八年级数学期末复习之代几综合(一)
- 格式:docx
- 大小:192.09 KB
- 文档页数:8
初二数学下册综合复习资料数学是一门广泛应用于科学和技术领域的学科。
在日常生活中,数学也是十分重要的。
通过学习数学,人们可以提高计算能力、逻辑思维和问题解决能力。
初中阶段是数学学习的重要阶段,因为它对高中数学的学习打下了坚实的基础。
本文将为初二数学下册的同学们提供一些综合复习资料。
一、代数与函数篇1. 同项式合并:同一式子中相同字母的项相加或减。
2. 完全平方公式:$(a+b)(a-b)=a^2-b^2$。
3. 因式分解:将一个多项式分解成两个或多个多项式的积。
4. 代入法求未知数:利用已知条件将未知数进行代入再进行计算。
5. 一次函数:函数$y=kx+b$为一次函数,其中$k$为斜率,$b$为截距。
二、图形篇1. 识别平面图形:学会识别不同的几何图形,如正方形、矩形、菱形、圆形等。
2. 图形的周长:对于任意一个多边形,它的周长等于所有边长之和。
3. 图形的面积:对于任何一个几何图形,它的面积都是一个数值,可以用来表示这个图形的大小。
4. 平移、旋转和翻转:将平面图形按一定规则进行平移、旋转和翻转,得到新的位置和形状。
三、数与量篇1. 常量与变量:常量是值不变的数,而变量是值可以改变的数。
2. 分数的加减法:相同分母的分数只需将分子相加或相减。
3. 分数的乘除法:两个分数相乘,先将分子相乘,再将分母相乘,最后化简。
两个分数相除,可以转化为一个分数乘另一个分数的倒数。
4. 百分数:百分之一就是1%,百分之十就是10%,以此类推。
5. 速度和时间:速度等于路程除以时间,时间等于路程除以速度,路程等于速度乘以时间。
四、数据处理篇1. 统计量:常用统计量有平均数、中位数、众数和极差。
2. 数据的解读:通过分析和解释数据可以帮助我们更好地理解数据背后的含义。
3. 研究设计:通过制定实验方案和探究变量之间的关系来深入研究数据。
总结初二数学下册是数学学习的重要阶段,本文提供了一些综合复习资料,希望能够帮助同学们更好地掌握数学知识,从而取得更好的成绩。
初二下学期期末数学压轴题解析压轴题中常见的、熟悉的语句:(1)求直线的解析式(求一次函数、反比例函数的解析式);(2)求y关于x的函数关系式,并写出函数的定义域;(3)是否存在……,如果存在,请……;如果不存在,请说明理由.(4)如果将条件改变一下,那么结论是否依然成立?(5)如果……,求点P的坐标.和以上语句相对应,中考数学压轴题共有12个专题,初二可以解决的有10个:专题一等腰三角形的存在性问题专题二相似三角形的存在性问题(初三)专题三直角三角形的存在性问题专题四平行四边形的存在性问题——初二期末热点专题五梯形的存在性问题——初二期末热点专题六面积的存在性问题专题七相切的存在性问题(初三)专题八相等和差最值的存在性问题专题九由线段关系产生的函数关系问题——初二期末热点专题十由面积产生的函数关系问题——初二期末热点专题十一代数计算和说理(寻找规律)专题十二几何计算和说理(图形变换)——初二期末热点解压轴题的点滴经验:尺规必备,三色笔画图,本子宽大;看着图,读着题,自己画一遍图,题意就理解了.这叫磨刀不误砍柴工.没有思路,往往是不会画图;会画图,思路就慢慢有了.图形准确了,答案就在图形中.图形在运动过程中的存在性问题(平行四边形、梯形、全等三角形)例1 2012年浦东新区初二下学期期末第25题如图1,在平面直角坐标系中,函数y=2x+12的图像分别交x轴、y轴于A、B两点.过点A的直线交y轴正半轴于点C,且点C为线段OB的中点.(1)求直线AC的表达式;(2)如果四边形ACPB是平行四边形,求点P的坐标.【拓展】如果以A、C、P、B为顶点的四边形是平行四边形,求点P的坐标.如图1,在平面直角坐标系中,点A的坐标为A(3, 0),点B的坐标为A(0, 4).(1)求直线AB的解析式;(2)点C是线段AB上一点,点O为坐标原点,点D在第二象限,且四边形BCOD为菱形,求点D坐标;(3)在(2)的条件下,点E在x轴上,点P在直线AB上,且以B、D、E、P为顶点的四边形是平行四边形,请写出所有满足条件的点P的坐标.如图1,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角形APQ.当点P运动到原点O处时,记Q的位置为B.(1)求点B的坐标;(2)当点P在x轴上运动(P不与O重合)时,求证:∠ABQ=90°;(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出点P 的坐标;若不存在,请说明理由.如图1,在平面直角坐标系中,点P在直线12y x=上(点P在第一象限),过点P作P A⊥x轴,垂足为A,且OP=(1)求点P的坐标;(2)如果点M和点P都在反比例函数kyx=(k≠0)的图像上,过点M作MN⊥x轴,垂足为N.如果△MNA和△OAP全等(点M、N、A分别和点O、A、P对应),求点M的坐标.图形运动中的函数关系问题(由面积产生、由线段关系产生)例5 2013年长宁区初二下学期期末第27题如图1,梯形ABCD中,AD//BC,∠B=90°,AD=18,BC=21.点P从点A出发沿AD以每秒1个单位的速度向点D匀速运动,点Q从点C沿CB以每秒2个单位的速度向点B匀速运动.点P、Q同时出发,其中一个点到达终点时两点停止运动,设运动的时间为t 秒.(1)当AB=10时,设A、B、Q、P四点构成的图形的面积为S,求S关于t的函数关系式,并写出定义域;(2)设E、F为AB、CD的中点,求四边形PEQF是平行四边形时t的值.图1 备用图已知:在梯形ABCD中,AD//BC,∠B=90°,AB=BC=4,点E在边AB上,CE=CD.(1)如图1,当∠BCD为锐角时,设AD=x,△CDE的面积为y,求y与x之间的函数解析式,并写出函数的定义域;(2)当CD=5时,求△CDE的面积.已知:如图1,梯形ABCD中,AD//BC,∠A=90°,∠C=45°,AB=AD=4.E是直线AD上一点,联结BE,过点E作EF⊥BE交直线CD于点F.联结BF.(1)若点E是线段AD上一点(与点A、D不重合),(如图1所示)①求证:BE=EF.②设DE=x,△BEF的面积为y,求y关于x的函数解析式,并写出此函数的定义域.(2)直线AD上是否存在一点E,使△BEF是△ABE面积的3倍,若存在,直接写出DE的长,若不存在,请说明理由.图1 备用图如图1,在正方形ABCD中,AB=1,E为边AB上一点(点E不与端点A、B重合),F为BC延长线上一点,且AE=CF,联结EF交对角线AC于点G.(1)设AE=x,AG=y,求y关于x的函数解析式及定义域;(2)联结DG,求证:DG⊥EF.如图1,在Rt△ABC中,∠C=90°,AC=BC=9,点Q是边AC上的动点(点Q不与A、C重合),过点Q作QR//AB,交边BC于R,再把△QCR沿着动直线QR翻折得到△QPR,设AQ=x.(1)求∠PRQ的大小;(2)当点P落在斜边AB上时,求x的值;(3)当点P落在Rt△ABC外部时,PR与AB相交于点E,如果BE=y,请直接写出y 关于x的函数关系式及定义域.图1 备用图例10 2013年浦东新区初二下学期期末第26题如图1,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形.A(0, 4),C(5, 0),点D是y轴正半轴上一点,将四边形OABC沿着过点D的直线翻折,使得点O落在线段AB上的点E处.过点E作y轴的平行线与x轴交于点N.折痕与直线EN交于点M,联结DE、OM. 设OD=t,MN=s.(1)试判断四边形EDOM的形状,并证明;(2)当点D在线段OA上时,求s关于t的函数解析式,并写出函数的定义域.(3)用含t的代数式表示四边形EDOM沿折痕翻折后的图形与矩形OABC重叠部分的面积.图1 备用图计算、说理、证明例11 2013年长宁区初二下学期期末第26题已知直角坐标平面内点A(4, 3),过点A作x轴、y轴的垂线,垂足分别是B和C.