使用C、不同型号的PLC的情况可能不一样D、以上说法都不正确8、O指令的作用是:(D )A、用于单个常开触点与前面的触点串联连接B、用于单个常闭触点与上面的触点并联连接C、用于单个常闭触点与前面的触点串联连接D、用于单个常开触点与上面的触点并联连接9、由于电弧的存在,将导致(B )。
A、电路的分断时间缩短B、电路的分断时间加长C、电路的分断时间不变D、分断能力不变10、在控制线路中,如果两个动合触点串联,则它们是(B )关系。
A、或逻辑B、与逻辑C、非逻辑D、与非逻辑11、下列电器中不能实现短路保护的是(C )。
A、熔断器B、过电流继电器C、热继电器D、低压断路器12、PLC一般采用(A )与现场输入信号相连。
A、光电耦合电路B、可控硅电路C、晶体管电路D、继电器。
13、电压继电器的线圈与电流继电器的线圈相比,具有的特点是(D )。
A、电压继电器的线圈与被测电路串联B、电压继电器的线圈匝数少、导线粗、电阻小C、电压继电器的线圈工作时无电流D、电压继电器的线圈匝数多、导线细、电阻大14、在控制线路中,如果两个动合触点并联,则它们是(B )关系。
A、与逻辑B、或逻辑C、非逻辑D、与非逻辑15、低压断路器(A )。
A、有短路保护,有过载保护;B、有短路保护,无过载保护;C、无短路保护,有过载保护;D、无短路保护,无过载保护。
16、熔断器的额定电流与熔体的额定电流(B )A、是一回事B、不是一回事C、不确定17、甲乙两个接触器,欲实现互锁控制,则应(C )A、在甲接触器的线圈电路中串入乙接触器的动断触点B、在乙接触器的线圈电路中串入甲接触器的动断触点C、在两接触器的线圈电路中互串对方的动断触点D、在两接触器的线圈电路中互串对方的动合触点18、断电延时型时间继电器它的延时动合触点为(C )A、延时闭合的动合触点B、瞬动动合触点C、瞬时闭合延时断开的动合触点D、瞬时断开延时闭合的动合触点19、电压继电器与电流继电器的线圈相比,具有的特点是(B)A、电压继电器的线圈与被測电路串联B、电压继电器的线圈匝数多,导线细,电阻大C、电压继电器的线圈匝数少,导线粗,电阻小D、电压继电器的线圈匝数少,导线粗,电阻大20、同一电器的各个部件在图中可以不画在一起的图是(A )A、电气原理图B、电器布置图C、电气安装接线图D、电气系统图21、下列电器中不能实现短路保护的是(B)A、熔断器B、热继电器C、过电流继电器D、空气开关22、按钮、行程开关、万能转换开关按用途或控制对象分属于下列哪一类(C)A 、低压保护电器 B、低压控制电器C、低压主令电器D、低压执行电器23、以下电器属于主令电器的是(C)A、接触器B、继电器C、行程开关D、自动开关24、通电延时时间继电器,它的延时触点动作情况是( A )A 、线圈通电时触点延时动作,断电时触点瞬时动作B 、线圈通电时触点瞬时动作,断电时触点延时动作C 、线圈通电时触点不动作,断电时触点瞬时动作D 、线圈通电时触点不动作,断电时触点延时动作25、把运行中的异步电动机三相定子绕组出线端的任意两相电源接线对调,电动机的运行状态变为( C )A、反接制动B、反转运行C、先是反接制动随后是反转运行26、异步电动机反接制动时,采用对称式电阻接法,在限制制动转矩的同时也限制了( A )。
电磁式继电器的工作原理
电磁式继电器(Electromagnetic Relay),是一种电磁开关。
它
由线圈、铁芯、触点、弹簧等部分组成,具有接通电路和隔断电路的
功能。
电磁式继电器是将控制电路和被控制电路实现分离的一种电器,主要用于控制大功率回路的通断和电路的保护。
电磁式继电器的工作原理比较简单。
当控制电路的电源通电时,
线圈中出现电流,产生电磁力作用于铁芯上,使得铁芯磁化,吸引动
触点,动触点与静触点接触,此时电路通。
当控制电路的电源断电时,线圈中的电流消失,铁芯不再磁化,动触点受到弹簧回弹力的作用,
与静触点分离,此时电路断。
电磁式继电器的工作过程可分为激励过程和保持过程。
激励过程
是指继电器刚通电时,线圈中的电流瞬间增加,电磁力瞬间增大,此
