王正行 量子力学原理笔记
- 格式:pdf
- 大小:232.64 KB
- 文档页数:17
量子力学笔记量子力学是研究微观粒子行为的物理学分支之一,它描述了微观世界的规律和现象。
本文将介绍量子力学的基本概念、原理和应用。
一、波粒二象性在量子力学中,微观粒子既表现出粒子的特点,也表现出波动的特点,这被称为波粒二象性。
根据量子力学原理,微观粒子的性质可以用波函数来描述。
波函数是描述微观粒子状态和运动规律的数学函数。
二、不确定性原理不确定性原理是量子力学的重要原理之一,由海森堡提出。
该原理指出,当我们测量微观粒子的某个性质时,例如位置和动量,我们不能同时精确地知道它们的数值。
精确地测量其中一个性质会导致对另一个性质的测量结果存在不确定性。
三、量子态和量子叠加在量子力学中,微观粒子的状态用量子态表示。
一个量子态可以是一个波函数或由多个波函数组成的线性叠加态。
量子叠加使得微观粒子可以同时处于多个状态,直到被观测或测量之前。
四、观测和测量量子力学认为,当我们观测或测量微观粒子时,它的量子态会坍缩到一个确定的态。
这个过程被称为波函数坍缩。
观测结果是由量子态坍缩到一个确定态而得到的。
五、量子纠缠和量子隐形传态量子纠缠是量子力学中一个特殊而奇妙的现象。
当两个或多个微观粒子发生相互作用后,它们的量子态相互依赖,无论它们之间的距离有多远,任一粒子的态发生变化,其他纠缠粒子的态也会相应变化。
这种相互依赖的关系被称为量子纠缠。
六、量子计算和量子通信量子力学的发展也催生了量子计算和量子通信的研究领域。
量子计算利用量子叠加和纠缠的特性,可以在某些问题上具有更高的计算效率。
量子通信利用量子纠缠实现量子隐形传态和量子加密,具有更高的安全性和可靠性。
总结:量子力学是一门复杂而精密的学科,它的发展和应用正不断推动着科学和技术的进步。
通过对量子力学的研究,我们可以更深入地理解微观世界的奥秘,并且在诸多领域取得令人瞩目的成果。
量子力学的理论框架为现代科学研究提供了重要的基础,也为人类认识世界的边界提供了新的视角。
量子力学一、量子力学的实验基础1.卢瑟福实验:a 粒子的质量远大于电子,两者的质心几乎就在a 粒子上。
虽然二体系统有内部的相互作用,但它们的质心是自由运动的,故电子对a 粒子的作用不影响a 粒子的运动。
a 粒子散射时,原子的正电荷部分受到反冲力,导致薄片晶格的振动。
2.原子光谱是原子内部电子运动情态的反映。
光谱项T。
氢原子光谱的频谱是离散的,且不是连续谱亦非由基频和倍频构成的频谱,这个性质直接来源于原子中电子运动具有能级的特性以及光具有粒子性。
3.光电效应实验中无法用经典物理学解释的现象:(1)反向遏止电压和入射光强无关;(2)反向遏止电压和入射光的频率呈线性关系;(3)电子逸出相对于光的照射而言几乎无时间延迟。
4.爱因斯坦方程:φω−=ℏT ,表示金属电子吸收一份光能量而获得T 的动能逸出金属,φ为脱出功,与材料有关。
5.光子:(1)博特实验(W.Bothe experiment)表明每份光能量是集中的;(2)贾诺希实验(L.Janossy experiment)表明每份光子落在何处是偶然事件,也就是说电磁波是光子的概率幅波。
(量子力学有整体性,光子的运动受到整个环境的影响。
)6.爱因斯坦关系:ωℏℏ==E k p ,。
P 和E 描写光子,k 和ω描写单色波。
【注意:说光有波粒二象性是沿用经典物理的语言。
光有波动性,是指光的运动没有轨道;光具有粒子性,是指光与电子相互作用时像粒子那样,而不像经典的波场那般。
】7.康普顿(pton)效应应用了“静电子模型”(靶原子的外层电子)。
康普顿波长:�ℏA mc0242621.02==Λπ。
计算过程中考虑了能量守恒(相对论力学)和动量守恒(矢量力学),2sin 22θλΛ=∆。
(1)对于原子内层的“束缚电子”,由于它们与原子核束缚的紧,应作为一个整体看待,“静电子模型”不成立。
光子撞不动整个原子,只是自己改变方向。
因此实验中出现了0=∆λ的成分。
(2)对于可见光,能量和动量小,靶原子的外层电子应作束缚电子看待,“静电子模型”不成立。
