7050铝合金蠕变时效成形本构模型研究
- 格式:pdf
- 大小:464.65 KB
- 文档页数:6
第15卷第7期李俞韦,等:2024铝合金孔洞缺陷搅拌摩擦点焊修复数值模拟与实验研究95Finite-Element Studies on the Effect of Tool Shape inFriction Stir Welding[J]. Journal of Engineering Manu-facture, 2010, 224(8): 1161-1173.[21] BENSON D J, OKAZAWA S. Contact in a Multi-Mater-ial Eulerian Finite Element Formulation[J]. ComputerMethods in Applied Mechanics and Engineering, 2004,193(39/40/41): 4277-4298.[22] LIU Qi-peng, LI Wen, ZHU Lei, et al. Tempera-ture-Dependent Friction Coefficient and Its Effect onModeling Friction Stir Welding for Aluminum Alloys[J].Journal of Manufacturing Processes, 2022, 84: 1054-1063.[23] ZAHMATKESH B, ENAYATI M H, KARIMZADEH F.Tribological and Microstructural Evaluation of FrictionStir Processed Al2024 Alloy[J]. Materials & Design,2010, 31(10): 4891-4896.[24] AL-BADOUR F, MERAH N, SHUAIB A, et al.Thermo-Mechanical Finite Element Model of FrictionStir Welding of Dissimilar Alloys[J]. The InternationalJournal of Advanced Manufacturing Technology, 2014,72(5): 607-617.[25] MISHRA R S, MA Z Y. Friction Stir Welding and Proc-essing[J]. Materials Science and Engineering: R: Re-ports, 2005, 50(1/2): 1-78. [26] 赵华夏, 董继红, 孟强. 7050高强铝合金搅拌摩擦焊典型宏观缺陷试验研究[J]. 精密成形工程, 2019, 11(6): 141-148.ZHAO Hua-xia, DONG Ji-hong, MENG Qiang. Ex-perimental Study on Typical Macroscopic Defects of 7050 High Strength Aluminum Alloy Friction Stir Welding[J]. Journal of Netshape Forming Engineering, 2019, 11(6): 141-148.[27] 肖旋, 秦鼎强, 倪昱, 等. 铝合金薄板搭接高速FSW缺陷及断裂行为[J]. 精密成形工程, 2019, 11(6): 135- 140.XIAO Xuan, QIN Ding-qiang, NI Yu, et al. Defects ofHigh Speed Friction Stir Welding and Fracture Behaviorof Aluminum Alloy Thin Plate Lap Joints[J]. Journal ofNetshape Forming Engineering, 2019, 11(6): 135-140. [28] 邓运来, 邓舒浩, 叶凌英, 等. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J].材料工程, 2020, 48(4): 131-138.DENG Yun-lai, DENG Shu-hao, YE Ling-ying, et al.Effects of Post-Weld Heat Treatment on Microstructuresand Mechanical Properties of AA7204-T4 Aluminum Alloy FSW Joint[J]. Journal of Materials Engineering, 2020, 48(4): 131-138.责任编辑:蒋红晨精 密 成 形 工 程第15卷 第7期96 JOURNAL OF NETSHAPE FORMING ENGINEERING2023年7月收稿日期:2023–03–09 Received :2023-03-09基金项目:航空科学基金(2020Z047056003);江西省重点研发计划(20202BBEL53012) Fund :Aeronautical Science Foundation of China(2020Z047056003); Key Research and Development Project of Jiangxi Province (20202BBEL53012)作者简介:徐显强(1996—),男,硕士生。
大变形量冷变形时效7050铝合金强化机理研究下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!大变形量冷变形时效7050铝合金强化机理研究摘要7050铝合金在航空航天和军事领域中广泛应用,其强化机理对材料性能具有重要影响。