时动触点与静触点接触,电路通断状态改变。
在继电器保持过程中,
线圈中的电流值保持不变,继电器始终保持通断状态。
电磁式继电器有以下几个优点:
1.通断能力强。
因为电磁式继电器内部有大量的线圈和铁芯,因此可以承受较大的电力负载,通断能力相对较强。
2.控制精度高。
电磁式继电器具有高灵敏性,能够对微小的控制信号进行响应,具有较高的控制精度。
3.使用寿命长。
电磁式继电器内部无易燃材料,在正常使用情况下,寿命长,使用可靠,维护保养简单。
电磁式继电器的应用范围非常广泛。
它可以应用于自动控制、电力电气、化工、机械制造、电子通讯等众多领域。
电磁式继电器的可靠性、适用性与使用简便性,使得它成为绝大多数电气和电子设备的重要组成部分。
·电磁继电器工作原理1、通用电磁继电器工作原理以图1所示结构为例进行说明,当线圈引出脚两端加上电压或电流,线圈的激磁电流产生磁通,磁通通过铁心、轭铁、衔铁和工作气隙组成的磁路,并在工作气隙产生电磁吸力。
当激磁电流上升达到某一值时,电磁吸力矩将克服动簧的反力矩使衔铁转动,带动推动片推动动簧,实现触点闭合;当激磁电流减小到一定值时,动簧反力矩大于电磁吸力矩衔铁回到初始状态,触点断开。
2、磁保持继电器工作原理如图2所示,继电器触点状态保持力是由衔铁部分中的两件磁钢产生的,磁钢产生的磁通通过右衔铁—轭铁磁极—铁心—轭铁磁极—左衔铁—磁钢形成闭合回路,在衔铁和轭铁极间产生吸力,如图所示,左衔铁的延伸臂通过推动片对动簧片施加推力,使动、静触点间产生足够的压力,使其能可靠载流。
当需要使继电器触点断开时,只需对线圈施加一个足够宽度脉冲电压,该脉冲电压产生的磁通与磁钢产生的磁通方向相反,在磁极上就会产生与磁钢相同的极性,根据磁场同性相斥原理,在衔铁和轭铁磁极间会产生推力,当磁路产生的合成力矩大小簧片的反力矩,动簧朝后运动,衔铁部分绕转轴转动,继电器会呈现图3的断开状态。
如果要返回闭合状态,必须在线圈上施加一相反的脉冲,否则,继电器触点状态会永远保持下去。
·电磁继电器技术参数含义1、环境温度范围工作环境温度范围是指继电器经历的最低环境温度至最高环境温度的作用后,继电器不发生功能失效。
按照IEC标准指气候系列试验的最低、最高温度。
2、标准试验条件塑封继电器的标准试验为温度:15-35℃相对湿度:25%-75%大气压力:86-106Kpa继电器标称电寿命等技术指标是在标准试验条件下的测试数据。
当继电器处于超出标准试验测试时,继电器的技术指标将可能会发生变化,甚至于可靠性会发生降低。
因此,继电器的使用环境条件对继电器的性能有着重大的影响。
3、振动稳定性(正弦振动)振动稳定性是指经一种重复周期的正弦运动后,产品能维持正常工作的能力,振动加速度值是位移与频率的函数。
电磁式继电器电磁式继电器按吸引线圈的电流种类可分为:交流电磁继电器和直流电磁继电器。
按继电器反映的参数可分为:中间继电器、电流继电器、电压继电器。
1.电磁式继电器的结构与工作原理电磁式继电器的结构及工作原理与接触器相似,电磁继电器是由缠绕于铁心的线圈的“电磁铁部分”,安装于铁片上的可动触点与固定触点组合而成的“触点部分”,共同结合构成的。
当电流流过线圈,铁心变成电磁铁。
可动铁片被吸引,受到向下的力的作用。
可动触点也向下方移动,与固定触点接触构成闭合电路。
当线圈中无电流流动,铁心不再变成电磁铁。
可动铁片不再受到吸引,由于返回弹簧的作用,受到向上方的力的作用。
可动触点也向上方移动,于是与固定触点脱离接触而使电路断开。
(a)电磁式继电器外观图(b)电磁式继电器原理构造图(c)电磁式继电器动作原理示意图1 (d)动作原理示意图2电磁式继电器的原理结构(a)外观图(b)原理构造图(c)动作原理示意图1(d)动作原理示意图22.中间继电器(文字符号KA)中间继电器的应用实例动画演示中间继电器是将一个输入信号变成一个或多个输出信号的继电器,它的输入信号为线圈的通电或断电,它的输出信号是触头的动作,不同动作状态的触头分别将信号传给几个元件或回路。
