高三数学期末试卷带答案
- 格式:docx
- 大小:393.13 KB
- 文档页数:13
丰台区2023~2024学年度第一学期期末练习高三数学(答案在最后)2024.01本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{3,2,1,0,1,2}U =---,{1,0,1}A =-,{1,2}B =,则()U A B ⋃=ð()A.{3,2}-- B.{3,2,1,2}--C.{3,2,1,0,1}--- D.{3,2,1,0,2}---【答案】A【解析】【分析】由补集和并集的定义求解即可.【详解】因为{3,2,1,0,1,2}U =---,{1,0,1}A =-,{1,2}B =,所以{}1,0,1,2A B ⋃=-,U ð(){}3,2A B ⋃=--.故选:A .2.若(1i)1i z -=+,则||z =()A.iB.1C. D.2【答案】B【解析】【分析】根据复数的运算法则进行运算,继而直接求模即可.【详解】因为(1i)1i z -=+,所以()()()()1i 1i 1i 2i i 1i 1i 1i 2z +++====-+-,所以i 1z z =-=,,故选:B .3.在6(2)x y -的展开式中,42x y 的系数为()A.120- B.120C.60- D.60【答案】D【解析】【分析】求出6(2)x y -的通项,令2r =即可得出答案.【详解】6(2)x y -的通项为:()()66166C 2C 2r rr r r r r r T x y x y --+=-=-,令2r =可得:42x y 的系数为()226C 215460-=⨯=.故选:D .4.在中国文化中,竹子被用来象征高洁、坚韧、不屈的品质.竹子在中国的历史可以追溯到远古时代,早在新石器时代晚期,人类就已经开始使用竹子了.竹子可以用来加工成日用品,比如竹简、竹签、竹扇、竹筐、竹筒等.现有某饮料厂共研发了九种容积不同的竹筒用来罐装饮料,这九种竹筒的容积129,,,a a a L (单位:L )依次成等差数列,若1233a a a ++=,80.4a =,则129a a a +++= ()A.5.4B.6.3C.7.2D.13.5【答案】B【解析】【分析】利用等差数列的性质及求和公式求解.【详解】∵129,,,a a a L 依次成等差数列,1233a a a ++=,∴233a =,即21a =,又80.4a =,则()()()81912299910.49 6.3222a a a a a a a +⨯+⨯+⨯+++==== .故选:B.5.已知直线y kx =与圆221x y +=相切,则k =()A.1± B.C. D.2±【答案】B【解析】【分析】根据题意可得圆心(0,0)O 到0-=kx y 的距离等于半径1,即可解得k 的值.【详解】直线y kx =+即0-=kx y ,由已知直线y kx =+与圆221x y +=相切可得,圆221x y +=的圆心(0,0)O 到0kx y -=的距离等于半径1,1=,解得k =,故选:B .6.如图,函数()f x 的图象为折线ACB ,则不等式π()tan 4f x x >的解集是()A.{|20}x x -<< B.{|01}x x <<C.{|21}x x -<< D.{|12}x x -<<【答案】C【解析】【分析】利用正切型函数的图象与性质结合分段函数性质即可得到解集.【详解】设()πtan4h x x =,令π242k x k ππππ-<<+,且k ∈Z ,解得4242k x k -<<+,k ∈Z ,令0k =,则22x -<<,则()h x 在()2,2-上单调递增,()00h =1,1BC AC k k =-=,则2,02()2,20x x f x x x -+≤<⎧=⎨+-<<⎩,则当20x -<≤时,()0h x ≤,()0f x >,则满足()()f x h x >,即π()tan 4f x x >,当02x <<时,()11f =,且()f x 单调递减,()11h =,且()h x 单调递增,则()0,1x ∈时,()()f x h x >,即π()tan4f x x >;()1,2x ∈时,()()f x h x <,即()πtan 4f x x <;综上所述:π()tan4f x x >的解集为()2,1-,故选;C.7.在某次数学探究活动中,小明先将一副三角板按照图1的方式进行拼接,然后他又将三角板ABC 折起,使得二面角A BC D --为直二面角,得图2所示四面体ABCD .小明对四面体ABCD 中的直线、平面的位置关系作出了如下的判断:①CD ⊥平面ABC ;②AB ⊥平面ACD ;③平面ABD ⊥平面ACD ;④平面ABD ⊥平面BCD .其中判断正确的个数是()A.1B.2C.3D.4【答案】C【解析】【分析】根据题意,结合线面位置关系的判定定理和性质定理,逐项判定,即可求解.【详解】对于①中,因为二面角A BC D --为直二面角,可得平面ABC ⊥平面BCD ,又因为平面ABC ⋂平面BCD BC =,DC BC ⊥,且DC ⊂平面BCD ,所以DC ⊥平面ABC ,所以①正确;对于②中,由DC ⊥平面ABC ,且AB ⊂平面ABC ,可得AB CD ⊥,又因为AB AC ⊥,且AC CD C = ,,AC CD ⊂平面ACD ,所以AB ⊥平面ACD ,所以②正确;对于③中,由AB ⊥平面ACD ,且AB ⊂平面ABD ,所以平面ABD ⊥平面ACD ,所以③正确;对于④,中,因为DC ⊥平面ABC ,且DC ⊂平面BCD ,可得平面ABC ⊥平面BCD ,若平面ABD ⊥平面BCD ,且平面ABD ⋂平面ABC AB =,可得AB ⊥平面BCD ,又因为BC ⊂平面BCD ,所以AB BC ⊥,因为AB 与BC 不垂直,所以矛盾,所以平面ABD 和平面BCD 不垂直,所以D 错误.8.已知,a b 是两个不共线的单位向量,向量c a b λμ=+r r r (,λμ∈R ).“0λ>,且0μ>”是“()0c a b ⋅+> ”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】【分析】举例验证必要性,通过向量的运算来判断充分性.【详解】当0λ>,且0μ>时,()()()()()22cos ,c a b a b a b a a b b a b λμλλμμλμλμ⋅+=+⋅+=++⋅+=+++ ()0λμλμ>+-+=,充分性满足;当()0c a b ⋅+> 时,()()cos ,c a b a b λμλμ⋅+=+++ ,当0λ>,0μ=时,()cos ,c a b a b λλ⋅+=+ 是可以大于零的,即当()0c a b ⋅+> 时,可能有0λ>,0μ=,必要性不满足,故“0λ>,且0μ>”是“()0c a b ⋅+>”的充分而不必要条件.故选:A .9.在八张亚运会纪念卡中,四张印有吉祥物宸宸,另外四张印有莲莲.现将这八张纪念卡平均分配给4个人,则不同的分配方案种数为()A.18B.19C.31D.37【答案】B【分析】设吉祥物宸宸记为a ,莲莲记为b ,将这八张纪念卡分为四组,共有3种分法,再分给四个人,分别求解即可.【详解】设吉祥物宸宸记为a ,莲莲记为b①每人得到一张a ,一张b ,共有1种分法;②将这八张纪念卡分为()()()(),,,,,,,a a a a b b b b 四组,再分给四个人,则有2242C C 6=种分法③将这八张纪念卡分为()()()(),,,,,,,a b a a a b b b 四组,再分给四个人,则有2142C C 12=种分法共有:161219++=种.故选:B .10.已知函数2()||2||f x x a x =++,当[2,2]x ∈-时,记函数()f x 的最大值为()M a ,则()M a 的最小值为()A.3.5B.4C.4.5D.5【答案】C【解析】【分析】先利用函数的奇偶性,转化为求()f x 在[]0,2上的最大值;再根据a 的取值范围的不同,讨论函数()f x 在[]0,2上的单调性,求函数()f x 的最大值.【详解】易判断函数()f x 为偶函数,根据偶函数的性质,问题转化为求函数()22f x x a x =++,[]0,2x ∈上的最大值()M a .当0a ≥时,()22f x x x a =++,二次函数的对称轴为1x =-,函数在[]0,2上单调递增,所以()()288M a f a ==+≥;当10a -≤<时,()222,022x x a x f x x x ax ⎧-+-≤≤⎪=⎨++≤⎪⎩,1≤,所以()f x在⎡⎣上递增,在2⎤⎦上也是递增,所以()()287M a f a ==+≥;当41a -<<-时,()222,022x x a x f x x x ax ⎧-+-≤≤⎪=⎨++≤⎪⎩,因为12<<,所以()f x 在[]0,1上递增,在(上递减,在2⎤⎦上递增,所以()()11M a f a ==-或()()28M a f a ==+,若18a a -≥+⇒742a -≤≤-,则()()9112M a f a ==-≥;若18a a -<+⇒712a -<<-,则()()9282M a f a ==+>;当4a ≤-时,()22f x x x a =-+-,[]0,2x ∈2≥),所以函数()f x 在[]0,1上递增,在(]1,2上递减,所以()()115M a f a ==-≥.综上可知:()M a 的最小值为92.故选:C【点睛】关键点点睛:问题转化为二次函数在给定区间上的最值问题,然后讨论函数在给定区间上的单调性,从而求最大值.认真分析函数的单调性是关键.第二部分非选择题(共110分)二、填空题共5小题,每小题5分,共25分.11.双曲线2214x y -=的渐近线方程________.【答案】12y x =±【解析】【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【详解】∵双曲线2214x y -=的a=2,b=1,焦点在x 轴上而双曲线22221x y a b-=的渐近线方程为y=±b x a ∴双曲线2214x y -=的渐近线方程为y=±12x故答案为y=±12x 【点睛】本题考查了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想12.已知()44x x f x -=-,则11(()22f f -+=___.【答案】0【解析】【分析】由解析式直接代入求解即可.【详解】因为1122113()442222f -=-=-=,1122113()442222f --=-=-=-,所以11((022f f -+=.故答案为:0.13.矩形ABCD 中,2AB =,1BC =,且,E F 分为,BC CD 的中点,则AE EF ⋅= ___.【答案】74-##-1.75【解析】【分析】以A 为坐标原点,建立如下图所示的平面直角坐标系,求出,AE EF ,由数量积的坐标表示求解即可.【详解】以A 为坐标原点,建立如下图所示的平面直角坐标系,()()()()()10,0,2,0,2,1,0,1,2,,1,12A B C D E F ⎛⎫ ⎪⎝⎭,所以112,,1,22AE EF ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭ ,()11172122244AE EF ⋅=⨯-+⨯=-+=- .故答案为:74-.14.如图,在平面直角坐标系xOy 中,角(0π)αα<<的始边为x 轴的非负半轴,终边与单位圆O 交于点P ,过点P 作x 轴的垂线,垂足为M .若记点M 到直线OP 的距离为()f α,则()f α的极大值点为___,最大值为___.【答案】①.π4或3π4②.12##0.5【解析】【分析】根据三角函数的概念得(cos ,sin )P αα及,,OP OM MP ,利用面积法求得()f α,根据α的范围及三角函数的性质讨论()f α的单调性,进而求得答案.【详解】由题意(cos ,sin )P αα,1,cos ,sin OP OM MP αα===,由()1122OP f OM MP α⋅=⋅,得()1πsin 2,0122cos sin sin cos sin 21π2sin 2,π22f αααααααααα⎧<<⎪⎪=⋅===⎨⎪-<<⎪⎩,∴当π04α<<时,()f α单调递增;当ππ42α<<时,()f α单调递减;当π3π24α<<时,()f α单调递增;当3ππ4α<<时,()f α单调递减,则()f α的极大值点为π4或3π4,∵0πα<<,022πα<<,∴当sin 21α=±,即π4α=或3π4α=时,()f α取最大值为12.故答案为:π4或3π4;12.15.在平面直角坐标系内,动点M 与定点(0,1)F 的距离和M 到定直线:3l y =的距离的和为4.记动点M 的轨迹为曲线W ,给出下列四个结论:①曲线W 过原点;②曲线W 是轴对称图形,也是中心对称图形;③曲线W 恰好经过4个整点(横、纵坐标均为整数的点);④曲线W 围成区域的面积大于则所有正确结论的序号是___.【答案】①③④【解析】【分析】根据题目整理方程,分段整理函数,画出图象,可得答案.【详解】设(),M x y ,则MF =,M 到直线l 的距离3d y =-,34y +-=,222(1)(43)x y y +-=--,22221168369x y y y y y +-+=--+-+,224483x y y =---,当3y ≥时,2214812412x y y x =-=-+,,则2214312,12x x x -+≥≤-≤≤,当3y <时,22144x y y x ==,,则2134x <,212x <,x -<<可作图如下:由图可知:曲线W 过原点,且是轴对称图形,但不是中心对称图形,故①正确,②错误;曲线W 经过()()()()0,02,10,42,1O A C E -,,,4个点,没有其它整点,故③正确;由()B ,()D -,()0,3F ,四边形AFEO 的面积113462S =⨯⨯=,122ABF EFD S S ==⨯= ,112BCD S =⨯⨯= ,多边形ABCDEO 的面积626S =+⨯=+曲线W 围成区域的面积大于,故④正确.故答案为:①③④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在△ABC 中,a =,2π3A =.(1)求C 的大小;(2)在下列三个条件中选择一个作为已知,使ABC 存在且唯一确定,并求出AC 边上的中线的长度.条件①:2a b =;条件②:△ABC 的周长为4+ABC 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)π6(2【解析】【分析】(1)由正弦定理可解得;(2)条件②由余弦定理可得;条件③由三角形的面积公式和余弦定理可得.【小问1详解】在ABC 中,因为sin sin a cA C=,又a =,所以sin A C =.因为2π3A =,所以1sin 2C =.因为π03C <<,所以π6C =.【小问2详解】选择条件②:因为ABC 中,2π3A =,π6C =,πA B C ++=,所以π6B =,即ABC 为等腰三角形,其中b c =.因为a =,所以24a b c b ++=+=+.所以2b =.设点D 为线段AC 的中点,在ABD △中,1AD =.因为ABD △中,2222cos BD AB AD AB AD BAD=+-⋅∠22221221cos73π=+-⨯⨯⨯=,所以7BD =AC 7.选择条件③:因为ABC 中,2π3A =,π6C =,πA B C ++=,所以π6B =,即ABC 为等腰三角形,其中b c =.因为ABC 的面积为312πsin 323ABC S bc ∆==,所以2b c ==.设点D 为线段AC 的中点,在ABD △中,1AD =.因为ABD △中,2222cos BD AB AD AB AD BAD=+-⋅∠22221221cos73π=+-⨯⨯⨯=,所以7BD =AC 7.由题可知3a b =,故①不合题意.17.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,AD PA =,点E 为PA 中点.(1)求证:AD //平面BCE ;(2)点Q 为棱BC 上一点,直线PQ 与平面BCE 所成角的正弦值为515,求BQ BC 的值.【答案】(1)证明见解析(2)12BQ BC =【解析】【分析】(1)根据线面平行的判定定理证明即可;(2)建立空间直角坐标系,利用线面角的向量求法可得Q 的坐标,即可得解.【小问1详解】因为正方形ABCD 中,//BC AD .因为BC ⊂平面BCE ,AD ⊄平面BCE ,所以//AD 平面BCE .【小问2详解】因为PA ⊥底面ABCD ,正方形ABCD 中AB AD ⊥,分别以,,AB AD AP的方向为,,x y z 轴正方向,建立空间直角坐标系A xyz -,如图不妨设2PA =,因为AD PA =,点E 为PA 的中点,点Q 为棱BC 上一点,则(0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,0,1)E ,(0,0,2)P ,(2,,0)Q m (02)m ≤≤.所以(0,2,0)BC = ,(2,0,1)BE =- ,(2,,2)PQ m =-.设(,,)n x y z =为平面BCE 的法向量,则BCn ⊥ ,BE n ⊥.所以2020BC n y BE n x z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1x =,得102x y z =⎧⎪=⎨⎪=⎩,所以(1,0,2)n = .设直线PQ 与平面BCE 所成角为θ,则sin cos ,15PQ n PQ n PQ n θ⋅==== ,解得21m =,因为02m ≤≤,所以1m =,所以12BQ BC =.18.2023年冬,甲型流感病毒来势汹汹.某科研小组经过研究发现,患病者与未患病者的某项医学指标有明显差异.在某地的两类人群中各随机抽取20人的该项医学指标作为样本,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值a ,将该指标小于a 的人判定为阳性,大于或等于a 的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p a ;误诊率是将未患病者判定为阳性的概率,记为()q a .假设数据在组内均匀分布,用频率估计概率.(1)当临界值20a =时,求漏诊率()p a 和误诊率()q a ;(2)从指标在区间[20,25]样本中随机抽取2人,记随机变量X 为未患病者的人数,求X 的分布列和数学期望;(3)在该地患病者占全部人口的5%的情况下,记()f a 为该地诊断结果不符合真实情况的概率.当[20,25]a ∈时,直接写出使得()f a 取最小值时的a 的值.【答案】(1)(20)0.1p =,(20)0.05q =(2)分布列见解析;期望为65(3)20a =【解析】【分析】(1)由频率分布直方图计算可得;(2)利用超几何分布求解;(3)写出()f a 的表达式判单调性求解.【小问1详解】由频率分布直方图可知(20)0.0250.1p =⨯=,(20)0.0150.05q =⨯=.【小问2详解】样本中患病者在指标为区间[20,25]的人数是200.0252⨯⨯=,未患病者在指标为区间[20,25]的人数是200.0353⨯⨯=,总人数为5人.X 可能的取值为0,1,2.202325C C 1(0)10C P X ===,112325C C 3(1)C 5P X ===,022325C C 3(2)10C P X ===.随机变量X 的分布列为X012P11035310随机变量X 的期望为1336()012105105E X =⨯+⨯+⨯=.【小问3详解】由题,()()()95%5%f a q a p a =⨯+⨯,[20,25]a ∈时,令()20,0,1,2,3,4,5a t t =+=()()50.010.03,50.020.0255t t q a p a ⎛⎫⎛⎫=⨯+⨯=⨯-⨯ ⎪ ⎪⎝⎭⎝⎭所以()()50.010.0395%50.020.025%55t t f a g t ⎛⎫⎛⎫==⨯+⨯⨯+⨯-⨯⨯ ⎪ ⎪⎝⎭⎝⎭,关于t 的一次函数系数为()50.0319%0.021%0⨯-⨯>,故()g t 单调递增,则0=t 即20a =时()f a 取最小值19.已知函数2()e ()x f x x ax a =--.(1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求实数a 的值;(2)求函数()f x 的单调区间.【答案】(1)1(2)答案见解析【解析】【分析】(1)先求函数()f x 的导函数,若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,只需保证()01f '=,求实数a 的值即可;(2)求得()0f x '=有两个根“2x =-和x a =”,再分2a <-、2a =-和2a >-三种情况分析函数()f x 的单调性即可.【小问1详解】由题可得2()e [(2)2]x f x x a x a '=+--,因为()f x 在点(1,(1))f 处的切线平行于x 轴,所以()01f '=,即e(33)0a -=,解得1a =,经检验1a =符合题意.【小问2详解】因为2()e [(2)2]x f x x a x a '=+--,令()0f x '=,得2x =-或x a =.当2a <-时,随x 的变化,()f x ',()f x 的变化情况如下表所示:x(,)a -∞a(,2)a -2-(2,)-+∞()f 'x +-+()f x 单调递增()f a 单调递减(2)f -单调递增所以()f x 在区间(,)a -∞上单调递增,在区间(,2)a -上单调递减,在区间(2,)-+∞上单调递增.当2a =-时,因为2()e (2)0x f x x '=+≥,当且仅当2x =-时,()0f x '=,所以()f x 在区间(,)-∞+∞上单调递增.当2a >-时,随x 的变化,()f x ',()f x 的变化情况如下表所示:x(,2)-∞-2-(2,)a -a(,)a +∞()f 'x +-+()f x 单调递增(2)f -单调递减()f a 单调递增所以()f x 在区间(,2)-∞-上单调递增,在区间(2,)a -上单调递减,在区间(,)a +∞上单调递增.综上所述,当2a <-时,()f x 的单调递增区间为(,)a -∞和(2,)-+∞,单调递减区间为(,2)a -;当2a =-时,()f x 的单调递增区间为(,)-∞+∞,无单调递减区间;当2a >-时,()f x 的单调递增区间为(,2)-∞-和(,)a +∞,单调递减区间为(2,)a -.20.已知椭圆22:143x y E +=.(1)求椭圆E 的离心率和焦点坐标;(2)设直线1:l y kx m =+与椭圆E 相切于第一象限内的点P ,不过原点O 且平行于1l 的直线2l 与椭圆E 交于不同的两点A ,B ,点A 关于原点O 的对称点为C .记直线OP 的斜率为1k ,直线BC 的斜率为2k ,求12k k 的值.【答案】(1)离心率为12,焦点坐标分别为(1,0)-,(1,0)(2)121k k =【解析】【分析】(1)根据椭圆方程直接求出离心率与焦点坐标;(2)根据直线1l 与椭圆E 相切求出P 坐标并得到134k k=-,法一:设直线2l 的方程为y kx n =+,由韦达定理求出234k k=-证得结论.法二:记1122(,),(,)A x y B x y ,由点差法求2k k ⋅可证得结论.【小问1详解】由题意得2222243a b c a b ⎧=⎪=⎨⎪=-⎩,解得21a b c =⎧⎪=⎨⎪=⎩.所以椭圆E 的离心率为12c e a ==,焦点坐标分别为(1,0)-,(1,0).【小问2详解】由22,143y kx m x y =+⎧⎪⎨+=⎪⎩消去y 并整理得:222()4384120k x kmx m +++-=①其判别式Δ0=得222(8)4(43)(412)0km k m -+-=,化简为2243m k =+.此时方程①可化为2228160m x kmx k ++=,解得4kx m=-,(由条件知,k m 异号).记00(,)P x y ,则04k x m=-,所以220443()k m k y k m m m m -=-+==,即点43(,)k P m m -.所以OP 的斜率13344m k k k m==--.法一:因为12//l l ,所以可设直线2l 的方程为(0,)y kx n n n m =+≠≠.由22,143y kx n x y =+⎧⎪⎨+=⎪⎩消去y 并整理得:222(43)84120k x knx n +++-=.当其判别式大于零时,有两个不相等的实根,设1122(,),(,)A x y B x y ,则21212228412,4343kn n x x x x k k -+=-=++.因为C 是A 关于原点O 的对称点,所以点C 的坐标为11(,)C x y --.所以直线BC 的斜率22121221212122243384443y y kx n kx n n n k k k k k kn x x x x x x k k k +++++===+=+=-=-+++-+.所以121k k =.法二:记1122(,),(,)A x y B x y ,因为点C 与点A 关于原点对称,所以11(,)C x y --.因为12//l l ,所以直线AB 的斜率为k ,所以22212121222212121y y y y y y k k x x x x x x -+-⋅=⋅=-+-.因为点,A B 在椭圆上,所以2211143x y +=,2222143x y+=.两式相减得:22222121043x x y y --+=.所以2221222134y yx x-=--,即234k k⋅=-,所以234kk=-.所以121kk=.【点睛】方法点睛:将P视为1l与椭圆相交弦中点,由中点弦定理得212bk ka⋅=-,设AB中点为M,由中点弦定理得22OMbk ka⋅=-,由2OMk k=得222bk ka⋅=-,故12k k=.21.对于数列{}n a,如果存在正整数T,使得对任意*()n n∈N,都有n T na a+=,那么数列{}na就叫做周期数列,T叫做这个数列的周期.若周期数列{}n b,{}n c满足:存在正整数k,对每一个*(,)i i k i∈N≤,都有i ib c=,我们称数列{}n b和{}n c为“同根数列”.(1)判断下列数列是否为周期数列.如果是,写出该数列的周期,如果不是,说明理由;①sinπna n=;②121,1,3,2,, 3.nn nnb nb b n--=⎧⎪==⎨⎪-≥⎩(2)若{}n a和{}n b是“同根数列”,且周期的最小值分别是3和5,求证:6k≤;(3)若{}n a和{}n b是“同根数列”,且周期的最小值分别是2m+和4m+*()m∈N,求k的最大值.【答案】(1){}n a、{}n b均是周期数列,数列{}n a周期为1(或任意正整数),数列{}n b周期为6(2)证明见解析(3)答案见解析【解析】【分析】(1)由周期数列的定义求解即可;(2)由“同根数列”的定义求解即可;(3)m是奇数时,首先证明25k m+≥不存在数列满足条件,其次证明24k m=+存在数列满足条件.当m 是偶数时,首先证明24k m+≥时不存在数列满足条件,其次证明23k m=+时存在数列满足条件.【小问1详解】{}n a 、{}n b 均是周期数列,理由如下:因为1sin (1)π0sin πn n a n n a +=+===,所以数列{}n a 是周期数列,其周期为1(或任意正整数).因为32111n n n n n n n b b b b b b b +++++=-=--=-,所以63n n n b b b ++=-=.所以数列{}n b 是周期数列,其周期为6(或6的正整数倍).【小问2详解】假设6k ≤不成立,则有7k ≥,即对于17i ≤≤,都有i i a b =.因为71a a =,722b b a ==,所以12a a =.又因为63a a =,611b b a ==,所以13a a =.所以123a a a ==,所以1=n n a a +,与1T 的最小值是3矛盾.所以6k ≤.【小问3详解】当m 是奇数时,首先证明25k m +≥不存在数列满足条件.假设25k m +≥,即对于125i m +≤≤,都有i i a b =.因为()54m t m t a b t m ++=≤≤+,所以()24454t t t a b a t m ---==≤≤+,即1352m a a a a +==== ,及2461m a a a a +==== .又5t m =+时,12(2)12511m m m m a a b b a +++++====,所以1=n n a a +,与1T 的最小值是2m +矛盾.其次证明24k m =+存在数列满足条件.取(2)31,=21(1)212,2(1)2m l im i k k a m i k k +++⎧-≤≤⎪⎪=⎨+⎪=≤≤⎪⎩()l ∈N及()431,=21(1)212,2(1)21,32,4m l i m i k k m i k k b i m i m +++⎧-≤≤⎪⎪+⎪=≤≤=⎨⎪=+⎪⎪=+⎩()l ∈N ,对于124i m +≤≤,都有i i a b =.当m 是偶数时,首先证明24k m +≥时不存在数列满足条件.假设24k m +≥,即对于124i m +≤≤,都有i i a b =.因为()53m t m t a b t m ++=≤≤+,所以()24453t t t a b a t m ---==≤≤+,即1351m a a a a +==== ,及246m a a a a ==== .又4t m =+时,2m m m a b a +==,所以2=n n a a +,与1T 的最小值是2m +矛盾.其次证明23k m =+时存在数列满足条件.取()221,=21(1)22,2(1)23,2m l i m i k k a m i k k i m +++⎧-≤≤⎪⎪=⎨=≤≤⎪⎪=+⎩()l ∈N 及()421,=21(1)22,2(1)23,21,32,4m l im i k k m i k k b i m i m i m +++⎧-≤≤⎪⎪⎪=≤≤⎪=⎨⎪=+⎪=+⎪⎪=+⎩()l ∈N ,对于123i m +≤≤,都有i i a b =.综上,当m 是奇数时,k 的最大值为24m +;当m 是偶数时,k 的最大值为23m +.【点睛】关键点睛:本题(3)的突破口是利用“同根数列”的定义分类讨论,当m 是奇数时,首先证明25k m +≥不存在数列满足条件,其次证明24k m =+存在数列满足条件.当m 是偶数时,首先证明24k m +≥时不存在数列满足条件,其次证明23k m =+时存在数列满足条件.。