量子力学期末复习完美总结一、 填空题1.玻尔-索末菲的量子化条件为:pdq nh =⎰,(n=1,2,3,....),2.德布罗意关系为:hE h p k γωλ====; 。
3.用来解释光电效应的爱因斯坦公式为:212mV h A υ=-, 4.波函数的统计解释:()2r t ψ,代表t 时刻,粒子在空间r 处单位体积中出现的概率,又称为概率密度。
这是量子力学的基本原理之一。
波函数在某一时刻在空间的强度,即其振幅绝对值的平方与在这一点找到粒子的几率成正比,和粒子联系的波是概率波。
5.波函数的标准条件为:连续性,有限性,单值性 。
6.,为单位矩阵,则算符的本征值为:1± 。
7.力学量算符应满足的两个性质是 实数性和正交完备性 。
8.厄密算符的本征函数具有: 正交性,它们可以组成正交归一性。
即()m n mn d d λλφφτδφφτδλλ**''==-⎰⎰或。
9.设 为归一化的动量表象下的波函数,则 的物理意义为:表示在()r t ψ,所描写的态中测量粒子动量所得结果在p p dp →+范围内的几率。
10.i ;ˆxi L ;0。
11.如两力学量算符有共同本征函数完全系,则_0__。
12.坐标和动量的测不准关系是: ()()2224x x p ∆∆≥。
自由粒子体系,_动量_守恒;中心力场中运动的粒子__角动量__守恒13.量子力学中的守恒量A 是指:ˆA不显含时间而且与ˆH 对易,守恒量在一切状态中的平均值和概率分布都不随时间改变。
14.隧道效应是指:量子力学中粒子在能量E 小于势垒高度时仍能贯穿势垒的现象称为隧道效应。
15. 为氢原子的波函数,的取值范围分别为:n=1,2,3,… ;l=0,1,…,n -1;m=-l,-l+1,…,0,1,…l 。
16.对氢原子,不考虑电子的自旋,能级的简并为: 2n ,考虑自旋但不考虑自旋与轨道角动量的耦合时,能级的简并度为 22n ,如再考虑自旋与轨道角动量的耦合,能级的简并度为 12+j 。
《量子力学》考试知识点第一章:绪论―经典物理学的困难考核知识点:(一)、经典物理学困难的实例(二)、微观粒子波-粒二象性考核要求:(一)、经典物理困难的实例1.识记:紫外灾难、能量子、光电效应、康普顿效应。
2.领会:微观粒子的波-粒二象性、德布罗意波。
第二章:波函数和薛定谔方程考核知识点:(一)、波函数及波函数的统计解释(二)、含时薛定谔方程(三)、不含时薛定谔方程考核要求:(一)、波函数及波函数的统计解释1.识记:波函数、波函数的自然条件、自由粒子平面波2.领会:微观粒子状态的描述、Born几率解释、几率波、态叠加原理(二)、含时薛定谔方程1.领会:薛定谔方程的建立、几率流密度,粒子数守恒定理2.简明应用:量子力学的初值问题(三)、不含时薛定谔方程1. 领会:定态、定态性质2. 简明应用:定态薛定谔方程第三章:一维定态问题一、考核知识点:(一)、一维定态的一般性质(二)、实例二、考核要求:1.领会:一维定态问题的一般性质、束缚态、波函数的连续性条件、反射系数、透射系数、完全透射、势垒贯穿、共振2.简明应用:定态薛定谔方程的求解、无限深方势阱、线性谐振子第四章量子力学中的力学量一、考核知识点:(一)、表示力学量算符的性质(二)、厄密算符的本征值和本征函数(三)、连续谱本征函数“归一化”(四)、算符的共同本征函数(五)、力学量的平均值随时间的变化二、考核要求:(一)、表示力学量算符的性质1.识记:算符、力学量算符、对易关系2.领会:算符的运算规则、算符的厄密共厄、厄密算符、厄密算符的性质、基本力学量算符的对易关系(二)、厄密算符的本征值和本征函数1.识记:本征方程、本征值、本征函数、正交归一完备性2.领会:厄密算符的本征值和本征函数性质、坐标算符和动量算符的本征值问题、力学量可取值及测量几率、几率振幅。