(1)直线y=kx+6把矩形OBAC分成面积相等的两部分,求直线与矩形的交点坐标;(2)在(1)的条件下,设直线y=kx+6与直线AB的交点为P,联结CP,以C为中心旋转线段CP,点P落在x轴上的点Q处,直接写出BQ的长度.如图1,在平面直角坐标系中,四边形ABCD为菱形,点A的坐标为(0, 1),点D在y 轴上,经过点B的直线y=-x+4与AC相交于横坐标为2的点E.(1)求直线AC的表达式;(2)求点B、C、D的坐标.如图1,平面直角坐标系中点A(4, 0),已知过点A的直线l与y轴正半轴交于点P,且△AOP的面积是8,正方形ABCD的顶点B的坐标是(2, h),其中h>2.(1)求直线l的表达式;(2)求点D的坐标;(用含h的代数式表示);(3)当边BC经过点P时,求直线CD与y轴的交点坐标.已知,在△ABC中,AB=6,AC=5,∠A为锐角,△ABC的面积为9.点P为边AB 上的动点,过点B作BD//AC,交CP的延长线于点D.∠ACP的平分线交AB于点E.(1)如图1,当CD⊥AB时,求PE的长;(2)如图2,当点E为AB的中点时,请猜想并证明:线段AC、CD、DB的数量关系.图1 图2例15 2013年浦东新区初二下学期期末第25题已知:如图1,四边形ABCD是菱形,∠B是锐角,AF⊥BC于点F,CH⊥AD于点H,在AB边上取点E,使得AE=AH,在CD边上取点G,使得CG=CF.联结EF、FG、GH、HE.(1)求证:四边形EFGH是矩形;(2)当∠B为多少度时,四边形EFGH是正方形?并证明.。
代数几何综合题(一)代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。
例1、如图,已知平面直角坐标系中三点A(2,0),B(0,2),P(x,0),连结BP,过P点作交过点A的直线a于点C(2,y)(1)求y与x之间的函数关系式;(2)当x取最大整数时,求BC与PA的交点Q的坐标。
解:(1)A(2,0),C(2,y)在直线a上,,(2),的最大整数值为 ,当时,,设Q点坐标为,则点坐标为说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。
关键是搞清楚用坐标表示的数与线段的长度的关系。
练习1.如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,⊙O的直径BD 为6,连结CD、AO.(1)求证:CD∥AO;(3分)(2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3分)(3)若AO+CD=11,求AB的长。
(4分)2.如图,A、B两点的坐标分别是(x1,0)、(x2,O),其中x1、x2是关于x的方程x2+2x+m-3=O的两根,且x1<0<x2.(1)求m的取值范围;(2)设点C在y轴的正半轴上,∠ACB=90°,∠CAB=30°,求m的值;(3)在上述条件下,若点D在第二象限,△DAB≌△CBA,求出直线AD的函数解析式.3.一张矩形纸片OABC平放在平面直角坐标系内,O为原点,点A在x的正半轴上,点C在y轴的正半轴上,OA=5,OC=4。
①如图,将纸片沿CE对折,点B落在x轴上的点D处,求点D的坐标;②在①中,设BD与CE的交点为P,若点P,B在抛物线上,求b,c的值;3 若将纸片沿直线l对折,点B落在坐标轴上的点F处,l与BF的交点为Q,若点Q在②的抛物线上,求l 的解析式。
八年级数学代几综合难点题型一次函数综合1、已知直线 $y=kx-2k+6$ 经过定点 $Q$。
1)点 $Q$ 的坐标为 $(2k-6,-2k+6)$;2)设点 $M$ 的坐标为 $(t,t)$,则直线 $QM$ 的解析式为$y=(k+1)x-2k+6-t(k+1)$;3)设点 $E$ 的坐标为 $(m,n)$,则点 $A$ 的坐标为$(t,0)$,点 $B$ 的坐标为 $(0,-2k+6-t)$,线段 $CE$ 的长度为$\sqrt{(m-t)^2+(n+t-2k+6)^2}$。
由 $\angle AEO=45^\circ$,可知 $\angle AEC=135^\circ$,因此 $CE$ 的最大值为$\sqrt{2}(k-1)$。
2、正方形 $AOCD$ 的顶点 $A$、$C$ 分别在 $x$、$y$ 轴上,点 $P$ 为对角线 $AC$ 上一动点,过点 $P$ 作$PQ\perp OP$ 交 $CD$ 边于点 $Q$。
1)设 $P$ 的坐标为 $(t,4-t)$,则直线 $PQ$ 的解析式为$y=-\frac{1}{t}(x-t+4)$。
将直线 $EF$ 向上平移 $2$ 个单位,则其解析式为 $y=-x$;2)由勾股定理可知 $OQ^2=2PA^2=24$,$PC^2=2PA^2-AC^2=12$,因此 $OQ^2-PC^2=12$;3)当点 $P$ 沿 $AC$ 方向移动 $2$ 个单位时,点 $M$ 移动的路径长为 $\sqrt{2}$。
设 $P$ 的坐标为 $(t,4-t)$,则$Q$ 的坐标为 $(4-t,t)$,$OQ$ 的中点 $M$ 的坐标为 $(2-t,2+t)$。
当四边形 $OMNB$ 为菱形时,有 $OM=MB$,因此$t=3$。
此时,$OM$ 与 $BC$ 的交点 $H$ 的坐标为 $(3,1)$,$PQ$ 的长度为 $2\sqrt{2}-2$,四边形 $OPQH$ 的周长为$2\sqrt{2}+2\sqrt{10}$,点 $P$ 的坐标为 $(3-\sqrt{2},1+\sqrt{2})$。
代几综合问题—知识讲解(提高)【中考展望】代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化,从函数关系中点与线的位置、方程根的情况得出图形中的几何关系.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.【方法点拨】方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2)注意推理和计算相结合,力求解题过程的规范化;(3)注意掌握常规的证题思路,常规的辅助线作法;(4)注意灵活地运用数学的思想和方法.【典型例题】类型一、方程与几何综合的问题1.(2015•大庆模拟)如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)【思路点拨】(1)先在Rt△ABC中,由勾股定理求出AB=10,再由BP=t,AQ=2t,得出AP=10﹣t,然后由PQ∥BC,根据平行线分线段成比例定理,列出比例式,求解即可;(2)正确把四边形PQCB表示出来,即可得出y关于t的函数关系式;(3)根据四边形PQCB面积是△ABC面积的,列出方程,解方程即可;(4)△AEQ为等腰三角形时,分三种情况讨论:①AE=AQ;②EA=EQ;③QA=QE,每一种情况都可以列出关于t的方程,解方程即可.【答案与解析】解:(1)Rt△ABC中,∵∠C=90°,BC=8cm,AC=6cm,∴AB=10cm.∵BP=t,AQ=2t,∴AP=AB﹣BP=10﹣t.∵PQ∥BC,∴=,∴=,解得t=;(2)∵S四边形PQCB=S△ACB﹣S△APQ=AC•BC﹣AP•AQ•sinA∴y=×6×8﹣×(10﹣t)•2t•=24﹣t(10﹣t)=t2﹣8t+24,即y关于t的函数关系式为y=t2﹣8t+24;(3)四边形PQCB面积能是△ABC面积的,理由如下:由题意,得t2﹣8t+24=×24,整理,得t2﹣10t+12=0,解得t1=5﹣,t2=5+(不合题意舍去).故四边形PQCB面积能是△ABC面积的,此时t的值为5﹣;(4)△AEQ为等腰三角形时,分三种情况讨论:①如果AE=AQ,那么10﹣2t=2t,解得t=;②如果EA=EQ,那么(10﹣2t)×=t,解得t=;③如果QA=QE,那么2t×=5﹣t,解得t=.故当t为秒秒秒时,△AEQ为等腰三角形.【总结升华】本题考查了勾股定理,等腰三角形的判定等,综合性较强,难度适中.