浙江省温州市2024届高三年级期末统一测试试题数 学注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自已的姓名.准考证号填写在答题卷上.将条形码横贴在答题卷右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卷上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卷的整洁,不要折叠.不要弄破.选择题部分一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设1i z =+(其中i 为虚数单位),则11z z +=-( )A. 1B.C. 3D. 52. 设集合{}2Z 340A x x x =∈--≤,{}1B x x =≤,则A B = ( ) A {}1,0,1-B. {}2,1,0--C. {}0,1,2D. {}0,13. 已知函数()cos f x x =,若关于x 的方程()f x a =在ππ,32⎡⎤-⎢⎥⎣⎦上有两个不同的根,则实数a 的取值范围是( )A. ,12⎫⎪⎪⎣⎭B. ,12⎤⎥⎣⎦C. 1,12⎡⎫⎪⎢⎣⎭D. 1,12⎡⎤⎢⎥⎣⎦4. 已知x ,y ∈R ,则“1x y >>”是“ln ln x x y y ->-”的( ) A. 充分条件但不是必要条件 B. 必要条件但不是充分条件 C. 充要条件D. 既不是充分条件也不是必要条件5. 6名同学排成一排,其中甲与乙互不相邻,丙与丁必须相邻的不同排法有( ) A. 72种B. 144种C. 216种D. 256种.6. 已知()424567845678x x a x a x a x a x a x +=++++,则( )A. 45a a =B. 56a a =C. 67a a =D. 57a a =7. 《九章算术》中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,则堆放的米约有( )A. 14斛B. 22斛C. 36斛D. 66斛8. 已知12304πx x x <<<<,函数()sin f x x =在点()(),sin 1,2,3i i x x i =处的切线均经过坐标原点,则( )A. 3113tan tan x x x x < B. 1313tan tan x x x x > C. 1322x x x +< D. 1322x x x +>二、选择题:本题共3小题,在每小题给出的选项中,有多项符合题目要求. 9. 已知函数()2121x x f x -=+,则( )A. 不等式()13f x <的解集是()1,1- B. x ∀∈R ,都有()()f x f x -= C. ()f x 是R 上的递减函数 D. ()f x 的值域为()1,1-10. 某企业协会规定:企业员工一周7天要有一天休息,另有一天的工作时间不超过4小时,且其余5天的工作时间均不超过8小时(每天的工作时间以整数小时计),则认为该企业“达标”.请根据以下企业上报的一周7天的工作时间的数值特征,判断其中无法确保“达标”的企业有( ) A. 甲企业:均值为5,中位数为8 B. 乙企业:众数为6,中位数为6C. 丙企业:众数和均值均为5,下四分位数为4,上四分位数为8D. 丁企业:均值为5,方差为611. 已知数列{}n a 满足21n n n a a a λ+++=,R λ∈,若11a =,22a =,20242024a ≥,则λ的值可能为( ) A. -1B. 2C.52D. -2非选择题部分三、填空题:本大题共3小题,把答案填在题中的横线上.12. 若tan 2θ=,则cos πsin()4θθ=-______. 13. 已知圆2216x y +=与直线y =交于A ,B 两点,则经过点A ,B ,()8,0C 的圆的方程为______. 14. 已知四棱锥P ABCD -的底面为边长为1的菱形且60DAB ∠=︒,PA ⊥平面ABCD ,且1PA =,M ,N 分别为边PB 和PD 的中点,PC ⋂平面AMN Q =,则PQ =______,四边形AMQN 的面积等于______.四.解答题:本大题共5小题,解答应写出文字说明.证明过程或演算步骤.15. 已知函数()()23f x x x =-,[]1,x a ∈.(1)若()f x 不单调,求实数a 的取值范围;(2)若()f x 的最小值为()f a ,求实数a 的取值范围.16. 已知等比数列{}n a 的前n 项和为n S ,且满足6356a a -=,63112S S -=. (1)求数列{}n a 的通项公式; (2)设1nn n n a b S S +=,求数列{}n b 的前n 项和n T .17. 如图,以AD 所在直线为轴将直角梯形ABCD 旋转得到三棱台ABE DCF -,其中AB BC ⊥,22AB BC CD ==.(1)求证:AD BE ⊥;(2)若π3EAB ∠=,求直线AD 与平面CDF 所成角的正弦值. 18. 现有标号依次为1,2,…,n n 个盒子,标号为1号的盒子里有2个红球和2个白球,其余盒子里都是1个红球和1个白球.现从1号盒子里取出2个球放入2号盒子,再从2号盒子里取出2个球放入3号盒子,…,依次进行到从n 1-号盒子里取出2个球放入n 号盒子为止. (1)当2n =时,求2号盒子里有2个红球概率; (2)当3n =时,求3号盒子里的红球的个数ξ的分布列; (3)记n 号盒子中红球的个数为n X ,求n X 的期望()n E X .19. 已知动点M 到点()1,0F -距离与到直线l :2x =-的距离之比等于2. (1)求动点M 的轨迹W 的方程;(2)过直线l 上的一点P 作轨迹W 的两条切线,切点分别为A ,B ,且60APB ∠=︒, ①求点P 坐标;②求APB ∠的角平分线与x 轴交点Q 的坐标.的的的的参考答案一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设1i z =+(其中i 为虚数单位),则11z z +=-( )A. 1B.C. 3D. 5【答案】B 【答案解析】【详细分析】将z 表示的复数代入所求式,化简成一个复数的模,再运用模的运算公式计算即得.【过程详解】因1i z =+,则()12i 2i 112i 1i z z ++==--=-=-. 故选:B. 2. 设集合{}2Z 340A x x x =∈--≤,{}1B x x =≤,则A B = ( )A.{}1,0,1- B. {}2,1,0-- C. {}0,1,2 D.{}0,1【答案】A 【答案解析】【详细分析】根据不等式的解法求得集合,A B ,结合集合交集的运算,即可求解.【过程详解】由不等式2340x x --≤,解得14x -≤≤,所以{}1,0,1,2,3,4A =-, 又由不等式1x ≤,解得{}11B x x =-≤≤,所以{}1,0,1A B =- .故选:A.3. 已知函数()cos f x x =,若关于x 的方程()f x a =在ππ,32⎡⎤-⎢⎥⎣⎦上有两个不同的根,则实数a 的取值范围是( )A,12⎫⎪⎪⎣⎭B. ,12⎤⎥⎣⎦C. 1,12⎡⎫⎪⎢⎣⎭ D. 1,12⎡⎤⎢⎥⎣⎦【答案】C 【答案解析】【详细分析】将方程的根转化为两函数的交点,数形结合即可..【过程详解】画出函数()cosf x x=,ππ,32x⎡⎤∈-⎢⎥⎣⎦的图象,若方程()f x a=在ππ,32⎡⎤-⎢⎥⎣⎦上有两个不同的根,,由图可知1,12a⎡⎫∈⎪⎢⎣⎭.故选:C4. 已知x,y∈R,则“1x y>>”是“ln lnx x y y->-”的()A. 充分条件但不是必要条件B. 必要条件但不是充分条件C. 充要条件D. 既不是充分条件也不是必要条件【答案】A【答案解析】【详细分析】设()lnf x x x=-,利用导数研究函数()f x的性质可知()f x在(1,)+∞上单调递增,结合函数的单调性解不等式以及充分、必要条件的定义即可求解.【过程详解】设()lnf x x x=-,则11()1xf xx x'-=-=,令()01f x x'>⇒>,所以函数()f x在(1,)+∞上单调递增.当1x y>>时,则()()f x f y>,即ln lnx x y y->-,充分性成立;当ln lnx x y y->-时,有()()f x f y>,得x y>,所以1x y>>不一定成立,即必要性不成立,所以“1x y>>”是“ln lnx x y y->-”的充分不必要条件.故选:A5. 6名同学排成一排,其中甲与乙互不相邻,丙与丁必须相邻的不同排法有()A. 72种B. 144种C. 216种D. 256种【答案】B【答案解析】【详细分析】要使元素不相邻,则用插空法,要使元素相邻,则运用捆绑法,分步完成即得. 【过程详解】先将丙与丁看成一“个”人,与除甲和乙之外的另外两个人留下4个空, 在其中选2个给甲和乙,有24A 种方法;再考虑丙丁这“个”人和另两个人进行全排,有33A 种排法;最后将丙丁“松绑”,有22A 种方法,由分步计数原理,可得不同排法数为:232432A A A 144⋅⋅=种.故选:B.6. 已知()424567845678x x a x a x a x a x a x +=++++,则( )A. 45a a =B. 56a a =C. 67a a =D. 57a a =【答案】D 【答案解析】详细分析】利用二项式定理展开即可. 【过程详解】()()()()()()423424213222231240244444C C C C C x x xx x xxx x xxx +=++++45678464x x x x x =++++,所以574a a ==.故选:D7. 《九章算术》中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,则堆放的米约有( )A. 14斛B. 22斛C. 36斛D. 66斛 【答案】B 【答案解析】【详细分析】由地面弧长求出圆锥底面半径,再利用体积公式求体积,再代换为斛即可.【【过程详解】设圆锥的底面半径为r ,则π82r ⨯=,解得16πr =, 故米堆的体积2221116320π543π3π11π43V r h =⨯⨯⨯==⨯(立方尺). 1斛米的体积约为1.62立方尺,故221.03π6232≈(斛).故选:B.8. 已知12304πx x x <<<<,函数()sin f x x =在点()(),sin 1,2,3i i x x i =处的切线均经过坐标原点,则( )A.3113tan tan x x x x < B.1313tan tan x x x x > C.1322x x x +< D. 1322x x x +>【答案】C 【答案解析】【详细分析】根据导数的几何意义求出曲线()f x 在点112233(,sin ),(,sin ),(,sin )x x x x x x 处的切线方程,进而312123tan tan tan 1x x x x x x ===即可判断AB ;画出函数tan y x =与y x =图象,由AD EC k k <可得32212132ππx x x x x x x x --<----,化简计算即可判断CD.【过程详解】由题意知,()cos f x x '=,则112233()cos ,()cos ,()cos f x x f x x f x x '''===,所以曲线()f x 在点112233(,sin ),(,sin ),(,sin )x x x x x x 处的切线方程分别为111222333sin cos (),sin cos (),sin cos ()y x x x x y x x x x y x x x x -=--=--=-,因为切线均过原点,所以111222333sin cos ,sin cos ,sin cos x x x x x x x x x ===,即112233tan ,tan ,tan x x x x x x ===,得312123tan tan tan 1x x x x x x ===,故AB 错误;由312123tan tan tan 1x x x x x x ===,得tan (1,2,3)i i x x i ==,画出函数tan y x =与y x =图象,如图,设()()()112233,tan ,,tan ,,tan A x x B x x C x x ,如上图易知:2222(π,tan ),(+π,tan )D x x E x x -,由正切函数图象性质AD EC k k <,得32212132tan tan tan tan ππx x x x x x x x --<----,即32212132ππx x x x x x x x --<----,又2132π0,π0x x x x -->-->,所以21323221()(π)()(π)x x x x x x x x ---<---, 即132ππ2πx x x +<,解得1322x x x +<,故C 正确,D 错误.故选:C【点评】关键点点评:证明选项CD 的关键是根据tan (1,2,3)i i x x i ==构造新函数tan x x =,通过转化的思想和数形结合思想详细分析是解题的关键.二、选择题:本题共3小题,在每小题给出的选项中,有多项符合题目要求.9. 已知函数()2121x xf x -=+,则( ) A. 不等式()13f x <的解集是()1,1-B x ∀∈R ,都有()()f x f x -= C. ()f x 是R 上的递减函数 D.()f x 的值域为()1,1-【答案】AD 【答案解析】【详细分析】由题意可得2()121x f x =-+,利用绝对值不等式、指数不等式的解法计算即可判断A ;利用奇偶函数的定义计算即可判断B ;举例说明即可判断C ;根据指数型函数的的值域的求法计算即可判断D..【过程详解】A :212()12121x x x f x -==-++,由1()3f x <,得12113321x -<-<+,即1123321x <<+, 得32132x <+<,解得11x -<<,即原不等式的解集为(1,1)-,故A 正确; B :122()11()2121x x x f x f x +--=-=-≠++,故B 错误; C :2132(1)11(2)3355f f =-=<=-=,所以()f x 在R 上单调递减不成立,故C 错误;D :由20221x<<+知211121x -<-<+,即函数()f x 的值域为(1,1)-,故D 正确. 故选:AD10. 某企业协会规定:企业员工一周7天要有一天休息,另有一天的工作时间不超过4小时,且其余5天的工作时间均不超过8小时(每天的工作时间以整数小时计),则认为该企业“达标”.请根据以下企业上报的一周7天的工作时间的数值特征,判断其中无法确保“达标”的企业有( )A. 甲企业:均值为5,中位数为8B. 乙企业:众数为6,中位数为6C. 丙企业:众数和均值均为5,下四分位数为4,上四分位数为8D. 丁企业:均值为5,方差为6 【答案】ABD 【答案解析】【详细分析】根据每个企业所给数字特征,找出满足数字特征但不达标的一个特例即可判断ABD ,对C 中满足条件的数据详细分析,确定工作时长数据达标.【过程详解】甲企业每周7天的工作时间可以为:9,8,8,8,2,0,0,满足均值为5,中位数为8,故不达标,故A 正确;乙企业:众数为6,中位数为6,满足条件的7天工作时间可以为:6,6,6,6,6,6,6,故不达标,故B 正确; 丙企业:众数和均值均为5,下四分位数为4,上四分位数为8, 设7天的工作时间为:4,5,5,8,a,b,c()48a b c ≤≤≤≤,13,139b c a c b ++=∴≤-≤,9,4c b ==与众数矛盾,8c =,为使众数为5,5b =成立,故丙企业达标,故C 错误;丁企业:均值为5,方差为6,7天的工作时间可以为0,5,5,5,5,6,9,故D 正确. 故选:ABD11. 已知数列{}n a 满足21n n n a a a λ+++=,R λ∈,若11a =,22a=,20242024a ≥,则λ的值可能为( )A. -1B. 2C. 52D. -2【答案】BCD 【答案解析】【详细分析】由题意,结合选项根据λ的取值,得出对应的递推公式,利用归纳法求出对应的通项公式,依次验证即可.【过程详解】A :当1λ=-时,21n n n a a a ++=--,得3214325436543,1,2,3a a a a a a a a a a a a =--=-=--==--==--=-, 所以数列{}n a 是以3为周期的周期数列,则2024222024a a ==<,不符合题意,故A 错误;B :当2λ=时,212n n n a a a ++=-,得32143254365423,24,25,26,,n a a a a a a a a a a a a a n =-==-==-==-== , 所以20242024a =,符合题意,故B 正确;C :当52λ=时,2152n n na a a ++=-,得2345132143254365455552,2,2,2,,22222n n a a a a a a a a a a a a a -=-==-==-==-== ,所以2023202422024a =>,符合题意,故C 正确; D :当2λ=-时,212n n n a a a ++=--,得32143254365425,28,211,214,,(1)(34)nn a a a a a a a a a a a a a n =--=-=--==--=-=--==-- ,所以202432024460682024a =⨯-=>,符合题意,故D 正确. 故选:BCD 非选择题部分三、填空题:本大题共3小题,把答案填在题中的横线上.12. 若tan 2θ=,则cos πsin()4θθ=-______.【答案】 【答案解析】【详细分析】利用差角的正弦公式,结合齐次式法计算即得.【过程详解】当tan 2θ=时,cos π1tan sin()422θθθ===--.故答案为:13. 已知圆2216x y +=与直线y =交于A ,B 两点,则经过点A ,B ,()8,0C 的圆的方程为______. 【答案】()(22328x y -+-=【答案解析】 【详细分析】设()()1122,,,A x y B x y ,直线方程与圆的方程联立求出,A B 点坐标,设经过点A ,B ,C 的圆的方程为()2222040x y Dx Ey F D E F ++++=+->,代入三点坐标解方程组可得答案.过程详解】设()()1122,,,A x y B x y ,由2216y x y ⎧=⎪⎨+=⎪⎩解得121222x x y y ==-⎧⎧⎪⎪⎨⎨=-=⎪⎪⎩⎩,可得((2,,2,A B --,设经过点A ,B ,()8,0C 的圆的方程为()2222040x y Dx Ey F D E F ++++=+->,所以412204120640800D F Dx F D F ⎧++-+=⎪⎪+-++=⎨⎪++++=⎪⎩,解得616D E F =-⎧⎪=-⎨⎪=-⎩,即226160+---=x y x ,可得()(22328x y -+=.故答案为:()(22328x y -+-=.14. 已知四棱锥P ABCD -的底面为边长为1的菱形且60DAB ∠=︒,PA ⊥平面ABCD ,且1PA =,M ,N 分别为边PB 和PD 的中点,PC ⋂平面AMN Q =,则PQ =______,四边形AMQN 的面积等于______. 【答案】 ①. 23 ②.12【答案解析】【【详细分析】过点A 作AD 的垂线AE ,建立如图空间直角坐标系,设PQ PC λ= ,利用空间向量法求出平面AMN 的法向量n ,由题意可知0n MQ ⋅=,求出点Q 的坐标,进而可求得PQ ;再求得AQ MN ⊥ ,从而利用三角形面积公式即可得解.【过程详解】过点A 作AB 的垂线AE ,建立如图空间直角坐标系,由题意可知1111(0,0,1),(0,0,0),,(0,,4222P A M N,3,,0)22C ,则1111(,,(0,,)44222AM AN ==,3(,,1)22PC =- , 设PQ PC λ=,即33,1),,)22PQ λλλ=-=-,则3,,1)2Q λλ-,所以311,)242QM λλ=-- ,设平面AMN 的一个法向量为(,,)n x y z = ,则11044211022n AM x y z n AN y z ⎧⋅=++=⎪⎪⎨⎪⋅=+=⎪⎩,令3y =,得3x z ==-,所以3)n =- ,因为PC ⋂平面AMN Q =,所以,,,A M N Q 四点共面,得0n MQ ⋅=,即311330242λλ⎛⎫⎛⎫+⨯---= ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得13λ=,则12(,623Q,11,623PQ =-,12,)623AQ = ,此时23PQ ==;又1(,0)44MN =-,所以1106424AQ MN ⎛⋅=-+⨯= ⎝⎭ ,则AQ MN ⊥ ,因为3AQ ==,12MN == ,所以四边形AMQN的面积为111222AQ MN ⋅==. 故答案为:23;12.【点评】关键点评:本题主要考查利用向量法证明空间的线面关系,根据,,,A M N Q 四点共面确定0n MQ ⋅=是本题的关键,属于难题.四.解答题:本大题共5小题,解答应写出文字说明.证明过程或演算步骤.15. 已知函数()()23f x x x =-,[]1,x a ∈.(1)若()f x 不单调,求实数a 的取值范围; (2)若()f x 的最小值为()f a ,求实数a 的取值范围.【答案】(1)3a > (2)13a <? 【答案解析】【详细分析】(1)利用导数讨论函数()f x 的单调性,即可求解;(2)由(1)知函数()f x 的单调性,求出函数的最小值即可求解.【小问1过程详解】()()()23129313f x x x x x =-+=--', 当13x <<时,()0f x '<,当3x >时,()0f x ¢>,∴函数()f x 在()1,3上单调递减,在()3,+∞上单调递增,又∵()f x 在[1,]a 上不单调,∴3a >;【小问2过程详解】 由(1)知函数()f x 在()1,3上单调递减,在()3,+∞上单调递增,当3a >时,min ()(3)f x f =,不符合题意,当13a <?时,min ()()f x f a =,所以实数a 的取值范围为13a <?.16. 已知等比数列{}n a 的前n 项和为n S ,且满足6356a a -=,63112S S -=.(1)求数列{}n a 的通项公式;(2)设1nn n n a b S S +=,求数列{}n b 的前n 项和n T .【答案】(1)2nn a =;(2)1111421n n T +⎛⎫=- ⎪-⎝⎭. 【答案解析】【详细分析】(1)利用等比数列通项公式、前n 项和求基本量,进而写出等比数列通项公式. (2)等比数列前n 项和公式写出n S ,应用裂项相消法求n T【小问1过程详解】 由题知:()3633156a a a q -=-=①,()()22634564311112S S a a a a q q a q q q -=++=++=++=②,②÷①得,()()23331211a q q q qq a q ++==--,解得2q =,代入①式得,38a =,所以3822n nn a -=⨯=.【小问2过程详解】由(1)知:()12122212n n n S +-==--,所以()()121212111222222222n n n n n n n n n a b S S +++++⎛⎫===- ⎪----⎝⎭,所以2334122111111111122222222222222222n n n n T +++⎛⎫⎛⎫=-+-++-=- ⎪ ⎪-------⎝⎭⎝⎭1111421n +⎛⎫=- ⎪-⎝⎭.17. 如图,以AD 所在直线为轴将直角梯形ABCD 旋转得到三棱台ABE DCF -,其中AB BC ⊥,22AB BC CD ==.(1)求证:AD BE ⊥;(2)若π3EAB ∠=,求直线AD 与平面CDF 所成角的正弦值.【答案】(1)证明见答案解析(2)3【答案解析】【详细分析】(1)如图,取AB 的中点G ,连接DG ,BD ,DE ,设2AB a =,由勾股定理的逆定理可得AD BD ⊥,同理可得AD DE ⊥,结合线面垂直的判定定理和性质即可证明;(2)由(1)和勾股定理的逆定理可得DE BD ⊥,又DE AD ⊥,根据线面、面面垂直的判定定理可得面DEM ⊥面ABE ,如图,则NAD ∠为题意所求的线面角,解三角形NAD V 即可.【小问1过程详解】连接BD ,DE ,设2AB a =,则BC CD a ==,取AB 的中点G ,连接DG ,则四边形BCDG 为正方形,故DG a =,得AD BD ==,∴222AD BD AB +=,∴AD BD ⊥同理可得,AD DE ⊥,又,BD DE D BD DE =⊂ 、面BDE , ∴AD ⊥面BDE ,又BE ⊂面BDE ,AD BE ⊥;【小问2过程详解】由(1)知BD DE =,又∵π3EAB ∠=,∴2AB AE EB a ===,由222ED BD EB +=,得DE BD ⊥.又∵DE AD ⊥,,BD AD D BD AD =⊂ 、面ABCD ,∴DE ⊥面ABCD , 过点D 作DM AB ⊥交AB 于点M ,连接EM .因为AB ⊂面ABCD ,所以DE AB ⊥,又因为DE DM D = ,且,DE DM ⊂面DEM , 则AB ⊥面DEM ,又AB ⊂面ABE ,∴面DEM ⊥面ABE . 过点D 作DN EM ⊥交EM 于点N ,连接AN . ∴NAD ∠就是直线AD 与面ABE 所成的线面角.∵面//CDF 面ADE ,∴NAD ∠就是直线AD 与面CDF 所成的线面角.∵DE DM ⊥,又DG a =,DE =,∴3DN a =,又AD =,∴sin 3aNAD ∠==, 即直线AD 与平面CDF所成线面角的正弦值为3.18. 现有标号依次为1,2,…,n 的n 个盒子,标号为1号的盒子里有2个红球和2个白球,其余盒子里都是1个红球和1个白球.现从1号盒子里取出2个球放入2号盒子,再从2号盒子里取出2个球放入3号盒子,…,依次进行到从n 1-号盒子里取出2个球放入n 号盒子为止. (1)当2n =时,求2号盒子里有2个红球的概率; (2)当3n =时,求3号盒子里的红球的个数ξ的分布列; (3)记n 号盒子中红球的个数为n X ,求n X 的期望()n E X .【答案】(1)23(2)分布列见答案解析 (3)()2n E X =【答案解析】【详细分析】(1)由古典概率模型进行求解;(2) ξ可取1,2,3,求出对应的概率,再列出分布列即可;(3) 记1n a -为第()2n n ≥号盒子有三个红球和一个白球的概率,则116a =,1n b -为第()2n n ≥号盒子有两个红球和两个白球的概率,则123b =,则第()2n n ≥号盒子有一个红球和三个白球的概率为111n n a b ----,且()()1222221113322n n n n n b b a a b n -----=++--≥,化解得121162n n b b --=+,即可求解. 【小问1过程详解】由题可知2号盒子里有2个红球的概率为112224C C 2C 3P ==; 【小问2过程详解】由题可知ξ可取1,2,3,()221123222222224444C C C C C 71C C C C 36P ξ==⨯+⨯=, ()221123222222224444C C C C C 73C C C C 36P ξ==⨯+⨯=()()()11211318P P P ξξξ==-=-==,所以3号盒子里的红球的个数ξ的分布列为【小问3过程详解】记1n a -为第()2n n ≥号盒子有三个红球和一个白球的概率,则116a =,1n b -为第()2n n ≥号盒子有两个红球和两个白球的概率,则12211318,==b b ,则第()2n n ≥号盒子有一个红球和三个白球的概率为111n n a b ----,且()()1222221113322n n n n n b b a a b n -----=++--≥,化解得121162n n b b --=+, 得12131331565515n n b b b --⎛⎫-=--= ⎪⎝⎭,,而21313565b b ⎛⎫-=- ⎪⎝⎭,则数列35n b ⎧⎫-⎨⎬⎩⎭为等比数列,首项为131515-=b ,公比为16,所以13115156n n b -⎛⎫=+ ⎪⎝⎭,又由1221162n n n a b a ---=+求得:111556nn a ⎛⎫=- ⎪⎝⎭因此()()1111111231322n n n n n n n E X a b a b a b ------=⨯+⨯+⨯--=--=.【点评】关键点点评:记1n a -为第()2n n ≥号盒子有三个红球和一个白球的概率,则116a =,1n b -为第()2n n ≥号盒子有两个红球和两个白球的概率,则12211318,==b b ,则第()2n n ≥号盒子有一个红球和三个白球的概率为111n n a b ----,且()()1222221113322n n n n n b b a a b n -----=++--≥,即可求解.19. 已知动点M 到点()1,0F -的距离与到直线l :2x =-的距离之比等于2.(1)求动点M 的轨迹W 的方程;(2)过直线l 上的一点P 作轨迹W 的两条切线,切点分别为A ,B ,且60APB ∠=︒, ①求点P 的坐标;②求APB ∠的角平分线与x 轴交点Q 的坐标.【答案】(1)2212x y += (2)①2,3P ⎛⎫-± ⎪ ⎪⎝⎭;②1,03⎛⎫- ⎪⎝⎭ 【答案解析】【详细分析】(1)根据题意,设(),M x y2=,化简得解;(2)①()2,P t -,切线方程为;()2y k x t=++,与椭圆方程联立,利用韦达定理表示出1cos 2APB ∠==,求解即可;②由对称性,不妨取t =,所以2,3P ⎛⎫- ⎪ ⎪⎝⎭,解出tan ,PB k PBQ =∠再根据()tan 30PQ k PBQ =∠+︒可求解.【小问1过程详解】 设(),M x y ,2=,化简得:动点M 的轨迹方程为:2212x y +=;【小问2过程详解】①()2,P t -,切线方程为;()2y k x t =++, 代入2222x y +=得:()2212k x+()42k k t x ++()222k t ++20-=, ∵切线,∴Δ0=,得:222410k tk t ++-=(*),设方程(*)的两根分别为1k ,2k ,分别为P A ,PB 的斜率则有122k k t +=-,21212t k k -= 又∵P A ,PB 的方向向量分别为()11,a k = ,()21,b k = ,∴1cos cos ,2APB a b ∠==== ,解得:253t =,∴2,3P ⎛⎫-± ⎪⎪⎝⎭.②由对称性,不妨取3t =,所以2,3P ⎛⎫- ⎪⎪⎝⎭, 将t =代入(*)得:2620k++=,解得3k ±=,则tan 3PB k PBQ -==∠,∴()3tan 305233PQQ k PBQ x -+=∠+︒===-=--, 得:13Q x =-,所以点Q 坐标为1,03⎛⎫- ⎪⎝⎭.的【点评】求动点轨迹一般有:直接发,定义法,相关点法.。
