当前位置:文档之家› 模拟滤波器_各类滤波器特性

模拟滤波器_各类滤波器特性

模拟滤波器_各类滤波器特性
模拟滤波器_各类滤波器特性

测试技术实验二

模拟滤波器专题实验

1 实验目的

1.1 了解滤波器特性参数的含义及测定方法;

1.2 了解跟踪滤波器——恒百分比,

了解相关滤波器——恒带宽;

1.3 比较模拟滤波器及其选择;

1.4 掌握基础模拟仪器仪表的使用

2 实验设备

2.1滤波器综合实验台,相关滤波器实验台,数字示波器;

2.2 信号发生器2个,电源。

实验1 各种滤波器特性实验

1 实验目的

1.1 了解典型滤波器LP和BP的特性;

1.2 观察滤波器阶次增加带来的影响;

1.3 加深对各种滤波器原理及特性方面的理解以备今后应用。

2 实验设备

2.1滤波器综合实验台,数字示波器;

2.2 信号发生器2个,±5V电源。

3 实验步骤

3.1 低通滤波器特性及阶次影响实验

3.1.1 在断电状态下检查电源是否是士5V,接线并确认提供的电源电压和接线无误;

3.1.2 在断电状态下,正确设置开关以确定二阶和四阶低通滤波器形成;

3.1.3 上电后监视CLK,确认为方波,并将其频率调整为3kHz,则滤波器中心频率是

3000/100=30Hz;

3.1.4 用信号发生器正弦接在滤波器输入端,峰峰值为3V,保持幅值不变,令频率从低

频到高频变化,用示波器观察输出波形并记录相关参数;

3.1.5 根据记录的相关数据做出低通滤波器的幅频和相频曲线,并求出

c

3.2 带通滤波器特性实验

3.2.1 断电状态下检查电源;

3.2.2 断电状态下正确设置开关;

3.2.3 通电后检查CLK应是方波,并调整其频率为3kHz,则滤波器中心频率为

3000/100=30Hz;

3.2.4 输入峰峰值为3V正弦信号,改变其频率,观察滤波波形并记录数据,作出幅频

和相频图,并计算其带宽;

3.2.5 改变输入波形为其它波形,观察滤波结果,并分析现象;

3.2.6 用另一信号发生器注入1V左右正弦信号,观察拍频现象。

4 实验数据及处理

4.1 低通滤波器特性实验

实验中设置开关形成低通滤波器,并选取开关电容时钟频率为f clk=10kHz,则滤波器的中心频率为f C=10000/100=100Hz.。在滤波器的输入端施加一个峰峰值U p-p=3V,频率可变的正弦信号,记录了滤波器输出信号的峰峰值和相位延时随着频率的变化情况如表4-1,据此可以作出该滤波器的幅频特性和相频特性特性曲线。

由表4.1中的记录数据可以看出,在输入正弦信号的频率小于100Hz的情况下,输出信号幅值没有衰减,甚至在输入信号频率略小于100Hz处信号的幅值被放大。当输入信号的频率大于100Hz时,二阶低通滤波器输出的信号幅值缓慢变小,而四阶低通滤波器的输出信号幅值迅速变小。二阶低通滤波器输出信号的相位延迟至-180°,四阶低通滤波器输出信号的相位延迟至-360°,且相同输入频率下四阶低通滤波器比二阶多延迟180°。

根据表4.1中测试的数据,用matlab中的cftool工具箱拟合出如下的幅频特性图:

图4.1 二阶和四阶低通滤波器幅频特性图

从图4.1中可以直观看出四阶低通滤波器的过渡带小于二阶滤波器,但是四阶低通滤波器比二阶滤波器的通带纹波振动要大。实验中设定的中心频率是300Hz,根据-3dB原则,可以大致得出四阶低通滤波器的截止频率是350Hz,二阶低通滤波器的截止频率是390Hz。根据实验结果和滤波器理论,有结论:滤波器的阶次越高,过渡带越窄,通带纹波系数越大。再根据表4.1得出的相位数据,作出相频特性曲线如下:

图4.2 二阶和四阶低通滤波器相频特性图

由幅频特性曲线看出,二阶低通滤波器的截止频率约为40Hz,四阶低通滤波器的截止频率约为37Hz。这两种滤波器的通频带内增益倍数变化很小且没有纹波,有明显的截止频率,如图4.1。所以推断此两种滤波器为二阶和四阶的巴特沃兹滤低通波器。两者对比,四阶低通滤波器的过渡带衰减速率比二阶低通滤波器要快,大约为后者的两倍。相频特性方面,二阶低通滤波器的相位延迟从0°到-180°,变化180°,而四阶低通滤波器相位延迟从-180°变化到-540°,变化360°,如图4.2

若要组成80Hz的8阶低通滤波器,可以将两个四阶低通滤波器串联,设置它们的截止频率略高于80Hz。

4.2 带通滤波器特性实验

实验中设置开关形成带通滤波器,并选取开关电容时钟频率为f clk=3kHz,则滤波器的中心频率为f C=3000/100=30Hz.。在滤波器的输入端施加一个峰峰值U p-p=3V,频率可变的正弦

信号,记录了滤波器输出信号的峰峰值和相位延时随着频率的变化情况如表2,据此可以做出该滤波器的幅频特性和相频特性特性曲线。

表2 带通滤波器的实验数据

根据表4.3,拟合出幅频曲线:

图4.5 二阶和四阶带通滤波器幅频特性图(30Hz中心频率)由幅频特性得到,二阶带通滤波器的下限截止频率为20Hz,上限截止频率为54Hz;四阶带通滤波器的下限截止频率为28Hz,上限截止频率为35Hz。两者的幅频特性对比,四阶带通滤波器的过渡带衰减比二阶带通滤波器过渡带衰减快,如图5和图7。二阶带通滤波器的相频特性变化180°,四阶带通滤波器的相频特性变化360°,如图6和图8。

