教学指导-大分子溶液
- 格式:doc
- 大小:55.50 KB
- 文档页数:4
第十四章胶体分散体系和大分子溶液教学目的:通过本章学习使学生了解胶体结构及性质,胶体分散体系和大分子溶液区别。
掌握有关大分子溶液的渗透及有关唐南平衡的求算重点和难点:唐南平衡是本章的重点和难点基本要求:1.了解胶体分散体系的基本特征。
2.了解胶体分散体系的动力性质、光学性质和电学性质。
3.了解胶体的稳定性和胶体的聚沉。
4.了解大分子溶液与溶胶的异同点5.掌握什么是唐南平衡,并能用唐南平衡准确求算大分子物质的相对分子质量教学内容:一种或几种物质分散在另一种物质中所构成的体系系统称为“分散体系”。
被分散的物质称为“分散相”;另一种连续相的物质,即分散相存在的介质,称“分散介质”。
按照分散相被分散的程度,即分散粒子的大小,大致可分为三类:1.分子分散体系。
分散粒子的半径小于10-9m,相当于单个分子或离子的大小。
此时,分散相与分散介质形成均匀的一相,属单相体系。
例如,氯化钠或蔗糖溶于水后形成的“真溶液”。
2.胶体分有散体系。
分散粒子的半径在10-9m至10-7m范围内,比普通的单个分子大得多,是众多分子或离子的集合体。
虽然用眼睛或普通显微镜观察时,这种体系是透明的,与真溶液差不多,但实际上分散相与分散介质已不是一相,存在相界面。
这就是说,胶体分散体系是高度分散的多相体系,具有很大的比表面和很高的表面能,因此胶体粒子有自动聚结的趋势,是热力学不稳定体系,难溶于水的固体物质高度分散在水中所形成的胶体分散体系,简称“溶胶”,例如,AgI溶胶、SiO2溶胶、金溶胶、硫溶胶等。
3.粗分散体系。
分散粒子的半径约在10-7m至10-5m范围,用普通显微镜甚至用眼睛直接观察已能分辨出是多相体系。
例如,“乳状液”(如牛奶)、“悬浊液”(如泥浆)等。
§14.1 胶体和胶体的基本特性通过对胶体溶液稳定性和胶体粒子结构的研究,人们发现胶体体系至少包含了性质颇不相同的两大类:(1)由难溶物分散在分散介质中所形成的憎液溶胶(简称胶液),其中的粒子都是由很大数目的分子(各粒子中所含分子的数目并不相同)构成。
第十章 大分子溶液一、本章基本要求1.掌握大分子平均摩尔质量的表示方法及常用的测定方法;大分子电解质溶液的特性;Donnan 平衡以及测定大分子电解质溶液渗透压的方法。
2.熟悉大分子的溶解特征及其在溶液中的形态;大分子溶液的渗透压及其测量方法;大分子溶液黏度的几种表示方法和用黏度法测定大分子的平均摩尔质量的原理;大分子溶液的流变性和几种典型的流变曲线。
3.了解大分子溶液与溶胶性质的异同;大分子溶液的光散射现象;沉降速率法和沉降平衡法在生物大分子研究中的应用;区带电泳和稳态电泳在生物学和医学方面的应用;凝胶的分类、形成、结构及性质。
二、基本公式和内容提要(一)基本公式数均摩尔质量公式1122B B n 12BBBB N M N M N M M N N N N MN +++=+++=∑∑ 可用依数性测定法和端基分析法测定。
质均摩尔质量公式1122B B m 12B2BB BB B B Bm M m M m M M m m m m MN M m N M +++=+++==∑∑∑∑ 可用光散射法测定。
z 均摩尔质量公式23B B B B 2B B B B BBB z m M N M M m MN M z M z ===∑∑∑∑∑∑ 可用超离心沉降法测定。
黏均摩尔质量公式1/1/(+1)B B B B ηB B B N M m M M N M m αααα⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑可用黏度法测定。
大分子溶液渗透压公式2nRT RTA c c M P =+ 适用于大分子稀溶液。
大分子溶液散射光强公式()()22220,0421cos 2πr cRT n n I I L r c /c θθλ+∂⎛⎫= ⎪∂∂∏∂⎝⎭ 适用于入射光的波长大于大分子的情况。
