数字积分插补
- 格式:ppt
- 大小:1.35 MB
- 文档页数:88
第三四象限直线插补计算1. 引言随着微电子技术,计算机技术的发展,数控机床的性能不断完善,其应用范围也不断增大。
而数控技术作为数控机床的关键技术,越来越得到更多高校的重视。
2.数字积分法直线插补原理设将要加工的直线XOY 平面内第一象限直线OE ,如图.一所示,直线起点在坐标原点,终点为E (Xe ,Ye )。
同样,假设坐标值均为以脉冲当量为单位的整数。
图.一若此时刀具在两坐标轴上的进给速度分量分别是Vx ,Vy ,则刀具在X 轴,Y 轴方向上位移增量分别是△X = Vx △t 式一a△ Y = Vy △t 式一b由图.一 所示的几何关系可得V/OE=Vx/Xe=Vy/Ye=K (常数) 式二将式二中的Vx ,Vy 分别代入式一 可得:△X = KXe △t 式三a△ Y = KYe △t 式三b可见刀具由原点O 走向E 的过程,可以看作式每经过一个单位时间间隔△t ,就分别以增量[KXe],[ KYe]同时在两个坐标轴累加的结果。
也可以这样认为,数字积分法插补实际上就是利用速度分量,进行数字积分来确定刀具在各坐标轴上位置的过程,即XO当取△ti=“1”(一个单位时间间隔)则X = nKXe 式五aY = nKYe 式五b设经过n 次累加后,刀具正好到达终点E(Xe,Ye),则要求式五中常量满足 下式nK=1 式六n 是累加次数必须取整数,所有K 取小数。
为了保证每次分配给坐标轴的进给脉冲不超过一个单位,则△ X=KXe<1 式七a△ Y=KYe<1 式七b上式中Xe ,Ye 的最大允许值受系统中相应寄存器容量的限制。
现假设寄存器 为N 位则容量为2N ,对应存储的最大允许数字量为(2N - 1)将其带入式七得 K<=1/(2N - 1) 式八现不妨取 K =1/2N 式九显然它满足式七,式八的约束条件,再将K 值代入式六可得累加次数为 n =2N 式十如果将n ,K,值代入式五则动点坐标为X = nKXe =Xe 式十一aY = nKYe =Ye 式十一b根据以上分析,在进行直线插补时,先开辟两个被积函数寄存器Jvx ,Jvy 分别存放终点坐标值Xe ,Ye ,还有两个余数寄存器Jrx ,Jry 。
数字积分法(DDA)插补直线参考程序Sub 插补X()标志X = 0If 余数X >= Q Then余数X = 余数X Mod Qx动点= x动点+ 1: 标志X = 1 End IfEnd SubSub 插补Y()标志Y = 0If 余数Y >= Q Then余数Y = 余数Y Mod Qy动点= y动点+ 1: 标志Y = 1End IfEnd SubSub 插补Z()标志Z = 0If 余数Z >= Q Then余数Z = 余数Z Mod Qz动点= z动点+ 1: 标志Z = 1 End IfEnd SubSub 插补公共()余数X = 余数X + x终点余数Y = 余数Y + y终点余数Z = 余数Z + z终点插补X插补Y插补Z插补记录= 插补记录+ 1End SubSub 插补()Dim c As Integer插补记录= 0: 余数X = 0: 余数Y = 0: 余数Z = 0: 划轮廓线PSet (z原点, x原点), vbRedSelect Case 象限标志Case 1: '第一象限插补Do Until 插补记录= Q插补公共Line -Step(z步长×标志Z, x步长×标志X), vbRedLoopCase 2: '第二象限插补c = x终点: x终点= z终点: z终点= -cc = x步长: x步长= z步长: z步长= -cDo Until 插补记录= Q插补公共Line -Step(x步长×标志X, z步长×标志Z), vbRed LoopCase 3: '第三象限插补x终点= -x终点: z终点= -z终点x步长= -x步长: z步长= -z步长Do Until 插补记录= Q插补公共Line -Step(z步长×标志Z, x步长×标志X), vbRed LoopCase 4: '第四象限插补c = x终点: x终点= -z终点: z终点= cc = x步长: x步长= -z步长: z步长= cDo Until 插补记录= Q插补公共Line -Step(x步长×标志X, z步长×标志Z), vbRed LoopEnd SelectEnd Sub。