图4.6 二阶和四阶带通滤波器相频特性图

4.2.3输入波形为方波、三角波或者锯齿波,可以发现四阶的带通滤波器输出的波形为只含有一个频率的标准正弦波形,而二阶的带通滤波器输出的波形为几个频率的正弦波形的叠加。这是因为输入的几个波形都含有多阶的谐波分量,而四阶滤波器的带宽较窄,基本只有滤波器中心频率的谐波分量被输出;二阶滤波器的带宽宽,滤波器中心频率附近的几个谐波分量都被输出,所以是几个频率正弦信号的叠加。

4.2.4拍频现象的解释:滤波器产生的拍频现象类似于振动中的拍振现象。经过滤波器后相当于1IN F 和2IN F 信号直接叠加。若)cos()(111?ω+=t A t x ,)cos()(222?ω+=t A t x ,当

21A A =时,)2

cos(

)()()(2

121?ωω++=+=t A t x t x t x ,其中t A A )2

cos(

22

11ωω-=,

因为21ωω-很小,所以A 表示极缓慢周期变化的振幅。拍频的周期为)/(221ωωπ-,频率为12f f -。

滤波器设计步骤及实现程序

数字滤波器的设计步骤及程序实现 湖南理工学院信息与通信工程学院 一、IIR 脉冲响应不变法设计步骤 1、已知实际数字指标as s ap p ,,,ωω 2、将数字指标化为原型模拟指标As s Ap p ,,,ΩΩ,可设T=pi, T /ω=Ω 3、求原型模拟滤波器的c N Ω,,其中:??? ???ΩΩ--=)/lg(2)]110/()110lg[(10/10/s p A A s p N N A p cp p 210 /1 10 -Ω= Ω N A s cs s 210 /1 10 -Ω= Ω ][cs cp c ΩΩ∈Ω, 4、根据N 写出归一化原型系统函数)(p G a 5、用c s p Ω=/代入得原型系统函数c s p a a p G s H Ω==/)()( 6、将)(s H a 化为部分分式展开形式∑-=k k a s s A s H )( 7、写出)(z H 的极点T s k k e z =,并写出)(z H 的部分分式展开形式∑--?= 11)(z z A T z H k k 8、将)(z H 化为分子分母形式,验证设计结果。 二、IIR 双线性变换法设计步骤 1、已知实际数字指标as s ap p ,,,ωω 2、将数字指标化为原型模拟指标As s Ap p ,,,ΩΩ,可设T=2, 2 tan 2ω?= ΩT 3、求原型模拟滤波器的c N Ω,,其中:?? ? ???ΩΩ--=)/lg(2)]110/()110lg[(10/10/s p A A s p N N A p cp p 210 /1 10 -Ω= Ω N A s cs s 210 /1 10 -Ω= Ω ][cs cp c ΩΩ∈Ω, 4、根据N 写出归一化原型系统函数)(p G a 5、用c s p Ω=/代入得原型系统函数c s p a a p G s H Ω==/) ()( 6、用11 112--+-?=Z Z T s 代入原型系统函数)(s H a 得1 1 112)()(--+-? ==Z Z T s a s H z H 8、将)(z H 整理成分子分母形式,验证设计结果。

ex18模拟原型滤波器的设计

数字信号处理实验 第十次实验 实验名称:模拟原型滤波器的设计 学生班级:电信 学生姓名: 学生学号: 指导教师: zgx

一、实验目的 (1)加深对模拟滤波器基本类型、特点和主要设计指标的了解(2)掌握模拟低通滤波器原型的设计方法 (3)学习MATLAB语言有关模拟原型滤波器设计的子函数的使用方法 二、实验原理 输入信号和输出信号均为连续时间信号,冲击响应也是连续的滤波器,成为模拟滤波器。 模拟滤波器从功能上可以分为低通、高通、带通、带阻以及全通滤波器。 实际使用中理想滤波器是不可能实现的,必须设计一个因果可实现的滤波器去逼近。通常通带和阻带都允许存在一定误差容限,即通带不一定完全水平,阻带也不一定绝对衰减到零。在通带和阻带之间允许存在一定宽度的过渡带。 三、实验任务 设计一个模拟原型低通滤波器,通带截止频率fp=6kHz,通带最大衰减Rp≦1dB,阻带截止频率fs=15kHz,阻带最小衰减As≧30dB。 要求:分别实现符合以上指标的巴特沃斯滤波器、切比雪夫一型滤波器、切比雪夫二型滤波器、椭圆滤波器,绘制幅频特性和相频特性曲线、零极点分布图,并列写传递函数表达式。

四、实验过程和结果 1.巴特沃斯滤波器: 程序清单: 得到输出:

所以 1 s 2361.3s 2361.5s 2361.5s 2361.3s 1 )s (H 02 0304050+++++= 且所求曲线:

2.切比雪夫一型滤波器:程序清单:

得到数据: 所以传递函数表达式为: 27563 .0s 74262.0s 4539.1s 95281.0s 1 )s (H 02 03040++++= 所求曲线图形:

简单低通滤波器设计及matlab仿真

东北大学 研究生考试试卷 考试科目: 课程编号: 阅卷人: 考试日期: 姓名:xl 学号: 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

数字滤波器设计 技术指标: 通带最大衰减: =3dB , 通带边界频率: =100Hz 阻带最小衰减: =20dB 阻带边界频率: =200Hz 采样频率:Fs=200Hz 目标: 1、根据性能指标设计一个巴特沃斯低通模拟滤波器。 2、通过双线性变换将该模拟滤波器转变为数字滤波器。 原理: 一、模拟滤波器设计 每一个滤波器的频率范围将直接取决于应用目的,因此必然是千差万别。为了使设计规范化,需要将滤波器的频率参数作归一化处理。设所给的实际频 率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器令λ=p ΩΩ/,则1 =p λ, p s s ΩΩ=/λ。令归一化复数变量为p ,λj p =,则p p s j j p Ω=ΩΩ==//λ。所以巴 特沃思模拟低通滤波器的设计可按以下三个步骤来进行。 (1)将实际频率Ω规一化 (2)求Ωc 和N 11010/2-=P C α s p s N λααlg 1 10 110lg 10 /10/--= 这样Ωc 和N 可求。 p x fp s x s f