(三)、连续谱本征函数“归一化”1.领会:连续谱的归一化、箱归一化、本征函数的封闭性关系(四)、力学量的平均值随时间的变化1.识记:好量子数、能量-时间测不准关系2.简明应用:力学量平均值随时间变化第五章态和力学量的表象一、考核知识点:(一)、表象变换,幺正变换(二)、平均值,本征方程和Schrodinger equation的矩阵形式(三)、量子态的不同描述二、考核要求:(一)、表象变换,幺正变换1.领会:幺正变换及其性质2.简明应用:表象变换(二)、平均值,本征方程和Schrodinger equation的矩阵形式1.简明应用:平均值、本征方程和Schrodinger equation的矩阵形式2.综合应用:利用算符矩阵表示求本征值和本征函数(三)、量子态的不同描述第六章:微扰理论一、考核知识点:(一)、定态微扰论(二)、变分法(三)、量子跃迁二、考核要求:(一)、定态微扰论1.识记:微扰2.领会:微扰论的思想3.简明应用:简并态能级的一级,二级修正及零级近似波函数4.综合应用:非简并定态能级的一级,二级修正、波函数的一级修正。
高考物理中量子力学的基础知识点有哪些在高考物理中,量子力学作为现代物理学的重要组成部分,虽然涉及的内容相对基础和浅显,但对于考生理解微观世界的物理现象和规律仍具有重要意义。
以下我们来梳理一下高考物理中量子力学的一些基础知识点。
首先,我们要了解什么是量子化。
量子化是指物理量的取值不是连续的,而是离散的、一份一份的。
比如,能量的取值就是量子化的。
在经典物理学中,我们认为能量可以连续取值,但在微观世界,能量只能以特定的“量子”形式存在。
波粒二象性是量子力学的一个核心概念。
光既具有波动性,又具有粒子性。
这意味着光有时候表现出像波一样的干涉、衍射现象,有时候又表现出像粒子一样的能量和动量特性。
不仅光如此,电子、质子等微观粒子也具有波粒二象性。
对于微观粒子的运动状态,我们引入了波函数来描述。
波函数是一个复数函数,它的模的平方表示粒子在空间某点出现的概率密度。
通过求解薛定谔方程,可以得到波函数的具体形式,从而了解粒子的运动状态和可能的位置、能量等信息。
能量量子化的典型例子是氢原子的能级结构。
氢原子中的电子只能处于特定的能级上,这些能级是不连续的。
当电子从高能级跃迁到低能级时,会发射出光子,光子的能量等于两个能级的能量差。
量子力学中的不确定性原理也是一个重要的知识点。
它表明,我们不能同时精确地确定微观粒子的位置和动量,或者能量和时间。
如果我们对粒子的位置测量得越精确,那么对它的动量测量就越不精确,反之亦然。
还有一个需要掌握的概念是泡利不相容原理。
在一个原子中,不能有两个或两个以上的电子具有完全相同的四个量子数。
这一原理决定了原子中电子的排布和元素的化学性质。
在高考中,可能会通过一些简单的计算来考查对这些知识点的理解。
比如,给出氢原子的能级图,计算电子从某一能级跃迁到另一能级时发射或吸收光子的频率或波长。
为了更好地理解量子力学的这些基础知识点,我们可以通过一些具体的例子和实验来加深印象。
比如,光电效应实验就很好地展示了光的粒子性。
量子力学笔记
以下是关于量子力学的一些基本笔记:
1. 波粒二象性:量子力学中,粒子既可以表现为粒子,也可以表现为波动,具有波粒二象性。
这就意味着在一些实验中,粒子表现出波动性质,例如干涉和衍射现象。
2. 狄拉克方程:狄拉克方程是描述自旋½粒子的基本方程,它结合了爱因斯坦的相对论和量子力学的理论,为量子场论奠定了基础。
3. 不确定性原理:不确定性原理是由海森堡提出的,指出了我们无法同时准确测量粒子的位置和动量,或者能量和时间。
这意味着存在一个不确定度限制,我们不能完全精确地知道粒子的运动状态。
4. 波函数:波函数是描述量子体系的数学函数,包含了所有可能的信息。
它是一个复数函数,描述了粒子在空间中的概率分布和量子态信息。
5. 纠缠:量子力学中的纠缠现象指的是两个或多个粒子之间存在一种特殊的量子相互关联。
这种关联会导致量子纠缠态,其中一个粒子的测量结果会立即影响到其他纠缠粒子的状态。
6. 叠加态和测量:量子力学中的叠加态是指粒子处于多个可能状态的线性组合,直到进行测量时,才会塌缩到其中一个确定的状态。
这些只是量子力学的基本概念和原理的简要介绍,其中还有更深入和复杂的理论和实验结果。