数字积分法插补前面提到过数字积分法插补是脉冲增量插补的一种,它是用数字积分的方法计算刀具沿各坐标轴的移动量,从而使刀具沿着设定的曲线运动。
实现数字积分插补计算的装置称为数字积分器,或数字微分器(Digital Differential Analyzer, DDA),数字积分器可以用软件来实现。
数字积分器具有运算速度快,脉冲分配均匀,可以实现一次、二次曲线的插补和各种函数运算,而且易于实现多坐标联动,但传统的DDA 插补法也有速度调节不方便,插补精度需要采取一定措施才能满足要求的缺点,不过目前CNC 数控系统中多采用软件实现DDA 插补时,可以很容易克服以上缺点,所以DDA 插补是目前使用范围很广的一种插补方法。
它的基本原理可以用图4.1所示的函数积分表示,从微分几何概念来看,从时刻0到时刻t 求函数y=f(t)曲线所包围的面积时,可用积分公式: (4.1)如果将0~t 的时间划分成时间间隔为Δt 的有限区间,当Δt 足够小时,可得近似公式:(4.2)式中y i-1为t=t i-1时f(t)的值,此公式说明:积分可以用数的累加来近似代替,其几何意义就是用一系列小矩形面积之和来近似表示函数f(t)下面的面积,t y d t f S ni i t t ∆==∑⎰=-110)(⎰=t t d t f S 0)(如果在数字运算时,用取Δt 为基本单位“1”,则4.2式可以简化为:∑=-=n i i y S 11(4.3)如果系统的基本单位Δt 设置得足够小,那么就可以满足我们所需要的精度。
一般地,每个坐标方向需要一个被积函数寄存器和一个累加器,它的工作过程可用图4.2表示:图 4.2 一个坐标方向上的积分器示意图Fig 4.2 Sketch of DDA in one coordinate direction图4.1 数字积分原理Fig 4.1 Principle of DDA被积函数寄存器用以存放坐标值f(t),累加器也称余数寄存器用于存放坐标的累加值。
数字积分插补法的直线插补误差数字积分插补法是现代数控技术中的重要方法之一。
具体来说,它是通过对给定的曲线信息进行处理,得到一系列机床控制指令,在保证加工精度和效率的同时,实现曲线的准确加工。
然而,在数字积分插补法中,由于其数值计算的本质和机床的机械特性,直线插补误差是无法避免的。
本文将探讨数字积分插补法的直线插补误差,包括其成因、影响因素、解决方法等内容,旨在为制造业相关从业者提供一定的参考和指导。
1.直线插补误差的成因直线插补误差是数字积分插补法中常见的问题之一,其主要成因包括以下几个方面:1)数值计算误差:数字积分插补法是通过对给定的曲线信息进行插值得到指令进行控制,其中涉及到大量的数值计算。
由于计算机计算精度等方面的局限性,数值计算的精度和误差会影响到插补结果的准确性。
2)机床动态特性:机床本身具有一定的刚度、质量以及振动等动态特性,这些特性会导致机床加工时出现一定的误差。
尤其在高速运动和高精度加工时,机床的动态特性和误差更加明显。
3)刀具和工件特性:刀具和工件的特性直接影响到机床加工的准确性,例如刀具磨损、工件变形等都会导致加工误差的发生。
2.直线插补误差的影响因素直线插补误差的大小与许多因素有关,主要包括以下几点:1)直线段的长度和方向:直线段的长度和方向决定了机床加工时所需的时间和加工路线,从而影响插补的起始和终止点以及运动轨迹。