根据滤波器设计要求=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时 N p N j G 222 )/(11 11)(ΩΩ+= += λλ (3)确定)(s G 因为λj p =,根据上面公式有 N N N p j p p G p G 22)1(11 )/(11)()(-+= += - 由 0)1(12=-+N N p 解得 )221 2exp(πN N k j p k -+=,k =1,2, (2) 这样可得 1 )21 2cos(21 ) )((1 )(21+-+-= --= -+πN N k p p p p p p p G k N k k 求得)(p G 后,用p s Ω/代替变量p ,即得实际需要得)(s G 。 二、双线性变换法 双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。 为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到pi 一段上,可以通过以下的正切变换来实现: )21 tan(21T T Ω= Ω 这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。将这个关系延拓到整个s 平面和1s 平面,则可以得到

基于MATLAB的数字滤波器的设计程序

IIR 低通滤波器的设计程序为: Ft=8000; Fp=1000; Fs=1200; As=100 ; Ap=1; wp=2*pi*Fp/Ft; ws=2*pi*Fs/Ft; fp=2*Fp*tan(wp/2); fs=2*Fs*tan(ws/2); [n11,wn11]=buttord(wp,ws,1,50,'s'); [b11,a11]=butter(n11,wn11,'s'); [num11,den11]=bilinear(b11,a11,0.5); [h,w]=freqz(num11,den11); axes(handles.axes1); plot(w*8000*0.5/pi,abs(h)); xlabel('Frequency/Hz'); ylabel('Magnitude'); title('巴特沃斯数字低通滤波器'); 巴特沃斯带通滤波器设计程序为: Ft=8000; Fp1=1200; Fp2=3000; Fs1=1000; Fs2=3200; As=100; Ap=1; wp1=tan(pi*Fp1/Ft); wp2=tan(pi*Fp2/Ft); ws1=tan(pi*Fs1/Ft); ws2=tan(pi*Fs2/Ft); w=wp1*wp2/ws2;

bw=wp2-wp1; wp=1; ws=(wp1*wp2-w.^2)/(bw*w); [n12,wn12]=buttord(wp,ws,1,50,'s'); [b12,a12]=butter(n12,wn12,'s'); [num2,den2]=lp2bp(b12,a12,sqrt(wp1*wp2),bw); [num12,den12]=bilinear(num2,den2,0.5); [h,w]=freqz(num12,den12); plot(w*8000*0.5/pi,abs(h)); axis([0 4000 0 1.5]); xlabel('Frequency/Hz'); ylabel('Magnitude'); title('巴特沃斯数字带通滤波器'); IIR 高通滤波器的设计程序为: Ft=8000; Fp=4000; Fs=3500; wp1=tan(pi*Fp/Ft); ws1=tan(pi*Fs/Ft); wp=1; ws=wp1*wp/ws1; [n13,wn13]=cheb1ord(wp,ws,1,50,'s'); [b13,a13]=cheby1(n13,1,wn13,'s'); [num,den]=lp2hp(b13,a13,wn13); [num13,den13]=bilinear(num,den,0.5); [h,w]=freqz(num13,den13); axes(handles.axes1); plot(w*21000*0.5/pi,abs(h)); xlabel('Frequency/Hz'); ylabel('Magnitude'); title('切比雪夫Ⅰ型数字高通滤波器');

带通滤波器设计步骤

带通滤波器设计步骤 1、根据需求选择合适的低通滤波器原型 2、把带通滤波器带宽作为低通滤波器的截止频率,根据抑制点的频率距离带通滤波器中心频点距离的两倍作为需要抑制的频率,换算抑制频率与截止频率的比值,得出m 的值,然后根据m 值选择低通滤波器的原型参数值。 滤波器的时域特性 任何信号通过滤波器都会产生时延。Bessel filter 是特殊的滤波器在于对于通带内的所有频率而言,引入的时延都是恒定的。这就意味着相对于输入,输出信号的相位变化与工作的频率是成比例的。而其他类型的滤波器(如Butterworth, Chebyshev,inverse Chebyshev,and Causer )在输出信号中引入的相位变化与频率不成比例。相位随频率变化的速率称之为群延迟(group delay )。群延迟随滤波器级数的增加而增加。 模拟滤波器的归一化 归一化的滤波器是通带截止频率为w=1radian/s, 也就是1/2πHz 或约0.159Hz 。这主要是因为电抗元件在1弧度的时候,描述比较简单,XL=L, XC=1/C ,计算也可以大大简化。归一化的无源滤波器的特征阻抗为1欧姆。归一化的理由就是简化计算。 Bessel filter 特征:通带平坦,阻带具有微小的起伏。阻带的衰减相对缓慢,直到原理截止频率高次谐波点的地方。原理截止频率点的衰减具有的经验公式为n*6dB/octave ,其中,n 表示滤波器的阶数,octave 表示是频率的加倍。例如,3阶滤波器,将有18dB/octave 的衰减变化。正是由于在截止频率的缓慢变化,使得它有较好的时域响应。 Bessel 响应的本质截止频率是在与能够给出1s 延迟的点,这个点依赖于滤波器的阶数。 逆切比雪夫LPF 原型参数计算公式(Inverse Chebyshev filter parameters calculate equiations ) ) (cosh )(cosh 11Ω=--Cn n 其中 1101.0-=A Cn , A 为抑制频率点的衰减值,以dB 为单位;Ω为抑制频率与截止频率的比值 例:假设LPF 的3dB 截止频率为10Hz,在15Hz 的频点需要抑制20dB,则有: 95.91020*1.0==Cn ;Ω=15/10=1.5 1.39624.0988.2) 5.1(cosh )95.9(cosh 11===--n ,因此,滤波器的阶数至少应该为4

数字滤波器设计步骤

数字信号处理 数字滤波器的设计 学院计算机与电子信息学院 专业电子信息科学与技术班级电子15-2 班姓名学号 指导教师刘利民

数字滤波器的设计 一、模拟低通滤波器的设计方法 1、B utterw orth 滤波器设计步骤: ⑴。确定阶次N ① 已知Ωc 、Ωs 和As 求Bu tt er worth DF 阶数N ② 已知Ωc 、Ωs 和Ω=Ωp (3dB p Ω≠-)的衰减A p 求Bu tterwort h DF 阶数N ③ 已知Ωp、Ωs和Ω=Ωp 的衰减A p 和As 求B utte rwo rth DF 阶数N /10 /1022(/)101,(/)101p s A A N N p c s c ΩΩ=-ΩΩ=-则:

⑵.用阶次N 确定 ()a H s 根据公式: 1,2,2N ()()a a H s H s -在左半平面的极点即为()a H s 的极点,因而 2,,N 2、切比雪夫低通滤波器设计步骤: ⑴.确定技术指标p Ω p α s Ω s α 归一化: /1p p p λ=ΩΩ= /s s p λ=ΩΩ ⑵.根据技术指标求出滤波器阶数N 及ε: 0.12 10 1δε=- p δα= ⑶.求出归一化系统函数 其中极点由下式求出:

或者由N 和S直接查表得()a H p 二、数字低通滤波器的设计步骤: 1、 确定数字低通滤波器的技术指标:通带截止频率p ω、通带最大衰减系数 p α、 阻带截止频率ω、阻带最小衰减系数s α。 2、 将数字低通滤波器的技术指标转换成模拟低通滤波器的技术指标。 巴特沃斯: 切比雪夫:/s s p λ=ΩΩ 0.1210 1δ ε=- p δα=

模拟滤波器设计及运放选择

1、模拟滤波器设计流程 模拟滤波器设计流程——(一)基本概念 预备知识 基本的电子电路常识,信号与系统中的频域,零极点,传递函数,拉普拉施变换等概念。 一.模拟滤波器分类 由于知识所限,这里我们只谈谈模拟滤波器。从频域上可以划分为低通滤波器,高通滤波器,带通滤波器,带阻滤波器和全通滤波器等。 这种划分方式便于做系统模型分析。而按照应用来划分不外乎就是滤波,均衡,延时等。按照应用来划分的方式不是很容易说清楚,因 此我们还是应当将应用指标要求对应到不同的滤波器类型上面。 二.设计模拟滤波器 怎样设计?需要指标要求,而指标的获得应该是从系统划分开始。对于滤波器的性能指标要求,系统往往会给出一个底线。 系统仿真在这一步尤为关键,系统仿真不仅可以给出滤波器的指标,也可以验证不同类型滤波器对性能的影响。如果能够使用matlab 作为仿真工具,这一步就会变得很简单,simulink提供了不同类型滤波器的model,直接调用就可以了。当然,如果你对各种类型滤 波器的优缺点非常了解,那就很容易确定适合的滤波器类型了,后面的事就是具体的电路实现,这里不再详述。不过能够做一下系统仿 真要更保险一点,毕竟在后期电路实现的时候还会出现很多非理想因素,如果前期能购通过系统仿真为各个模块指标留出足够的裕量, 这是是很明智的。 三.模拟滤波器类型 上面说的是如何选择滤波器的方法,那么各种类型的滤波器在指标和性能上又有什么区别呢?第一步,我们首先要了解滤波器的关键指 标有哪些.。 性能指标包括两方面的内容:频域上我们关心的是截止频率fc,3dB带宽BW,中心频率f0,带外抑制度(阻带衰减),通频带纹波等; 时域上有冲激响应,阶越响应,群时延等等。不同类型的滤波器性能优缺点就表现为其中的几项。应用的需求可以直接反映为对截止频率,阻带频率,抑制度,以及时延等特性的要求。 预告:后面准备用一个贴对各种类型的滤波器特性做简单的总结和介绍,和滤波器选择方法;再用一个贴介绍我做过的一个滤波器设计 流程。敬请关注! 模拟滤波器设计流程——(二)分类 滤波器设计(on chip)可能算是我这几年工作接触最多的一个方向了。然而到现在我还是觉得很难去给出一个模拟滤波器的基本概括,因为感觉其中涉及的东西太多,自己了解的东西还是太肤浅。 最开始做滤波器的时候比较盲目,领导分配了指标却不知道从何处入手,只能找些参考资料来看看。关于模拟滤波器的分类这一话题,不同的资料有不同的说法,不知道该信谁的,也不知道究竟应该怎样去理解书中的知识,简单概括一下就是“抓瞎”。滤波器的类型,阶次,拓扑结构等等概念经常是混淆不清。当时很多电路感觉都是硬着头皮在做的,好在都还没出什么问题。做多了几次,有些觉悟了,问题还是很多,但对于滤波器也有了点自己的理解方式。 从我的观点来看,理解滤波器的分类首先具备基本的系统设计与信号处理知识。这两个背景知识对于理解滤波器相关概念和设计方法也是非常重要的 书本上经常提到的那些滤波器不外乎有源,无源,低通,高通,带通,带阻等等。有源与无源之分,无非就是看滤波器有无电源供电;而低通,高通等等分类方法,则是根据有用信号所占据的频段来划分的,信号的频段决定了你所选择的滤波器究竟是低通还是高通海市别的什么。 我们常常看到诸如butterworth型,chebychev型等滤波器,关于这种分类方式,以我的理解来看,指的是滤波器的零极点位置;不同的零极点位置决定了滤波器在带外抑制度,(带内/带外)纹波,幅频/相频特性,以及群时延等性能指标。当然掌握这些滤波器的基本特点有利于我们设计电路的时候选择合适的类型。对于不同类型的滤波器,其极点个数