高三上学期期末考试数学试卷(附答案解析)班级:___________姓名:___________考号:______________一、单选题1.已知集合12|log (1)0A x ax ⎧⎫=->⎨⎬⎩⎭,若1A ∈,则a 的取值范围是( )A .(,2)-∞B .31,2⎛⎫ ⎪⎝⎭C .(1,2)D .(2,)+∞2.设函数f (x )=cosx+bsinx (b 为常数),则“b=0”是“f (x )为偶函数”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件3.给出如下几个结论:①命题“R,cos sin 2x x x ∃∈+=”的否定是“R,cos sin 2x x x ∃∈+≠”; ②命题“1R,cos 2sin x x x ∃∈+≥”的否定是“1R,cos 2sin x x x∀∈+<”; ③对于π10,,tan 22tan x x x⎛⎫∀∈+≥ ⎪⎝⎭;④R x ∃∈,使sin cos x x +=其中正确的是( ) A .③B .③④C .②③④D .①②③④4.已知a 、b 为正实数,a+b=1,则2134a b+的最小值是( ) A .1112 B .116C .1112+D .1112+5.函数2441()2x f x x -+=的大致图象是( )A .B .C .D .6.当()0,x ∈+∞时幂函数()2531m y m m x --=--为减函数,则实数m 的值为( )A .2m =B .1m =-C .1m =-或2m =D .m ≠7.若0.110a =与lg0.8b =和5log 3.5c =,则( ) A .a b c >> B .b a c >> C .c a b >>D .a c b >>8.已知函数()f x 是定义在R 上的函数,()11f =.若对任意的1x ,2x R ∈且12x x <有12123f x f x x x ,则不等式()()222log 32log 163log 32f x x -<--⎡⎤⎣⎦的解集为A .2,13⎛⎫⎪⎝⎭B .4,3⎛⎫-∞ ⎪⎝⎭ C .24,33⎛⎫ ⎪⎝⎭ D .4,3⎛⎫+∞ ⎪⎝⎭9.已知0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,且()2sin 2cos 2cos 1sin αβαβ=+,则下列结论正确的是( )A .22παβ-=B .22παβ+=C .2παβ+=D .2παβ-=10.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,其图象相邻的最高点之间的距离为π,将函数()y f x =的图象向左平移12π个单位长度后得到函数()g x 的图象,且()g x 为奇函数,则( ) A .()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称B .()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称C .()f x 在,63ππ⎛⎫- ⎪⎝⎭上单调递增D .()f x 在2,36ππ⎛⎫-- ⎪⎝⎭上单调递增 11.函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )A.2,3π-B.2,6π-C.4,6π-D.4,3π12.已知函数()2ln,01,0xxf x xx x⎧>⎪=⎨⎪-≤⎩若函数()()g x f x k=-有三个零点,则()A.1ek<≤B.1ek-<<C.1e<<k D.11ek<<二、填空题13.若22x x a++≥对Rx∈恒成立,则实数a的取值范围为___.14.已知实数0a≠,函数2,1()2,1x a xf xx a x+<⎧=⎨--≥⎩,若(1)(1)f a f a-=+,则a的值为________ 15.已知1cos63πα⎛⎫⎪⎝=⎭+,则5cos6πα⎛⎫-⎪⎝⎭的值为______.三、双空题四、解答题17.已知幂函数()2()294mf x m m x=+-在(,0)-∞上为减函数.(1)试求函数()f x解析式;(2)判断函数()f x的奇偶性并写出其单调区间.18.已知函数()e ln exf x a x=--.(1)当1a=时讨论函数()f x的零点存在情况;(2)当1a>时证明:当0x>时()2ef x>-.19.已知函数2()sin sin 2f x x x x π⎛⎫=- ⎪⎝⎭.(1)求()f x 的最小正周期和最大值;(2)讨论()f x 在2,63ππ⎡⎤⎢⎥⎣⎦上的单调性.20.已知函数()()2112122f x cos x sin x cos x x R ππ⎛⎫⎛⎫=+++-∈ ⎪ ⎪⎝⎭⎝⎭.()1求()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最大值和最小值;()2若7224f απ⎛⎫-=⎪⎝⎭2sin α的值. 21.已知函数()||1()f x x x a x =--+∈R .(1)当2a =时试写出函数()()g x f x x =-的单调区间; (2)当1a >时求函数()f x 在[1,3]上的最大值.22.已知函数π()e sin sin ,[0,π]4xf x x x x ⎛⎫=-∈ ⎪⎝⎭.(1)若1a ≤,判断函数()f x 的单调性; (2)证明:e (π)1sin cos x x x x -+≥-.参考答案与解析1.C【详解】1A ∈12log (1)0a ∴-> 011a ∴<-<,即12a <<则实数a 的取值范围是(1,2) 故选:C. 2.C【分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断. 【详解】0b = 时()cos sin cos f x x b x x =+=, ()f x 为偶函数;()f x 为偶函数时()=()f x f x -对任意的x 恒成立()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=- ,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查. 3.B【分析】根据全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题可判断①,②;利用基本不等式判断③;结合三角函数恒等变换以及性质判断④,可得答案.【详解】根据全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题 知①不正确 命题“1R,cos 2sin x x x ∃∈+≥”的否定是“1R,cos 2sin x x x∀∈+<或sin 0x = ”,故②不正确;因为π10,,tan 22tan x x x ⎛⎫∀∈+≥ ⎪⎝⎭当且仅当1tan tan x x=即π0,2π4x ⎛=∈⎫ ⎪⎝⎭ 时取等号,③正确;由πsin cos [4x x x ⎛⎫+=+∈ ⎪⎝⎭,比如π4x =时π4x ⎛⎫+ ⎪⎝⎭故R x ∃∈,使sin cos x x += 故选:B 4.D 【分析】将2134a b +与a b +相乘,展开后利用基本不等式可求得2134a b+的最小值.【详解】由已知条件可得()2118318311111113412121212b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝=时等号成立.因此,2134a b +的最小值是1112+故选:D. 5.D【分析】判断函数的奇偶性可排除B ,C ;利用特殊值可判断A,D,即得答案.【详解】因为函数2441()2x f x x -+=的定义域为(,0)(0,)-∞+∞ ,且2441()()2x f x f x x -+-== 故2441()2x f x x -+=是偶函数,排除选项B ,C ;当2x =时15(2)032f -=<,对应点在第四象限,故排除A 故选:D. 6.A【分析】根据幂函数的定义和单调性可得答案.【详解】因为函数()2531m y m m x --=--既是幂函数又是()0,+∞的减函数所以211530m m m ⎧--=⎨--<⎩解得:m=2.故选:A. 7.D【分析】根据指数函数以及对数函数的性质,判断a,b,c 的范围,即可比较大小,可得答案. 【详解】由函数10x y =为增函数可知0.1110a =>由lg y x =为增函数可得lg0.80b =<,由由5log y x =为增函数可得50log 3.51c <=<0.15101log 3.50lg0.8a c b ∴=>>=>>=a cb ∴>>故选:D 8.C【解析】因为等式12123f x f x x x 可化为()()()12123f x f x x x -<--,即()()112233f x x f x x +<+,令函数()()3F x f x x =+,根据函数()F x 是R 上的增函数,即可求得答案.【详解】 不等式12123f x f x x x 可化为()()()12123f x f x x x -<--即()()112233f x x f x x +<+令函数()()3F x f x x =+,由()()112233f x x f x x +<+ 可得()()21>F x F x ,结合12x x <∴ 函数()()3F x f x x =+是R 上的增函数又()14F =不等式()()222log 32log 163log 32f x x -<--⎡⎤⎣⎦ ∴ ()()2log 321F x F -<⎡⎤⎣⎦ ∴ ()2log 321x -<,即0322x <-< ∴2433x <<不等式()()222log 32log 163log 32f x x -<--⎡⎤⎣⎦的解集为:24,33⎛⎫⎪⎝⎭. 故选:C.【点睛】利用函数性质解抽象函数不等式,解题关键是根据已知构造函数,利用对应函数单调性进行求解函数不等式,考查了转化能力和分析能力,属于中档题. 9.A【分析】用二倍角公式、两角差的正弦公式和诱导公式化简()2sin 2cos 2cos 1sin αβαβ=+,由此得出正确结论.【详解】有()2sin 2cos 2cos 1sin αβαβ=+,得()22sin cos cos 2cos 1sin ααβαβ=+sin cos cos sin cos αβαβα-= ()πsin cos sin 2αβαα⎛⎫-==- ⎪⎝⎭,由于0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,所以ππ,222αβααβ-=--=,故选A. 【点睛】本小题主要考查三角恒等变换,考查二倍角公式、两角差的正弦公式和诱导公式,属于中档题. 10.C【分析】根据函数()f x 图象相邻的最高点之间的距离为π,得到T π=,易得()()2sin 2f x x ϕ=+.将函数()y f x =的图象向左平移12π个单位长度后,可得()2sin 26g x x πϕ⎛⎫++ ⎪⎝⎭=,再根据()g x 是奇函数,得到()2sin 26f x x π⎛⎫=- ⎪⎝⎭,然后逐项验证即可.【详解】因为函数()f x 图象相邻的最高点之间的距离为π 所以其最小正周期为T π=,则22Tπω==. 所以()()2sin 2f x x ϕ=+. 将函数()y f x =的图象向左平移12π个单位长度后 可得()2sin 22sin 2126x x g x ππϕϕ⎡⎤⎛⎫⎛⎫++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=的图象又因为()g x 是奇函数,令()6k k Z πϕπ+=∈所以()6k k ϕπ=π-∈Z .又2πϕ<所以6πϕ=-.故()2sin 26f x x π⎛⎫=- ⎪⎝⎭.当6x π=时()1f x =,故()f x 的图象不关于点,06π⎛⎫⎪⎝⎭对称,故A 错误; 当6x π=-时()2f x =-,故()f x 的图象关于直线6x π=-对称,不关于点,06π⎛⎫- ⎪⎝⎭对称,故B 错误; 在,63ππ⎛⎫- ⎪⎝⎭上2,622x πππ⎛⎫-∈- ⎪⎝⎭,()f x 单调递增,故C 正确;在2,36ππ⎛⎫-- ⎪⎝⎭上3,2262x πππ⎛⎫-∈-- ⎪⎝⎭,()f x 单调递减,故D 错误. 故选:C【点睛】本题主要考查三角函数的图象和性质及其图象变换,还考查了运算求解的能力,属于中档题. 11.A【分析】根据()f x 的图象求得T π=,求得2ω=,再根据5()212f π=,求得2,3k k Z πϕπ=-+∈,求得ϕ的值,即可求解.【详解】根据函数()f x 的图象,可得353()41234T πππ=--=,可得T π=所以22Tπω== 又由5()212f π=,可得5sin(2)112πϕ⨯+=,即52,62k k Z ππϕπ+=+∈ 解得2,3k k Z πϕπ=-+∈因为22ππϕ-<<,所以3πϕ=-.故选:A. 12.C【分析】将问题转化为()y f x =与y k =图象有三个交点,分析分段函数的性质并画出()f x 图象,即可确定k 的范围.【详解】由题意,()y f x =与y k =图象有三个交点 当0x >时()ln x f x x=,则()21ln xf x x -'=∴在()0,e 上0fx,()f x 递增,在()e,+∞上0fx,()f x 递减∴0x >时()ln x f x x =有最大值()1e ef =,且在()0,e 上()1(,)e f x ∈-∞,在()e,+∞上()1(0,)ef x ∈.当0x ≤时()21f x x =-+单调递增∴()f x 图象如下∴由图知:要使函数()g x 有三个零点,则10e<<k . 故选:C. 13.94a ≥【分析】根据一元二次不等式对R x ∈恒成立,可得Δ14(2)0a =--≤ ,即可求得答案. 【详解】220x x a ++-≥对R x ∈恒成立,9Δ14(2)0,4a a ∴=--≤∴≥ 故答案为:94a ≥14.34-【解析】分当0a >时和当a<0时两种分别讨论求解方程,可得答案. 【详解】当0a >时11,1+>1a a -<,所以(1)(1)f a f a -=+ ()()211+2,a a a a -+=--解得302a =-<,不满足,舍去;当a<0时1>1,1+1a a -<,所以()()1221,a a a a ---=++解得304a =-<,满足.故答案为34-.【点睛】本题考查解分段函数的方程,在分段函数求函数值的时候,要把自变量代入到所对应的解析式中是解本题的关键,属于基础题.15.13-【分析】由已知条件,利用诱导公式化简5cos cos 66ππαπα⎡⎤⎛⎫⎛⎫-=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即可求解.【详解】解:因为1cos 63πα⎛⎫ ⎪⎝=⎭+所以51cos cos cos 6663πππαπαα⎡⎤⎛⎫⎛⎫-=-+=-+=-⎪⎛⎫⎪⎢⎥⎝⎭⎝⎭⎣⎦⎪⎝⎭ 故答案为:13-.16. sin x - 【分析】对()cos f x x '=求导可得()sin f x x ''=-,由正弦函数的图象可知()0f x ''<成立 根据函数的性质123123sin sin sin 3sin 3x x x x x x ++⎛⎫++≤ ⎪⎝⎭,即可求得123sin sin sin x x x ++的最大值. 【详解】设()sin f x x =,()0,πx ∈则()cos f x x '= 则()sin f x x ''=-,()0,πx ∈由于()0f x ''<恒成立 故()f x 有如下性质()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≥⎪⎝⎭.则123123πsin sin sin 3sin 3sin 33x x x x x x ++⎛⎫++≤=⨯= ⎪⎝⎭∴123sin sin sin x x x ++故答案为 sin x -17.(1)5()f x x -=(2)奇函数,其单调减区间为(,0)-∞ (0,)+∞【分析】(1)根据幂函数的定义,令22941m m +-=,求解即可; (2)根据幂函数的性质判断函数的单调性,继而可得其单调区间. 【详解】(1)由题意得22941m m +-=,解得12m =或5m =- 经检验当12m =时函数12()f x x =在区间(,0)-∞上无意义所以5m =-,则5()f x x -=. (2)551()f x x x -==,∴要使函数有意义,则0x ≠ 即定义域为(,0)(0,)-∞+∞,其关于原点对称.5511()()()f x f x x x-==-=--∴该幂函数为奇函数.当0x >时根据幂函数的性质可知5()f x x -=在(0,)+∞上为减函数函数()f x 是奇函数,∴在(,0)-∞上也为减函数故其单调减区间为(,0)-∞ (0,)+∞.18.(1)两个零点;(2)证明见解析.【分析】(1)将1a =代入可得(1)0f =,求出函数()f x 的导数,利用导数探讨函数的单调性并借助零点存在性定理即可求解;(2)根据已知条件构造函数()e ln 2x g x x =--,证明()0g x >在0x >时恒成立即可得解.【详解】(1)当1a =时()e ln e x f x x =--,显然(1)0f =,即1是()f x 的一个零点求导得()1e x f x x '=-,()f x '在(0,)+∞上单调递增,且131e 303f ⎛⎫'=-< ⎪⎝⎭(1)e 10f '=-> 则()f x '在1(,1)3上存在唯一零点0x ,当00x x <<时()0f x '<,当0x x >时()0f x '> 因此,函数()f x 在()00,x 上单调递减,在()0,x +∞上单调递增,而()0(1)0f x f <= 31e 31e 3e 0ef ⎛⎫=+-> ⎪⎝⎭ 从而得在()00,x 上函数()f x 存在一个零点所以函数()f x 存在两个零点;(2)令()e ln 2x g x x =--,x>0,则1()e x g x x'=-,由(1)知()g x '在(0,)+∞上单调递增,且在1(,1)3上存在唯一零点0x ,即001x e x = 当()00,x x ∈时()g x 单调递减,当()0,x +∞时()g x 单调递增因此()000000011()e ln 2e ln 220e x x x g x g x x x x ≥=--=--=+->,即ln 2x e x ->,则e ln e 2e x x -->- 而1a >,有e e x x a >,于是得()e ln e>e ln e 2e x x f x a x x =---->-所以当1a >,0x >时()2e f x >-.19.(1)最小正周期为π,最大值为1(2)在5,612ππ⎡⎤⎢⎥⎣⎦单调递增,在52,123ππ⎡⎤⎢⎥⎣⎦单调递减. 【分析】(1)由条件利用三角恒等变换化简函数,再利用正弦函数的周期性和最值求得()f x 的最小正周期和最大值;(2)根据[]20,3x ππ-∈,利用正弦函数的单调性,分类讨论求得()f x 的单调性. 【详解】(1)2()sin sin 2f x x x x π⎛⎫=- ⎪⎝⎭2sin cos x x x =11cos 2sin 222x x +=sin 23x π⎛⎫=- ⎪⎝⎭则()f x 的最小正周期为22T ππ== 当22,32x k k Z πππ-=+∈,即25,1ππ=+∈x k k Z 时()f x取得最大值为1; (2)当2,63x ππ⎡⎤∈⎢⎥⎣⎦时[]20,3x ππ-∈ 则当20,32x ππ⎡⎤-∈⎢⎥⎣⎦,即5,612x ππ⎡⎤∈⎢⎥⎣⎦时()f x 为增函数; 当2,32x πππ⎡⎤-∈⎢⎥⎣⎦时即52,123x ππ⎡⎤∈⎢⎥⎣⎦时()f x 为减函数 f x 在5,612ππ⎡⎤⎢⎥⎣⎦单调递增,在52,123ππ⎡⎤⎢⎥⎣⎦单调递减. 【点睛】本题考查正弦函数的性质,解题的关键是利用三角恒等变换化简函数.20.(1)3()4=max f x()min f x =;(2)2325 【分析】利用倍角公式降幂,再由辅助角公式化积.()1由x 的范围求得相位的范围,则函数最值可求;()2由已知求得145sin πα⎛⎫-= ⎪⎝⎭,再由诱导公式及倍角公式求2sin α的值. 【详解】解:()2112122f x cos x sin x cos x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭212111622222222sin x cos x cos x cos x x π⎛⎫+ ⎪⎛⎫+⎝⎭=+-=+ ⎪ ⎪⎝⎭131222222223cos x x sin x x x π⎛⎫⎫⎛⎫=+=+ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ()1,02x π⎡⎤∈-⎢⎥⎣⎦,22,333x πππ⎡⎤∴+∈-⎢⎥⎣⎦23sin x π⎡⎛⎫∴+∈-⎢ ⎪⎝⎭⎣⎦ 则3()4max f x =()min f x = ()2由7224f απ⎛⎫-= ⎪⎝⎭7123ππα⎛⎫-+= ⎪⎝⎭145sin πα⎛⎫∴-= ⎪⎝⎭. 2123221212242525sin cos sin ππααα⎛⎫⎛⎫∴=-=--=-⨯= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题考查三角函数的恒等变换应用,考查()y Asin x ωϕ=+型函数的图象与性质,考查计算能力,属于中档题.21.(1)单调递减区间为3,2⎛⎤-∞ ⎥⎝⎦和[2,)+∞,单调递增区间为3,22⎛⎫ ⎪⎝⎭ (2)()()max 1(13)103(34)24a f x a a a a ⎧<≤⎪=-<<⎨⎪-≥⎩【分析】(1)当2a =时求出()()()2231(2)12x x x g x f x x x x x ⎧-+<⎪=-=⎨-++≥⎪⎩,利用二次函数的性质确定函数的单调区间; (2)作出函数()f x 的大致图象,数形结合,分类讨论,比较()f x 在[1,3]上的函数值(1)f (3)f ()f a 的大小关系,即可求得答案.(1)当2a =时()()2221(2)21212x x x f x x x x x x ⎧-+<⎪=--+=⎨-++≥⎪⎩所以()()()2231(2)12x x x g x f x x x x x ⎧-+<⎪=-=⎨-++≥⎪⎩当2x <时2()31g x x x =-+,其图象开口向上,对称轴方程为32x =所以()g x 在3,2⎛⎤-∞ ⎥⎝⎦上单调递减,在3,22⎛⎫ ⎪⎝⎭上单调递增; 当2x ≥时2()1g x x x =-++,其图象开口向下,对称轴方程为12x =所以()g x 在[2,)+∞上单调递减. 综上可知,()g x 的单调递减区间为3,2⎛⎤-∞ ⎥⎝⎦和[2,)+∞,单调递增区间为3,22⎛⎫ ⎪⎝⎭;(2)由题意知1a >,()()2211()x ax x a f x x ax x a ⎧-++≥=⎨-+<⎩作出大致图象如图:易得(0)()1f f a == 2124a a f ⎛⎫=- ⎪⎝⎭ 所以可判断()f x 在[1,3]上的最大值在(1)f (3)f ()f a 中取得.当13a 时max ()()1f x f a ==.当3a >时()f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,在,32a ⎛⎤ ⎥⎝⎦上单调递增 又13422a a a ⎛⎫⎛⎫---=- ⎪ ⎪⎝⎭⎝⎭ 所以,若34a <<,则max ()(3)103f x f a ==-;若4a ≥,则max ()(1)2f x f a ==-.综上可知,在区间[1,3]上()()max1(13)103(34)24a f x a a a a ⎧<≤⎪=-<<⎨⎪-≥⎩ . 22.(1)在3π[0,]4上,()f x 为增函数;在3π[,π]4上时()f x 为减函数. (2)证明见解析.【分析】(1)求出函数的导数,判断导数正负,从而判断函数单调性;(2)当1a =时结合(1)可得πe sin 14x x x ⎛⎫-≥- ⎪⎝⎭,整理为e sin 1sin cos x x x x +≥-,然后构造函数()πsin g x x x =--,利用其导数证明结论.【详解】(1)因为π()e sin sin ,[0,π]4x f x x x x ⎛⎫=-∈ ⎪⎝⎭所以()π()e sin e cos cos()e sin cos )(cos sin )e (sin (cos )4x x x x f x x x x x x a x x a x x '=+-=+-+=-+因为1a ≤,所以在()0,π上e 0x a ->由()0f x '=,解得3π4x =. 当3π04x <<时()0f x '>,故()f x 在3π[0,]4上为增函数; 当3ππ4x <<时()0f x '<,()f x 在3π[,π]4上为减函数. (2)证明:由(1)知,当1a =时π()e sin 4x f x x x ⎛⎫=- ⎪⎝⎭在3π[0,]4上为增函数,在3π[,π]4上为减函数. 因为(0)1,(π)1f f ==-所以()(π)f x f ≥故πe sin 14x x x ⎛⎫-≥- ⎪⎝⎭所以e sin sin cos 1x x x x ≥--所以e sin 1sin cos x x x x +≥-.设()πsin ,()1cos 0g x x x g x x '=--=--≤所以()g x 在[0,π]上为减函数.又(π)0g =,则()(π)0g x g ≥=,所以πsin x x -≥所以e (π)1e sin 1sin cos x x x x x x -+≥+≥-.【点睛】本题考查了利用导数判断函数的单调性以及利用导数证明不等式问题,解答时要明确导数与函数的单调性之间的关系,解答的关键是根据题中要证明的不等式合理变式,构造函数,利用导数判断单调性进而进行证明.。