2)机床加工速度和精度:机床加工速度和精度直接决定了加工的渐进过程和目标精度。
对于运动速度和加工精度要求高的工件,直线插补误差影响更大。
3)刀具磨损和工件变形:刀具磨损和工件变形会导致机床加工的实际轮廓和理论轮廓不一致,从而影响插补结果的准确性。
4)数值计算方法和误差分析:数值计算方法和误差分析技术对插补结果的精度和准确性影响很大。
3.直线插补误差的解决方法针对直线插补误差的影响因素,我们可以采取一些解决方法来尽可能地减小误差,这些方法包括以下几个方面:1)数值计算方法的改进:通过提高计算精度和准确度等方式改进数值计算方法,可以减小误差。
dda数字积分插补算法DDA(Digital Differential Analyzer)数字积分插补算法是计算机图形学中常用的一种直线段插值算法。
它的主要作用是根据给定的两个端点坐标,通过在直线上等间距采样的方式,计算出直线上各个点的坐标值,从而实现直线的平滑插值。
DDA算法的基本思想是利用直线的斜率来逐步逼近直线的路径,从而计算出直线上各个点的坐标。
具体步骤如下:1. 计算出直线的斜率k,即直线在x轴上的单位增量Δx与在y轴上的单位增量Δy的比例:k = Δy / Δx。
2. 选择直线上两个端点中x值较小的一个作为起始点,并以其坐标值(x0,y0)作为起始值。
3. 将起始点的坐标值作为当前点的坐标值,并将其绘制到屏幕上。
4. 通过递增x坐标值的方式,计算出下一个点的y坐标值,即y = y0 + k。
5. 将下一个点的坐标值(x0+1,y)作为当前点的坐标值,并将其绘制到屏幕上。
6. 重复步骤4和步骤5,直到达到直线的结束点。
通过以上步骤,可以得到直线上各个点的坐标值,从而实现直线的平滑插值。
DDA算法的优点是计算简单、速度快,适用于直线斜率变化不大的情况。
但由于采用等间距采样的方式,可能导致插值结果与实际直线存在误差。
为了更好地理解DDA算法的原理,下面以一个具体的例子来说明。
假设有两个端点坐标分别为(2,2)和(8,5),我们来计算出直线上各个点的坐标。
计算出直线的斜率k = (5-2) / (8-2) = 3/6 = 1/2。
然后,选择起始点(2,2)作为起始值,并将其绘制到屏幕上。
接下来,通过递增x坐标值的方式,依次计算出下一个点的y坐标值。
根据步骤4,我们可以得到以下结果:x | y--------2 | 23 | 2 + 1/2 = 2.54 | 2.5 + 1/2 = 35 | 3 + 1/2 = 3.56 | 3.5 + 1/2 = 47 | 4 + 1/2 = 4.58 | 4.5 + 1/2 = 5我们得到直线上各个点的坐标值为(2,2)、(3,2.5)、(4,3)、(5,3.5)、(6,4)、(7,4.5)和(8,5)。
数字积分插补法的改进及在点阵屏中的应用
本文主要探讨数字积分插补法的改进及在点阵屏中的应用。
数字积分插补法是一种常见的插补方法,它通过对离散点的函数值进行积分来获得函数的连续性,并进而实现曲线的平滑插补。
然而,传统的数字积分插补法存在一些问题,例如精度低、计算量大等。
为了解决这些问题,近年来出现了一些改进的数字积分插补法。
例如,有些方法采用高阶多项式逼近来提高插补精度,有些方法则采用自适应步长策略来减少计算量。
此外,还有一些方法结合了多种技术,例如分段插值、变步长积分等,以进一步提高数字积分插补法的性能。
在点阵屏中,数字积分插补法也有着广泛的应用。
点阵屏通常由大量的离散像素点构成,而数字积分插补法可以对这些像素点进行插值,从而实现对图像的平滑处理和高精度显示。
此外,数字积分插补法还可以用于生成曲线、字形等复杂形状,以满足点阵屏显示的需求。
综上所述,数字积分插补法在点阵屏显示中具有重要的应用价值,并且不断有新的改进方法出现,以进一步提高其性能和精度。