中间继电器与接触器所不同的是中间继电器的触头对数较多,并且没有主、辅之分,各对触头允许通过的电流大小是相同的,其额定电流约为5A。
中间继电器的四种功能(a)外观图(b)外观图(c)符号中间继电器的外观图和符号3.电磁式电压继电器电压继电器用于电力拖动系统的电压保护和控制。
使用时电压继电器线圈并联接入主电路,感测主电路的电路电压;触头接于控制电路,为执行元件。
电压继电器的线圈匝数多、导线细、阻抗大。
电压继电器又分过电压继电器、欠电压继电器和零电压继电器。
(1)过电压继电器过电压继电器线圈在额定电压值时,衔铁不产生吸合动作,只有当电压高于额定电压10 5%~115%以上时才产生吸合动作。
什么是电磁式电流继电器的动作电流返回电流及返回系数
电磁式电流继电器是一种用于检测电流的电气元件,它可以检测电流的大小,并将检测到的电流信号转换为电气信号,从而实现控制和保护的功能。
电磁式电流继电器的动作电流返回电流是指当电流继电器检测到的电流达到设定值时,电流继电器会返回一定的电流,以激活电磁线圈,从而实现控制和保护的功能。
电磁式电流继电器的返回系数是指电流继电器返回的电流与检测到的电流之间的比值,它是电流继电器的一个重要参数,可以用来衡量电流继电器的性能。
一般来说,电磁式电流继电器的返回系数越大,其性能越好,可以更好地检测到电流的变化,从而实现更好的控制和保护功能。
电磁式电流继电器的动作电流返回电流和返回系数是电磁式电流继电器的重要参数,它们可以用来衡量电流继电器的性能,从而实现更好的控制和保护功能。
因此,在使用电磁式电流继电器时,应该根据实际情况选择合适的动作电流返回电流和返回系数,以保证电磁式电流继电器的正常使用。
电磁式继电器的工作原理
电磁线圈是继电器的主要组成部分。
它由绝缘的线圈包围着铁芯。
当
通过线圈的电流变化时,会产生一个交变的磁场,这个磁场会以铁芯为中心,沿着线圈的方向产生磁力线。
这些磁力线可以被别的金属材料吸引,
并拉动触点,在触点闭合或断开时,可以控制电路。
继电器的触点有两种类型:常开触点和常闭触点。
常开触点在继电器
未工作时是闭合状态,当电流通过电磁线圈时,磁力将吸引触点,使它打开。
常闭触点在继电器未工作时是断开状态,当电流通过电磁线圈时,磁
力将释放触点,使它闭合。
当继电器上的电压或电流达到一定的阈值时,触点会发生转变。
通常,继电器分为两个状态:工作状态和释放状态。
在工作状态下,继电器的触
点打开或闭合,电路通断由用户设定。
在释放状态下,继电器的触点返回
其默认位置,电路恢复到初始状态。
1.当继电器接收到控制信号后,线圈开始通电。
通电后的线圈会产生
磁场。
2.这个磁场吸引或释放触点,使其打开或关闭。
触点的状态取决于继
电器的类型和工作方式。
3.当触点打开时,电流无法通过触点传递,电路中的设备不会工作。
当触点关闭时,电流可以通过触点传递,电路中的设备可以工作。
4.当控制信号消失时,线圈不再通电,磁场消失。
触点的状态会根据
机械弹簧的作用力返回到初始位置。
电磁式继电器原理
电磁式继电器是一种利用电磁原理工作的电器,它可以将小电流控制大电流的开关。
其工作原理主要分为两个方面:电磁吸合和机械切换。
当继电器的电磁线圈通电时,电流会在线圈中产生磁场。
这个磁场会使得线圈附近的铁芯具有磁性,从而形成一个强磁场。
当线圈中通电的电流足够大时,磁场就足够强大,可以克服弹簧的弹力,使得触点吸合。
一旦触点吸合,就形成了一个电路通路,电流可以从继电器的输入端流过触点,并从输出端输出。
这个过程中,线圈中的电流可以被切断,因为触点已经吸合起到通路的作用。
当线圈中的电流被切断时,磁场的强度会急剧减小,失去足够的吸力,此时弹簧的弹力会使触点恢复原来的状态,断开电路通路。
断开电路通路后,电流将无法从输入端流过触点,也就无法从输出端输出。
通过这种电磁吸合和机械切换的工作原理,电磁式继电器可以实现对电路的开闭控制。
不同类型的继电器可以根据具体的应用需求,选择合适的线圈和触点组合,以达到满足电流和电压要求的目的。