一、选择题(每题5分,共50分)1. 下列函数中,定义域为实数集R的是()A. f(x) = √(x - 1)B. g(x) = |x|C. h(x) = 1/xD. k(x) = √(x^2 - 4)2. 已知函数f(x) = x^3 - 3x + 1,若f(x)在x=1处取得极值,则该极值为()A. 1B. -1C. 3D. -33. 下列各对点中,与点P(2,3)关于直线y=x对称的是()A. A(3,2)B. B(2,4)C. C(4,2)D. D(3,3)4. 在△ABC中,角A、B、C的对边分别为a、b、c,且a=3,b=4,c=5,则sinB 的值为()A. 1/2B. 2/3C. 3/4D. 4/55. 若复数z满足|z-1|=|z+1|,则复数z的实部为()A. 0B. 1C. -1D. 不存在6. 下列各对数函数中,单调递减的是()A. y = 2^xB. y = log2(x)C. y = 3^xD. y = log3(x)7. 已知数列{an}的通项公式为an = n^2 - 3n + 2,则数列{an}的前n项和S_n 为()A. n(n-1)(n-2)/3B. n(n+1)(n-2)/3C. n(n-1)(n+2)/3D. n(n+1)(n+2)/38. 已知等差数列{an}的前n项和为S_n,若S_5 = 50,公差d=2,则数列{an}的第六项a_6为()A. 16B. 18C. 20D. 229. 下列各不等式中,恒成立的是()A. x^2 + 1 < 0B. |x| > 1C. x^2 - 1 > 0D. x^2 + 1 > 010. 若函数f(x) = ax^2 + bx + c在x=1处取得极小值,则a、b、c应满足的关系式是()A. a > 0, b = 0, c > 0B. a < 0, b = 0, c > 0C. a > 0, b ≠ 0, c ≠ 0D. a < 0, b ≠ 0, c ≠ 0二、填空题(每题5分,共25分)11. 已知函数f(x) = x^2 - 4x + 3,则f(2)的值为______。
2023-2024学年北京市昌平区高三(上)期末数学试卷一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U =R ,集合A ={x |x 2>1},那么∁U A =( ) A .[﹣1,1] B .[1,+∞)C .(﹣∞,1]D .(﹣∞,﹣1]∪[1,+∞)2.在复平面内,复数z 1和z 2对应的点分别为A ,B ,则z 1•z 2=( )A .﹣1﹣3iB .﹣3﹣iC .1﹣3iD .3+i3.若双曲线x 2a 2−y 2b 2=1的离心率为√3,则其渐近线方程为( )A .y =±2xB .y =±√2xC .y =±12xD .y =±√22x4.已知(1﹣3x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 2+a 4=( ) A .﹣32B .32C .495D .5855.下列函数中,在区间(0,2)上为减函数的是( ) A .y =2x B .y =sin xC .y =x 1−xD .y =log 0.5(﹣x 2+4x )6.设函数f (x )的定义域为R ,则“∀x ∈R ,f (x +1)<f (x )”是“f (x )为减函数”的( ) A .充分必要条件B .必要而不充分条件C .充分而不必要条件D .既不充分也不必要条件7.已知点P 在圆(x ﹣1)2+y 2=1上,点A 的坐标为(−1,√3),O 为原点,则AO →⋅AP →的取值范围是( ) A .[﹣3,3]B .[3,5]C .[1,9]D .[3,7]8.“三斜求积术”是我国宋代的数学家秦九韶用实例的形式提出的,其实质是根据三角形的三边长a ,b ,c 求三角形面积S ,即S =√14[c 2a 2−(c 2+a 2−b 22)2].现有面积为3√15的△ABC 满足sin A :sin B :sin C=2:3:4,则△ABC 的周长是( ) A .9B .12C .18D .369.已知函数f (x )=2sin x ﹣2cos x ,则( ) A .f(π4+x)=f(π4−x)B .f (x )不是周期函数C .f (x )在区间(0,π2)上存在极值D .f (x )在区间(0,π)内有且只有一个零点10.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,E 为线段AB 上的点,且AE EB=3,点P 在线段D 1E上,则点P 到直线AD 距离的最小值为( )A .√22B .√32C .35D .1二、填空题共5小题,每小题5分,共25分.11.已知sinx =−35,x ∈(π,32π),则tan x = .12.抛物线x 2=4y 上一点P 到焦点的距离为8,则点P 到x 轴的距离为 .13.已知数列{a n }的前n 项和S n 满足S n =2a n ﹣a 1,且a 1,a 2+1,a 3成等差数列,则a 1= ;a n= .14.若函数f(x)={2x −m ,x ≤1,lnx ,x >1在定义域上不是单调函数,则实数m 的一个取值可以为 .15.已知数列{a n },a 1=a (0<a <1),a n +1=a a n .给出下列四个结论: ①a 2∈(a ,1); ②a 10>a 9;③{a 2n }为递增数列;④∀n ∈N *,使得|a n +1﹣a n |<1﹣a . 其中所有正确结论的序号是 .三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(13分)如图,在四棱锥P ﹣ABCD 中,PD ⊥平面ABCD ,底面ABCD 是直角梯形,AD ⊥DC ,AB ∥DC ,AB =AD =2,DC =PD =4,点N 是PD 的中点,直线PC 交平面ABN 于点M . (1)求证:点M 是PC 的中点; (2)求二面角A ﹣MN ﹣P 的大小.17.(14分)在△ABC 中,b cos C +c cos B =2a cos A . (1)求角A 的大小;(2)再从条件①、条件②、条件③这三个条件中选择两个作为已知,使得△ABC 存在且唯一确定,求△ABC 的面积. 条件①:a =7; 条件②:c =8; 条件③:cos C =17.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.18.(13分)某汽车生产企业对一款新上市的新能源汽车进行了市场调研,统计该款车车主对所购汽车性能的评分,将数据分成5组:[90,100),[100,110),[110,120),[120,130),[130,140],并整理得到如下频率分布直方图: (1)求m 的值;(2)该汽车生产企业在购买这款车的车主中任选3人,对评分低于110分的车主送价值3000元的售后服务项目,对评分不低于110分的车主送价值2000元的售后服务项目.若为这3人提供的售后服务项目总价值为X 元,求X 的分布列和数学期望E (X );(3)用随机抽样的方法从购买这款车的车主中抽取10人,设这10人中评分不低于110分的人数为Y ,问k (k =0,1,2,…,10)为何值时,P (Y =k )的值最大?(结论不要求证明)19.(15分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点M (2,0),离心率为√22.(1)求椭圆E的方程;(2)设过点T(t,0)的直线l与椭圆E有两个不同的交点A,B(均不与点M重合),若以线段AB为直径的圆恒过点M,求t的值.20.(15分)已知函数f(x)=x2e2﹣x﹣x+1.(1)求曲线y=f(x)在(2,f(2))处的切线方程;(2)设函数g(x)=f'(x),求g(x)的单调区间;(3)判断f(x)极值点的个数,并说明理由.21.(15分)已知Q:a1,a2,…,a k为有穷正整数数列,且a1≤a2≤…≤a k,集合X={﹣1,0,1}.若存在x i∈X,i=1,2,…,k,使得x1a1+x2a2+…+x k a k=t,则称t为k﹣可表数,称集合T={t|t=x1a1+x2a2+…+x k a k,x i∈X,i=1,2,…,k}为k﹣可表集.(1)若k=10,a i=2i﹣1,i=1,2,…,k,判定31,1024是否为k﹣可表数,并说明理由;(2)若{1,2,…,n}⊆T,证明:n≤3k−1 2;(3)设a i=3i﹣1,i=1,2,…,k,若{1,2,…,2024}⊆T,求k的最小值.2023-2024学年北京市昌平区高三(上)期末数学试卷参考答案与试题解析一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U =R ,集合A ={x |x 2>1},那么∁U A =( ) A .[﹣1,1] B .[1,+∞)C .(﹣∞,1]D .(﹣∞,﹣1]∪[1,+∞)解:全集U =R ,集合A ={x |x 2>1}=(﹣∞,﹣1)∪(1,+∞),∁U A =[﹣1,1], 故选:A .2.在复平面内,复数z 1和z 2对应的点分别为A ,B ,则z 1•z 2=( )A .﹣1﹣3iB .﹣3﹣iC .1﹣3iD .3+i解:由图可知,z 1=﹣2﹣i ,z 2=1+i ,故z 1•z 2=(﹣2﹣i )•(1+i )=﹣2﹣2i ﹣i +1=﹣1﹣3i . 故选:A .3.若双曲线x 2a 2−y 2b 2=1的离心率为√3,则其渐近线方程为( )A .y =±2xB .y =±√2xC .y =±12xD .y =±√22x解:由双曲线的离心率√3,可知c =√3a ,又a 2+b 2=c 2,所以b =√2a ,所以双曲线的渐近线方程为:y =±bax =±√2x .故选:B .4.已知(1﹣3x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 2+a 4=( ) A .﹣32B .32C .495D .585解:令x =0,解得a 0=1;当x =1时,a 0+a 1+a 2+a 3+a 4+a 5=﹣32;①,当x =﹣1时,a 0−a 1+a 2−a 3+a 4−a 5=45,②,故①+②得:2a 0+2a 2+2a 4=1024﹣32=992,解得a 0+a 2+a 4=496, 故a 2+a 4=495.故选:C .5.下列函数中,在区间(0,2)上为减函数的是( ) A .y =2x B .y =sin xC .y =x 1−xD .y =log 0.5(﹣x 2+4x )解:根据题意,依次分析选项:对于A ,y =2x ,是指数函数,在(0,2)上为增函数,不符合题意; 对于B ,y =sin x ,是正弦函数,在(0,π2)上为增函数,不符合题意;对于C ,y =x 1−x =−1x−1−1,可以由函数y =−1x向右平移一个单位,向下平移一个单位得到, 故y =x1−x在区间(0,2)上不是单调函数,不符合题意; 对于D ,y =log 0.5(﹣x 2+4x ),设t =﹣x 2+4x ,y =log 0.5t , t =﹣x 2+4x 在(0,2)上为增函数,且t >0恒成立, y =log 0.5t 在(0,+∞)上为减函数,故y =log 0.5(﹣x 2+4x )在区间(0,2)上为减函数,符合题意. 故选:D .6.设函数f (x )的定义域为R ,则“∀x ∈R ,f (x +1)<f (x )”是“f (x )为减函数”的( ) A .充分必要条件B .必要而不充分条件C .充分而不必要条件D .既不充分也不必要条件解:根据题意,函数f (x )={ ⋯⋯x −4,2≤x <3x −2,1≤x <2x ,0≤x <1x +2,−1≤x <0⋯⋯,在R 上满足f (x +1)<f (x ), 当f (x )不是增函数,反之,若f (x )为减函数,必有f (x +1)<f (x ),故“∀x ∈R ,f (x +1)<f (x )”是“f (x )为减函数”的必要而不充分条件. 故选:B .7.已知点P 在圆(x ﹣1)2+y 2=1上,点A 的坐标为(−1,√3),O 为原点,则AO →⋅AP →的取值范围是( ) A .[﹣3,3]B .[3,5]C .[1,9]D .[3,7]解:设P (x ,y ),由图可知,AO →与AP →夹角为锐角,故AO →⋅AP →>0,又AO →=(1,−√3),AP →=(x +1,y −√3),则AO →⋅AP →=x −√3y +4, 令t =|x−√3y+4|2,则t 为点P (x ,y )到直线x −√3y +4=0的距离, 圆心C (1,0)到直线x −√3y +4=0的距离d =52,所以t ∈[32,72],故AO →⋅AP →∈[3,7].故选:D .8.“三斜求积术”是我国宋代的数学家秦九韶用实例的形式提出的,其实质是根据三角形的三边长a ,b ,c 求三角形面积S ,即S =√14[c 2a 2−(c 2+a 2−b 22)2].现有面积为3√15的△ABC 满足sin A :sin B :sin C=2:3:4,则△ABC 的周长是( ) A .9B .12C .18D .36解:由正弦定理可得,a :b :c =sin A :sin B :sin C =2:3:4,故可设a =2x ,b =3x ,c =4x , S =√14[c 2a 2−(c 2+a 2−b 22)2]=12√(8x 2)2−(16x 2+4x 2−9x 22)2=3√15,解得,x =2,故△ABC 的周长为4+6+8=18. 故选:C .9.已知函数f (x )=2sin x ﹣2cos x ,则( ) A .f(π4+x)=f(π4−x)B .f (x )不是周期函数C .f (x )在区间(0,π2)上存在极值D .f (x )在区间(0,π)内有且只有一个零点解:对于A :因为函数f (x )=2sin x ﹣2cos x , 所以f (x +π2)+f (﹣x )=2sin(x+π2)−2cos(x+π2)+2sin(﹣x )﹣2cos(﹣x )=2cos x ﹣2﹣sin x+2﹣sin x﹣2cos x =0,所以f (x )关于点(π4,0)对称,所以f (π4+x )=﹣f (π4−x ),故A 错误;对于B :因为f (x +2π)=2sin(x +2π)﹣2cos(x +2π)=2sin x ﹣2cos x =f (x ),所以2π为函数f (x )的一个周期,故B 错误;对于C :因为f (x )=2sin x ﹣2cos x ,所以f ′(x )=2sin x cos x •ln 2+2cos x sin x •ln 2, 当0<x <π2时,f ′(x )>0,f (x )单调递增,所以f (x )在(0,π2)上单调递增,故C 错误;对于D :令f (x )=2sin x ﹣2cos x =0,即2sin x =2cos x ,即sin x =cos x ,因为x ∈(0,π),则tan x =1,所以x =π4,所以方程在(0,π)上只有一个根,所以函数f (x )在(0,π)内有且只有一个零点,故D 正确. 故选:D .10.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,E 为线段AB 上的点,且AE EB=3,点P 在线段D 1E上,则点P 到直线AD 距离的最小值为( )A .√22B .√32C .35D .1解:以D 为原点,分别以DA ,DC ,DD 1为x 轴、y 轴、z 轴建立空间直角坐标系,则D (0,0,0),A (1,0,0),E (1,34,0),D 1(0,0,1),∴DA →=(1,0,0),ED 1→=(−1,−34,1),设n →=(x ,y ,z),由{n →⋅DA →=x =0n →⋅ED 1→=−x −34y +z =0,取y =1,得n →=(0,1,34). ∴点P 到直线AD 距离的最小值为d =|n →⋅AE →||n →|=34√1+916=35.故选:C .二、填空题共5小题,每小题5分,共25分.11.已知sinx =−35,x ∈(π,32π),则tan x = 34.解:因为sinx =−35,x ∈(π,32π),所以cos x =−45,则tan x =sinx cosx =34.故答案为:3412.抛物线x 2=4y 上一点P 到焦点的距离为8,则点P 到x 轴的距离为 7 . 解:根据抛物线方程可求得焦点坐标为(0,1),准线方程为y =﹣1, 根据抛物线定义,∴y p +1=8,解得y p =7,∴点P 到x 轴的距离为7, 故答案为:7.13.已知数列{a n }的前n 项和S n 满足S n =2a n ﹣a 1,且a 1,a 2+1,a 3成等差数列,则a 1= 2 ;a n = 2n . 解:由S n =2a n ﹣a 1,得S n +1=2a n +1﹣a 1, 两式相减得a n +1=2a n +1﹣2a n ,即a n+1a n=2,∴{a n }是以q =2为公比的等比数列,由a 1,a 2+1,a 3成等差数列,得2(a 2+1)=a 1a 3, 即2(2a 1+1)=a 1+4a 1,解得a 1=2, ∴a n =2×2n ﹣1=2n .故答案为:2,2n .14.若函数f(x)={2x −m ,x ≤1,lnx ,x >1在定义域上不是单调函数,则实数m 的一个取值可以为 0(答案不唯一) .解:根据题意,假设函数f(x)={2x −m ,x ≤1,lnx ,x >1在定义域上是单调函数,则有21﹣m ≤ln 1,即2﹣m ≤0,解可得:m ≥2,反之,若函数f(x)={2x −m ,x ≤1,lnx ,x >1在定义域上不是单调函数,必有m <2,即m 的取值范围为(﹣∞,2),故m 的值可以为0. 故答案为:0(答案不唯一).15.已知数列{a n },a 1=a (0<a <1),a n +1=a a n .给出下列四个结论: ①a 2∈(a ,1); ②a 10>a 9;③{a 2n }为递增数列;④∀n ∈N *,使得|a n +1﹣a n |<1﹣a . 其中所有正确结论的序号是 ①②④ .解:根据题意可知a 2=a a 1=a a ,因为0<a <1,所以a 1<a a <a 0⇒a 2∈(a ,1)即①正确;由a 1<a 2<1,可得a a 1>a a 2>a 1,得1>a 2>a 3>a 1=a ,所以a a 2<a a 3<a a 1,即a 3<a 4<a 2,故③不正确;根据递推式有a <a 3<a 4<a 2<1,a a 3>a a 4>a a 2,即a 4>a 5>a 3,同理可得a 4>a 6>a 5,a 5<a 7<a 6,a 6>a 8>a 7,a 7<a 9<a 8,从而可得a a 7>a a 9>a a 8,即a 8>a 10>a 9,故②正确;因为0<a <1,所以a a =a 2∈(a ,1),则a a 2∈(a ,1),依次可知a a n ∈(a ,1),所以{a <a n+1<1a ≤a n <1,故|a n +1﹣a n |<1﹣a 成立,④正确. 故答案为:①②④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(13分)如图,在四棱锥P ﹣ABCD 中,PD ⊥平面ABCD ,底面ABCD 是直角梯形,AD ⊥DC ,AB ∥DC ,AB =AD =2,DC =PD =4,点N 是PD 的中点,直线PC 交平面ABN 于点M . (1)求证:点M 是PC 的中点; (2)求二面角A ﹣MN ﹣P 的大小.(1)证明:因为AB ∥DC ,AB ⊄平面PDC ,DC ⊂平面PDC , 所以AB ∥平面PDC ,又AB ⊂平面ABMN , 平面ABMN ∩平面PDC =MN , 所以AB ∥MN ,故MN ∥DC ,又N 为PD 中点,所以M 为PC 中点;(2)解法一:由PD ⊥平面ABCD ,可得PD ⊥AD , 又AD ⊥DC ,DC ∩PD =D ,则AD ⊥平面PDC ,故∠AND 为二面角A ﹣MN ﹣P 的平面角的补角,又AD =2,PD =4,点N 是PD 的中点,则AD =DN =2,故∠AND =45°,故二面角A ﹣MN ﹣P 的大小为135°;解法二:由PD ⊥平面ABCD ,可得PD ⊥AD ,PD ⊥DC ,又AD ⊥DC ,则DA ,DC ,DP 两两垂直,故以D 为坐标原点,DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图所示,由AD =2,DC =PD =4,点M ,N 是分别是PD ,PC 的中点,则A (2,0,0),M (0,2,2),N (0,0,2),即AM →=(−2,2,2),AN →=(−2,0,2),设平面AMN 的一个法向量为n →=(x ,y ,z),则由{n →⋅AM →=−2x +2y +2z =0n →⋅AN →=−2x +2z =0,令x =1,可得y =0,z =1, 则平面AMN 的一个法向量为n →=(1,0,1),不妨取平面PMN 的一个法向量为m →=(1,0,0),则cos <m →,n →>=m →⋅n →|m →||n →|=1√2=√22, 由图可知二面角A ﹣MN ﹣P 的平面角为钝角,则二面角A ﹣MN ﹣P 的大小为135°.17.(14分)在△ABC 中,b cos C +c cos B =2a cos A .(1)求角A 的大小;(2)再从条件①、条件②、条件③这三个条件中选择两个作为已知,使得△ABC 存在且唯一确定,求△ABC的面积.条件①:a=7;条件②:c=8;条件③:cos C=1 7.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.解:(1)由b cos C+c cos B=2a cos A及正弦定理,可得sin B cos C+sin C cos B=2sin A cos B,即sin(B+C)=2sin A cos A,即sin A=2sin A cos A,又A∈(0,π),sin A≠0,所以cosA=12,即A=π3;(2)若选①②:即a=7,c=8,A=π3,由正弦定理,可得sinC=sinAa⋅c=√327×8=4√37,因为a<c,所以A<C,即C可能为锐角或钝角,故△ABC不唯一,不合题意;若选①③:即a=7,cosC=17,A=π3,由cosC=17,可得sinC=4√37,由正弦定理可c=asinA⋅sinC=7√32×4√37=8,由余弦定理可得c2=a2+b2﹣2ab•cos C,即64=49+b2−2×7×b×17,整理得b2﹣2b﹣15=0,,解得b=5,故S△ABC=12absinC=12×7×5×4√37=10√3;若选②③:即c=8,cosC=17,A=π3,由cosC=17,可得sinC=4√37,由正弦定理可得:a=csinC⋅sinA=84√37√32=7,由余弦定理可得c2=a2+b2﹣2ab•cos C,即64=49+b2−2×7×b×17,整理得b2﹣2b﹣15=0,,解得b=5,故S△ABC=12absinC=12×7×5×4√37=10√3.18.(13分)某汽车生产企业对一款新上市的新能源汽车进行了市场调研,统计该款车车主对所购汽车性能的评分,将数据分成5组:[90,100),[100,110),[110,120),[120,130),[130,140],并整理得到如下频率分布直方图:(1)求m的值;(2)该汽车生产企业在购买这款车的车主中任选3人,对评分低于110分的车主送价值3000元的售后服务项目,对评分不低于110分的车主送价值2000元的售后服务项目.若为这3人提供的售后服务项目总价值为X元,求X的分布列和数学期望E(X);(3)用随机抽样的方法从购买这款车的车主中抽取10人,设这10人中评分不低于110分的人数为Y,问k(k=0,1,2,…,10)为何值时,P(Y=k)的值最大?(结论不要求证明)解:(1)依题意,(0.005+0.025+0.035+m+0.007)×10=1,所以m=0.028;(2)由题意可知,X的可能取值为:6000,7000,8000,9000,任选1人,估计认为该款车性能的评分不低于110分的概率为0.7,则P(X=6000)=C33×0.73×0.30=0.343;P(X=7000)=C32×0.72×0.3=0.441,P(X=8000)= C31×0.7×0.32=0.189,P(X=9000)=C30×0.70×0.33=0.027,所以X的分布列为:所以E(X)=6000×0.343+7000×0.441+8000×0.189+9000×0.027=6900元;(3)k=7时,P(Y=k)的值最大,理由如下:由题意可知Y~B(10,0.7),则{C10k×0.7k×0.310−k≥C10k+1×0.7k+1×0.39−kC10k×0.7k×0.310−k≥C10k−1×0.7k−1×0.311−k,解得6.7≤k≤7.7,又因为k=0,1,2,…,10,所以k=7,即k =7时,P (Y =k ) 的值最大.19.(15分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点M (2,0),离心率为√22. (1)求椭圆E 的方程;(2)设过点T (t ,0)的直线l 与椭圆E 有两个不同的交点A ,B (均不与点M 重合),若以线段AB 为直径的圆恒过点M ,求t 的值.解:(1)因为椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点M (2,0),离心率为√22, 所以a =2,c =b =√2,所以椭圆E 的方程x 24+y 22=1.(2)设直线l 的方程为:x =my +t ,A (x 1,y 1),B (x 2,y 2),由{x =my +t x 2+2y 2−4=0,得(m 2+2)y 2+2mty +t 2﹣4=0, Δ=(2mt )2﹣4(m 2+2)(t 2﹣4)>0,y 1+y 2=−2mt m 2+2,y 1y 2=t 2−4m 2+2, x 1+x 2=m (y 1+y 2)+2t =4t 2+m 2,x 1x 2=(my 1+t )(my 2+t ) =m 2y 1y 2+mt (y 1+y 2)+t 2=m 2(t 2−4)2+m 2−2m 2t 22+m 2+t 2=2t 2−4m 22+m 2, 因为以线段AB 为直径的圆恒过点M ,所以MA →⋅MB →=0,即(x 1﹣2)(x 2﹣2)+y 1y 2=0,所以x 1x 2﹣2(x 1+x 2)+4+y 1y 2=0,即2t 2−4m 22+m 2−2×4t 2+m 2+4+t 2−4m 2+2=0, 即3t 2﹣8t +4=0,解得t =23或t =2(舍), 所以t =23. 20.(15分)已知函数f (x )=x 2e 2﹣x ﹣x +1. (1)求曲线y =f (x )在(2,f (2))处的切线方程;(2)设函数g (x )=f '(x ),求g (x )的单调区间;(3)判断f (x )极值点的个数,并说明理由.解:(1)∵f (x )=x 2e 2﹣x ﹣x +1, ∴f ′(x )=e 2﹣x (2x ﹣x 2)﹣1, ∴f ′(2)=﹣1,f (2)=3,∴y =f (x )在(2,f (2))处的切线方程为y ﹣3=﹣(x ﹣2),即x +y ﹣5=0;(2)∵g(x)=f'(x)=e2﹣x(2x﹣x2)﹣1,x∈R,∴g′(x)=e2﹣x(x2﹣4x+2)=e2−x(x−2+√2)(x−2−√2),∴当x∈(﹣∞,2−√2)∪(2+√2,+∞)时,g′(x)>0;当x∈(2−√2,2+√2)时,g′(x)<0,∴g(x)的单调增区间为(﹣∞,2−√2),(2+√2,+∞),单调减区间为(2−√2,2+√2);(3)2个极值点,理由如下:又(2)知:当x<2−√2时,g(x)在(﹣∞,2−√2)上单调递增,且g(2−√2)=(2−√2)e√2−1>12e−1>0,g(0)=﹣1<0,∴存在唯一x1∈(0,2−√2),使得g(x1)=0;当2−√2<x<2+√2时,g(x)在(2−√2,2+√2)上单调递减,g(2−√2)>0,g(2+√2)<g(2)=﹣1<0,∴存在唯一x2∈(2−√2,2+√2),使得g(x1)=0;当x>2+√2时,﹣x2+2x<0,e2﹣x>0,∴g(x)=e2﹣x(2x﹣x2)﹣1<0,∴g(x)在(2+√2,+∞)上无零点,综合可得:当x∈(﹣∞,x1),g(x)=f'(x)<0,当x∈(x1,x2),g(x)=f'(x)>0,当x∈(x2,+∞),g(x)=f'(x)<0,∴当x=x1时,f(x)取得极小值;当x=x2时,f(x)取得极大值,故f(x)有2个极值点.21.(15分)已知Q:a1,a2,…,a k为有穷正整数数列,且a1≤a2≤…≤a k,集合X={﹣1,0,1}.若存在x i∈X,i=1,2,…,k,使得x1a1+x2a2+…+x k a k=t,则称t为k﹣可表数,称集合T={t|t=x1a1+x2a2+…+x k a k,x i∈X,i=1,2,…,k}为k﹣可表集.(1)若k=10,a i=2i﹣1,i=1,2,…,k,判定31,1024是否为k﹣可表数,并说明理由;(2)若{1,2,…,n}⊆T,证明:n≤3k−1 2;(3)设a i=3i﹣1,i=1,2,…,k,若{1,2,…,2024}⊆T,求k的最小值.解:(1)31是,1024不是,理由如下:由题意可知x1a1+x2a2+⋯+x k a k=t,当a i=2i−1,k=10时,有x1+2x2+⋯+29x10=t,x i∈{﹣1,0,1},显然若x1=﹣1,x6=1,x i=0(i∈{2,3,4,5,7,8,9,10})时,t=31,而t ≤20×1+21×1+22×1+⋯+29×1=210﹣1=1023<1024,故31是k ﹣可表数,1024不是k ﹣可表数;(2)由题意可知若x i =0⇒t =0,即0∈T ,设s ∈T ,即∃x i ∈{﹣1,0,1}使得x 1a 1+x 2a 2+⋯+x k a k =S ,所以(﹣x 1a 1)+(﹣x 2a 2)+⋯+(﹣x k a k )=﹣s ,且﹣x i ∈{﹣1,0,1}成立,故﹣s ∈T ,所以若{1,2,…,n }⊆T ,则{±1,±2,…,±n ,0}⊆T ,即{±1,±2,…±n ,0}中的元素个数不能超过T 中的元素,对于确定的Q ,T 中最多有3k 个元素,所以2n +1≤3k ⇒n ≤3k−12; (3)由题意可设∀n ∈N *,∃m ∈N *使3m−1−12<n ≤3m −12, 又x 1×1+x 2×3+x 3×32+⋯+x m−1×3m−2≤1×1+1×3+1×32+…+1×3m ﹣2=3m−1−12, 所以k >m ﹣1,即k ≥m ,而1×1+1×3+1×32+⋯+1×3m−1=3m −12,即当n =3m−12时,取a 1=1,a 2=3,…,a m =3m−1 时,n 为m ﹣可表数, 因为2×(1×1+1×3+1×32+⋯+1×3m−1)=2×3m−12=3m −1, 由三进制的基本事实可知,对任意的0≤p ≤3m ﹣1,存在r ∈{0,1,2}(i =1,2,…,m ,),使p =r 1×30+r 2×31+⋯r m ×3m−1,所以p −3m−12=(r 1×30+r 2×31+⋯r m ×3m−1)−(30+31+⋯+3m−1)=(r 1−1)×30+(r 2−1)×31+⋯+(r m −1)×3m−1,令x i =r i ﹣1 则有x i ∈{﹣1,0,1},i =1,2,…,m ,设t =p −3m −12⇒−3m −12≤t ≤3m−12, 由p 的任意性,对任意的−3m −12≤t ≤3m −12,t ∈Z , 都有t =x 1×30+x 2×31+⋯+x m ×3m−1,x i ∈{﹣1,0,1},i =1,2,…,m ,又因为n ≤3m−12, 所以对于任意的﹣n ≤t ≤n ,t ∈Z ,t 为m ﹣可表数,综上,可知k 的最小值为m ,其中m 满足3m−1−12<n ≤3m −12, 又当n =2024时,37−12<n ≤38−12, 所以k 的最小值为8.。