解答此题时要注意分类讨论,不要漏解;其次运用方程思想是解题的关键.举一反三:【变式】(2016•镇江)如图1,在菱形ABCD中,AB=6,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.(1)求证:BE=DF;(2)当t= 秒时,DF的长度有最小值,最小值等于;(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?(4)如图3,将线段CD绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CG.在点E的运动过程中,当它的对应点F位于直线AD上方时,直接写出点F到直线AD的距离y 关于时间t的函数表达式.【答案】解:(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四边形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,∵,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如图1,当点E运动至点E′时,DF=BE′,此时DF最小,在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,∴设AE′=x,则BE′=2x,∴AB=x=6,则AE′=6∴DE′=6+6,DF=BE′=12,故答案为:6+6,12;(3)∵CE=CF,∴∠CEQ<90°,①当∠EQP=90°时,如图2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵AB=CD=6,tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;②当∠EPQ=90°时,如图2②,∵菱形ABCD的对角线AC⊥BD,∴EC与AC重合,∴DE=6,∴t=6秒;(4)y=t﹣12﹣,如图3,连接GF分别交直线AD、BC于点M、N,过点F作FH⊥AD于点H,由(1)知∠1=∠2,又∵∠1+∠DCE=∠2+∠GCF,∴∠DCE=∠GCF,在△DCE和△GCF中,∵,∴△DCE≌△GCF(SAS),∴∠3=∠4,∵∠1=∠3,∠1=∠2,∴∠2=∠4,∴GF∥CD,又∵AH∥BN,∴四边形CDMN是平行四边形,∴MN=CD=6,∵∠BCD=∠DCG,∴∠CGN=∠DCN=∠CNG,∴CN=CG=CD=6,∵tan∠ABC=tan∠CGN=2,∴GN=12,∴GM=6+12,∵GF=DE=t,∴FM=t﹣6﹣12,∵tan∠FMH=tan∠ABC=2,∴FH=(t﹣6﹣12),即y=t﹣12﹣.类型二、函数与几何综合问题2.如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).⑴求c、b(可以用含t的代数式表示);⑵当t>1时,抛物线与线段AB交于点M.在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;⑶在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接..写出t的取值范围.【思路点拨】(1)由抛物线y=x2+bx+c经过点O和点P,将点O与P的坐标代入方程即可求得c,b;(2)当x=1时,y=1-t,求得M的坐标,则可求得∠AMP的度数;(3)根据图形,可直接求得答案.【答案与解析】解:(1)把x=0,y=0代入y=x2+bx+c,得c=0,再把x=t,y=0代入y=x2+bx,得t2+bt=0,∵t>0,∴b=-t;(2)不变.∵抛物线的解析式为:y=x2-tx,且M的横坐标为1,∴当x=1时,y=1-t,∴M(1,1-t),∴AM=|1-t|=t-1,∵OP=t ,∴AP=t-1, ∴AM=AP ,∵∠PAM=90°,∴∠AMP=45°;(3)72<t<113.①左边4个好点在抛物线上方,右边4个好点在抛物线下方:无解; ②左边3个好点在抛物线上方,右边3个好点在抛物线下方: 则有-4<y 2<-3,-2<y 3<-1, 即-4<4-2t <-3,-2<9-3t <-1,∴72<t<4且103<t<113,解得72<t<113;③左边2个好点在抛物线上方,右边2个好点在抛物线下方:无解; ④左边1个好点在抛物线上方,右边1个好点在抛物线下方:无解; ⑤左边0个好点在抛物线上方,右边0个好点在抛物线下方:无解; 综上所述,t 的取值范围是:72<t<113.【总结升华】此题考查了二次函数与点的关系.此题综合性很强,难度适中,解题的关键是注意数形结合与方程思想的应用.类型三、动态几何中的函数问题3. 如图,在平面直角坐标系xOy 中,已知二次函数2+2y ax ax c =+的图象与y 轴交于(0,3)C ,与x 轴交于A 、B 两点,点B 的坐标为(-3,0)(1)求二次函数的解析式及顶点D 的坐标;(2)点M 是第二象限内抛物线上的一动点,若直线OM 把四边形ACDB 分成面积为1:2的两部分,求出此时点M 的坐标;(3)点P 是第二象限内抛物线上的一动点,问:点P 在何处时△CPB 的面积最大?最大面积是多少?并求出此时点P 的坐标.【思路点拨】(1)抛物线的解析式中只有两个待定系数,因此只需将点B 、C 的坐标代入其中求解即可.(2)先画出相关图示,连接OD 后发现:S △OBD :S 四边形ACDB =2:3,因此直线OM 必须经过线段BD 才有可能符合题干的要求;设直线OM 与线段BD 的交点为E ,根据题干可知:△OBE 、多边形OEDCA 的面积比应该是1:2或2:1,即△OBE 的面积是四边形ACDB 面积的1233或,所以先求出四边形ABDC 的面积,进而得到△OBE 的面积后,可确定点E 的坐标,首先求出直线OE (即直线OM )的解析式,联立抛物线的解析式后即可确定点M 的坐标(注意点M 的位置).(3)此题必须先得到关于△CPB 面积的函数表达式,然后根据函数的性质来求出△CPB 的面积最大值以及对应的点P 坐标;通过图示可发现,△CPB 的面积可由四边形OCPB 的面积减去△OCB 的面积求得,首先设出点P 的坐标,四边形OCPB 的面积可由△OCP 、△OPB 的面积和得出. 【答案与解析】解:(1)由题意,得:3,9-60.c a a c =⎧⎨+=⎩ 解得:-1,3.a c =⎧⎨=⎩所以,二次函数的解析式为:2--23y x x =+ ,顶点D 的坐标为(-1,4). (2)画图由A、B、C、D四点的坐标,易求四边形ACDB 的面积为9.直线BD 的解析式为y=2x+6.设直线OM 与直线BD 交于点E ,则△OBE 的面积可以为3或6.①当1=9=33OBE S ∆⨯时,如图,易得E 点坐标(-2,-2),直线OE 的解析式为y=-x.E M xy O A BCD设M 点坐标(x ,-x ),21223113113,().22x x x x x -=--+---+==舍 ∴113113M ,22--+() ② 当时,同理可得M 点坐标.∴ M 点坐标为(-1,4).(3)如图,连接OP ,设P 点的坐标为(),m n , ∵点P 在抛物线上,∴232n m m =-+-, ∴PB PO OPB OB S S S S =+-△C △C △△C111||222OC m OB n OC OB =⋅-+⋅-⋅ ()339332222m n n m =-+-=--()22333273.2228m m m ⎛⎫=-+=-++ ⎪⎝⎭∵3<0m -<,∴当32m =-时,154n =. △CPB 的面积有最大值27.8∴当点P 的坐标为315(,)24-时,△CPB 的面积有最大值,且最大值为27.8【总结升华】此题主要考查了二次函数解析式的确定、图形面积的解法以及二次函数的应用等知识;(2)问中,一定先要探究一下点M 的位置,以免出现漏解的情况.