模拟低通滤波器的设计

1 课程设计目的 1.掌握有源滤波器和无源滤波器设计方法和过程。 2.要求设计一个有源二阶的低通滤波器,其设计指标为:最高截止频率为2KHz ,通带电压放大倍数为2,在频率为10KHz 时,幅度衰减大于30dB 。 3.熟练运用仿真软件(workbench 或multisim )设计和仿真电路。 4.对其设计电路进行仿真并利用相应元件搭建电路。 5.结合现有仪器仪表进行系统调试。 6.掌握理论联系实践的方法。 2 课程设计实施 2.1 设计任务及要求 要求设计一个有源二阶的低通滤波器,其设计指标为:最高截止频率为2KHz ,通带电压放大倍数为2,在频率为10KHz 时,幅度衰减大于30dB 。 2.2 滤波器的设计原理及元器件的选择 2.2.1 滤波器介绍 滤波器是一种能使有用信号通过,滤除信号中的无用频率,即抑制无用信号的电子装置。有源滤波器实际上是一种具有特定频率响应的放大器。 低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。理想滤波器电路的频响在通带内应具有一定幅值和线性相移,而在阻带内其幅值应为零,但实际滤波器不能达到理想要求。为了寻找最佳的近似理想特性,一般主要考虑滤波器的幅频响应,而不考虑相频响应,一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。 滤波器的阶数越高,幅频特性衰减的速率越快,但RC 网络节数越多,元件参数计算就会越繁琐,电路的调试越困难,任何高阶滤波器都可由一阶和二阶滤波器级联而成,而对于n 为偶数的高阶滤波器,可以由 2n 节二阶滤波器级联而成;而n 为奇数的高阶滤波器可以由2 1 n 节二阶滤波器和一节一阶滤波器级联而成,因此一阶滤波器和二阶滤波器是高阶滤波器的基础。 2.2.2 有源滤波器的设计 有源滤波器的设计,就是根据所给定的指标要求,确定滤波器的阶数n ,选择具体的电路形式,算出电路中各元件的具体数值,安装电路和调试,使设计的滤波器满足指标要求,具体步骤如下: (1)根据阻带衰减速率要求,确定滤波器的阶数n 。 (2)选择具体的电路形式。

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计

团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1理论分析 (3) 1.2电路组成 (4) 1.3一阶无源RC低通滤波电路性能测试 (5) 1.3.1正弦信号源仿真与实测 (5) 1.3.2三角信号源仿真与实测 (10) 1.3.3方波信号源仿真与实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2电路组成 (22) 2.3二阶无源LC带通滤波电路性能测试 (23) 2.3.1正弦信号源仿真与实测 (23) 2.3.2三角信号源仿真与实测 (28)

2.3.3方波信号源仿真与实测 (33) 第三章结论与误差分析 (39) 3.1结论 (39) 3.2误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入

频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得: 在任何频率下,应用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成

matlab数字滤波器设计程序

%要求设计一butterworth低通数字滤波器,wp=30hz,ws=40hz,rp=0.5,rs=40,fs=100hz。>>wp=30;ws=40;rp=0.5;rs=40;fs=100; >>wp=30*2*pi;ws=40*2*pi; >> [n,wn]=buttord(wp,ws,rp,rs,'s'); >> [z,p,k]=buttap(n); >> [num,den]=zp2tf(z,p,k); >> [num1,den1]=impinvar(num,den); Warning: The output is not correct/robust. Coeffs of B(s)/A(s) are real, but B(z)/A(z) has complex coeffs. Probable cause is rooting of high-order repeated poles in A(s). > In impinvar at 124 >> [num2,den2]=bilinear(num,den,100); >> [h,w]=freqz(num1,den1); >> [h1,w1]=freqz(num2,den2); >>subplot(1,2,1); >>plot(w*fs/(2*pi),abs(h)); >>subplot(1,2,2); >>plot(w1*fs/(2*pi),abs(h1)); >>figure(1); >>subplot(1,2,1); >>zplane(num1,den1); >>subplot(1,2,2); >>zplane(num2,den2);

IIR模拟低通滤波器设计Word版

信息科学与工程学院综合性实验报告 姓名:学号 班级: 实验项目名称: IIR模拟低通滤波器设计 实验项目性质:设计性实验 实验所属课程:数字信号处理 实验室(中心): 指导教师: 实验完成时间:年月日

一、实验目的 1、加深对无限冲激响应IIR 滤波器的常用指标和设计过程的理解。 2、学会用冲激响应不变法把模拟滤波器设计成数字滤波器。 3、进一步掌握matlab 在数字信号处理中的应用,以便以后的学习。 二、实验内容及要求 实验内容:要求按照设计指标设计无限冲激响应IIR 巴特沃什模拟低通 滤波器。 实验要求:必须掌握IIR 巴特沃什模拟低通滤波器的各个指标代表的含义,搞清 楚次实验的原理,有可能的话,用冲激响应不变法把模拟滤波器设计成数字滤波器。 三、实验原理 1、低通滤波器的技术要求用图形表示如下: 1

如上图表示了一个频域设计、一维低通滤波器的技术要求图。 和 分别称为通带截止频率和阻带截止频率。通带频率范围为 ,阻带频率范围为 。从 到 称为过渡带,用 表示,在过渡带里,幅频特性单调下降。在通带和阻带内的衰减一般用数 dB 表示。 通带内允许最大衰减是 ,阻带内允许最小衰减是 ,定义分别为: 2、 M atlab 信号处理工具箱中提供了设计巴特沃思模拟滤波器的函数buttord 、 buttap 和butter ,格式如下: [,](,,,,C P S P S N W buttord W W R R s ='') 用于计算巴特沃思模拟低通滤波器的阶N 和3dB 截止频率Wc (即本书中的符号c Ω)。其中,Wp 和Ws 分别是滤波器的通带截止频率p Ω和阻止截止频率s Ω,单位为rad/s ;Rp 和Rs 分别是通带最大衰减系数p α和阻带最小衰减系数s α,单位为dB 。 [,,]()z p G buttap N = 用于计算N 阶巴特沃思归一化(c Ω=1)模拟低通滤波器系统函数的零、极点和增益因子,返回长度为N 的向量z 和p 分别给出N 个零点和极点,G 是滤波器增益。得 到的滤波器系统函数形式如下: 1212()()() () ()()()() () a N a a N Q s s z s z s z H s G P s s p s p s p ---= =--- 其中,k z 和k p 分别是向量z 和p 的第k 个元素。如果要从零、极点得到系统函数的分子和分母多项式系数向量B 和A ,可以调用结构转换函数。(实验中没有用到) [,]2(,,)B A zp tf z p G =,结构转换后系统函数的形式为 111111()()()M M M a N N N b s b s b B s H s A s a s a s a ----+ ++== + ++ 其中,M 是向量B 的长度,N 是向量A 的长度,k k b a 和分别是向量B 和A 的第k 个元素。 (3)[,](,,,)C B A butter N W ftype s ='''' p ωs ωp 0ωω≤≤s πωω≤≤p ωs ωω?p αs α p j0 p j (e )20lg (e ) H H ωα=s j0 s j (e )20lg (e ) H H ωα=