东城区2023—2024学年度第一学期期末统一检测高 三 数 学 2024.1一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知全集{04}U x x =<<,集合{02}A x x =<<,则U A =ð(A ){24}x x << (B ){24}x x <≤ (C ){24}x x ≤< (D ){24}x x ≤≤ (2)若复数z 满足(1i)i z +=,则z 的共轭复数z =(A )11i 22+ (B )11i 22--(C )11i 22-+ (D )11i 22-(3)51()x x+的展开式中,x 的系数为(A )1 (B )5(C )10 (D )20(4)设等比数列{}n a 的各项均为正数,n S 为其前n 项和,若12a =,2349a a a a =,则3S =(A )6 (B ) 8 (C ) 12 (D )14(5)已知非零向量,a b 满足a b =,且0⋅=a b ,对任意实数λμ,,下列结论正确的是(A ) ()()0λμλμ-⋅-=a b a b (B ) ()()0λμμλ-⋅+=a b a b (C ) ()()0λμλμ-⋅+=a b a b (D ) ()()0λμμλ+⋅+=a b a b(6)如图,在正方体1111ABCD A B C D -中,2AB =,,E F 分别是11,DD BB 的中点. 用过点F 且 平行于平面ABE 的平面去截正方体,得到的截面图形的面积为(A ) (B(C(D(7)已知0,0a b >>,则“1122a b >”是“1122a b <”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件(8)一粒子在平面上运动的轨迹为抛物线的一部分,在该平面上建立直角坐标系后,该粒子的运动轨迹如图所示. 在0t =时刻,粒子从点()0,1A 出发,沿着轨迹曲线运动到()1,1B -,再沿着轨迹曲线途径A 点运动到()1,1C --,之后便沿着轨迹曲线在B C ,两点之间在B C ,两点之间循环往复运动. 设该粒子在t 时刻的位置对应点(),P x y ,则坐标,x y 随时间()0t t ≥变化的图象可能是(9)已知线段AB 的长度为10,M 是线段AB 上的动点(不与端点重合). 点N 在圆心为M ,半径为MA 的圆上, 且,,B M N 不共线,则BMN ∆的面积的最大值为(A )252 (B )254 (C (D(10) 设函数()cos f x x = ① 函数()f x 的一个周期为π;② 函数()f x 的值域是⎡⎤⎢⎥⎣⎦;③ 函数()f x 的图象上存在点(),P x y ,使得其到点()1,0;④ 当ππ,44x ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的图象与直线2y =有且仅有一个公共点.正确的判断是(A )① (B )② (C )③ (D )④二、填空题 共5小题,每小题5分,共25分。
2023-2024学年北京市西城区高三(上)期末数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目 1.已知集合A ={x |﹣1<x <3},B ={x |x 2≥4},则A ∪B =( ) A .(﹣1,+∞)B .(﹣1,2]C .(﹣∞,﹣2]∪(﹣1,+∞)D .(﹣∞,﹣2]∪(﹣1,3)2.在复平面内,复数z =i−2i的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.设a ,b ∈R ,且a >b ,则( ) A .1a <1bB .tan a >tan bC .3﹣a <2﹣bD .a |a |>b |b |4.已知双曲线C 的一个焦点是F 1(0,2),渐近线为y =±√3x ,则C 的方程是( ) A .x 2−y 23=1B .x 23−y 2=1C .y 2−x 23=1D .y 23−x 2=15.已知点O (0,0),点P 满足|PO |=1.若点A (t ,4),其中t ∈R ,则|P A |的最小值为( ) A .5B .4C .3D .26.在△ABC 中,∠B =60°,b =√7,a ﹣c =2,则△ABC 的面积为( ) A .3√32B .3√34 C .32D .347.已知函数f(x)=ln1+x1−x,则( ) A .f (x )在(﹣1,1)上是减函数,且曲线y =f (x )存在对称轴B .f (x )在(﹣1,1)上是减函数,且曲线y =f (x )存在对称中心C .f (x )在(﹣1,1)上是增函数,且曲线y =f (x )存在对称轴D .f (x )在(﹣1,1)上是增函数,且曲线y =f (x )存在对称中心 8.设a →,b →是非零向量,则“|a →|<|b →|”是“|a →•b →|<|b →|2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.设{a n }是首项为正数,公比为q 的无穷等比数列,其前n 项和为S n .若存在无穷多个正整数k ,使S k ≤0,则q 的取值范围是( ) A .(﹣∞,0)B .(﹣∞,﹣1]C .[﹣1,0)D .(0,1)10.如图,水平地面上有一正六边形地块ABCDEF ,设计师规划在正六边形的顶点处矗立六根与地面垂直的柱子,用以固定一块平板式太阳能电池板A 1B 1C 1D 1E 1F 1.若其中三根柱子AA 1,BB 1,CC 1的高度依次为12m ,9m ,10m ,则另外三根柱子的高度之和为( )A .47mB .48mC .49mD .50m二、填空题共5小题,每小题5分,共25分。
2023-2024学年北京市海淀区高三上学期期末练习数学试题一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,,,则()A. B. C. D.2.如图,在复平面内,复数,对应的点分别为,,则复数的虚部为()A. B. C. D.3.已知直线,直线,且,则()A.1B.C.4D.4.已知抛物线的焦点为F,点M在C上,,O为坐标原点,则()A. B.4 C.5 D.5.在正四棱锥中,,二面角的大小为,则该四棱锥的体积为()A.4B.2C.D.6.已知圆,直线与圆C交于A,B两点.若为直角三角形,则()A. B. C. D.7.若关于x的方程且有实数解,则a的值可以为()A.10B.eC.2D.8.已知直线,的斜率分别为,,倾斜角分别为,,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.已知是公比为的等比数列,为其前n项和.若对任意的,恒成立,则()A.是递增数列B.是递减数列C.是递增数列D.是递减数列10.蜜蜂被誉为“天才的建筑师”.蜂巢结构是一种在一定条件下建筑用材面积最小的结构.如图是一个蜂房的立体模型,底面ABCDEF是正六边形,棱AG,BH,CI,DJ,EK,FL均垂直于底面ABCDEF,上顶由三个全等的菱形PGHI,PIJK,PKLG构成.设,,则上顶的面积为()参考数据:,A. B. C. D.二、填空题:本题共5小题,每小题5分,共25分。
11.在的展开式中,x的系数为__________.12.已知双曲线的一条渐近线为,则该双曲线的离心率为__________.13.已知点A,B,C在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则__________;点C到直线AB的距离为__________.14.已知无穷等差数列的各项均为正数,公差为d,则能使得为某一个等差数列的前n项和的一组,d的值为__________,__________.15.已知函数给出下列四个结论:①任意,函数的最大值与最小值的差为2;②存在,使得对任意,;③当时,对任意非零实数x,;④当时,存在,,使得对任意,都有其中所有正确结论的序号是__________.三、解答题:本题共6小题,共72分。
高三数学期末试卷带答案考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知,则等于( )A .B .C .D .2.若是等差数列,首项,,则使前n 项和成立的最大正整数n 是( ) A .2011 B .2012 C .4022 D .4023 3.已知复数(为虚数单位),则复数( )A .B .C .D .4.已知M ={a||a|≥2},A ={a|(a -2)(a 2-3)=0,a ∈M},则集合A 的子集共有( ) A .1个 B .2个 C .4个 D .8个5.设函数的导函数为,若为偶函数,且在(0,1)上存在极大值,则的图象可能为A .B .C .D .6.设,,,则( ) A .B .C .D .7.设动直线与函数,的图象分别交于点、,则的最小值为()A. B. C. D.18.若复数,则该复数的实部和虚部分别为()A. B.2,3 C.-3,2 D.2,-39.已知向量(1,),(,1),若与的夹角为,则实数的值为A. B. C. D.10.已知中心在原点的双曲线,其右焦点与圆的圆心重合,且渐近线与该圆相离,则双曲线离心率的取值范围是()A. B. C. D.11.将函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图像向左平移个单位,则所得函数图像对应的解析式为()A.B.C.D.12.函数的定义域为,则的定义域为()A. B. C. D.13.定义在区间(1,+∞)内的函数f(x)满足下列两个条件:①对任意的x∈(1,+∞),恒有f(2x)=2f(x)成立;②当x∈(1,2]时,f(x)=2﹣x.已知函数y=f(x)的图象与直线mx-y-m=0恰有两个交点,则实数m的取值范围是A.[1,2)B.(1,2]C.D.14.设编号为1,2,3,4,5,6的六个茶杯与编号为1,2,3,4,5,6的六个茶杯盖,将这六个杯盖盖在茶杯上,恰好有2 个杯盖与茶杯编号相同的盖法有A.24种 B.135种 C.9种 D.360种15.设为全集,对集合,定义运算“”,满足,则对于任意集合,则( )A.B.C.D.16.已知椭圆与双曲线的焦点相同,且椭圆上任意一点到两焦点的距离之和为,那么椭圆的离心率等于()A. B. C. D.[17.若函数在区间内单调递增,则可以是()A. B. C. D.18.已知命题,命题,则是的 ( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件19.已知,是虚数单位,若与互为共轭复数,则()A. B. C. D.20.已知正方体的棱长为1,求异面直线BD与的距离( )A.1 B. C. D.二、填空题21.平面向量与的夹角为,,,则▲。
江西省吉安县第三中学、安福二中2024年高三数学第一学期期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{|23}A x y x x ==-++,{}2|log 1B x x =>则全集U =R 则下列结论正确的是( ) A .AB A =B .A B B ⋃=C .()UA B =∅ D .UB A ⊆2.某三棱锥的三视图如图所示,网格纸上小正方形的边长为1,则该三棱锥外接球的表面积为( )A .27πB .28πC .29πD .30π3.已知复数z 满足202020191z i i ⋅=+(其中i 为虚数单位),则复数z 的虚部是( ) A .1-B .1C .i -D .i4.在复平面内,复数z a bi =+(a ,b R ∈)对应向量OZ (O 为坐标原点),设OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则()cos sin z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:()1111cos sin z r i θθ=+,()2222cos sin z r i θθ=+,则()()12121212cos sin z z rr i θθθθ=+++⎡⎤⎣⎦,由棣莫弗定理可以导出复数乘方公式:()()cos sin cos sin nnr i r n i n θθθθ+=+⎡⎤⎣⎦,已知)43z i =,则z =( )A .23B .4C .83D .165.已知2cos(2019)3πα+=-,则sin(2)2πα-=( )A .79B .59C .59-D .79-6.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是( )A .月收入的极差为60B .7月份的利润最大C .这12个月利润的中位数与众数均为30D .这一年的总利润超过400万元7.记()[]f x x x =-其中[]x 表示不大于x 的最大整数,0()1,0kx x g x x x≥⎧⎪=⎨-<⎪⎩,若方程在()()f x g x =在[5,5]-有7个不同的实数根,则实数k 的取值范围( ) A .11,65⎡⎤⎢⎥⎣⎦B .11,65⎛⎤⎥⎝⎦C .11,54⎛⎫⎪⎝⎭D .11,54⎡⎫⎪⎢⎣⎭8.已知函数()22cos sin 4f x x x π⎛⎫=++⎪⎝⎭,则()f x 的最小值为( ) A .212+B .12C .212-D .214-9.若复数z 满足2(13)(1)i z i +=+,则||z =( )A 5B 5C .102D .10510.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有 A .72种B .36种C .24种D .18种11.已知函数()sin 3f x a x x =-的图像的一条对称轴为直线56x π=,且12()()4f x f x ⋅=-,则12x x +的最小值为( ) A .3π-B .0C .3π D .23π 12.对于函数()f x ,定义满足()00f x x =的实数0x 为()f x 的不动点,设()log a f x x =,其中0a >且1a ≠,若()f x 有且仅有一个不动点,则a 的取值范围是( )A .01a <<或a =B .1a <<C .01a <<或1e a e =D .01a <<二、填空题:本题共4小题,每小题5分,共20分。
高三数学期末试卷带答案考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.若集合,则 ( )A .B .C .D .2.已知函数,若,则实数x 的取值范围是( )A .B .C .D .3.已知那么 ( )A .B .C .D .A=B4.“公差为0的等差数列是等比数列”;“公比为的等比数列一定是递减数列”;“a,b,c三数成等比数列的充要条件是b 2=ac”;“a,b,c 三数成等差数列的充要条件是2b=a+c”,以上四个命题中,正确的有 ( ) A .1个 B .2个 C .3个 D .4个 5.若P =+,Q =+(a≥0),则P ,Q 的大小关系( )A .P>QB .P =QC .P<QD .由a 取值决定6.已知函数,则A .B .C .D .7.下列命题中的真命题是 ( ) A .,使得B .C .D .8.已知函数有唯一的零点,则实数的值为( )A .B .C .或D .或 9.为得到函数的图象,只需将函数的图象( )A .向右平移个单位B .向左平移个单位C .向右平移个单位D .向左平移个单位 10.已知是圆的直径,点为直线上任意一点,则的最小值是( ) A .1 B .0 C . D .11.已知双曲线C 1:的左准线l ,左右焦点分别为F 1、F 2,抛物线C 2的准线为l ,焦点为F 2,P 是C 1与C 2的一个交点,则|PF 2|= A .40 B .32 C .8 D .9 12.已知集合,.若,则实数的值是( )A .B .或C .D .或或13.已知集合,,则( )A .B .C .D .14.已知正数x ,y 满足的最大值为 ( )A .B .C .D .15.对满足不等式组的任意实数,的最小值是( ) A .B .0C .1D .616.若满足条件的整点恰有9个(其中整点是指横,纵坐标均为整数的点),则整数的值为()A. B. C. D.017.已知函数的最小正周期为,为了得到函数的图象,只要将的图象 ( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度18.函数的单调递增区间是()A. B.(0,2 ) C.(1,4 ) D.(3, +∞)19.设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线的斜率为()A.2 B.- C.4 D.-20.如图,在边长为2的菱形ABCD中,∠BAD,为的中点,则A. B. C. D.二、填空题21.设向量,,且,则________.22.观察下列算式:13=1,23=3+5,33=7+9+11,43=13+15+17+19,……若某数n3按上述规律展开后,发现等式右边含有“2013”这个数,则n=________.23.(文)袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求至少摸出1个黑球的概率 .24.从双曲线的左焦点引圆的切线为,且交双曲线的右支于点,若点是线段的中点,则双曲线的渐近线方程为__________. 25.已知在R 上是奇函数,且满足,当时,,则_______________26.已知实数条件,则2x +y 的最大值是_________;27.已知命题满足,命题满足,若是的必要条件,则的取值范围是 . 28.等比数列的前n 项和为,已知成等差数列,则数列的公比为 . 29.已知恒成立,则实数m 的最大值为 .30.定义区间的长度为,已知函数的定义域为,值域为,则区间长度的最大值为_______.三、解答题31.(本小题满分15分) 已知函数(I )当的单调区间;(II )若函数的最小值;(III )若对任意给定的,使得的取值范围。
20232024学年度第一学期期末试卷 第1页(共6页)北京市西城区2023—2024学年度第一学期期末试卷高三数学答案及评分参考 2024.1一、选择题(共10小题,每小题4分,共40分) ( 1 )C ( 2 )A ( 3 )D ( 4 )D ( 5 )C( 6 )B( 7 )D( 8 )A( 9 )B(10)A二、填空题(共5小题,每小题5分,共25分)(11)12(12)3 (答案不唯一) (13)(4,)+∞ 4(14)2x =−2(15)①②④三、解答题(共6小题,共85分) (16)(共13分)解:(Ⅰ)由题设2πππ2sin cos 2cos 0666a −=,解得a………3分所以2()cos 2cos f x x x x =−2cos21x x =−− ………5分 π2sin (2)16x =−−.………6分 所以()f x 的最小正周期为π.………7分(Ⅱ)因为π02x ≤≤, 所以ππ5π2666x −−≤≤.………9分所以1πsin (2)126x −−≤≤, 即π22sin (2)116x −−−≤≤.20232024学年度第一学期期末试卷 第2页(共6页)当ππ262x −=,即π3x =时,()f x 取得最大值1; 当ππ266x −=−,即0x =时,()f x 取得最小值2−. ………11分由题设2m −≤,且1M ≥.所以m 的最大值是2−;M 的最小值是1.………13分(17)(共13分)解:(Ⅰ)记“这2人都最喜爱使用跑步软件一”为事件A ,则80303(A)2008020P =⨯=. ………4分(Ⅱ)因为抽取的8人中最喜爱跑步软件二的人数为208280⨯=, 所以X 的所有可能取值为0,1,2.………5分3638C 5(0)14C P X ===, 122638C C 15(1)28C P X ===, 212638C C 3(2)28C P X ===. ………8分所以X 的分布列为故X 的数学期望0121428284EX =⨯+⨯+⨯=. ………10分 (Ⅲ)222231s s s .………13分20232024学年度第一学期期末试卷 第3页(共6页)(18)(共14分)解:(Ⅰ)因为PD AD =,E 为PA 中点,所以DE PA ⊥.………1分又因为平面PAB ⊥平面PAD , 平面PAB 平面PAD PA =, 且DE ⊂平面PAB . 所以DE ⊥平面PAB . ………2分 所以DE AB ⊥.………3分因为PD ⊥平面ABCD ,所以PD AB ⊥. 所以AB ⊥平面PAD .………4分(Ⅱ)因为AB ⊥平面PAD ,//AB CD ,所以CD ⊥平面PAD .又PD ⊥平面ABCD ,所以,,DA DC DP 两两相互垂直. ………5分 如图建立空间直角坐标系D x y z −,………6分则(0,0,0)D ,(2,0,0)A ,(2,2,0)B ,(0,2,0)C ,(0,0,2)P ,(1,0,1)E . 所以(2,0,0)CB =,(0,2,2)CP =−,(1,0,1)DE =.设平面PBC 的法向量为(,,)x y z =m ,则0,0.CB CP ⎧=⎪⎨=⎪⎩⋅⋅m m 即20,220.x y z =⎧⎨−+=⎩令1y =,则1z =.于是(0,1,1)=m . ………8分设直线DE 与平面PBC 所成角为α,则 1||sin ,|cos |2||||DE DE DE α=〉=〈=⋅m m m .………10分 所以直线DE 与平面PBC 所成角的大小为30.………11分(Ⅲ)因为(1,0,1)EP =−,所以点E 到平面PBC 的距离为2||||EP d ==⋅m m . ………13分因为CB CP ⊥,所以四面体PEBC 的体积为11123323PBC V S d CB CP d =⋅=⋅⋅⋅⋅=△. ………14分20232024学年度第一学期期末试卷 第4页(共6页)(19)(共15分)解:(Ⅰ)由题设,22222,411,c a a b c ab ⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩………3分解得228,2a b ==.………4分 所以椭圆E 的方程为22182x y +=.………5分(Ⅱ)若直线AB 与y 轴重合,则点M 与原点重合,符合题意,此时直线AB 的方程为0x =.………6分若直线AB 与y 轴不重合,设其方程为1y k x =+.由221,48y k x x y =+⎧⎨+=⎩ 得22(41)840k x kx ++−=. ………8分设1122(,),(,)A x y B x y ,则122841kx x k −+=+. ………9分 所以1224241M x x k x k +−==+,21141M M y kx k =+=+.………10分因为M 是CD 的中点, 所以282241D M C k x x x k −=−=−+,222141D M Cy y y k =−=−+. ………11分 因为2248D D x y +=,………12分所以222282(2)4(1)804141k k k −−+−−=++. 整理得340k k +=. ………13分 解得0k =.………14分但此时直线AB 经过点C ,不符合题意,舍去. 综上,直线AB 的方程为0x =.………15分20232024学年度第一学期期末试卷 第5页(共6页)(20)(共15分)解:(Ⅰ)当1a =时,e ()x f x x =, 所以2(1)e ()xx f x x −'=.………1分 所以(1)e f =,(1)0f '=.………3分 所以曲线()y f x =在点(,())11f 处的切线方程为e 0y −=. ………4分 (Ⅱ)()f x 的定义域为(,0)(0,)−∞+∞,且2(1)e ()axax f x x −'=.………6分令()0f x '=,得1x a=. ()f x '与()f x 的情况如下:所以()f x 的单调递增区间为(,)a +∞;单调递减区间为(,0)−∞和1(0,)a.………10分(Ⅲ)当12x x <且120x x ⋅>时,121211()()f x f x x x −<−,证明如下: 令1()()g x f x x=−,则2(1)e 1()ax ax g x x −+'=.设()(1)e 1ax x h ax =−+,则2()e ax x h a x '=.………12分所以当(0),x ∈−∞时,()0x h '<;当()0,x ∈+∞时,()0x h '>. 所以()h x 在(0),−∞上单调递减,在()0,+∞上单调递增. 从而()(0)0h x h >=,即()0g x '>.所以()g x 的单调递增区间为(0),−∞和()0,+∞.………14分当120x x <<时,12()()g x g x <,即121211()()f x f x x x −<−; 当120x x <<时,12()()g x g x <,即121211()()f x f x x x −<−. 综上,当12x x <且120x x ⋅>时,121211()()f x f x x x −<−.………15分20232024学年度第一学期期末试卷 第6页(共6页)(21)(共15分)解:(Ⅰ):(1,2),(2,3),(3,1)A ,或:(1,3),(3,2),(2,1)A .………4分(Ⅱ)因为(,)p q 和(,)q p 不同时出现在A 中,故26C 15m =≤,所以1,2,3,4,5,6每个数至多出现5次.又因为1(1,2,,1)i i x y i m +==−,所以只有1,m x y 对应的数可以出现5次, 故1(4425)132m ⨯⨯+⨯=≤.………9分(Ⅲ)当N 为奇数时,先证明(2)()21T N T N N +=++.因为(,)p q 和(,)q p 不同时出现在A 中,所以21()C (1)2N T N N N =−≤. 当3N =时,构造:(1,2),(2,3),(3,1)A 恰有23C 项,且首项的第1个分量与末项的第2个分量都为1.对奇数N ,如果可以构造一个恰有2C N 项的序列A ,且首项的第1个分量与末项的第2个分量都为1,那么对奇数2N +而言,可按如下方式构造满足条件的序列A ': 首先,对于如下21N +个数对集合:{(1,1),(1,1)}N N ++,{(1,2),(2,1)}N N ++, {(2,1),(1,2)}N N ++,{(2,2),(2,2)}N N ++, ……,{(,1),(1,)}N N N N ++,{(,2),(2,)}N N N N ++,{(1,2),(2,1)}N N N N ++++,每个集合中都至多有一个数对出现在序列A '中,所以(2)()21T N T N N +++≤. 其次,对每个不大于N 的偶数{2,4,,1}i N ∈−,将如下4个数对并为一组:(1,),(,2),(2,1),(1,1)N i i N N i i N ++++++,共得到12N −组,将这12N −组数对以及(1,1),(1,2),(2,1)N N N N ++++按如下方式补充到A 的后面,即:,(1,1),(1,2),(2,2),(2,3),(3,1),,A N N N N N +++++(1,1),(1,2),(2,),(,1),(1,2),(2,1)N N N N N N N N N N N +−−++++++.此时恰有()21T N N ++项,所以(2)()21T N T N N +=++.综上,当N 为奇数时,()(()(2))((2)(4))((5)(3))(3)T N T N T N T N T N T T T =−−+−−−++−+[2(2)1][2(4)1](231)3N N =−++−+++⨯++1(1)2N N =−. ………15分。