举一反三:【变式】如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线y =-12x +b 交折线OAB 于点E .(1)记△ODE 的面积为S ,求S 与b 的函数关系式;(2)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形OA 1B 1C 1,试探究OA 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.yxDECOAB【答案】(1)由题意得B (3,1).若直线经过点A (3,0)时,则b =32 若直线经过点B (3,1)时,则b =52若直线经过点C (0,1)时,则b =1.①若直线与折线OAB的交点在OA上时,即1<b≤32,如图1,此时点E(2b,0).∴S=12OE·CO=12×2b×1=b.②若直线与折线OAB的交点在BA上时,即32<b<52,如图2,此时点E(3,32b-),D(2b-2,1).∴S=S矩-(S△OCD+S△OAE+S△DBE)= 3-[12(2b-1)×1+12×(5-2b)•(52b-)+12×3(32b-)](2)如图3,设O1A1与CB相交于点M,C1B1与OA相交于点N,则矩形O1A1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积.由题意知,DM∥NE,DN∥ME,∴四边形DNEM 为平行四边形,根据轴对称知,∠MED=∠NED, 又∠MDE=∠NED,∴∠MED=∠MDE,MD=ME,∴平行四边形DNEM为菱形.过点D作DH⊥OA,垂足为H,设菱形DNEM的边长为a,由题可知,D(2b-2,1),E(2b,0),∴DH=1,HE=2b-(2b-2)=2,∴HN=HE-NE=2-a,则在Rt△DHM中,由勾股定理知:222(2)1a a=-+,∴a=5 . 4.∴S四边形DNEM =NE·DH=54.∴矩形OA1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为54.类型四、直角坐标系中的几何问题4. 如图所示,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴...于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.【思路点拨】(1)由轴对称的性质,可知∠FBD=∠ABD,FB=AB,可得四边形ABFD是正方形,则可求点E、F的坐标;(2)已知抛物线的顶点,则可用顶点式设抛物线的解析式. 因为以点E、F 、P 为顶点的等腰三角形没有给明顶角的顶点,而顶角和底边都是唯一的,所以要抓住谁是顶角的顶点进行分类,可分别以E 、F 、P 为顶角顶点;(3)求周长的最小值需转化为利用轴对称的性质求解. 【答案与解析】解:(1)E(3,1);F(1,2);(2)连结EF ,在Rt △EBF 中,∠B=90°,∴EF=5212222=+=+BF EB .设点P 的坐标为(0,n),n >0,∵顶点F(1,2), ∴设抛物线的解析式为y=a(x-1)2+2,(a ≠0).①如图1,当EF=PF 时,EF 2=PF 2,∴12+(n-2)2=5,解得n 1=0(舍去),n 2=4. ∴P(0,4),∴4=a(0-1)2+2,解得a=2, ∴抛物线的解析式为y=2(x-1)2+2.②如图2,当EP=FP 时,EP 2=FP 2,∴(2-n)2+1=(1-n)2+9,解得n=-25(舍去)③当EF=EP 时,EP=5<3,这种情况不存在. 综上所述,符合条件的抛物线为y=2(x-1)2+2.(3)存在点M 、N ,使得四边形MNFE 的周长最小.如图3,作点E 关于x 轴的对称点E′,作点F 关于y 轴的对称点F′,连结E′F′,分别与x 轴、y 轴交于点M 、N ,则点M 、N 就是所求. 连结NF 、ME. ∴E′(3,-1)、F′(-1,2),NF=NF′,ME=ME′. ∴BF′=4,BE′=3. ∴FN+NM+ME=F′N+NM+ME′=F′E′=2243 =5. 又∵EF=5,∴FN+MN+ME+EF=5+5, 此时四边形MNFE 的周长最小值为5+5.【总结升华】本题考查了平面直角坐标系、等腰直角三角形、抛物线解析式的求法、利用轴对称求最短距离以及数形结合、分类讨论等数学思想. 分类讨论的思想要依据一定的标准,对问题分类、求解,要特别注意分类原则是不重不漏,最简分类常见的依据是:一是依据概念分类,如判断直角三角形时明确哪个角可以是直角,两个三角形相似时分清哪两条边是对应边;二是依运动变化的图形中的分界点进行分类,如一个图形在运动过程中,与另一个图形重合部分可以是三角形,也可以是四边形、五边形等. 几何与函数的综合题是中考常见的压轴题型,解决这类问题主要分为两步:一是利用线段的长确定出几何图形中各点的坐标;二是用待定系数法求函数关系式.类型五、几何图形中的探究、归纳、猜想与证明问题5. 如图所示,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,……,如此作下去,若OA=OB=1,则第n 个等腰直角三角形的面积S= ________(n 为正整数).B 2B 1A 1BOA【思路点拨】本题要先根据已知的条件求出S 1、S 2的值,然后通过这两个面积的求解过程得出一般性的规律,进而可得出S n 的表达式.【总结升华】本题要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值. 举一反三:【变式】阅读下面的文字,回答后面的问题.求3+32+33+…+3100的值. 解:令S=3+32+33+…+3100(1),将等式两边提示乘以3得到:3S=32+33+34+…+3101(2), (2)-(1)得到:2S=3101-3问题:(1)2+22+…+22011的值为__________________;(直接写出结果)(2)求4+12+36+…+4×350的值;(3)如图,在等腰Rt△OAB中,OA=AB=1,以斜边OB为腰作第二个等腰Rt△OBC,再以斜边OC为腰作第三个等腰Rt△OCD,如此下去…一直作图到第8个图形为止.求所有的等腰直角三角形的所有斜边之和.(直接写出结果).【答案】解:(1)22012-2.(2)令S=4+12+36+…+4×350 ①,将等式两边提示乘以3得到:3S=12+36+108+…+4×351②,②-①得到:2S=4×341-4∴S=2×351-2∴4+12+36+…+4×350=2×351-2.(3)92-2 2-1().。
全等三角形代几综合《一》1、如图,在△ABC中,AB=AC,D、E 是△ABC 内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC= 。
(第1题)(第2题)2、如图在△ABC中∠ABC=150°,CD是角平分线BC=Aac=b点E,F分别是BC,CD上的两点,则BF+EF的最小值是(用含a、b、c的代数式表示)。
知识梳理三角形与全等三角形性质判定三角形稳定性三边关系:中线:角度计算:①②③全等三角形边:角:大小:角平分线垂直平分线等腰三角形等边三角形(正三角形)【例题精讲】全等三角形代几综合1、等腰Rt△ACB,∠ACB=90°,AC=BC,点A、C分别在x轴、y轴的正半轴上(1) 如图1,求证:∠BCO=∠CAO;(2) 如图2,若OA=5,OC=2,求B点的坐标;(3) 如图3,点C(0,3),Q、A两点均在x轴上,且S△CQA=18.分别以AC、CQ为腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,连接MN交y轴于P点,OP的长度是否发生改变?若不变,求出OP的值;若变化,求OP的取值范围。
2、在平面直角坐标系中,点A坐标为(8,0),点B坐标为(0,8),点C为OA中点。