设计数字低通滤波器(用matlab实现)

DSP 设计滤波器报告 姓名:张胜男 班级:07级电信(1)班 学号:078319120 一·低通滤波器的设计 (一)实验目的:掌握IIR 数字低通滤波器的设计方法。 (二)实验原理: 1、滤波器的分类 滤波器分两大类:经典滤波器和现代滤波器。 经典滤波器是假定输入信号)(n x 中的有用成分和希望取出的成分各自占有不同的频带。这样,当)(n x 通过一个线性系统(即滤波器)后可讲欲去除的成分有效的去除。 现代滤波器理论研究的主要内容是从含有噪声的数据记录(又称时间序列)中估计出信号的某些特征或信号本身。 经典滤波器分为低通、高通、带通、带阻滤波器。每一种又有模拟滤波器(AF )和数字滤波器(DF )。对数字滤波器,又有IIR 滤波器和FIR 滤波器。 IIR DF 的转移函数是: ∑∑=-=-+==N k k k M r r r z a z b z X z Y z H 10 1)()()( FIR DF 的转移函数是: ∑-=-=10)()(N n n z n h z H FIR 滤波器可以对给定的频率特性直接进行设计,而IIR 滤波器目前最通用的方法是利用已经很成熟的模拟滤波器的设计方法进行设计。 2、滤波器的技术要求 低通滤波器: p ω:通带截止频率(又称通带上限频率) s ω:阻带下限截止频率 p α:通带允许的最大衰减 s α:阻带允许的最小衰减 (p α,s α的单位dB ) p Ω:通带上限角频率 s Ω:阻带下限角频率 (s p p T ω=Ω,s s s T ω=Ω)即 C p p F ωπ2=Ω C s s F ωπ2=Ω 3、IIR 数字滤波器的设计步骤:

实验五 IIR数字滤波器设计与滤波(附思考题程序)

实验五 IIR 数字滤波器设计与滤波 1.实验目的 (1)加深对信号采样的理解, (2)掌握滤波器设计的方法; (3)复习低通滤波器的设计。 2.实验原理 目前,设计IIR 数字滤波器的通用方法是先设计相应的低通滤波器,然后再通过双线性变换法和频率变换得到所需要的数字滤波器。模拟滤波器从功能上分有低通、高通、带通及带阻四种,从类型上分有巴特沃兹(Butterworth )滤波器、切比雪夫(Chebyshev )I 型滤波器、切比雪夫II 型滤波器、椭圆(Elliptic )滤波器以及贝塞尔(Bessel )滤波器等。 典型的模拟低通滤波器的指标如下:,P S ΩΩ分别为通带频率和阻带频率,,P S δδ分别为通带和阻带容限(峰波纹值)。在通带内要求1()1P a H J δ-≤Ω≤,有时指标由通带最大衰减p α和阻带最小衰减s α给出,定义如下:20lg(1)p p αδ=-- 和20lg()s s αδ=- 第二种常用指标是用参数ε和A 表示通带和阻带要求,如图所示: 二者之间的关系为:21/2[(1)1]p εδ-=--和1/s A δ=,根据这几个参数可导出另外两个参数d ,k ,分别称为判别因子和选择性因子。 21d A = - /p s k =ΩΩ

BUTTERWORTH 低通滤波器:幅度平方函数定义为221()1(/)a N c H J Ω=+ΩΩ,N 为滤波器阶数,c Ω为截止频率。当c Ω=Ω 时,有()1/a H J Ω=3DB 带宽。 BUTTERWORTH 低通滤波器系统函数有以下形式: 11111()...() N c a N N N N N k H s s a s a s a k s s --=Ω==++++∏- 由模拟滤波器设计IIR 数字滤波器,必须建立好s 平面和z 平面的映射关系。使模拟系统函数()a H s 变换成数字滤波器的系统函数()H z ,通常采用冲激相应不变法和双线性变换法。冲激相应不变法存在频谱混叠现象,双线性变换法消除了这一线象,在IIR 数字滤波器的设计中得到了更广泛的应用。 s 平面和Z 平面的映射关系为1 121()1s Z s f Z T Z ---==+,将s j =Ω和jw z e =待入数字频率和等效的模拟频率之间的映射关系:tan()2 w Ω=,由于二者不是线性关系,所以称为预畸变。 3.实验内容及其步骤 实验的步骤: (1)给定数字滤波器的幅度相应参数。 (2)用预畸变公式将数字滤波器参数变换为相应的等效模拟滤波器参数。 (3)采用模拟滤波器设计方法设计等效模拟滤波器()a H s (4)采用双线性变换公式把等效模拟滤波器映射为所期望的数字滤波器。 其中第三步中模拟滤波器设计步骤为: 首先,根据滤波器指标求选择因子k 和判别因子d 其次,确定满足技术所需的滤波器阶数N, log log d N k ≥ 再次,设3db 截止频率c Ω

切比雪夫1型滤波器概要

目录 1课题描述 (1) 2设计原理 (1) 2.1滤波器的分类 (1) 2.2模拟滤波器的设计指标 (1) 2.3切比雪夫1型滤波器 (2) 2.3.1切比雪夫1型滤波器的设计原理 (3) 2.3.2切比雪夫1型滤波器的设计步骤 (3) 3脉冲响应不变法 3.1 脉冲响应不变法原理 (6) 4设计内容 (6) 4.1设计步骤 6 4.2用MATLAB编程实现 (6) 4.3设计结果分析 (10) 5总结 (10) 6参考文献 (10)