光散射法测定大分子分子质量的基本公式o 29012Kc A c R M =+Newton 黏度公式d d F v D A xt h h ===式中η称为黏度系数,简称黏度。
第十章大分子溶液一、本章基本要求1、掌握大分子平均摩尔质量得表示方法及常用得测定方法;大分子电解质溶液得特性;Donnan平衡以及测定大分子电解质溶液渗透压得方法。
2.熟悉大分子得溶解特征及其在溶液中得形态;大分子溶液得渗透压及其测量方法;大分子溶液黏度得几种表示方法与用黏度法测定大分子得平均摩尔质量得原理;大分子溶液得流变性与几种典型得流变曲线。
3.了解大分子溶液与溶胶性质得异同;大分子溶液得光散射现象;沉降速率法与沉降平衡法在生物大分子研究中得应用;区带电泳与稳态电泳在生物学与医学方面得应用;凝胶得分类、形成、结构及性质、二、基本公式与内容提要(一)基本公式数均摩尔质量公式可用依数性测定法与端基分析法测定。
质均摩尔质量公式可用光散射法测定。
z均摩尔质量公式可用超离心沉降法测定、黏均摩尔质量公式可用黏度法测定。
大分子溶液渗透压公式适用于大分子稀溶液。
大分子溶液散射光强公式适用于入射光得波长大于大分子得情况。
光散射法测定大分子分子质量得基本公式Newton黏度公式式中η称为黏度系数,简称黏度、其物理意义就是使单位面积得液层,保持速度梯度为1时所施加得切力。
沉降系数公式沉降速率法求大分子平均摩尔质量公式沉降平衡法求大分子平均摩尔质量公式适用于平均摩尔质量不太大得大分子溶液。
Donnan平衡时膜两边小离子浓度之比计算公式大分子电解质溶液渗透压公式(二)内容提要1.大分子溶液得特征大分子溶液由于分子大小已进入胶体分散度范围,具有扩散速度慢、不能透过半透膜等胶体溶液得特性、但大分子溶液就是分子分散且热力学稳定得均相系统,对电解质不敏感,这使它与溶胶又有本质得区别。
2、大分子得平均摩尔质量大分子得分子质量就是多分散得,其摩尔质量只有统计意义,就是统计平均值。
测定分子质量得方法不同,统计处理方式不同,获得得平均值也不同。
常用得平均摩尔质量有数均摩尔质量、质均摩尔质量、z均摩尔质量与黏均摩尔质量。
数均摩尔质量通常用依数性方法测定;质均摩尔质量用光散射方法测定;z均摩尔质量用超离心沉降法测定;黏均摩尔质量用黏度法测定。
物理化学14章_胶体与大分子溶液一、胶体胶体是一种分散体系,其中分散相的粒子大小在1-100nm之间。
这种分散体系具有一些特殊的性质,例如光学、电学和动力学性质,这使得胶体在许多领域都有广泛的应用。
1、胶体的分类胶体可以根据其分散相的不同分为不同类型的胶体,例如:(1)金属胶体:以金属或金属氧化物为分散相的胶体,如Fe(OH)3、TiO2等。
(2)非金属胶体:以非金属氧化物、硅酸盐、磷酸盐等为分散相的胶体,如SiO2、Al2O3、Na2SiO3等。
(3)有机胶体:以高分子化合物为分散相的胶体,如聚合物、蛋白质、淀粉等。
2、胶体的制备制备胶体的方法有多种,例如:(1)溶解法:将物质溶解在适当的溶剂中,通过控制浓度和温度等条件使物质析出形成胶体。
(2)蒸发法:将溶剂蒸发,使溶质析出形成胶体。
(3)化学反应法:通过化学反应生成胶体粒子。
3、胶体的性质胶体具有一些特殊的性质,例如:(1)光学性质:胶体粒子对光线有散射作用,因此胶体具有丁达尔效应。
(2)电学性质:胶体粒子可以带电,因此胶体具有电泳现象。
(3)动力学性质:胶体粒子由于其大小限制,表现出不同于一般粒子的动力学性质,例如扩散速度较慢、沉降速度较慢等。
二、大分子溶液大分子溶液是一种含有高分子化合物的溶液,其中高分子化合物通常具有较大的分子量。
这种溶液具有一些特殊的性质,例如分子量较大、分子链较长、分子间相互作用较强等。
1、大分子溶液的分类大分子溶液可以根据其组成的不同分为不同类型的溶液,例如:(1)合成高分子溶液:由合成高分子化合物组成的溶液。
(2)天然高分子溶液:由天然高分子化合物组成的溶液,如蛋白质、淀粉、纤维素等。