(1) 如图1,过点O作OD⊥BC于点E,交AB于点D,求证:∠OBC=∠AOD;(2) 点M从C点出发向x轴正方向运动,同时点N从C点出发向x轴负方向运动,点M、N运动速度均为每秒1个单位长度,运动时间为t秒.射线OE⊥BM于点E,交AB于点D,直线ND交BM于点K①如图2,当0<t<4时,请证明△KNM为等腰三角形;②当t>4时,△KNM是否还是等腰三角形,请画出图形,并说明理由。
3、如图,线段AC∥x轴,点B在第四象限,AO平分∠BAC,AB交x轴于G,连OB、OC。
(1) 判断△AOC的形状,并证明;(2) 如图1,若BO=CO且OG平分∠BOC,求证:OA⊥OB;(3) 如图2,在(2)的条件下,点M为AO上的一点,且∠ACM=45°,若点B(1,-2),求点M的坐标。
一次函数代几综合1、如图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A.设P点经过的路程为x,以A、P、B为顶点的三角形的面积为y,则选项图象能大致反映y与x的函数关系式的是()2、在青山区“海绵城市”工程中,某工程队接受一段道路施工的任务,计划从2016年10月初至2017年9月底(12个月)完成,施工3个月后,实行倒计时,提高工作效率,剩余工程量与施工时间的关系如图所示,那么按提高工作效率后的速度做完全部工程,则工期可缩短____个月.(第2题)(第3题)3、某渔船计划从码头出发到指定海域捕鱼,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该渔船加快速度仍匀速前进,结果恰好准点到达.如图是该渔船行驶的路程y(海里)与所用时间t(小时)的函数图象,则该渔船从码头到捕鱼海域的路程是________海里知识一一次函数与几何综合题【知识梳理】1、最短路径:做定点关于动点所在直线的对称点2、一次函数与面积问题:利用面积法求线段比或者根据面积之间的关系求出线段比3、四边形存在性:一般会根据两个或者三个定点,在某个特定的位置上找另两个顶点或第四个顶点,这样的顶点往往不止一个,需要仔细考虑解题策略,如:若已知两点构成的线段是平行四边形的一边或者对角线,如何利用平行四边形的性质确定出其他的顶点位置,否则在分类是就容易漏解。
【例题精讲一】最短路径1、已知A (6,6)、B (1,4)在y 轴上找一点C 使|AC -BC |最大,在x 轴上找一点D 使DA +DB 最小,则CD =__________2、如图,点Q 在直线y =-x 上运动,点A 的坐标为(1,0).当线段AQ 最短时,点Q 的坐标为_________3、(1) 如图①,数轴上A 、B 两点表示的数分别为-1和3,点A 是BC 的中点.,则点C 所表示的数为____________(2) 如图②,直角坐标中,A 、B 两点的坐标分别为(3-,0)和(0,1),则在y =-1上是否存在点P 使得PA +PB 的值最小?若存在,求出P 点的坐标,此时PA +PB =__________(第3题)(第4题)4、如图,已知直线AB :55355+=x y 分别交x 轴、y 轴于点B 、A 两点,C (3,0),D 、E 分别为线段AO 和线段AC 上一动点,BE 交y 轴于点H ,且AD =CE .当BD +BE 的值最小时,则H 点的坐标为__________ 5、如图,已知直线AB 的函数解析式为y =2x +10,与y 轴交于点A ,与x 轴交于点B (1) 直接写出A 点的坐标___________,B 点的坐标___________(2) 若点P (a ,b )为线段AB 上的一个动点,作PE ⊥y 轴于点E ,PF ⊥x 轴于点F ,连接EF ,问: ① 若△PBO 的面积为S ,求S 关于a 的函数关系式② 直接写出EF 的最小值【例题讲解二】一次函数与面积问题1、已知直线AB 分别交x 、y 轴于A (4,0)两点,C (-4,a )为直线y =-x 与AB 的公共点 (1) 求点B 的坐标(2) 已知动点M 在直线y =x +6上,是否存在点M 使得S △OMB =S △OMA ,若存在,求出点M 的坐标;若不存在,请说明理由(3) 已知点E (0,8),P 是x 轴正半轴上动点,Q 是y 轴正半轴上的动点,Q 在点E 上方,OP =EQ ,OH 是∠OQP 的角平分线交直线CO 于H ,求OE 、PQ 、OH 之间的数量关系2、如图1,直线y=-3x+33分别与y 轴、x 轴交于点A,点P ,点C 的坐标为(-3,0),D 为直线AB 上一动点,连接CD 交y 轴于点E(1)点占的坐标为____:不等式-3x+33>0的解集为____:(2)若S △COE =S △ADE ,求点D 的坐标;(3)如图2,以CD 为边作菱形CDFG ,且∠CDF=60°,当点D 运动时,点G 在一条定直线上运动,请求出这条定直线的解析式;GFBEACBEA CO O D xyD xy3、如图,直线242+=x y 与坐标轴分别交于A 、B 两点,点C 在x 轴上,且OA =OC ,点P 从A 出发沿射线AC 方向运动,速度为每秒1个单位长度,设运动时间为t (s )(1) 求点B 、C 的坐标;(2) 若△OCP 的面积为4.求运动时间t 的值(3) 如图2,在OP 的上方作OQ ⊥OP ,且OP =OQ ,连接BQ ,求运动过程中BQ 的最小值【例题讲解三】一次函数与四边形1、如图,在平面直角坐标系中,正方形AOCD 的顶点A 、C 分别在x 、y 轴上,P 为对角线AC 上一动点,过点P 作PQ ⊥OP 交CD 边于点Q(1) 如图,若对角线AC 的解析式为y =-x +4,直线EF 的解析式为221--=x y ,现将直线EF 向上平移,使直线EF 平分AOCD 的面积,求平移后的直线EF 的解析式;(2) 如图,若PA =26,求OQ 2-PC 2的值 (3) 点P 从点A 出发,沿AC 方向移动.若移动的路径长为2,求OQ 的中点M 移动的路径长2、如图,在平面直角坐标系中,直线b x y +-=43分别与x 轴、y 轴交于点A 、B ,且点A 坐标为(8,0),点C 为AB 的中点。
八年级下数学期末复习资料内容自觉地经常进行系统数学知识复习,将使你断取得好的成绩。
以下是店铺为大家整理的八年级下数学期末复习资料内容,希望你们喜欢。
八年级下数学期末复习资料内容(一)一次函数一、一次函数的概念之所以称为一次函数,是因为它们的关系式是用一次整式表示的。
学习此概念要从两个方面来理解。
(1)从其表达式上:一次函数通常是指形如:y=kx+b(k、b为常数,k≠0)的函数,凡是成这种形式的函数都是一次函数。
而当b=0时,即y=kx(k≠0的常数),则称为正比例函数,其中k为比例系数。
(2)从其意义上:它们表示的是两个变量之间的关系,这种函数关系具有特定的意义,如,如果说两各变量之间具有一次函数关系,我们就可按照概念设出函数关系式,成正比例关系的也同样,如,若s与t成正比例关系,我们便可设s=kt(k≠0,t为自变量)“正比例函数”与“成正比例”的区别:正比例函数一定是y=kx这种形式,而成正比例则意义要广泛得多,它反映了两个量之间的固定正比例关系,如a+3与b-2成正比例,则可表示为:a+3=k(b-2)(k≠0)二、一次函数的图象正比例函数和一次函数的图象都是一条直线,所以对于其解析式也称为“直线y=kx+b,直线y=kx”。
因为一次函数的图象是一条直线,所以在画一次函数的图象时,只要描出两个点,在通过两点作直线即可。
1、画正比例函数y=kx(k≠0的常数)的图象时,只需要这两个特殊点:(0,0)和(1,k)两点;2、画一次函数y=kx+b(k、b为常数,k≠0)的图象时,只需要找出它与坐标轴的两个交点即可。
一次函数与x轴的交点坐标是:(0,b),与y轴的交点坐标b是:k ,0)3、若两个不同的一次函数的一次项的系数相同,则这它们的图象平行。
4、将y=kx的图象沿着沿着轴向上(b>0)或向下(b<0)平移|b|各单位长度即可得到y=kx+b。
5、求两一次函数的交点坐标:联立解两各函数解析式得到的二元一次方程组,求的自变量x的值为交点的横坐标,求出的y的值为交点的纵坐标。