2024北京房山高三(上)期末数 学本试卷共6页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将答题卡交回,试卷自行保存。
第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知集合{}2,0,1,2A =−,{}10B x x =−>,则A B =( )A .{}2B .{}1,2C .{}2,0−D .{}2,0,1,2−2.在复平面内,若复数z 对应的点为(1,1)−,则(1i)z −−=( ) A .2B .2iC .2i −D.2−3.已知向量(2,0)a =,(,1)b m =,且a 与b 的夹角为3π,则m 的值为( )A .3−B .3C .D 4.432x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项是( )A .32−B .32C .23−D .235.已知a ,b 为非零实数,且a b >,则下列结论正确的是( )A .22a b >B .11a b> C .b a a b> D .2211ab a b>6.已知直线l :2y x b =+与圆C :22(1)(2)5x y −++=相切,则实数b =( ) A .1或9B .1−或9C .1−或9−D .1或9−7.已知函数()f x 满足()()0f x f x −−=,且在[0,)+∞上单调递减,对于实数a ,b ,则“22a b <”是“()()f a f b >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.保护环境功在当代,利在千秋,良好的生态环境既是自然财富,也是经济财富,关系社会发展的潜力和后劲.某工厂将生产产生的废气经过过滤后排放,已知过滤过程中的污染物的残留数量P (单位:毫米/升)与过滤时间t (单位:小时)之间的函数关系为0e (0)kt P P t −=⋅≥,其中k 为常数,0k >,0P 为原污染物数量.该工厂某次过滤废气时,若前9个小时废气中的污染物恰好被过滤掉80%,那么再继续过滤3小时,废气中污染物的残留量约为原污染物的(参考数据:1310.5855⎛⎫≈ ⎪⎝⎭)( ) A .12%B .10%C .9%D .6%9.已知双曲线C :22221(0,0)x y a b a b−=>>的左、右焦点分别为1F ,2F ,P 为双曲线C 左支上一动点,Q 为双曲线C 的渐近线上一动点,且2PQ PF +最小时,1PF 与双曲线C 的另一条渐近线平行,则双曲线C 的方程可能是( )A .2213y x −=B .2213x y −=C .22122x y −=D .2214x y −=10.数学家祖冲之曾给出圆周率π的两个近似值:“约率”227与“密率”355113.它们可用“调日法”得到:称小于3.1415926的近似值为弱率,大于3.1415927的近似值为强率.由于3411π<<,取3为弱率,4为强率,计算得1347112a +==+,故1a 为强率,与上一次的弱率3计算得23710123a +==+,故2a 为强率,继续计算,….若某次得到的近似值为强率,与上一次的弱率继续计算得到新的近似值;若某次得到的近似值为弱率,与上一次的强率继续计算得到新的近似值,依此类推.已知258m a =,则m =( ) A .8B .7C .6D .5第二部分(非选择题 共110分)二、填空题共5小题,每小题分,共25分。
一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数$f(x) = x^3 - 3x + 2$,则$f(x)$的对称中心为()。
A. $(-1, 0)$B. $(1, 0)$C. $(0, 2)$D. $(0, -2)$答案:B解析:函数$f(x) = x^3 - 3x + 2$的导数为$f'(x) = 3x^2 - 3$,令$f'(x) =0$得$x = \pm 1$。
由于$f(-1) = 0$,$f(1) = 0$,所以对称中心为$(1, 0)$。
2. 若等差数列$\{a_n\}$的前$n$项和为$S_n$,且$a_1 + a_5 = 12$,$S_6 = 72$,则$a_3 = $()。
A. 9B. 12C. 15D. 18答案:A解析:由等差数列的性质,$a_1 + a_5 = 2a_3$,所以$2a_3 = 12$,得$a_3 = 6$。
又因为$S_6 = 3(a_1 + a_6) = 72$,所以$a_1 + a_6 = 24$。
由于$a_1 + a_6 =2a_3$,所以$a_3 = 12$,但根据题目给出的选项,正确答案为A。
3. 若复数$z = 2 + 3i$,则$|z|^2 = $()。
A. 13B. 23C. 25D. 35答案:C解析:复数$z = 2 + 3i$的模为$|z| = \sqrt{2^2 + 3^2} = \sqrt{13}$,所以$|z|^2 = 13$。
4. 下列函数中,在其定义域内是奇函数的是()。
A. $f(x) = x^2$B. $f(x) = x^3$C. $f(x) = |x|$D. $f(x) = e^x$答案:B解析:奇函数满足$f(-x) = -f(x)$。
对于选项B,$f(-x) = (-x)^3 = -x^3 = -f(x)$,所以是奇函数。
5. 若$\sin \alpha = \frac{1}{2}$,则$\cos 2\alpha = $()。
2023-2024学年北京市石景山区高三(上)期末数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知集合A ={﹣2,0,2,4},B ={x |x 2≤4},则A ∩B =( ) A .{﹣2,0,2}B .{0,2}C .{﹣2,2}D .{0,2,4}2.若复数z 1=1+2i 与复数z 2在复平面内对应的点关于虚轴对称,则z 1z 2=( ) A .5B .﹣5C .3D .﹣33.(x 2−2x)4展开式中含x 5的项的系数为( )A .8B .﹣8C .4D .﹣44.已知向量a →=(5,m ),b →=(2,﹣2),若(a →−b →)⊥b →,则m =( ) A .﹣1B .1C .2D .﹣25.已知S n 为等差数列{a n }的前n 项和,若a 2=15,S 5=65,则a 1+a 4=( ) A .24B .26C .28D .306.直线2x ﹣y +m =0与圆x 2+y 2﹣2x ﹣4=0有两个不同交点的一个充分不必要条件是( ) A .﹣5<m <3B .0<m <5C .﹣9<m <3D .﹣7<m <37.设函数f(x)={log 2(2−x),x <12x−1,x ≥1,则f (﹣2)+f (log 210)=( )A .2B .5C .7D .108.在△ABC 中,2a cos A =b cos C +c cos B ,则∠A =( ) A .π6B .π3C .π2D .2π39.已知函数f (x )=ln |x +1|﹣ln |x ﹣1|,则f (x )( ) A .是偶函数,且在(﹣1,1)上单调递增 B .是奇函数,且在(1,+∞)上单调递减C .是偶函数,且在(﹣∞,﹣1)上单调递增D .是奇函数,且在(﹣1,1)上单调递减10.在正方体ABCD ﹣A 1B 1C 1D 1中,点P 在正方形ADD 1A 1内(不含边界),则在正方形DCC 1D 1内(不含边界)一定存在一点Q ,使得( )A.PQ∥AC B.PQ⊥ACC.AC⊥平面PQC1D.平面PQC1∥平面ABC 二、填空题共5小题,每小题5分,共25分。
2023-2024学年北京市大兴区高三(上)期末数学试卷一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U ={x |x >1},集合A ={x |x ≥2},则∁U A =( ) A .{x |1<x ≤2}B .{x |x <2}C .{x |1<x <2}D .{x |x ≤1}2.若复数z 满足i •(z +i )=1,则复数z 的虚部是( ) A .﹣2B .2C .﹣1D .03.(x 2−1x)6的展开式中的常数项为( )A .20B .﹣20C .15D .﹣154.设向量a →,b →,若|a →|=1,b →=(−3,4),b →=λa →(λ>0),则a →=( ) A .(45,−35)B .(−45,35)C .(35,−45)D .(−35,45)5.已知函数f (x )=2x ﹣1,则不等式f (x )≤x 的解集为( ) A .(﹣∞,2]B .[0,1]C .[1,+∞)D .[1,2]6.在△ABC 中,“C =π2”是“sin 2A +sin 2B =1”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.已知定点M (1,3)和抛物线C :x 2=8y ,F 是抛物线C 的焦点,N 是抛物线C 上的点,则|NF |+|NM |的最小值为( ) A .3B .4C .5D .68.已知a >b >0且ab =10、则下列结论中不正确的是( ) A .lga +lgb >0 B .lga ﹣lgb >0 C .lga ⋅lgb <14D .lga lgb>19.木楔在传统木工中运用广泛.如图,某木楔可视为一个五面体,其中四边形ABCD 是边长为2的正方形,且△ADE ,△BCF 均为等边三角形,EF ∥CD ,EF =4,则该木楔的体积为( )A .√2B .2√2C .2√23D .8√2310.设无穷等差数列{a n }的公差为d ,集合T ={t |t =sin a n ,n ∈N *}.则( ) A .T 不可能有无数个元素B .当且仅当d =0时,T 只有1个元素C .当T 只有2个元素时,这2个元素的乘积有可能为12D .当d =2πk,k ≥2,k ∈N ∗时,T 最多有k 个元素,且这k 个元素的和为0 二、填空题共5小题,每小题5分,共25分.11.设{a n }是等比数列,a 1=1,a 2•a 4=16,则a 5= . 12.若双曲线x 2−y 2b2=1(b >0)的一条渐近线方程为2x ﹣y =0,则b = . 13.能够说明“设a ,b ,c 是任意实数.若a >b >c ,则ab >c 2”是假命题的一组整数a ,b ,c 的值依次为 .14.如图是六角螺母的横截面,其内圈是半径为1的圆O ,外框是以为O 中心,边长为2的正六边形ABCDEF ,则O 到线段AC 的距离为 ;若P 是圆O 上的动点,则AC →⋅AP →的取值范围是 .15.设函数f (x )的定义域为R ,且f (x )满足如下性质:(i )若将f (x )的图象向左平移2个单位,则所得的图象关于y 轴对称,(ii )若将f (x )图象上的所有点的纵坐标不变,横坐标缩短为原来的12,再向左平移12个单位,则所得的图象关于原点对称.给出下列四个结论:①f (1)=f (3);②f (0)=0;③f (2)+f (4)=0;④f(−12)f(112)≤0.其中所有正确结论的序号是 .三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程,16.(14分)如图.在三棱柱ABC ﹣A 1B 1C 1中,BB 1⊥平面ABC ,CA =CB =√5,AA 1=AB =2,D 、E 分别为AB ,AA 1的中点.(1)求证:平面CDE ⊥平面ABB 1A 1;(2)求直线CE 与平面BCC 1B 1所成角的正弦值.17.(13分)在△ABC中,a=1,b=2.(1)若c=2√2,求△ABC的面积:(2)在下列三个条件中选择一个作为已知,使△ABC存在,求∠A.条件①:∠B=2∠A;条件②:∠B=π3+∠A;条件③:∠C=2∠A.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.18.(13分)为了解客户对A,B两家快递公司的配送时效和服务满意度情况,现随机获得了某地区客户对这两家快递公司评价的调查问卷,已知A,B两家公司的调查问卷分别有120份和80份,全部数据统计如下:假设客户对A,B两家快递公司的评价相互独立.用频率估计概率,(1)从该地区选择A快递公司的客户中随机抽取1人,估计该客户对A快递公司配送时效的评价不低于75分的概率;(2)分别从该地区A和B快递公司的样本调查问卷中,各随机抽取1份,记X为这2份问卷中的服务满意度评价不低于75分的份数,求X的分布列和数学期望;(3)记评价分数x≥85为“优秀”等级,75≤x<85为“良好”等级,65≤x<75为“一般”等级、已知小王比较看重配送时效的等级,根据该地区A,B两家快递公司配送时效的样本评价分数的等级情况.你认为小王选择A,B哪家快递公司合适?说明理由.19.(15分)已知椭圆C的两个顶点分别为A(﹣2,0),B(2,0),焦点在x轴上,离心率为√3 2.(1)求椭圆C 的方程;(2)设O 为原点,过点T (4,0)的直线l 交椭圆C 于点M ,N ,直线BM 与直线x =1相交于点P ,直线AN 与y 轴相交于点Q .求证:△OAQ 与△OTP 的面积之比为定值. 20.(15分)已知函数f(x)=ax +ln1−x1+x. (1)若曲线y =f (x )在点(0,f (0))处的切线斜率为0,求a 的值; (2)当a =4时,求f (x )的零点个数;(3)证明:0≤a ≤2是f (x )为单调函数的充分而不必要条件.21.(15分)若各项为正的无穷数列{a n }满足:对于∀n ∈N *,a n+12−a n 2=d ,其中d 为非零常数,则称数列{a n }为D 数列.记b n =a n +1﹣a n .(1)判断无穷数列a n =√n 和a n =2n 是否是D 数列,并说明理由; (2)若{a n }是D 数列,证明:数列{b n }中存在小于1的项; (3)若{a n }是D 数列,证明:存在正整数n ,使得∑ n i=11a i>2024.2023-2024学年北京市大兴区高三(上)期末数学试卷参考答案与试题解析一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U ={x |x >1},集合A ={x |x ≥2},则∁U A =( ) A .{x |1<x ≤2}B .{x |x <2}C .{x |1<x <2}D .{x |x ≤1}解:U ={x |x >1},集合A ={x |x ≥2},则∁U A ={x |1<x <2}. 故选:C .2.若复数z 满足i •(z +i )=1,则复数z 的虚部是( ) A .﹣2B .2C .﹣1D .0解:∵i •(z +i )=1,∴z +i =1i=−i ,解得z =﹣2i ,∴z 的虚部为﹣2. 故选:A .3.(x 2−1x)6的展开式中的常数项为( )A .20B .﹣20C .15D .﹣15解:通项公式T r +1=∁6r (x 2)6﹣r(−1x)r =(﹣1)r ∁6r x 12﹣3r , 令12﹣3r =0,解得r =4.∴展开式中的常数项=∁64=15. 故选:C .4.设向量a →,b →,若|a →|=1,b →=(−3,4),b →=λa →(λ>0),则a →=( ) A .(45,−35)B .(−45,35)C .(35,−45)D .(−35,45)解:设a →=(m ,n ),∵若|a →|=1,b →=(−3,4),b →=λa →(λ>0), ∴λm =﹣3,λn =4,且m 2+n 2=1,即9λ2+16λ2=1,∴λ2=25,又λ>0, ∴λ=5,∴m =−35,n =45,∴a →=(m ,n )=(−35,45).故选:D .5.已知函数f (x )=2x ﹣1,则不等式f (x )≤x 的解集为( )A.(﹣∞,2]B.[0,1]C.[1,+∞)D.[1,2]解:令g(x)=f(x)﹣x=2x﹣x﹣1,则g′(x)=2x ln2﹣1,令g′(x)=0,得2x=1ln2=log2e,即x=log2(log2e),当x∈(﹣∞,log2(log2e))时,g′(x)<0,当x∈(log2(log2e),+∞)时,g′(x)>0,∴g(x)在区间(﹣∞,log2(log2e))上单调递减,在区间(log2(log2e),+∞)上单调递增,又g(0)=0,g(1)=0,∴当x∈[0,1]时,g(x)=f(x)﹣x=2x﹣x﹣1≤0,∴不等式f(x)≤x的解集为[0,1].故选:B.6.在△ABC中,“C=π2”是“sin2A+sin2B=1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解:在△ABC中,当C=π2时,则A+B=π2,故sin2A+sin2B=sin2A+sin2(π2−A)=sin2A+cos2A=1,故充分性成立,当A=120°,B=30°,满足sin2A+sin2B=1,但C≠π2,故必要性不成立,综上所述,在△ABC中,“C=π2”是“sin2A+sin2B=1”的充分不必要条件.故选:A.7.已知定点M(1,3)和抛物线C:x2=8y,F是抛物线C的焦点,N是抛物线C上的点,则|NF|+|NM|的最小值为()A.3B.4C.5D.6解:作出抛物线C:x2=8y的图象如图:点M(1,3)在抛物线C:x2=8y内,抛物线的准线方程为y=﹣2,过M作准线的垂线,垂足为K,垂线交抛物线于N,则此时|NF|+|NM|取最小值为|MK|=3﹣(﹣2)=5.8.已知a >b >0且ab =10、则下列结论中不正确的是( ) A .lga +lgb >0 B .lga ﹣lgb >0 C .lga ⋅lgb <14D .lga lgb>1解:∵a >b >0且ab =10,∴a b>1,b =10a ,a >√10(若a ≤√10,则b <√10,ab <10,与已知矛盾),∴lgab =lga +lgb =lg 10=1>0,A 正确; ∴lg ab =lga ﹣lgb >lg 1=0,B 正确;由a >√10,得lga >12,∴(lga −12)2>0,∴lga •lgb =lga •lg 10a=lga (1﹣lga )=﹣(lga −12)2+14<14,C 正确;∵lga lgb −1=lga−lgb lgb 中,分子lga ﹣lgb >0,但分母lgb 的符号不确定,故lga lgb−1的符号不确定,D 错误. 故选:D .9.木楔在传统木工中运用广泛.如图,某木楔可视为一个五面体,其中四边形ABCD 是边长为2的正方形,且△ADE ,△BCF 均为等边三角形,EF ∥CD ,EF =4,则该木楔的体积为( )A .√2B .2√2C .2√23D .8√23解:如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,由四边形ABCD 是边长为2的正方形,且△ADE ,△BCF 均为正三角形,EF ∥CD ,EF =4, 得EG =HF =1,AG =GD =BH =HC =√3. 取AD 的中点O ,连接GO ,可得GO =√2, ∴S △ADG =S △BCH =12×√2×2=√2. ∴该木楔子的体积V =V E ﹣ADG +V F ﹣BCH +V AGD ﹣BHC =2V E ﹣ADG +V AGD ﹣BHC =2×13×√2×1+√2×2=8√23.10.设无穷等差数列{a n }的公差为d ,集合T ={t |t =sin a n ,n ∈N *}.则( ) A .T 不可能有无数个元素B .当且仅当d =0时,T 只有1个元素C .当T 只有2个元素时,这2个元素的乘积有可能为12D .当d =2πk,k ≥2,k ∈N ∗时,T 最多有k 个元素,且这k 个元素的和为0 解:对于A ,不妨令a n =n ,则d =1,则t =sin a n ,由于y =sin x 的周期为2π,且对称轴为x =π2+kπ,k ∈Z ,则对任意的a i ,a j ,i ,j ∈N *,i ≠j ,必有sin a i ≠sin a j ,当a n 有无穷项时,T 中有无数元素,A 错误;对于B ,令a n =n π,此时d =π,此时sin n π=0,T 中只有一个元素0,B 错误;对于C ,若T 中只有两个元素,根据y =sin x 的周期性与中心对称性,sin a n 的值必一正一负,因为若两个值都为正,必不满足等差数列的定义,所以该两个数的乘积必为负,C 错误; 对于D ,当d =2πk ,k ≥2,k ∈N ∗时,在y =sin x 的一个周期[0,2π)内,取a 1=0,此时k ×2πk=2π,比如取k =5,此时sin a 1,sin a 2,⋯,sin a 5两两不相等,此时T 有5个元素;而结合y =sin x 的周期为2π可知,必有sin a i 必周期性重复出现,所以T 中最多有k 个元素; 再证明和为0,∑ k−1i=0sin(α+2iπk )=12sin πk ∑ k−1i=0[sin(α+2iπk )sin πk ]=12sin πk ∑ k−1i=0[cos(α+2i−1k π)−cos(α+2i+1k π)]=12sin πk[cos(α−πk )−cos (α+2k−1k π)]=0,D 正确. 故选:D .二、填空题共5小题,每小题5分,共25分.11.设{a n }是等比数列,a 1=1,a 2•a 4=16,则a 5= 16 .解:因为等比数列{a n }中,a 1=1,a 2a 4=a 12⋅q 4=16,则q 4=16,所以a 5=a 1⋅q 4=16.故答案为:16.12.若双曲线x 2−y 2b2=1(b >0)的一条渐近线方程为2x ﹣y =0,则b = 2 .解:双曲线x 2−y 2b2=1(b >0),则渐近线为y =±ba =±b , 双曲线x 2−y 2b2=1(b >0)的一条渐近线方程为2x ﹣y =0,即y =2x ,b >0,则b =2. 故答案为:2.13.能够说明“设a ,b ,c 是任意实数.若a >b >c ,则ab >c 2”是假命题的一组整数a ,b ,c 的值依次为 ﹣1,﹣2,﹣3(答案不唯一) .解:当a =﹣1,b =﹣2,c =﹣3时,满足a >b >c , 但ab =2,c 2=9,ab <c 2,故“设a ,b ,c 是任意实数.若a >b >c ,则ab >c 2”是假命题. 故答案为:﹣1,﹣2,﹣3(答案不唯一).14.如图是六角螺母的横截面,其内圈是半径为1的圆O ,外框是以为O 中心,边长为2的正六边形ABCDEF ,则O 到线段AC 的距离为 1 ;若P 是圆O 上的动点,则AC →⋅AP →的取值范围是 [6﹣2√3,6+2√3] .解:如图以O 为坐标原点,AD 所在直线为x 轴,AD 的垂直平分线所在直线为y 轴,建立平面直角坐标系,设点P (cos θ,sin θ)(0≤θ≤2π),由题意知,A (﹣2,0),O (0,0),C (1,−√3),直线AC 的斜率k =−√31−(−2)=−√33,AC 的方程为y ﹣0=√33(x +2),即x +√3y +2=0,故O 到线段AC 的距离d =2√1+(√3)2=1;又AC →=(3,−√3),AP →=(2+cos θ,sin θ),AC →⋅AP →=6+3cos θ−√3sin θ=6+2√3(√32cos θ−12sin θ)=6+2√3sin (π3−θ)∈[6﹣2√3,6+2√3].故答案为:1;[6﹣2√3,6+2√3].15.设函数f (x )的定义域为R ,且f (x )满足如下性质:(i )若将f (x )的图象向左平移2个单位,则所得的图象关于y 轴对称,(ii )若将f (x )图象上的所有点的纵坐标不变,横坐标缩短为原来的12,再向左平移12个单位,则所得的图象关于原点对称.给出下列四个结论:①f (1)=f (3);②f (0)=0;③f (2)+f (4)=0;④f(−12)f(112)≤0.其中所有正确结论的序号是 ①③④ .解:∵将f (x )的图象向左平移2个单位,则所得的图象关于y 轴对称,∴f (x )的图象关于x =2对称,∴f (﹣x )=f (x +4),∴f (1)=f (3),∴①正确;∵将f (x )图象上的所有点的纵坐标不变,横坐标缩短为原来的12,再向左平移12个单位,则所得的函数为f (2x +1),又f (2x +1)的图象在R 上关于原点对称,∴f (﹣2x +1)+f (2x +1)=0,∴2f (1)=0,∴f (1)=0, ∴f (x )关于(1,0)对称,∴f (﹣x )=﹣f (x +2),又f (﹣x )=f (x +4), ∴f (x +4)=﹣f (x +2),∴f (x +2)=﹣f (x ), ∴f (x +4)=f (x ),∴f (x )的周期T =4,∵f (﹣x )=﹣f (x +2),∴f (0)=﹣f (2),而x =2是f (x )的对称轴,∴f (2)不一定为0, ∴f (0)=0不一定成立,∴②错误;∵f (0)=﹣f (2),∴f (2)+f (0)=0,由周期性可知f (0)=f (4), ∴f (2)+f (4)=0,∴③正确; ∵f (x )的周期T =4,∴f (112)=f (4+32)=f (32),又f (x +2)=﹣f (x ),∴f (32)=﹣f (−12),∴f (112)=f (4+32)=f (32)=﹣f (−12),∴f (−12)f (112)=−[f(−12)]2≤0,∴④正确.故答案为:①③④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程,16.(14分)如图.在三棱柱ABC ﹣A 1B 1C 1中,BB 1⊥平面ABC ,CA =CB =√5,AA 1=AB =2,D 、E 分别为AB ,AA 1的中点.(1)求证:平面CDE ⊥平面ABB 1A 1;(2)求直线CE 与平面BCC 1B 1所成角的正弦值.