1课题描述 数字滤波器是数字信号处理的重要工具之一,它通过数值运算处理改变输入信号所含频率成分的相对比例或者滤出某些频率成分的数字器件或程序,二数字滤波器处理精度较高,体积小,稳定,重量轻,灵活,不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。故本书课题使用MATLAB信号处理箱和运算用切比雪夫法设计数字低通滤波器。 利用脉冲响应不变法设计切比雪夫Ⅰ数字低通滤波器,通带截止频率100hz,阻带截止频率150Hz,采样频率1000hz,通带最大衰减为0.5dB,阻带最小衰减为10dB,画出幅频、相频响应曲线,并设计信号验证滤波器设计的 正确性。设计原理 2.1. 滤波器的分类 (1)从功能上分;低、带、高、带阻。 (2)从实现方法上分:FIR、IIR (3)从设计方法上来分:Chebyshev(切比雪夫),Butterworth(巴特沃斯) (4)从处理信号分:经典滤波器、现代滤波器 2.2 模拟滤波器的设计指标 设ha(j?)是一个模拟滤波器的频率响应,则基于平方幅度响应J (?) = Ha(j?)的低通滤波器技术指标为: 0≤∣Ha (j?)∣≤1/A^2,?s≤∣?∣ 其中ε为通带波动系数,p?和s?是通带和阻带边缘频率。A为阻带衰减系数

滤波器设计步骤

滤波器设计步骤: 1、确定滤波器阶数n; 2、电路实现形式选择,传递函数的确定; 3、电路中元器件的选择,包括运算放大器的选择、阻容值设置等,最后形成电路原理图; 4、仿真结果(幅频特性图)及优化设计; 5、调试注意事项,确定影响滤波器参数实现的关键元件。 每一种电路按照以上步骤完成设计,本周内完成!

1、有源低通滤波器f c =50kHz 一、最低阶数的选取 主要功能参数为: 1) 带内不平坦度α1=0.5dB 2) 阻带衰减α2≥40dB ,这里取45dB 3) 增益G=10 4) 通带范围50kHz 使用滤波器设计软件,计算得出:若选取巴特沃斯滤波器,最低阶数为n=9;若选取切比雪夫滤波器,得到同样满足要求的切比雪夫滤波器的最低阶数为n=6。由于高阶滤波器电路复杂,造价较高,所以在同样满足技术指标的情况下,选取滤波器的最低阶数,即n=6。 二、电路实现形式选择及传递函数的确定 实现切比雪夫低通滤波器的电路有许多种,这里选择无限增益多端反馈电路(MFB ),见图1。MFB 滤波器是一种常用的反相增益滤波器,它具有稳定好和输出阻抗低等优点。 图1 二阶MFB 低通滤波电路 图2滤波器的级联 如图2所示,电路由三个二阶MFB 低通滤波电路串联实现,在图1所示电路中,当f=0时,C 1和C 2均开路,所以M 点的电压为 1 21R R U U M -= M 点的电流方程 C I I I I ++=321 M I 2 I 3 I 1 I C V 2 V 1 N 4

2 3 22111sC U R U R U U R U U M M M M ++-=- (式1) 其中 M U R sC U 3 121-= (式2) 解式1和式2组成的联立方程,得到每个二阶MFB 低通滤波器的传递函数为 3 2212 321 3211 21 2 1111R R C C s R R R R R sC R R U U +???? ??+++- = 最后得出六阶切比雪夫低通滤波器的传递函数为 ? +???? ??+++- ? +???? ??+++-=6 5432 654 6534 5322123213211 21 4 11111111R R C C s R R R R R sC R R R R C C s R R R R R sC R R U U 9 8652 987 9857 8 1111R R C C s R R R R R sC R R +???? ??+++- 三、电路中元器件的选择 使用滤波器设计软件,计算得出每节电路的阻值容值,如图2所示。 图2 六阶切比雪夫低通滤波器 器件的选择: 选择运放时,应适应满足特定增益的要求和频率范围的运放。并且,为了达到最佳运用,还要考虑运放的上升速率。

模拟滤波器设计演示的软件实现.

数字信号课程设计 课程名称数字信号处理课程设计 实验项目模拟滤波器设计演示的软件实现实验仪器计算机 学院/系别通信工程 班级/学号 学生姓名 实验日期 成绩 指导教师

题目四模拟滤波器设计演示的软件实现 一.设计目的 ①熟悉和巩固模拟滤波器的设计方法和原理; ②熟练掌握MATLAB工具软件在工程设计中的使用; ③熟练掌握模拟滤波器的设计及由ALPF到各型模拟滤波器的幅频特性对比。二.设计内容 ①动态演示由ALPF到模拟各型滤波器幅度特性曲线; ②分析并说明由冲击响应不变法设计BSF和HPF加保护滤波器的必要性。 三、设计要求 ①理论分析B型ALPF的设计及由ALPF到模拟各型滤波器的设计过程; ②动态演示由ALPF到模拟各型滤波器幅度特性曲线; ③通带、过渡带和阻带分别用不同的颜色; ④分析并说明由冲击响应不变法设计BSF和HPF加保护滤波器的必要性。 四、实验仪器 计算机1台,安装MATLAB软件 五、实验步骤 ①设计过程详见教材相关内容; ②使用巴特沃斯滤波器,其阶数N应该根据实际参数计算(计算公式和方法如教材所述),为方便作图,这里指定阶数为N=5,并假定通带截止频率ωp=1rad,阻带截止频ωs=2 rad,; ③分别用不同颜色曲线绘制通带、过渡带和阻带。要求根据变换关系动态 演示低通滤波器和目标滤波器的幅度特性。 ④简要说明采用冲击响应不变法对AHPF和ABSF数字化时保护滤波器的作用。

摘要 MATLAB是“矩阵实验室”(MATrix LABoratoy)的缩写,是一种科学计算软件,主要适用于矩阵运算及控制和信息处理领域的分析设计,它使用方便,输入简捷,运算高效,内容丰富。 本课题在设计模拟滤波器的过程中,首先对设计的原理及方法做了非常详细的分析,特别是在设计高通滤波器的过程中,利用现有低通滤波器的系统函数,在经过简单的转化之后,可以直接设计出这种滤波器,但在实际手工计算中特别麻烦,所以本实验全是利用MATLAB的中设计滤波器专用工具箱,在对低通的技术指标确定之后,通过调用buttord、butter等函数,实现了对巴特沃斯模拟低通滤波器的设计,通过调用lp2hp、lp2bp、lp2bs等函数实现了从模拟低通到高通的转化,并对图形做了对比分析 关键词:MATLAB;滤波器;巴特沃斯;系统函数