八年级期末数学知识点归纳随着八年级学年的结束,期末考试即将到来,作为数学学科的学生,要想获得一个好成绩,需要仔细学习、复习各个知识点,以下是本文对八年级学生需要掌握的数学知识点的归纳和总结。
一. 代数式及其运算1. 代数式的概念和含义2. 代数式的基本形式及性质3. 代数式的化简和加减乘除4. 一元一次方程及其解法5. 一元一次不等式及其解法二. 比例与相似1. 比例的概念和性质2. 比例的运算及应用3. 相似的概念和性质4. 相似的判定和应用三. 平面图形的认识1. 平面图形的分类2. 四边形的性质和分类3. 三角形的性质和分类4. 圆的定义和性质四. 几何变换1. 平移、旋转、翻折和对称的基本概念2. 几何变换的性质和特点3. 进行几何变换的方法和技巧五. 数据的处理1. 平均数、中位数、众数的概念和计算方法2. 极差、方差、标准差的概念和意义3. 统计数据的图表和分析方法六. 空间与图形1. 空间图形的基本概念2. 空间图形的计算思想和计算方法3. 空间图形的投影和截面七. 三角函数1. 角度和弧度的概念及互相转换2. 正弦、余弦、正切等三角函数的概念和计算方法3. 三角函数的图像和性质八. 概率与统计1. 随机试验的基本概念和性质2. 随机事件的概念和计算方法3. 概率的基本概念和计算方法4. 统计的数据和图表的应用以上是八年级数学学科的主要知识点总结,在期末考试前的复习中,学生们应该认真掌握这些知识点,可以通过课堂上、辅导班的教学和练习题的练习来增强自己的考试能力,在平时的学习中,应该注意强化数学思维和解题能力,提高抽象思维和实际应用水平,积极探究数学中的奥秘,以扎实的知识储备和高超的解题技巧迎接期末考试的挑战,取得优异的成绩。
代几综合题(以代数为主的综合) 典题探究例1 已知抛物线c bx ax y ++=2与y 轴交于点A (0,3),与x 轴分别交于B (1,0)、C (5,0)两点.(1)求此抛物线的解析式;(2)若点D 为线段OA 的一个三等分点, 求直线DC 的解析式;(3)若一个动点P 自OA 的中点M 出发,先到达x 轴上的某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点A ,求使点P 运动的总路径最短的点E 、点F 的坐标,并求出这个最短总路径的长.例2 在平面直角坐标系xOy 中,抛物线223y mx mx n =++经过(35)(02)P A ,,,两点. (1)求此抛物线的解析式;(2)设抛物线的顶点为B ,将直线AB 沿y 轴向下平移两个单位得到直线,直线与抛物线的对称轴交于C 点,求直线的解析式;(3)在(2)的条件下,求到直线OB OC BC ,,距离相等的点的坐标.例3在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点(点A 在点B的左侧..),与y 轴交于点C ,点B 的坐标为(3,0),将直线y kx =沿y 轴向上平移 3个单位长度后恰好经过B 、C 两点.(1) 求直线BC 及抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且∠APD =∠ACB ,求点P的坐标;(3)连结CD ,求∠OCA 与∠OCD 两角和的度数.例4在平面直角坐标系xOy 中,抛物线23454122+-++--=m m x m x m y 与x 轴的交点分别为原点O 和点A ,点B(2,n)在这条抛物线上.(1) 求点B 的坐标;(2) 点P 在线段OA 上,从O 点出发向点运动,过P 点作x 轴的垂线,与直线OB 交于点E 。
延长PE 到点D 。
使得ED=PE. 以PD 为斜边在PD 右侧作等腰直角三角形PCD(当P 点运动时,C 点、D 点也随之运动)当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止运动,P 点也同时停止运动)。
代几综合问题—知识讲解(基础)【中考展望】代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化.以形导数,由数思形,从而寻找出解题捷径.解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.【方法点拨】方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2)注意推理和计算相结合,力求解题过程的规范化;(3)注意掌握常规的证题思路,常规的辅助线作法;(4)注意灵活地运用数学的思想和方法.【典型例题】类型一、方程与几何综合的问题1.如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE =10,则CE的长为_________.【思路点拨】过B 作DA 的垂线交DA 的延长线于M,M 为垂足,延长DM 到G,使MG=CE,连接BG.求证△BEC≌△BGM,△ABE≌△ABG,设CE=x,在直角△ADE 中,根据AE 2=AD 2+DE 2求x 的值,即CE 的长度.【答案与解析】解:过B 作DA 的垂线交DA 的延长线于M,M 为垂足,延长DM 到G,使MG=CE,连接BG,∴∠AMB=90°,∵AD∥CB,∠DCB=90°,∴∠D=90°,∴∠AMB=∠DCB=∠D=90°,∴四边形BCDM 为矩形.∵BC=CD,∴四边形BCDM 是正方形,∴BC=BM,且∠ECB=∠GMB,MG=CE,∴Rt△BEC≌Rt△BGM.∴BG=BE,∠CBE=∠GBM,∵∠CBE+∠EBA+∠ABM=90°,且∠ABE=45°∴∠CBE+∠ABM=45°∴∠ABM+∠GBM=45°∴∠ABE=∠ABG=45°,∴△ABE≌△ABG,AG=AE=10.设CE=x,则AM=10-x,AD=12-(10-x)=2+x,DE=12-x,在Rt△ADE 中,AE 2=AD 2+DE 2,∴100=(x+2)2+(12-x)2,即x 2-10x+24=0;解得:x 1=4,x 2=6.故CE 的长为4或6.【总结升华】本题考查了直角三角形中勾股定理的运用,考查了全等三角形的判定和性质,本题中求证△ABE≌△ABG,从而说明AG=AE=10是解题的关键.类型二、函数与几何问题2.如图,二次函数y =(x-2)2+m 的图象与y 轴交于点C,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b 的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x-2)2+m 的x 的取值范围.【思路点拨】(1)将点A(1,0)代入y=(x-2)2+m 求出m 的值,根据点的对称性,将y=3代入二次函数解析式求出B 的横坐标,再根据待定系数法求出一次函数解析式;(2)根据图象和A、B 的交点坐标可直接求出满足kx+b≥(x-2)2+m 的x 的取值范围.【答案与解析】解:(1)将点A(1,0)代入y=(x-2)2+m 得,(1-2)2+m=0,1+m=0,m=-1,则二次函数解析式为y=(x-2)2-1.当x=0时,y=4-1=3,故C 点坐标为(0,3),由于C 和B 关于对称轴对称,在设B 点坐标为(x,3),令y=3,有(x-2)2-1=3,解得x=4或x=0.则B 点坐标为(4,3).设一次函数解析式为y=kx+b,将A(1,0)、B(4,3)代入y=kx+b 中,得,解得,则一次函数解析式为y=x-1;(2)∵A、B 坐标为(1,0),(4,3),∴当kx+b≥(x-2)2+m 时,1≤x≤4.【总结升华】本题考察了待定系数法求二次函数,一次函数函数解析式以及数形结合法解不等式.求出B 点坐标是解题的关键.举一反三:【变式】如图,二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A、B 两点,其中A 点坐标为(-1,0),点C(0,5)、D(1,8)在抛物线上,M 为抛物线的顶点.