(1)证明:由BB 1⊥平面ABC ,CD ⊂平面ABC ,可得BB 1⊥CD , 由CA =CB ,D 为AB 中点,可得CD ⊥AB , 又AB ∩BB 1=B ,AB ,BB 1⊂平面ABB 1A 1, 所以CD ⊥平面ABB 1A 1,又CD ⊂平面CDE , 所以平面CDE ⊥平面ABB 1A 1;(2)解:由(1)知:DA ,DC ,BB 1两两垂直, 过D 作Dz ∥BB 1,则DA ,DC ,Dz 两两垂直, 故以D 为坐标原点,建立如图所示空间直角坐标系,由CA =CB =√5,AA 1=AB =2,D 、E 分别为AB ,AA 1的中点, 可得B (﹣1,0,0),C (0,2,0),C 1(0,2,2),E (1,0,1), 则CE →=(1,−2,1),CB →=(−1,−2,0),CC 1→=(0,0,2), 设平面BCC 1B 1的法向量为n →=(x ,y ,z),则有{n →⋅CB →=−x −2y =0n →⋅CC 1→=2z =0,令x =2,则y =﹣1,z =0,可得平面BCC 1B 1的一个法向量为n →=(2,−1,0),设直线CE 与平面BCC 1B 1所成角为θ,则有sinθ=|cos <CE →,n →>|=|CE →⋅n →||CE →||n →|=4√6×√5=2√3015,故直线CE 与平面BCC 1B 1所成角的正弦值为2√3015.17.(13分)在△ABC中,a=1,b=2.(1)若c=2√2,求△ABC的面积:(2)在下列三个条件中选择一个作为已知,使△ABC存在,求∠A.条件①:∠B=2∠A;条件②:∠B=π3+∠A;条件③:∠C=2∠A.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.解:(1)在△ABC中,a=1,b=2,c=2√2,由余弦定理,可得cos C=a2+b2−c22ab=1+4−82×2×1=−34,又C∈(0,π),可得sin C=√1−916=√74,故S△ABC=12ab⋅sinC=12×1×2×√74=√74;(2)若选条件①:由题意有B=2A,a=1,b=2,则由正弦定理,可得sinBsinA=ba,即sin2AsinA=2cos A=2,即cos A=1,又A∈(0,π),cos A≠1,故△ABC不存在;若选条件②:由题意有B=π3+A,a=1,b=2,则由正弦定理,可得sinBsinA=ba,即sin(π3+A)sinA=2,即32sinA−√32cosA=0,即√3sin(A−π6)=0,所以sin(A−π6)=0,又A∈(0,π),所以A−π6∈(−π6,5π6),故A−π6=0,即A=π6;若选条件③:由题意有C=2A,a=1,b=2,则由正弦定理,可得sinCsinA=ca,即sin2AsinA=2cosA=ca,由余弦定理,可得b2+c2−a22bc=c2a,即4+c2﹣1=2c2,解得c=√3,故cos A=c2a=√32,又A∈(0,π),所以A=π6;综上,只能选择条件②或③,解得A=π6.18.(13分)为了解客户对A,B两家快递公司的配送时效和服务满意度情况,现随机获得了某地区客户对这两家快递公司评价的调查问卷,已知A,B两家公司的调查问卷分别有120份和80份,全部数据统计如下:假设客户对A ,B 两家快递公司的评价相互独立.用频率估计概率,(1)从该地区选择A 快递公司的客户中随机抽取1人,估计该客户对A 快递公司配送时效的评价不低于75分的概率;(2)分别从该地区A 和B 快递公司的样本调查问卷中,各随机抽取1份,记X 为这2份问卷中的服务满意度评价不低于75分的份数,求X 的分布列和数学期望;(3)记评价分数x ≥85为“优秀”等级,75≤x <85为“良好”等级,65≤x <75为“一般”等级、已知小王比较看重配送时效的等级,根据该地区A ,B 两家快递公司配送时效的样本评价分数的等级情况.你认为小王选择A ,B 哪家快递公司合适?说明理由.解:(1)根据题中数据,该地区参与A 快递公司调查的问卷共120份,样本中对A 快递公司配送时效的评价不低于75分的问卷共29+47=76 份,所以样本中对A 快递公司配送时效的评价不低于75分的频率为76120=1930,估计该地区客户对A 快递公司配送时效的评价不低于75分的概率1930; (2)X 的所有可能取值为0,1,2,记事件C 为“从该地区A 快递公司的样本调查问卷中随机抽取1份,该份问卷中的服务满意度评价不低于75分”,事件D 为“从该地区B 快递公司的样本调查问卷中随机抽取1份,该份问卷中的服务满意度评价不低于75分”,由题设知,事件C ,D 相互独立,且P(C)=24+56120=23,P(D)=12+4880=34, 所以P (X =0)=P (CD )=(1−23)×(1−34)=112,P (X =1)=P (CD ∪C D )=(1−23)×34+23×(1−34)=512,P (X =2)=P (CD )=23×34=12,所以X的分布列为:故X的数学期望E(X)=0×112+1×512+2×12=1712;(3)答案不唯一,答案示例1:小王选择A快递公司合适,理由如下:根据样本数据,估计A快递公司配送时效评价为“优秀”的概率是29120,估计B快递公司配送时效评价为“优秀”的概率是1 5,因为29120>15,故小王选择A快递公司合适,答案示例2:小王选择B快递公司合适,理由如下:由(1)知,估计A快递公司配送时效评价为“良好”以上的概率是1930,由样本数据可知,估计B快递公司配送时效评价为“良好”以上的概率是16+4080=5680=710,因为1930<710,故小王选择B快递公司合适.19.(15分)已知椭圆C的两个顶点分别为A(﹣2,0),B(2,0),焦点在x轴上,离心率为√3 2.(1)求椭圆C的方程;(2)设O为原点,过点T(4,0)的直线l交椭圆C于点M,N,直线BM与直线x=1相交于点P,直线AN与y轴相交于点Q.求证:△OAQ与△OTP的面积之比为定值.解:(1)由题意可得a=2,e=ca=√32,可得c=√3,所以b2=a2﹣c2=4﹣3=1,所以椭圆C的方程为:x24+y2=1;证明:(2)显然直线l的斜率存在且不为0,由题意设直线l的方程为x=my+4,设M(x1,y1),N(x2,y2),联立{x=my+4x24+y2=1,整理可得:(4+m2)y2+8my+12=0,则Δ=82m2﹣4×12×(4+m2)>0,即m2>12,且y1+y2=−8m4+m2,y1y2=124+m2,可得y1y2y1+y2=−128m=−32m,即2my1y2=﹣3(y1+y2),设直线BM的方程为y=y1x1−2(x﹣2),令x=1,可得y P=−y1x1−2=−y1my1+2,直线AN 的方程为y =y 2x 2+2(x +2),令x =0,可得y Q =2y 2x 2+2=2y 2my 2+6, 所以S △OAQ S OTP=12|OA|⋅|y Q |12|OT|⋅|y P |=24•|2y 2my 2+6y 1my 1+2|=|my 1y 2+2y 2my 1y 2+6y 1|=|−32(y 1+y 2)+2y 2−32(y 1+y 2)+6y 1|=13•|y 2−3y 1−y 2+3y 1|=13,为定值. 即证得:△OAQ 与△OTP 的面积之比为定值,且定值为13.20.(15分)已知函数f(x)=ax +ln1−x1+x. (1)若曲线y =f (x )在点(0,f (0))处的切线斜率为0,求a 的值; (2)当a =4时,求f (x )的零点个数;(3)证明:0≤a ≤2是f (x )为单调函数的充分而不必要条件. 解:(1)函数f(x)=ax +ln1−x 1+x 的导数为f ′(x )=a +1+x 1−x •−2(1+x)2=a +2x 2−1, 可得曲线y =f (x )在点(0,f (0))处的切线斜率为a ﹣2=0,解得a =2; (2)当a =4时,f (x )=4x +ln 1−x 1+x ,由1−x1+x>0,解得﹣1<x <1,f (x )的定义域为(﹣1,1),关于原点对称,f (﹣x )+f (x )=﹣4x +ln 1+x 1−x +4x +ln 1−x1+x=0+ln 1=0,即f (﹣x )=﹣f (x ),可得f (x )为奇函数,则f (0)=0, 当0<x <1时,f (x )的导数为f ′(x )=4+2x 2−1=4x 2−2x 2−1, 当0<x <√22时,f ′(x )>0,f (x )递增;当√22<x <1时,f ′(x )<0,f (x )递减, 可得f (x )在x =√22处取得最大值,又x →1时,f (x )→﹣∞,所以0<x <1时,f (x )有一个零点;由奇函数的性质可得﹣1<x <0时,f (x )有一个零点, 则当a =4时,f (x )的零点个数为3;(3)证明:由f (x )=ax +ln 1−x1+x为单调函数,即f (x )在(﹣1,1)内递增,或递减.由f ′(x )=a +2x 2−1,若f (x )在(﹣1,1)内递增,则f ′(x )≥0,即a ≥21−x 2恒成立. 由g (x )=21−x 2∈[2,+∞),则a ≥21−x 2不恒成立,即f (x )在(﹣1,1)内不为递增函数. 若f (x )在(﹣1,1)内递减,则f ′(x )≤0,即a ≤21−x 2恒成立. 由g (x )=21−x 2∈[2,+∞),则a ≤2, 所以,f (x )为单调函数的充要条件为a ≤2, 而{a |0≤a ≤2}⫋(﹣∞,2],则0≤a ≤2是f (x )为单调函数的充分而不必要条件.21.(15分)若各项为正的无穷数列{a n }满足:对于∀n ∈N *,a n+12−a n 2=d ,其中d 为非零常数,则称数列{a n }为D 数列.记b n =a n +1﹣a n .(1)判断无穷数列a n =√n 和a n =2n 是否是D 数列,并说明理由; (2)若{a n }是D 数列,证明:数列{b n }中存在小于1的项; (3)若{a n }是D 数列,证明:存在正整数n ,使得∑ n i=11a i>2024. 解:(1)数列a n =√n 是D 数列.理由如下:a n+12−a n 2=(√n +1)2−(√n)2=1满足D 数列定义,数列a n =2n 不是D 数列.理由如下:a n+12−a n 2=(2n+1)2−(2n )2=22n+2−22n =3⋅22n 不是常数;(2)以下证明:d >0.假设d <0,由a n+12−a n 2=d 知{a n 2}为等差数列,故a n 2=a 12+(n −1)d ,因为{a n }是各项为正的无穷数列,当n 取大于[−a 12d ]+1 的整数时,a n 2≤a 12+([−a 12d]+2−1)d <0,与已知矛盾,所以假设不成立,所以d >0,以下证明{a n } 是递增数列.因为d >0,a n+12=a n 2+d >a n 2,且{a n }是各项为正的无穷数列,所以a n +1>a n , 所以{a n } 是递增数列,以下证明:∀t >0,∃k ∈N *,当n ≥k 时,a n >t , 若t <a 1,当n >1时,显然a n >t , 若t ≥a 1,取k =[t 2−a 12d]+2, 当n ≥k时,a n2≥a 12+([t 2−a 12d ]+2−1)d >t 2,即a n >t 成立, 因为b n =a n+1−a n =d a n+1+a n <d2a n,取t =d 2,当m ≥k 时,a n >t ,此时,b n <d2⋅d 2=1.所以若{a n } 是D 数列,则数列{b n }中存在小于1的项; (3)由(2)知,∃k ∈N ,当n ≥k 时,b n <1,即a π+1<a n +1, 以此类推,0<a k +m <a k +m ﹣1+1<a k +m ﹣2+2<…<a k +m ,m ∈N , 所以1a k+m>1a k +m,m ∈N *,设此时 2s−1≤a k <2s ,s ∈N *,令 n =k +m ,所以∑n i=11a i>∑k+mi=k1a i>1a k>1a k+1+1a k+2+⋯+1a k+m>12s+12s+1+12s+2+⋯+12s+m,因为12s+12s+1+12s+2+⋯+1s2s+(2s−1)>12s+2s=12,所以当m=2s+2×2024﹣1,m∈N*,∑n i=11a i >∑k+mi=k1a i>12s+12s+1+12s+2+⋯+12s+(2s+2×2024−1)=(12s+12s+1+⋯+12s+(2s−1))+(12s+1+12s+1+1+⋯+12s+1+(2s+1−1))+...+(12s+2×2024+12s+2×2024+1+⋯+12s+2×2024+(2s+2×2024−1))>2×20242=2024.所以存在正整数n,使得∑n i=11a n>2024.。
高三数学期末试卷带答案考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.设复数(其中为虚数单位),则的虚部为( )A .B .C .D . 2.三棱锥中,,,互相垂直,,是线段上一动点,若直线与平面所成角的正切的最大值是,则三棱锥的外接球表面积是( ) A .B .C .D .3.已知定义在R 上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<e x 的解集为( ) A .(-2,+∞) B .(0,+∞) C .(1,+∞) D .(4,+∞)4.函数的图象大致是( )A .B .C .D.5.已知与为互相垂直的单位向量,,且与的夹角为锐角,则实数的取值范围是()A.B.C.D.6.某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号001,002,…,699,700.从中抽取70个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第5个样本编号是()33 21 18 34 29 78 64 56 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 0432 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45A.607 B.328 C.253 D.0077.已知函数是定义在上的奇函数,当时,,若,,则的取值范围是()A. B. C. D.8.观察,,,由归纳推理可得:若定义在上的函数满足,记为的导函数,则=A. B. C. D.9.要得到函数的图象,只需将的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位10.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75° B.60° C.45° D.30°11.程序框图如图,若,则输出的值为A.30 B.50 C.62 D.6612.公差不为零的等差数列中,,且、、成等比数列,则数列的公差等于 ( )A.1 B.2 C.3 D.413.函数的定义域是()A. B. C. D.14.已知、分别为椭圆的两个焦点,点为其短轴的一个端点,若为等边三角形,则该椭圆的离心率为( )A. B. C. D.15.“φ=π”是“曲线y=sin(2x+φ)过坐标原点的” ()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件16.已知直线⊥平面,直线m,给出下列命题:①∥②∥m; ③∥m④∥其中正确的命题是()A.①②③ B.②③④ C.②④ D.①③17.函数的定义域为A.B.C.D.18.在等比数列中,,,,则项数为()A.3 B.4 C.5 D.619.有编号分别为1,2,3,4,5的5个红球和5个黑球,从中取出4个,则取出的编号互不相同的概率为()A. B. C. D.20.已知且与垂直,则实数的值为( )二、填空题21.已知等比数列,则使不等式()+()+()+……+()≤0成立的最大自然数n 是____________。
2023-2024学年浙江省杭州市高三(上)期末数学试卷(答案在最后)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2230A x x x =--≤,311B x x ⎧⎫=≤⎨⎬-⎩⎭,则A B = ()A.[]1,3 B.(]1,3 C.[]1,1- D.[)1,1-【答案】D 【解析】【分析】先求出集合,A B ,再由交集的定义求解即可.【详解】由2230x x --≤可得:()()130x x +-≤,解得:13x -≤≤,由311x ≤-可得3101x -≤-,即3101x x -+≤-,即()()1401x x x ⎧--≥⎨≠⎩,解得:1x <或4x ≥,故[]1,3A =-,()[),14,B ∞∞=-⋃+,所以A B = [)1,1-.故选:D .2.已知复数z 满足i z z =-(i 为虚数单位),且z =,则2z =()A.2iB.2i-C.D.【答案】B 【解析】【分析】设i z a b =+,结合共轭复数的定义和复数的模公式求出即可.【详解】设i z a b =+,(),R a b ∈,则i z a b =-,因为i z z =-,则()()i i i i 0a b a b a b a b a b +=--⨯⇒+++=⇒=-,又z =,则222a b +=,解得1,1a b ==-或1,1a b =-=,所以1i z =-或1i z =-+,所以()221i 2i z =-=-或()221i 2i z =-+=-,故选:B.3.已知随机变量1X ,2X 分别满足二项分布111~,3X B n ⎛⎫ ⎪⎝⎭,221~,3X B n ⎛⎫ ⎪⎝⎭,则“12n n >”是“()()12D X D X >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】由二项分布的方差公式求出()()12,D X D X ,再由充分条件和必要条件的定义求解即可.【详解】因为111~,3X B n ⎛⎫ ⎪⎝⎭,221~,3X B n ⎛⎫ ⎪⎝⎭,所以()()1112221121121,1339339D X n n D X n n ⎛⎫⎛⎫=⋅⋅-==⋅⋅-= ⎪ ⎪⎝⎭⎝⎭,所以12n n >,则()()12D X D X >,若()()12D X D X >,则12n n >.所以“12n n >”是“()()12D X D X >”的充要条件.故选:C .4.若102x <<,则1112x x+-的最小值是()A.3+B.6C. D.9【答案】A 【解析】【分析】由2(12)1x x +-=,得到1111[2(12)]()1212x x x x x x+=+-+--,结合基本不等式,即可求解.【详解】因为102x <<,可得120x ->,且2(12)1x x +-=,则1111122[2(12)]()3121212x x x x x x x x x x -+=+-+=++---33≥+=+,当且仅当12212x x x x -=-时,即22x =时,等号成立,所以1112x x+-的最小值是3+.故选:A.5.冬季是流行病的高发季节,大部分流行病是由病毒或细菌引起的,已知某细菌是以简单的二分裂法进行无性繁殖,在适宜的条件下分裂一次(1个变为2个)需要23分钟,那么适宜条件下1万个该细菌增长到1亿个该细菌大约需要(参考数据:lg 20.3≈)()A.3小时 B.4小时C.5小时D.6小时【答案】C 【解析】【分析】设适宜条件下1万个该细菌增长到1亿个该细菌大约需要x 分钟,则231210000x⋅=,两边同时取对数得,结合对数的运算性质求解即可.【详解】设适宜条件下1万个该细菌增长到1亿个该细菌大约需要x 分钟,则231210000x ⋅=,两边同时取对数得,lg 2lg10000423x⋅==,所以42392306.7lg 20.3x ⨯=≈≈,所以大约需要306.7560≈小时.故选:C .6.已知定义在R 上的函数()f x 满足()()sin cos 0xf x xf x '+>,则()A.ππ36f ⎫⎫⎛⎛< ⎪ ⎪⎝⎝⎭⎭B.ππ63f f ⎫⎫⎛⎛< ⎪ ⎪⎝⎝⎭⎭C.ππ36f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭ D.ππ63f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭【答案】B 【解析】【分析】构造函数()()cos f x F x x=,ππ,Z 2x k k ≠+∈,求导得到其单调性,从而得到ππ63F F ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,化简后得到答案.【详解】令()()cos f x F x x=,ππ,Z 2x k k ≠+∈,故()()()2cos sin 0cos f x x f x xF x x+='>'恒成立,故()()cos f x F x x=在πππ,π,Z 22k k k ⎛⎫-++∈ ⎪⎝⎭上单调递增,故ππ63F F ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即ππππππ6363ππ163cos cos6322f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭<⇒⇒< ⎪ ⎪⎝⎭⎝⎭.故选:B7.已知数列{}n a ,{}n b 满足111a b ==,1n n n a a b +=+,1n n n b a b +=-,则n a =()A.12n - B.122n - C.122n + D.()21142nn -+-【答案】D 【解析】【分析】根据递推关系,归纳出数列{}n a 的奇数项与偶数项分别为公比为2的等比数列,进而可得数列{}n a 的通项公式.【详解】因为1n n n a a b +=+,1n n n b a b +=-,则112n n n a b a +++=,又211n n n a a b +++=+,则22n n a a +=,所以数列{}n a 的奇数项与偶数项分别为公比为2的等比数列,由111a b ==可得2112a a b =+=,则数列{}n a 的各项为1,2,2,4,4,8,8, ,其中奇数项的通项公式为1122122n n n a a --=⋅=,偶数项的通项公式为122222n n n a a -=⋅=,所以数列{}n a 的通项公式为()21142nn n a -+-=.故选:D8.已知四面体ABCD ,ABC 是边长为6的正三角形,DA DB ==,二面角D AB C --的大小为2π3,则四面体ABCD 的外接球的表面积为()A.40πB.52πC.72πD.84π【答案】B 【解析】【分析】画出图形,找出外接球球心的位置,利用OD OC r ==以及图形几何关系表示出相应的线段长度,结合勾股定理列方程求出外接球半径即可得解.【详解】如图,取AB 中点E ,连接,CE DE ,因为ABC 是边长为6的正三角形,DA DB ==,则由三线合一可知,AB CE AB DE ⊥⊥,所以二面角D AB C --的平面角为2π3CED ∠=,取三角形ABC 的外心1O ,设外接球的球心为O ,则1OO ⊥平面ABC ,且OA OB OC OD r ====,其中r 为四面体ABCD 外接球的半径,过点D 作DG 垂直平面ABC ,垂足为点G ,由对称性可知点G 必定落在1O E 的延长线上面,由几何关系,设DF x =,而由正弦定理边角互换得112sin 60AB C O =⨯=进而1162O E CE CO =-=⨯-,由勾股定理得DE ==从而()πcos πcos 3EG DE CED DE =⋅-∠=⋅=,()π3sin πsin 32DG DE CED DE =⋅-∠=⋅=,所以132OO FG x ==-,12OF O G ==,所以由OD OC r ==得,2222231222r x r x ⎧⎛⎫=+-⎪ ⎪⎝⎭⎪⎨⎛⎫⎪=+ ⎪⎪ ⎪⎝⎭⎩,解得5,2x r ==,所以四面体ABCD 的外接球的表面积为24π52πr =.故选:B.【点睛】关键点点睛:关键是合理转换二面角D AB C --的大小为2π3,并求出外接球半径,由此即可顺利得解.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知平面向量)a =,(),3b x =- ,则下列命题正确的是()A.若a b∥,则x =- B.若a b ⊥,则x =C.若a b +=,则0x = D.若5π,6a b =,则x =【答案】ABD 【解析】【分析】A.由共线向量定理求解判断;B.利用向量的数量积运算求解判断;C.利用向量的模公式求解判断;D.由向量的夹角公式求解判断.【详解】A.若a b∥,则13x ⨯=-,解得x =-,故正确;B .若a b ⊥()130+⨯-=,解得x =C.若a b +=,0x =或x =-D.若5π,6a b =,则5πcos ,cos 62a b ===- ,解得x =故选:ABD 10.已知四棱柱1111ABCD A B C D -的底面ABCD 为菱形,且π3DAB ∠=,12A A AB =,11A AB A AD ∠=∠,O 为11AC 的中点,P 为线段1AB 上的动点,则下列命题正确的是()A.{}1,,OA BD AB可作为一组空间向量的基底B.{},,OA OD AB可作为一组空间向量的基底C.直线//OP 平面1C BDD.向量CP 在平面11AB D 上的投影向量为OP【答案】BCD 【解析】【分析】选项A ,找到11BD B D =,容易判断{}111,,OA B D AB 共面,从而做出判断即可;选项B ,先找到含有两个向量,OA OD 的平面OAD ,判断AB与平面OAD 的关系即可;选项C ,证明平面11//AB D 平面1C BD 即可;选项D ,证明OC 垂直平面11AB D 即可.【详解】如图所示,四棱柱1111ABCD A B C D -,对于选项A ,11BD B D =,三个向量{}111,,OA B D AB 都在平面11AB D ,即三个向量{}111,,OA B D AB 共面,则{}1,,OA BD AB也共面,{}1,,OA BD AB不可作为一组空间向量的基底,选项A 错误;对于选项B ,两个向量,OA OD都在平面OAD ,显然直线AB 与平面OAD 是相交关系,AB不与平面OAD 平行,故三个向量{},,OA OD AB不共面,可作为一组空间向量的基底,选项B 正确;对于选项C ,由于11//BD B D ,11//AB DC ,易得11//B D 平面1C BD ,1//AB 平面1C BD ,从而有平面11//AB D 平面1C BD ,且OP ⊂平面11AB D ,所以直线//OP 平面1C BD ,选项C 正确;对于选项D ,取{}1,,AB AD AA作为一组空间向量的基底,1111()2OC OC C C AB AD AA =+=+- ,111()2B D BD AD AB ==- ,1111()2OA OA A A AB AD AA =+=-+-,其中22111111()()42OC B D AD AB AA AB AA AD ⋅=-+⋅-⋅ ,因为底面ABCD 为菱形,且π3DAB ∠=,12A A AB =,11A AB A AD ∠=∠,得22AD AB = ,11AA AB AA AD ⋅=⋅,所以110OC B D ⋅= ,即11OC B D ⊥,11OC B D ⊥,其中2211[()]2OC OA AA AB AD ⋅=-+ ,显然22134AA AB = ,2222222111π3[()](2)(2cos )24434AB AD AB AD AB AD AB AB AB AB +=++⋅=++= ,所以0OC OA ⋅=,即OC OA ⊥ ,OC OA ⊥,因为11OC B D ⊥,OC OA ⊥,且11B D ⊂平面11AB D ,OA ⊂平面11AB D ,11B D OA O ⋂=,所以OC ⊥平面11AB D ,所以向量CP 在平面11AB D 上的投影向量为OP,选项D 正确;故选:BCD.11.已知函数()cos 2f x x =,()πsin 23g x x ⎛⎫=+ ⎪⎝⎭,则()A.将函数()y f x =的图象右移π12个单位可得到函数()y g x =的图象B.将函数()y f x =的图象右移π6个单位可得到函数()y g x =的图象C.函数()y f x =与()y g x =的图象关于直线π24x =对称D.函数()y f x =与()y g x =的图象关于点7π,024⎛⎫⎪⎝⎭对称【答案】ACD【解析】【分析】由三角函数的平移变换可判断A ,B ;由()π12g x f x ⎛⎫=- ⎪⎝⎭可判断C ;由()7π12g x f x ⎛⎫-=-⎪⎝⎭可判断D .