《量子力学原理》读书札记目录一、量子力学概述 (2)1.1 量子力学的定义和发展历程 (2)1.2 量子力学的主要理论和概念 (4)二、量子力学的基本原理 (5)2.1 波函数和薛定谔方程 (6)2.2 测量问题和不确定性原理 (7)2.3 超定态和量子叠加 (9)2.4 量子纠缠和量子隐形传态 (11)三、量子力学的主要应用 (12)3.1 量子计算 (13)3.2 量子通信 (14)3.3 量子传感 (15)3.4 基本粒子物理学和核物理学 (17)四、量子力学的哲学思考 (18)4.1 量子力学的解释主义 (20)4.2 量子力学的哥本哈根诠释 (21)4.3 量子力学的多世界诠释 (23)4.4 对量子力学的质疑和挑战 (24)五、量子力学与相对论 (25)5.1 狭义相对论与量子力学的结合 (26)5.2 广义相对论与量子场论的结合 (28)六、结语 (28)6.1 量子力学的现状和未来发展趋势 (29)6.2 对量子力学的期待和展望 (31)一、量子力学概述作为现代物理学的重要分支,自20世纪初诞生以来,便对科学界产生了深远的影响。
它不仅改变了我们对自然世界的认知,还为许多前沿科技的发展提供了理论基础。
量子力学研究的是物质的微观粒子行为,特别是在原子和亚原子粒子层面的现象。
在量子力学中,粒子的状态不再是传统的确定性的,而是被描述为概率性的。
一个粒子可以同时处于多个状态,这种状态被称为叠加态。
当我们对粒子进行测量时,它会塌缩到一个特定的状态,并且测量结果遵循一定的统计规律,如波函数坍缩。
量子力学的核心概念还包括超定位原理,即一个量子系统可以同时处于多个可能状态的线性组合。
量子纠缠现象揭示了粒子间状态的强相关性,使得远程的粒子状态可以瞬间影响彼此,无论它们相隔多远。
量子力学是一个复杂而深奥的理论体系,它挑战着我们对现实世界的传统观念,并为我们理解微观世界提供了全新的视角。
随着科学技术的进步和对量子力学的深入研究,我们期待它能继续引领我们探索未知的领域,并为人类社会的发展带来更多的可能性。
物理量子力学知识点速记1. 波粒二象性:量子力学中的粒子既可以表现出粒子性,也可以表现出波动性。
实验观测到的粒子行为有时像粒子,有时又像波动。
2. 波函数:波函数是量子力学中对一个系统状态的数学描述。
波函数的平方代表了在不同位置上发现粒子的概率。
3. 量子叠加原理:量子力学中,一粒子可以存在于多个状态的叠加态中,直到被观测或测量时才会坍塌成确定的状态。
4. 测量:量子力学中的测量不同于经典物理的测量。
测量会导致系统的状态坍塌成一个确定的值,而不是连续的测量结果。
5. 不确定性原理:由于测量会造成波函数坍塌,量子力学中存在不确定性原理,即无法同时精确测量粒子的位置和动量。
6. 干涉:量子力学中,波函数可以产生干涉现象,即波函数叠加导致的波峰和波谷的相遇。
著名的双缝干涉实验就是典型的例子。
7. 纠缠:两个或多个粒子之间可以产生纠缠态,即它们的状态是相互关联的,一方的状态改变会立即影响到其他粒子的状态,无论它们之间有多远的距离。
8. 原子:原子是物质的基本构建单位,由核和绕核运动的电子组成。
量子力学成功解释了原子的结构和性质。
9. 光子:光子是光的基本单位,也是电磁波的量子。
光子的能量和频率成正比。
10. 薛定谔方程:薛定谔方程是量子力学的核心方程,描述了系统的波函数随时间的演化。
它是对经典力学中的运动方程的量子版本。
11. 哥本哈根解释:哥本哈根解释是对量子力学中测量和观测问题进行的解释。
它强调了量子世界中的概率性和不确定性。
12. 自旋:自旋是粒子的一种内在性质,类似于粒子的旋转。
自旋决定了粒子的很多性质,如磁性和角动量。
13. 跃迁:原子或分子中的电子在不同能级之间的能量差跃迁。
跃迁会伴随辐射或吸收特定频率的光。
14. 微观世界:量子力学是研究微观世界的物理学,描述了分子、原子和基本粒子的行为。
15. 康普顿散射:康普顿散射是光子与物质中自由电子碰撞后的散射现象,从而证明了光的粒子性。
16. 德布罗意波:德布罗意提出了与物质粒子相关的波动性,即波粒二象性的基础。