精 密 成 形 工 程第16卷 第3期 108JOURNAL OF NETSHAPE FORMING ENGINEERING 2024年3月收稿日期:2024-01-14 Received :2024-01-14基金项目:国家自然科学基金(52305332)Fund :The National Natural Science Foundation of China (52305332)引文格式:周庆珩, 肖雪莲, 黄遐, 等. 时效温度对7050铝合金屈服强度的影响与本构模型研究[J]. 精密成形工程, 2024, 16(3): 108-114.ZHOU Qingheng, XIAO Xuelian, HUANG Xia, et al. Effect of Ageing Temperature on Yield Strength of Aluminium Alloy 7050 and Constitutive Modeling Investigation[J]. Journal of Netshape Forming Engineering, 2024, 16(3): 108-114. *通信作者(Corresponding author )时效温度对7050铝合金屈服强度的影响与本构模型研究周庆珩1,肖雪莲1,黄遐1,2,李勇1,李东升1,周文彬1*(1.北京航空航天大学,北京 100191;2.中国航空制造技术研究院,北京 100024)摘要:目的 预测不同时效条件下7050铝合金力学性能的演化规律,为多级快速时效热处理工艺提供理论基础。
方法 分别在120、160、180 ℃温度下对7050铝合金进行0~8 h 时效热处理,并进行室温单拉试验,获得相应时效条件组合的应力-应变曲线及屈服强度演化曲线,建立统一时效本构模型,模拟微观组织(沉淀半径、溶质浓度)的演化规律,根据微观组织的演化规律,模拟由析出强度与固溶强度组成的屈服强度的演化规律。
文章编号:2096 − 2983(2020)03 − 0007 − 08DOI: 10.13258/ki.nmme.2020.03.0027050超高强铝合金蠕变时效成形行为与性能研究崔振华, 刘晓艳, 王路路, 刘彦鹏, 张轩瑞(河北工程大学 材料科学与工程学院,河北 邯郸 056038)˙ε=e 12.226σ1.66exp(−120536/RT )摘要:对7050超高强铝合金进行蠕变时效处理,采用维氏硬度、晶间腐蚀和剥落腐蚀等试验对其力学性能与腐蚀行为进行研究,采用光学显微镜和透射电子显微镜对微观组织进行观察,研究蠕变时效对合金微观组织与性能的影响。
结果表明:合金的稳态蠕变速率随温度的升高和应力的增大而逐渐升高,时效温度是影响合金蠕变速率和抗腐蚀性能的主要因素。
7050超高强铝合金的稳态蠕变速率与蠕变应力和蠕变温度的关系可以表示为:。
蠕变时效处理后,合金的维氏硬度、抗晶间腐蚀和抗剥落腐蚀性能均得到提高。
合金在120 ℃和140 ℃下蠕变时效后,维氏硬度和抗腐蚀性能都保持在较高的水平,160 ℃下合金的维氏硬度和抗腐蚀性能均较低。
人工时效后,7050超高强铝合金中的主要强化相为大量弥散分布的η′相,蠕变时效后,晶内和晶界析出相尺寸略有减小,晶界析出相分布不连续,电化学腐蚀速率减小,合金抗腐蚀性能提高。
关键词:超高强铝合金;蠕变时效;性能;微观组织中图分类号:TG 146.2 文献标志码:AStudy on Creep Age Forming Behavior and Properties of 7050Ultra -high Strength Aluminum AlloyCUI Zhenhua , LIU Xiaoyan , WANG Lulu , LIU Yanpeng , ZHANG Xuanrui(School of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, China)˙ε=e 12.226σ1.66exp(−120536/RT )Abstract: The 7050 ultra-high strength aluminum alloy was subjected to creep aging treatment. Themechanical properties and corrosion behaviors were studied by some tests including Vickers-hardness,intergranular corrosion and exfoliation corrosion. The microstructures were analyzed by optical microscope and transmission electron microscope. The effects of creep aging on microstructures and properties of the alloy were studied. The results show that the steady creep rate of the alloy is increased gradually with the increase of temperature and the rise of stress. Aging temperature is the main factor affecting the creep rate and corrosion resistance of the alloy. The relationship between the steady creep rate, creep stress and creep temperature of 7050 ultra-high strength aluminum alloy can be expressed as:. After creep aging treatment, the Vickers-hardness, intergranular corrosion resistance and exfoliation corrosion resistance of the alloy are all improved. After creep aging at 120 ℃ and 140 ℃, the hardness and corrosion resistance of the alloy all keep at high level. The有 色 金 属 材 料 与 工 程第 41 卷 第 3 期NONFERROUS METAL MATERIALS AND ENGINEERING Vol. 41 No. 3 2020收稿日期:2019−03−23基金项目:国家自然科学基金资助项目(51601053);河北省科学技术研究项目(ZD2018213)作者简介:崔振华(1995—),男,硕士研究生。