(1)求抛物线的解析式.(2)求△MCB的面积.【答案】解:(1)设抛物线的解析式为2y ax bx c =++,根据题意,得058a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解之,得145a b c =-⎧⎪=⎨⎪=⎩.∴所求抛物线的解析式为245y x x =-++.(2)∵C 点的坐标为(0,5).∴OC=5.令0y =,则2450x x -++=,解得121,5x x =-=.∴B 点坐标为(5,0).∴OB=5.∵2245(2)9y x x x =-++=--+,∴顶点M 坐标为(2,9).过点M 作MN⊥AB 于点N,则ON=2,MN=9.∴11(59)9(52)551522MCB BNM OBC OCMN S S S S ∆∆∆=+-=+⨯⨯--⨯⨯=梯形.类型三、动态几何中的函数问题3.如图,在平面直角坐标系中,已知点A(-2,-4),OB=2,抛物线y=ax 2+bx+c 经过点A、O、B 三点.(1)求抛物线的函数表达式;(2)若点M 是抛物线对称轴上一点,试求AM+OM 的最小值;(3)在此抛物线上,是否存在点P,使得以点P 与点O、A、B 为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.【思路点拨】(1)把A、B、O 的坐标代入到y=ax 2+bx+c 得到方程组,求出方程组的解即可;(2)根据对称求出点O 关于对称轴的对称点B,连接AB,根据勾股定理求出AB 的长,就可得到AM+OM 的最小值.(3)①若OB∥AP,根据点A 与点P 关于直线x=1对称,由A(-2,-4),得出P 的坐标;②若OA∥BP,设直线OA 的表达式为y=kx,设直线BP 的表达式为y=2x+m,由B (2,0)求出直线BP 的表达式为y=2x-4,得到方程组,求出方程组的解即可;③若AB∥OP,设直线AB 的表达式为y=kx+m,求出直线AB,得到方程组求出方程组的解即可.【答案与解析】解:(1)由OB=2,可知B(2,0),将A(-2,-4),B(2,0),O(0,0)三点坐标代入抛物线y=ax 2+bx+c,得4420420a b c a b c c -=-+⎧⎪=++⎨⎪=⎩解得:1,21,0.a b c ⎧=-⎪⎪=⎨⎪=⎪⎩∴抛物线的函数表达式为y=212x x -+(2)由y=212x x -+=211(1)22x x --+可得,抛物线的对称轴为直线x=1,且对称轴x=1是线段OB 的垂直平分线,连接AB 交直线x=1于点M,M 点即为所求.∴MO=MB,则MO+MA=MA+MB=AB,作AC⊥x 轴,垂足为C,则|AC|=4,|BC|=4,∴AB=42,∴MO+MA 的最小值为42.答:MO+MA 的最小值为42.(3)①如图1,若OB∥AP,此时点A 与点P 关于直线x=1对称,由A(-2,-4),得P(4,-4),则得梯形OAPB.②如图2,若OA∥BP,设直线OA 的表达式为y=kx,由A(-2,-4)得,y=2x.设直线BP 的表达式为y=2x+m,由B(2,0)得,0=4+m,即m=-4,∴直线BP 的表达式为y=2x-4.由12⎧⎪⎨⎪⎩2y=2x-4,y=-x+x.解得x 1=-4,x 2=2(不合题意,舍去),当x=-4时,y=-12,∴点P(-4,-12),则得梯形OAPB.③如图3,若AB∥OP,设直线AB 的表达式为y=kx+m,则4202k m k m -=-+⎧⎨=+⎩,.解得12k m =⎧⎨=-⎩,.∴AB 的表达式为y=x-2.∵AB∥OP,∴直线OP 的表达式为y=x.由2,12y x y x x =⎧⎪⎨=-+⎪⎩得x 2=0,解得x=0,(不合题意,舍去),此时点P 不存在.综上所述,存在两点P(4,-4)或P(-4,-12),使得以点P 与点O、A、B 为顶点的四边形是梯形.【总结升华】本题主要考查对梯形,解二元二次方程组,解一元二次方程,二次函数的性质,用待定系数法求一次函数的解析式等知识点的理解和掌握,综合运用性质进行计算是解此题的关键.举一反三:【变式】如图,直线434+-=x y 与x 轴、y 轴的交点分别为B、C,点A 的坐标是(-2,0).(1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S.①求S 与t 的函数关系式;②设点M 在线段OB 上运动时,是否存在S=4的情形?若存在,求出对应的t 值;若不存在,请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.【答案】(1)证明:y=443x -+∵当x=0时,y=4;当y=0时,x=3,∴B(3,0),C(0,4),∵A(-2,0),由勾股定理得:BC=22345+=∵AB=3-(-2)=5,∴AB=BC=5,∴△ABC 是等腰三角形;(2)解:①∵C(0,4),B(3,0),BC=5,∴sin∠B=40.85OC BC ==过N 作NH⊥x 轴于H.∵点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度,又∵AB=BC=5,∴当t=5秒时,同时到达终点,∴△MON 的面积是S=12OM NH ⨯⨯∴S=20.4t t -⨯②点M 在线段OB 上运动时,存在S=4的情形.理由如下:∵C(0,4),B(3,0),BC=5,∴sin∠B=40.85OC BC ==根据题意得:∵S=4,∴|t-2|×0.4t=4,∵点M 在线段OB 上运动,OA=2,∴t-2>0,即(t-2)×0.4t=4,化为t 2-2t-10=0,解得:111,111(t t =+=-舍去)∴点M 在线段OB 上运动时,存在S=4的情形,此时对应的t 是(111t =+)秒.③∵C(0,4)B(3,0)BC=5,∴cos∠B=30.65OB BC ==分为三种情况:I、当∠NOM=90°时,N 在y 轴上,即此时t=5;II、当∠NMO=90°时,M、N 的横坐标相等,即t-2=3-0.6t,解得:t=3.125,III、∠MNO 不可能是90°,即在运动过程中,当△MON 为直角三角形时,t 的值是5秒或3.125秒.类型四、直角坐标系中的几何问题4.(2015•阳山县一模)如图,在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为(4,3).平行于对角线AC 的直线m 从原点O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边分别交于点M、N,直线m 运动的时间为t(秒).(1)点A 的坐标是,点C 的坐标是;(2)当t=秒或秒时,MN=AC;(3)设△OMN 的面积为S,求S 与t 的函数关系式.【思路点拨】(1)根据BC∥x 轴,AB∥y 轴即可求得A 和C 的坐标;(2)分成MN 是△OAC 的中位线和MN 是△ABC 的中位线时两种情况进行讨论;(3)根据时间t 值的范围不同,M,N 与矩形的两边相交构成不同的三角形,画出图形进行分类讨论,然后正确表示出△OMN 的面积即可.【答案与解析】解:(1)A 的坐标是(4,0),C 的坐标是(0,3);(2)当MN 是△OAC 的中位线时,M 是OA 的中点,则t=OA=×4=2;当MN 是△ABC 的中位线时,如图1.则△AME∽△OCA,则AE=OA=×4=2,则E 的坐标是(6,0),即平移了6个单位长度.故答案是:2或6.(3)当0<t≤4时,OA=t,则ON=t,则S △OMN =×t×t=238t (0<t≤4).即当4<t<8时,如图1.设直线AC 的解析式是y=kx+b,根据题意得,解得:,则直线AC 的解析式是y=﹣x+3.设MN 的解析式是y=﹣x+c,E 的坐标是(t,0),代入解析式得:c=t,则直线MN 的解析式是y=﹣x+t.令x=4,解得y=﹣3+t,即M 的坐标是(4,﹣3+t).令y=3,解得:x=t﹣4,则N 的坐标是(t﹣4,3).