2、大分子溶液的制备制备大分子溶液的方法有多种,例如:(1)溶解法:将大分子化合物溶解在适当的溶剂中,通过控制浓度和温度等条件使其溶解。
(2)化学反应法:通过化学反应合成大分子化合物并将其溶解在适当的溶剂中。
3、大分子溶液的性质大分子溶液具有一些特殊的性质,例如:(1)粘度:大分子溶液通常具有较高的粘度,这是因为大分子链较长,运动较困难。
1 基本要求[TOP]
1.1 了解大分子溶液与溶胶性质的异同点
1.2 熟悉大分子的平均摩尔质量的表示方法及常用的测定方法
1.3 了解大分子的溶解特征及在溶液中的形态
1.4 熟悉大分子溶液的的渗透压及其测量方法
1.5 了解大分子溶液的光散射现象
1.6 了解大分子溶液的流变性和几种典型的流变曲线
1.7 掌握大分子溶液的粘度的几种表示方法和用粘度法测定大分子的平均摩尔质量的原理1.8 了解沉降速率法和沉降平衡法在生物大分子研究中的应用
1.9 了解大分子电解质溶液的特性,熟悉区带电泳和稳态电泳在生物学和医学方面的应用1.10 熟悉Donnan平衡,掌握准确测定大分子电解质溶液渗透压的方法
1.11 了解凝胶的分类、形成、结构及重要性质
2 重点难点[TOP]
2.1 重点
2.1.1 大分子的平均摩尔质量
2.1.2 大分子溶液的粘度
2.1.3 唐南平衡
2.2 难点
唐南平衡
3 讲授学时[TOP]
建议5~7学时
4 内容提要[TOP]第一节第二节第三节第四节
第五节第六节第七节第八节
4.1 第一节大分子的结构及平均摩尔质量
4.1.1 大分子的结构
4.1.2 大分子的平均摩尔质量
大分子的分子质量是多分散的,其摩尔质量只有统计意义,是统计平均值。
测定分子质量的方法不同,统计处理方式不同,获得的平均值也不同。
常用的平均摩尔质量有数均摩尔质量、质均摩尔质量、z均摩尔质量和粘均摩尔质量。
数均摩尔质量通常用依数性方法测定;质均摩尔质量用光散射方法测定;z均摩尔质量用超离心沉降法测定;粘均摩尔质量用粘度法测定。
摩尔质量是大分子化合物的重要参数,它不仅能影响其溶液的物理化学性质,而且还会影响到某些药用大分子在体内的代谢。
4.2 第二节大分子的溶解特征及在溶液中的形态[TOP]
4.2.1 大分子的溶解特征
大分子化合物在溶剂中具有先溶胀后溶解的特性,是由于大分子化合物的结构与其巨大分子质量所决定的。
4.2.2 溶剂的选择
4.2.3 大分子在溶液中的形态
大分子链中成千上万个C-C键围绕固定键角不断内旋转可以有无数个形态,在溶液中的主要构象有无规线团、螺旋状和棒状,实际上大分子都是卷曲的,分子链的柔顺性越好,越容易卷曲形成无规线团;分子链的刚性越强,越不容易卷曲,极端情况下可能成为棒状。
4.3 第三节大分子溶液的渗透压[TOP]
4.3.1 大分子溶液的渗透压
大分子的柔顺性和溶剂化,使大分子溶液的渗透压比相同浓度的小分子溶液大。
在依数性方法中,只有渗透压法适合测定大分子的数均摩尔质量。
4.3.2 渗透压的测量方法
渗透压的实验测量方法有渗透平衡法、速率终点法和升降中点法等。
对于稀溶液,以Π/c对c作图为一直线,外推到c=0处,直线的截距为RT/M n,由此可计算出数均摩尔质量M n。
从直线的斜率RTA2可以求出维利系数A2。
4.4 第四节大分子溶液的光散射[TOP]
4.4.1 涨落现象与光散射
大分子溶液的光散射由两方面涨落产生的,一是溶剂的密度涨落,一是大分子的浓度涨落。
4.4.2 光散射法测定大分子的分子质量
通过测定溶液的光散射,可以求出大分子的分子质量。
根据光散射法测定大分子分子质量的基本公式,在不同浓度下测定R 90°,以Kc /R 90°对c 作图得一直线,外推至c =0处,其截距为1/M ,即可求得大分子的质均摩尔质量。
4.5 第五节 大分子溶液的流变性 [TOP]
4.5.1 Newton 流体与粘度
在外力作用下物质发生形变与流动的性质称为流变性,研究物质流变性的科学称为流变学。