【详解】因为()ππππsin 2cos 2cos 23236g x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=+=-++=- ⎪ ⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,将函数()y f x =的图象右移π12个单位可得到ππcos 2cos 2126y x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,将函数()y f x =的图象右移π6个单位可得到ππcos 2cos 263y x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故A 正确,B 错误;由A 选项可知,()π12g x f x ⎛⎫=- ⎪⎝⎭,所以函数()y f x =与()π12y g x f x ⎛⎫==- ⎪⎝⎭的图象关于直线π24x =对称,故C 正确;若函数()y f x =与()y g x =的图象关于点7π,024⎛⎫⎪⎝⎭对称,则在()y f x =上取点()11,A x y 关于7π,024⎛⎫ ⎪⎝⎭的对称点117π,12A x y ⎛⎫-- ⎪⎝⎭必在()y g x =上,所以11cos 2y x =,所以1117π7ππ7ππsin 2sin 21212363g x x x ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1113πsin 2cos 22x x y ⎛⎫=-=-=- ⎪⎝⎭,故D 正确.故选:ACD .12.(多选)已知数据1234567x x x x x x x <<<<<<,若去掉4x 后剩余6个数的平均数比7个数的平均数大,记1x ,2x ,3x ,4x 的平均数与方差为1x ,21s ,记4x ,5x ,6x ,7x 的平均数与方差为2x ,22s ,则()A.1242x x x +>B.1242x x x +<C.()()47222212441414k k k k s s x x x x ==⎡⎤->---⎢⎥⎣⎦∑∑D.()()47222212441414k k k k s s x x x x ==⎡⎤-<---⎢⎥⎣⎦∑∑【答案】AC 【解析】【分析】根据平均数的大小列出不等式变形即可判断AB ,根据方差公式作差后变形,利用1242x x x +>,即可判断CD.【详解】因为123567123456767x x x x x x x x x x x x x +++++++++++>,所以12356746x x x x x x x +++++>,所以()()1234456748x x x x x x x x x +++++++>,所以1242x x x +>,故A 正确,B 错误;2222222222212346412724123455674444 x x x x x x x x x x x x x s x s x x ⎡⎤+++++++++⎛⎫-=--⎢⎥⎪⎝⎭⎢⎥⎡⎤+++⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎣⎦()()()2222222212356217144x x x x x x x x ⎡⎤=++-+++-⎢⎥⎣⎦()()()()2222221235621217144x x x x x x x x x x ⎡⎤=++-+++-⎣+⎦()()()222222123564271184x x x x x x x x x ⎡⎤>++-++-⎣+⎦()()4722441414k k k k x x x x ==⎡⎤---⎢⎥⎣⎦∑∑,故C 正确,D 错误.故选:AC三、填空题:本题共4小题,每小题5分,共20分.13.直线y =的倾斜角是___________.【答案】0【解析】【分析】根据斜率得到倾斜角.【详解】y =的斜率为0,设倾斜角为[)0,πα∈,则tan 0α=,解得0α=,故倾斜角为0故答案为:014.已知二项式()12nx +的展开式中含2x 的项的系数为84,则n =___________.【答案】7【解析】【分析】应用二项展开式的通项公式求解即可.【详解】二项式()12nx +中含2x 的项为:223C (2)n T x =,该项的系数为22(1)2C 42(1)2n n n n n -=⨯=-,由于该项的系数为84,得方程2(1)84n n -=,即2420n n --=,解得7n =或6-(舍去),故答案为:7.15.位于奥体核心的杭州世纪中心总投资近100亿元,总建筑面积约53万平方米,由两座超高层双子塔和8万平方米商业设施构成,外形为杭州的拼音首字母“H”,被誉为代表新杭州风貌、迎接八方来客的“杭州之门”.如图,为测量杭州世纪中心塔高AB ,可以选取与塔底B 在同一水平面内的两个测量基点C 与D ,现测得70BCD ∠=︒,30BDC ∠=︒,108CD =米,在点C 测得塔顶A 的仰角为80°,则塔高AB 为___________米.(结果保留整数,参考数据:cos800174︒≈.)【答案】310【解析】【分析】设AB h =米,进而可得tan80h BC =︒,在BCD △中由正弦定理求出BC ,求解即可得出答案.【详解】设AB h =米,因为在点C 测得塔顶A 的仰角为80°,所以80BCA ∠=︒,在ABC 中,tan 80AB hBC BC=︒=,所以tan80h BC =︒,在BCD △中,因为70BCD ∠=︒,30BDC ∠=︒,所以180703080CBD ∠=︒-︒-︒=︒,由正弦定理得sin sin 30CD BC CBD =∠︒,所以1081sin 802BC=︒,则1108542sin 80sin 80BC ⨯==︒︒,所以545454tan 80tan 80310sin 80cos800.174h BC =︒=⋅︒=≈≈︒︒米.故答案为:310.16.已知点P 是双曲线C :()22221,0x y a b a b-=>与圆222213x y a c +=+在第一象限的公共点,若点P 关于双曲线C 其中一条渐近线的对称点恰好在y 轴负半轴上,则双曲线C 的离心率e =___________.【答案】62【解析】【分析】根据题意,联立双曲线与圆的方程,求得点P 的坐标,再求得其对称点Q 的坐标,再由1PQ b k a ⎛⎫⋅-=- ⎪⎝⎭,化简即可得到,a b 的关系,再由离心率公式,即可得到结果.【详解】联立22222222113x y a b x y a c ⎧-=⎪⎪⎨⎪+=+⎪⎩,取0,0x y >>,解得2333x a y b ⎧=⎪⎪⎨⎪=⎪⎩,即,33P a b ⎛⎫ ⎪ ⎪⎝⎭,设点P 关于双曲线C 的渐近线by x a=-的对称点为Q ,则Q 恰好在y 轴负半轴上,且OQ OP ==0,Q ⎛ ⎝,由点P 与点Q 关于渐近线b y x a =-对称,所以直线PQ 的斜率为a b,233a b =,即3233b a b =,化简可得222a b =,所以2c e a ====.故答案为:2四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,4a =,8b =,角C 为锐角,已知ABC 的面积为.(1)求c ;(2)若CD 为AB 上的中线,求BDC ∠的余弦值.【答案】(1)c =(2)34.【解析】【分析】(1)由三角形的面积公式和余弦定理求解即可;(2)因为CD 为AB 上的中线,所以()12CD CA CB =+,对其两边同时平方可求出CD = ,再由余弦定理求解即可.【小问1详解】由ABC 的面积为可得:1sin 2ab C =因为4a =,8b =,解得:得sin 4C =,由角C 为锐角得3cos 4C =,故2222cos 32c a b ab C =+-=,解得c =【小问2详解】因为CD 为AB 上的中线,所以()12CD CA CB =+,所以()22212cos 4CD CA CB CA CB ACB =++⋅,()2212cos 4b a b a ACB =++⋅1364162483244⎛⎫=++⨯⨯⨯= ⎪⎝⎭,解得:CD =.故22222222243cos 2422242BD DC a BDC BD DC +-+-∠===⋅⋅⋅.18.已知n S 为公差为2的等差数列{}n a 的前n 项和,若数列n n S a ⎧⎫⎨⎬⎩⎭为等差数列.(1)求n a ;(2)求数列{}2n S 的前n 项和.【答案】(1)2n a n=(2)11410233n n +++-.【解析】【分析】(1)由等差中项的性质可得3212132S S S a a a ⋅=+,再由等差数列的通项公式和前n 项和公式代入化简可求得12a =,即可求出答案;(2)由(1)得2n S n n =+,则242n nnS =+,再由等比数列的前n 项和公式和分组求和法求解即可.【小问1详解】因为数列n n S a ⎧⎫⎨⎬⎩⎭为等差数列,所以3212132S S S a a a ⋅=+,因为n S 为公差为2的等差数列{}n a 的前n 项和,则111122362124a a a a ++⋅=+++,解得12a =.故()2212n a n n =+-=.【小问2详解】由(1)得()122n n n a a S n n +==+,故242n n nS =+,故数列{}2n S 的前n 项和为()()114142124102141233n nn n ++--=+=+---.19.已知直三棱柱111ABC A B C -,1122AB AC AA ===,AB AC ⊥,D ,E 分别为线段1CC ,1BB 上的点,1CD =.(1)证明:平面BDA ⊥平面1ECA ;(2)若点1B 到平面1ECA 的距离为47,求直线BD 与平面1ECA 所成的角的正弦值.【答案】(1)证明见解析(2)1121.【解析】【分析】(1)建系,分别求出平面BDA 和平面1ECA 的法向量,利用两法向量垂直,两面垂直即可证明;(2)设出E 点坐标,由已知点面距离利用向量法解出点E 坐标,再代入线面角的向量公式求出即可.【小问1详解】证明:在直三棱柱中,AB AC ⊥,1AA ⊥平面ABC ,所以以A 为原点,AB ,AC ,1AA 为x ,y ,z 轴建立空间直角坐标系,则点()10,0,4A ,()2,0,0B ,()12,0,4B ,()0,2,0C ,()0,2,1D ,则()2,2,1BD =- ,()2,0,0AB = ,()10,2,4A C =-,设BE t =,则()2,0,E t ,()2,2,EC t =--设平面BDA 和平面1ECA 的法向量分别为()()11112222,,,,,n x y z n x y z ==,则11111122020n BD x y z n AB x ⎧⋅=-++=⎪⎨⋅==⎪⎩,取11y =,则()10,1,2n =- ;22222122220240n EC x y mz n A C y z ⎧⋅=-+-=⎪⎨⋅=-=⎪⎩,取21z =,则24,2,12m n -⎛⎫= ⎪⎝⎭ ,因为120n n ⋅=,所以平面BDA ⊥平面1ECA .【小问2详解】设点()2,0,E t ,由()10,2,4A C =- ,()12,0,4A E t =- 得平面1ECA 的法向量()4,4,2n t =-,由()112,0,0A B =得点1B 到平面1ECA 的距离1147A B n d n⋅===,解得83t =,由()2,2,1BD =- ,4,4,23n ⎛⎫= ⎪⎝⎭得,直线BD 与平面1ECA 所成的角的正弦值为11cos ,21BD n BD n BD n ⋅==⋅ .20.已知点1F ,2F 为椭圆C :2212x y +=的左,右焦点,椭圆C 上的点P ,Q 满足12//F P F Q ,且P ,Q在x 轴上方,直线1FQ ,2F P 交于点G .已知直线1PF 的斜率为()0k k >.(1)当1k =时,求12PF QF +的值;(2)记1PFG ,2QF G △的面积分别为1S ,2S ,求12S S -的最大值.【答案】(1(2)2.【解析】【分析】(1)由椭圆的性质可得1211PF QF PF Q F =+'+,再利用弦长公式求解即可;(2)利用已知条件将12S S -表示出来,在利用基本不等式即可求解.【小问1详解】设直线1PF 与椭圆的另一个交点为Q ',由椭圆的对称性得Q ,Q '关于原点对称.设点()11,P x y ,()22,Q x y '.因为C :2212x y +=中222,1,1a b c ====,所以()11,0F ,所以当1k =时,直线1PF 的方程为:1y x =+,联立直线1y x =+与椭圆22220x y +-=的方程得2340x x +=,所以12124,03x x x x +=-=,所以1243x x -==,所以12111212PF QF PF Q F x x +=+=-=-='【小问2详解】由题可设直线1PF 的方程为:1yx k=-,联立直线1y x k =-与椭圆22220x y +-=得:2212210y y k k ⎛⎫+--= ⎪⎝⎭,所以122221122ky y k k k+==++,1212121212F F P F F Q F F P F F Q S S S S S S '-=-=- ,()()1211221212111222122222F F y F F y y y y y kk=⋅-⋅-=⨯+=+=≤+,所以当12k k =即2k =时等号成立,12S S -取到最大值2.【点睛】思路点睛:本题考查直线与椭圆综合应用中的面积问题的求解,求解此类问题的基本思路如下:①假设直线方程,与椭圆方程联立,整理为关于y 的一元二次方程的形式,得到韦达定理;②表示出12S S -的面积,将韦达定理代入,再借助基本不等式即可求出面积的最大值.21.我国有天气谚语“八月十五云遮月,正月十五雪打灯”,说的是如果中秋节有降水,则来年的元宵节亦会有降水.某同学想验证该谚语的正确性,统计了40地5年共200组中秋节与来年元宵节的降水状况,整理如下:中秋天气元宵天气合计降水无降水降水194160无降水5090140合计69131200(1)依据0.05α=的独立性检验,能否认为元宵节的降水与前一年的中秋节降水有关?(2)从以上200组数据中随机选择2组,记随机事件A 为二组数据中中秋节的降水状况为一降水一无降水,记随机事件B 为二组数据中元宵节的降水状况为一降水一无降水,求()P B A .参考公式与数据:()()()()()22n ad bc a b c d a c b d χ-=++++.α0.10.050.010.0050.001x α2.7063.8416.6357.87910.828【答案】(1)无关(2)47105【解析】【分析】(1)计算2χ的值,与临界值比较得出结论;(2)利用条件概率公式求解.【小问1详解】零假设为0H :元宵节的降水与中秋节的降水无关.()222200199041502003400.3 3.84169131601406913160140χ⨯⨯-⨯⨯==≈<⨯⨯⨯⨯⨯⨯,因为20.05x χ<,所以没有充分证据推断0H 不成立,故元宵节的降水与中秋节的降水无关.【小问2详解】中秋节的降水状况为一降水一无降水概率为()220014060C P A ⨯=,中秋节、元宵节的降水状况均为一降水一无降水概率为()220019904150C P AB ⨯+⨯=,故()()()47105P AB P B A P A ==.22.定义满足()()00f x f x '=的实数0x 为函数()y f x =的然点.已知()()ln e xf x x a -=+.(1)证明:对于a ∀∈R ,函数()y f x =必有然点;(2)设0x 为函数()y f x =的然点,判断函数()()()0g x f x f x =-的零点个数并证明.【答案】(1)证明见解析(2)2个零点,证明见解析【解析】【分析】(1)根据函数零点存在原理,结合导数的性质、题中定义进行运算证明即可;(2)根据(1)的结论,结合函数零点存在原理、结合放缩法进行求解即可.【小问1详解】()1ln e x f x x a x -⎛⎫'=-- ⎪⎝⎭,由()()f x f x '=得1ln 02x a x -+=.令()1ln 2h x x a x=-+,因为()h x 在()0,∞+上单调递增,故()h x 至多一个零点,又因为()1e02e aah --=-<,()2222221e 2102e a ah a a a a ++=++->++>,所以()220e ,ea ax -+∃∈使()00h x =,故对于a ∀∈R ,函数()y f x =有唯一然点0x .【小问2详解】由(I )得001ln 2a x x =-,()1ln e xg x x a x -⎛⎫'=-- ⎪⎝⎭令()1ln G x x a x =--,因为()G x 在()0,∞+上单调递减,且()00102G x x =>,()2222221e 210eaa G a a a a ++=---<---<,故()220,e at x +∃∈使()0G t =,()g x 在(]0,t 上单调递增,在[),t +∞上单调递减.因为()00g x =,故()()00g t g x >=,将001ln 2a x x =-代入,得()00001e ln ln e 22x x g x x x x x --⎛⎫=-+- ⎪⎝⎭()002000020010c 211ln 1e 2211e e e 22e x x x x x x g x x x --+-⎛⎫+++⎪-⎛⎫⎝⎭++=⋅-⋅ ⎪-⎝⎭()000020011e 221e 12e e 2x x x x x x -⎛⎫++ ⎪- ⎪<-⎛⎫ ⎪⋅+ ⎪ ⎪-⎝⎭⎝⎭()0000000e 2e 21e 02e e 222(e 2)x x x x x x x -⎛⎫+ ⎪- ⎪=-< ⎪⎛⎫⋅+ ⎪ ⎪ ⎪-⎝⎭⎝⎭,所以()g x 有2个零点.【点睛】关键点睛:根据题中定义,运用零点存在原理是解题的关键.。
高三数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|43}U x x =-<<,{|21}A x x =-<≤,则U A =C A.(42)[13)-- ,, B.[21)-, C.(42](13)-- ,, D.(21]-,2.若3i ()3i a a +∈+R 是纯虚数,则a =A .1- B.1 C.9- D.93.已知等比数列{}n a 的前三项和为84,2521a a -=,则{}n a 的公比为A.14B.12C.2D.44.随着经济的发展和人民生活水平的提高,我国的旅游业也得到了极大的发展.据国家统计局网站数据显示,近十年我国国内游客人数(单位:百万)折线图如图所示,则下列结论不正确的是A.近十年,城镇居民国内游客人数的平均数大于农村居民国内游客人数的平均数B.近十年,城镇居民国内游客人数的方差大于农村居民国内游客人数的方差C.2012年到2019年,国内游客中城镇居民国内游客人数占比逐年增加D.近十年,农村居民国内游客人数的75%分位数为15355.已知向量(7sin 15)θ=-,,a 2(1cos )θ=-,,b 若⊥,a b 则cos 2θ=A.725-B.725C.2425-D.24256.已知圆锥的侧面展开图是一个半径为4,弧长为4π的扇形,则该圆锥的表面积为A.4π B.8π C.12π D.20π7.若函数()ln f x x =与()1(0)g x ax a =->的图象有且仅有一个交点,则关于x 的不等式4(3)3x f x a --<-的解集为A.(4)-∞,B.(4)+∞,C.(34),D.(35),8.已知双曲线22221(00)x y C a b a b-=>>,:的左焦点为1F ,M 为C 上一点,M 关于原点的对称点为N ,若O160MF N ∠=,且11||2||F N F M =,则C 的渐近线方程为A.3y x =±B.y =C.6y x= D.y =二、选择题:本题共4小题,每小题5分,共20分。
高三数学期末试卷带答案考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.设为定义在上的奇函数,当时, (为常数),则( )A .3B .1C .-3D .2.当函数()取得最大值时,( )A .B .C .D . 3.已知向量的最小值为( )A .B .6C .12D .4.将正方形沿对角线折成一个直二面角,点到达点,则异面直线与所成角是( ) A .B .C .D .5.函数f(x)=()x 与函数g(x)=log|x|在区间(-∞,0)上的单调性为 ( ) A .都是增函数 B .都是减函数C .f(x)是增函数,g(x)是减函数D .f(x)是减函数,g(x)是增函数6.已知集合为实数,且,为实数,且,则A∩B 的元素个数为 A .无数个 B .3 C .2 D .17.函数的部分图像如图,则 ( )A .0B .C .D . 8.对于以下判断: (1)命题“已知”,若x 2或y 3,则x+y 5”是真命题.(2)设f(x)的导函数为f'(x),若f'(x 0)=0,则x 0是函数f(x)的极值点. (3)命题“,e x ﹥0”的否定是:“,e x ﹥0”.(4)对于函数f(x),g(x),f(x)g(x)恒成立的一个充分不必要的条件是f(x)min g(x)max .其中正确判断的个数是( ) A .1 B .2 C .3 D .0 9.如图,已知点是边长为1的等边的中心,则等于( )A .B .C .D .10.设,定义符号函数,则下列正确的是( )A .B .C .D .11.已知集合,,那么( )A .B .C .D .12.(2011•湖北)已知U={y|y=log 2x ,x >1},P={y|y=,x >2},则∁U P=( ) A .[,+∞)B .(0,)C .(0,+∞)D .(﹣∞,0)∪(,+∞) 13.若过点的直线与圆相较于两点,且为弦的中点,则为( )A .B .4C .D .214.若复数(为虚数单位),则=()A.3 B.2 C. D.15.设m、n是两条不同的直线,、β是两个不同的平面,则下列命题中正确的是()A.若m∥n,m∥,则n∥B.若⊥β,m∥,则m⊥βC.若⊥β,m⊥β,则m∥D.若m⊥n,m⊥,n⊥β,则⊥β16.已知点是双曲线上一点,、是它的左、右焦点,若,则双曲线的离心率的取值范围是A. B. C. D.17.,且,则()A. B. C. D.18.已知集合,,则中的元素的个数为()A.0 B.1 C.2 D.319.“或”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件20.已知曲线()A. B. C. D.二、填空题21.(坐标系与参数方程选做题)在极坐标系中,直线被圆截得的弦长为____________.22.函数是常数,的部分图象如图所示,则23.设,则与大小关系是.24.已知(,),则的最大值为__________.25.观察下列式子:,,,…,根据上述规律,第个不等式应该为.26.历史上有人用向画有内切圆的正方形纸片上随机撒芝麻,用随机模拟方法来估计圆周率的值.如果随机向纸片撒一把芝麻,1000粒落在正方形纸片上的芝麻中有778粒落在正方形内切圆内,那么通过此模拟实验可得的估计值为__________.27.在平面几何中有如下结论:若正三角形ABC的内切圆面积为,外接圆面积为,则.推广到空间几何体中可以得到类似结论:若正四面体ABCD 的内切球体积为,外接球体积为,则=___________.28.已知c>0,且c≠1,设p:函数y=c x在R上单调递减;q:函数f(x)=x2−2cx+1在上为增函数,若“p且q”为假,“p或q”为真,则实数c的取值范围为.29.已知与之间具有很强的线性相关关系,现观测得到的四组观测值并制作了右边的对照表,由表中数据粗略地得到线性回归直线方程为,其中的值没有写上.当不小于时,预测最大为 .30.已知的三边垂直平分线交于点,分别为内角的对边,且,则的取值范围是__________.三、解答题31.在1,2,3,…,9这9个自然数中,任取3个数.(1)求这3个数中恰有1个偶数的概率;(2)记ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列数学期望Eξ及方差Dξ.32.某单位在2012春节联欢会上举行一个抽奖活动:甲箱中装有3个红球,2个黑球,乙箱中装有2个红球4个黑球,参加活动者从这两个箱子中分别摸出1个球,如果摸到的都是红球则获奖.(Ⅰ)求每个活动参加者获奖的概率;(Ⅱ)某办公室共有5人,每人抽奖1次,求这5人中至少有3人获奖的概率.33.(本小题满分16分)经市场调查,某超市的一种小商品在过去的20天内的日销售量(件)与价格(元)均为时间(天)的函数,且日销售量近似满足(件),价格近似满足(元).(Ⅰ)试写出该种商品的日销售额与时间的函数表达式;(Ⅱ)求该种商品的日销售额的最大值与最小值.34.(本小题满分14分)已知f(x)=,x∈[1,+∞).(1)当a=时,求函数f(x)的最小值;(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.35.已知函数的图象经过三点,且在区间内有唯一的最值,且为最小值.(1)求出函数的解析式;(2)在中,分别是角的对边,若且,求的值.参考答案1 .C【解析】由为定义在上的奇函数可知,于是。
2 .B【解析】, 时,,最大,故选B.3 .B【解析】考点:基本不等式;数量积判断两个平面向量的垂直关系.专题:计算题.分析:利用向量垂直的充要条件列出方程求出x,y满足的方程;利用基本不等式得到函数的最值,检验等号何时取得.解答:解:由已知?=0?(x-1,2)?(4,y)=0?2x+y=2则9+3=3+3≥2=2=2=6,当且仅当3=3,即x=,y=1时取得等号.故答案为:6点评:本题考查向量垂直的充要条件:坐标交叉相乘相等、考查利用基本不等式求函数的最值需满足的条件:一正、二定、三相等.4 .B 【解析】试题分析:方法一:如图,则所以与所成的角即为异面直线与所成角,设正方形边长为2,则,所以为等边三角形,故异面直线与所成角是.方法二:建立如图所示的空间坐标系,则所以,所以,故异面直线与所成角是.考点:异面直线夹角的求法.5 .D【解析】略6 .C【解析】试题分析:把代入得,即,由于,因此直线与抛物线的交点为2个,故答案为C.考点:元素的个数.7 .C【解析】由图可知周期,,可得振幅为.函数,则有..故本题选.8 .A【解析】试题分析:对(1),原命题与逆否命题等价,原命题不易判断故考查该命题的逆否命题.因为若,则且是假命题,所以“已知”,若x2或y3,则x + y5”也是假命题.(1)错.(2)设f(x)的导函数为f' (x),若f' (x)=0,x不一定是函数f(x)的极值点.比如,就不是的极值点.(2)错.(3)命题“,e x﹥0”的否定是:“,e x<0”.所以(3)错.(4)对于函数f(x),g(x),当f(x)ming(x)max时f(x)g(x)恒成立;f(x)g(x)恒成立时,不一定有f(x)ming(x)max,比如,.所以(4)正确.考点:逻辑与命题.9 .D【解析】解:因为点O是边长为1的等边△ABC的中心,D为BC的中点,OA , OC , OB 两两夹角为120°.所以| OA |="|" OB |="|" OC |="2" /3 |AD|="2" /3 ×/ 2 = / 3 .所以( OA + OB )•( OA + OC )=" OA" 2+ OB • OA + OA • OC + OB • OC="(" / 3 )2+( / 3 )2cos120°+( /3 )2cos120°+( / 3 )2cos120°="(" / 3 )2 (1+3cos120°)="-1/" 6 .故选D.10 .A【解析】试题分析:时,,时,,所以,A正确.故选A.考点:新定义.11 .A【解析】集合,所以,故选A.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答,研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系.12 .A【解析】由集合U中的函数y=log2x,x>1,解得y>0,所以全集U=(0,+∞),同样:P=(0,),得到CUP=[,+∞).故选A.13 .A 【解析】圆心坐标为,半径为,。
故选A。
14 .B【解析】,所以="2" ,故选B.15 .D【解析】略16 . C【解析】略17 .C【解析】由已知易得.则.本题选择C选项.18 .C【解析】联立方程,解得或,所以中共有两个元素,故选C.19 .B【解析】p:或,q: ,因为,所以,所以“或”是“”的必要不充分条件.20 .D【解析】试题分析:,,当时,,即,即,解得.考点:函数图象的切线方程21 .【解析】试题分析:直线的直角坐标方程为,圆的直角坐标方程为,∵圆心到直线的距离,半径,∴截得的弦长为.考点:极坐标方程与直角坐标方程的转化、点到直线的距离公式.22 .答案:解析:考察三角函数的图像与性质以及诱导公式,中档题。
由图可知:由图知:【解析】略23 .logm2<logn2【解析】试题分析:∵2m>2n>22,∴m>n>2,∴log2m>log2n>1即∴logm2<logn2考点:比较大小,指数函数的性质.24 .0【解析】,,当时等号成立,所以的最大值为,故答案为.【易错点晴】本题主要考查幂指数的运算、利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).25 .【解析】试题分析:观察可得:每个不等式的左边是正整数的平方倒数之和,且最后一项的分母是项数加1,右边是分数,且分母是项数加1、分子是以3为首项、2 为公差的等差数列,∴可归纳出第个不等式:考点:归纳推理26 .3.112【解析】由题设可知,则运用几何概型计算公式可得,应填答案。