图片欣赏
大千世界处在不停的运动变化之中,如何来研究 这些运动变化并寻找规律呢?
数学上常用变量与函数来刻画各种运动变化.
先看什么叫变量?
(1)你坐过 摩天轮吗?你 坐在摩天轮上 时,随着时间t的 变化,你离开地 面的高度h是如 何变化的?
h(米)
3
t(分)
O 1 2 3 4 5 6 7 8 9 10 11 12
与单价 a(元)的关系式是 n 50 ,
其中变量是 a ,n ,常量是a 50
.
· 问题1:如图是某地一天内的气温变化图
·ห้องสมุดไป่ตู้
看图回答:
当时间t发生变化时,
(1)这天的6时、10时和14时的气温温分度别T为也多随少着?变任化意
给出这天中的某一时刻,说出这一时刻的气温.
(2)这一天中,最高气温是多少?最低气温是多少?
纵向的加数用y表示,试写出y与x的函数关系
式.
(2)试写出等腰三角形中顶角的度数 y与底角的度数x之间的函数关系式.
y 180 2x
y
x
等腰三角形两底角相等
在上面“试一试”中所出现的各个函 数中,自变量的取值有限制吗?如果 有,写出它的取值范围。
y 10 x (x取1到9的自然数)
y 180 2x (0 x 90 )
半径l(cm) 1 1.5 圆面积S(cm²) 3.14 7.07
2
2.6
12.56 21.23
3.2 …
32.15 …
圆的面积随着半径的增大而增大,
所以 r 和 S 是变量, 是常量。
柳暗花明
问题
变量 自变量 因变量
图 17.1.1
“气温变化问题”
波长 300 500 600 1000 1500