以生物体和人体为研究对象的称为生物流变学。
大多数纯液体,如水、汽油、乙醇以及小分子物质的稀溶液,都具有牛顿流体的特点。
对于大分子溶液,它们的流变性比较复杂,其粘度往往不符合牛顿公式,通常称为非牛顿型流体,可以用流变曲线进行研究。
4.5.2 流变曲线与流型
根据流变曲线形状的不同,流体可以分为牛顿型、塑流型、假塑流型、胀流型及触变流型等。
流变学的研究对象和应用范围十分广泛,几乎包括了所有物体。
在制剂学中很多剂型,如乳膏剂、糊剂、混悬剂、乳剂等。
在处方设计、质量评定及工艺设计中均涉及到流体的流变性,所以流变学的基本原理对很多剂型的制备、贮存、稳定以及使用都具有重要的指导意义。
4.5.3 大分子溶液的粘度与分子质量的测定
大分子溶液的粘度不仅与分子大小、形状、温度、浓度有关,而且与大分子和溶剂间的相互作用等有关。
常用的粘度表示方法有相对粘度、增比粘度、比浓粘度和特性粘度。
大分子溶液具有很高的粘度,不服从Newton 粘度公式,但符合Huggins 和Kraeme 公式,即
[][]2
sp
1k c c h h h =+ [][]2r 2ln k c c
h h h =- 在一定温度下,大分子溶液平均摩尔质量与其特性粘度[η]之间的关系为
[]KM a h =
式中M 为大分子化合物的粘均摩尔质量,K 和α为与溶剂、大分子化合物及温度有关的经验常数。
4.6 第六节 大分子溶液的超离心场沉降 [TOP]
4.6.1 沉降速率法
在超离心力场下,每个大分子质点的沉降速率与其质量相关。
利用超离心技术不仅可以测定大分子平均摩尔质量,而且可以对其分离、提纯和进行物理化学分析。
离心力场中的沉降速率处理方法与重力
场的相似,超离心技术分为沉降速率法和沉降平衡法两种
4.6.2 沉降平衡法
4.7 第七节大分子电解质溶液[TOP]
4.7.1 大分子电解质溶液概述
大分子电解质溶液具有可电离基团,在水溶液中可以电离成带电离子的大分子化合物称为大分子电解质。
大分子电解质溶液除了具有一般大分子溶液的通性外,它还具有自身的特性,主要包括高电荷密度、高度水化、电泳、电粘效应和Donnan平衡等。
4.7.2 大分子电解质溶液的电泳现象
4.7.3 大分子电解质溶液的Donnan平衡
Donnan平衡是大分子电解质溶液的另一重要特性。
如果用水和其它小分子能透过,而大分子电解质不能透过的半透膜把容器隔成两部分,一边放大分子电解质水溶液,另一边放小分子电解质稀溶液,平衡后发现,小分子电解质离子在膜两边溶液中的浓度并不相同。
这种因大分子离子的存在而导致小分子离子在半透膜两边分布不均匀的现象称为Donnan效应,或Donnan平衡。
Donnan平衡的存在会影响溶液渗透压的准确测定,因此,在测定大分子电解质溶液渗透压时,应当设法予以消除。
Donnan平衡是生物体内常见的一种生理现象。
生物的细胞膜相当于半透膜,细胞内的大分子电解质与细胞外的体液处于膜平衡状态。
这就保证了一些具有重要生理功能的金属离子在细胞内外保持一定的比例。
同时,膜平衡的条件还能使细胞在周围环境改变小分子成分时,确保内部组成相对稳定。
这对维持机体正常的生理功能是很重要的。
4.8 第八节凝胶[TOP]
4.8.1 凝胶的分类
4.8.2 凝胶的形成与结构
在一定条件下,大分子溶质或溶胶粒子相互连接,形成空间网状结构,而溶剂小分子充满在网架的空隙中,成为失去流动性的半固体状态,这种体系称为凝胶,这种凝胶化过程称为胶凝。
4.8.3凝胶的性质
凝胶是介于固体和液体之间的一种特殊状态,一方面显示有弹性、强度、屈服值和无流动性等固体的力学性质,但又具有与固体不同的物理特性。
明胶、琼脂、果胶等大分子水溶液在冷却时都可以形成凝胶。
根据分散相质点的性质以及形成凝胶结构时质点联结的结构强度,凝胶可以分为刚性凝胶和弹性凝胶两类。
凝胶具有膨胀作用、触变作用、离浆作用、扩散作用等性能,广泛用于蛋白质、酶、核酸、维生素、多糖、激素等生物物质的分离。