模拟低通滤波器设计

模拟低通滤波器设计 模拟低通滤波器指标: 由参数A p 、A s 、Ωs (阻带截止频率),和Ωp(通带截止频率)给出 (Ωs=2πfs Ωp=2πfp ) 设计目标:确定滤波器阶次N 和截止频率Ωc 。 要求: (1) 在 Ω=Ωp ,-10lg|H a(j Ω)|2=A p, 或 (2) 在Ω=Ωs ,-10lg|H a(j Ω)|2=A s, 或 解出N : (N 四舍五入) 为了在Ωp 精确地满足指标要求, 要求: 或者在Ωs 精确地满足指标要求,要求: 巴特沃斯滤波器的设计: 巴特沃斯低通滤波器幅度平方函数定义为 式中,N 为正整数,代表滤波器的阶数。 注: 巴特沃斯低通滤波器在通带内有最大平坦的幅度特性。随着Ω由0增大,|H a(j Ω)|2单调减小,N 越大,通带内特性越平坦,过渡带越窄。 在幅度平方函数式中代入Ω=s/j, 可得 H a(s )H a(-s )的极点为 k =1, 2, …, 2N ?? ??????ΩΩ+-=N c p p A 2)/(11 lg 10? ?????ΩΩ+-=N c s s A 2)/(11 lg 10[ ]??? ? ?? ??ΩΩ--=)/lg(2) 110/()110(lg 10/10/s p A A s p N c ΩΩ= c ΩΩ=N c a j H 22 )/(11|)(|ΩΩ+=ΩN c a a j s s H s H 211)()(??? ? ??Ω +=-π?? ????-+Ω=Ω-=N k j c c N k e j s 2122121 )()1 (

为形成稳定的滤波器,H a(s )H a(-s )的2N 个极点中只取S 左半平面的N 个极点为H a(s )的极点,而右半平面的N 个极点构成H a(-s )的极点。 H a(s )的表示式为 【例 1】 设计一个模拟低通巴特沃斯滤波器,指标如下: (1) 通带截止频率:Ωp=0.2π;通带最大衰减:A p=7 dB 。 (2) 阻带截止频率:Ωs=0.3π;阻带最小衰减:A s=16dB 。 解: 由Ωp ,得 : 由Ωs ,得: 在上面两个Ωc 之间选Ωc=0.5。 最后可得(级联型) : 【例 2】导出三阶(N =3)巴特沃斯模拟低通滤波器的系统函数。 设Ωc =2 rad/s 。 【解】 幅度平方函数是 令Ω2=-s 2即s =j Ω,则有 各极点: k =1, 2, …, 6 由s 1, s 2, s 3三个极点构成的系统函数为 : ∏=-Ω=N k k N c a s s s H 1 ) ()(??3 79.2)3.0/2.0lg(2)]110/()110lg[(6.17.0==??? ???--=ππN 4985.01 10 2.06 7 .0=-=π c Q 5122 .01 10 3.06 6 .1=-=π c Q ) 25.05.0)(5.0(125 .0)(2 +++=s s s s H a 6 2 ) 2/(11 |)(|Ω+= Ωj H ) 2/(11 )()(6 6s s H s H a a -=-π??? ???-+=612212k j k e s 3 12223 12312223123 160 53 543 4323 21j e s e s j e s j e s e s j e s j j j j j j +====-==--==-==+-==ππππ π3 1233 2 ()()()()8 1488 c a H s s s s s s s s s c Ω= ---= +++

基于Matlab的模拟滤波器设计与仿真

基于Matlab的模拟滤波器设计与仿真 0 引言建立在拉普拉斯变换基础之上的模拟滤波器的理论和设计方法已 经发展得相当成熟,且有若干典型滤波器供人们选择,如巴特沃斯(But- terworth)滤波器、切比雪夫(Chebyshev)滤波器等。但是关于滤波器实现的电路 元件参数的选取和计算却是件繁琐的工作。在此提出基于Ma-tlab 将电路参数 计算程序化的方法,并通过效果仿真达到优化电路参数的目的,而且程序具有 扩展功能。l 模拟滤波器的设计流程模拟低通滤波器的设计指标有ap,Ωp,as,Ωs,其中Ωp和Ωs分别为通带截止频率和阻带截止频率;ap 是 通带Ω中最大衰减系数;as 是阻带Ω≥Ωs的最小衰减系数ap 和Ωs一般用dB 表示。在此希望幅度平方函数满足给定的技术指标ap,Ωp,as,Ωs。(1)巴特沃斯滤波器幅频特性模的平方为:式中:N 为滤波器的阶数;wc 滤波器截止 角频率。(2)切比雪夫滤波器式中:ε决定通带内起伏大小的波纹参数;TN 为 第一类切比雪夫多项式:LC 一端口网络的T 型电路和∏型电路对应不同的 Ha(s)函数的连分式展开形式。在设计时,先求出归一化低通元件值,然后反演 出电路元件实际值。2 运用Matlab 编程实现的模拟电路设计并仿真(1)无源单 端口模拟滤波器的设计举例技术指标:通带内允许起伏:-1 dB,O≤Ω≤2 π×104rad/s;阻带衰减:≤-15dB,2 π×2×104rad/s≤Ω+∞:信源内阻Rs 和负载电阻RL 相等,均取600 Ω。运用Matlab 语言进行编程计算出如图1 所示 巴特沃斯T 型和∏型电路图的电路元件参数。图2 为切比雪夫T 型和∏型电路 图的电路元件参数。 图3 为设计巴特沃斯T 型和∏型电路图输出电压幅频特性Matlab 仿真图。 图4 为切比雪夫输出电路幅频特性Matlab 仿真图。 tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!

相关主题
文本预览
相关文档 最新文档