则S 矩形OABC=3×4=12,S △OCN =OC•CN=×3•(t﹣4)=3 6.2t -S △OAM =OA•AM=×4•(﹣3+t)=﹣6.S △BMN =BN•BM=[4﹣(t﹣4)][3﹣(﹣3+t)]=t 2﹣6t+24.则S=12﹣(﹣6)﹣(t﹣6)﹣(t 2﹣6t+24),即S=﹣t 2+3t(4<t<8).【总结升华】本题考查了矩形的性质以及待定系数法求一次函数的解析式,直线平行的条件,正确利用t 表示出M 和N 的坐标是关键.类型五、几何图形中的探究、归纳、猜想与证明问题5.一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(01),,然后接着按图中箭头所示方向运动,即(00)(01)(11)(10)→→→→,,,,…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是_______.【思路点拨】由题目中所给的质点运动的特点找出规律,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,即可得出第35秒时质点所在位置的坐标.【答案与解析】解:质点运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒0123x y 123…数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此类推,到(5,0)用35秒.故第35秒时质点所在位置的坐标是(5,0).【总结升华】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.举一反三:【变式】(2016•泰山区一模)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2014次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)【答案】B.【解析】解:如图,经过6次反弹后动点回到出发点(0,3),∵2014÷6=335…4,∴当点P第2014次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(5,0).故选;B.。
考点综合专题:一次函数与几何图形的综合问题——代几综合,明确中考风向标◆类型一一次函数与面积问题1.如图,把Rt△ABC放在平面直角坐标系内,其中∠CAB=90°,BC=5,点A,B 的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为________.2.如图,直线y=-2x+3与x轴相交于点A,与y轴相交于点B.【易错7】(1)求A,B两点的坐标;(2)过B点作直线BP与x轴相交于点P,且使OP=2OA,求△ABP的面积.3.如图,直线y=-x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),点P(x,y)是在第一象限内直线y=-x+10上的一个动点.(1)求△OPA的面积S与x的函数解析式,并写出自变量x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.◆类型二一次函数与三角形、四边形的综合4.(2016·长春中考)如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(-1,1),顶点B在第一象限,若点B在直线y=kx+3上,则k的值为________.第4题图第5题图5.(2016·温州中考)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数解析式是()A.y=x+5 B.y=x+10C.y=-x+5 D.y=-x+10◆类型三一次函数与几何图形中的规律探究问题6.(2017·安顺中考)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y 轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n-1B n顶点B n的横坐标为________.第6题图第7题图7.★(2016·潍坊中考)在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形A n B n C n C n-1,使得点A1,A2,A3,…在直线l上,点C1,C2,C3,…在y轴正半轴上,则点B n的坐标是________.参考答案与解析1.16解析:如图,∵点A,B的坐标分别为(1,0),(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴在Rt△ABC中,由勾股定理得AC=BC2-AB2=4,∴A′C′=4.∵点C′在直线y=2x-6上,∴2x-6=4,解得x=5.即OA′=5,∴CC′=AA′=5-1=4.∴S▱BCC′B′=CC′·CA=4×4=16.即线段BC扫过的面积为16.2.解:(1)令y =0,则-2x +3=0,解得x =32;令x =0,则y =3,∴点A 的坐标为⎝⎛⎭⎫32,0,点B 的坐标为(0,3).(2)由(1)得点A ⎝⎛⎭⎫32,0,∴OA =32,∴OP =2OA =3,∴点P 的坐标为(3,0)或(-3,0),∴AP =OP -OA =32或AP =OP +OA =92,∴S △ABP =12AP ·OB =12×92×3=274或S △ABP =12AP ·OB=12×32×3=94.综上所述,△ABP 的面积为274或94. 3.解:(1)∵点P 在直线y =-x +10上,且点P 在第一象限内,∴x >0且y >0,即-x +10>0,解得0<x <10.∵点A (8,0),∴OA =8,∴S =12OA ·|y P |=12×8×(-x +10)=-4x +40(0<x <10).(2)当S =10时,即-4x +40=10,解得x =152.当x =152时,y =-152+10=52,∴当△OP A的面积为10时,点P 的坐标为⎝⎛⎭⎫152,52.4.-2 5.C6.2n +1-2 解析:由题意得OA =OA 1=2,∴OB 1=OA 1=2,B 1B 2=B 1A 2=4,B 2A 3=B 2B 3=8,∴B 1(2,0),B 2(6,0),B 3(14,0)….∵2=22-2,6=23-2,14=24-2,…∴B n 的横坐标为2n +1-2.故答案为2n +1-2.7.(2n -1,2n -1) 解析:∵y =x -1与x 轴交于点A 1,∴点A 1的坐标为(1,0).∵四边形A 1B 1C 1O 是正方形,∴A 1B 1=OA 1=1,∴点B 1的坐标为(1,1).∵C 1A 2∥x 轴,点A 2在直线y =x -1上,∴点A 2的坐标为(2,1).∵四边形A 2B 2C 2C 1是正方形,∴A 2B 2=A 2C 1=2,∴点B2的坐标为(2,3),同理可得点B3的坐标为(4,7).∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,∴点B n的坐标为(2n-1,2n-1).19.2.3 一次函数与方程、不等式一.选择题(共8小题)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2B.y=2C.x=﹣1D.y=﹣12.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为()A.x=﹣1B.x=2C.x=0D.x=33.一元一次方程ax﹣b=0的解x=3,函数y=ax﹣b的图象与x轴的交点坐标为()A.(3,0)B.(﹣3,0)C.(a,0)D.(﹣b,0)4.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()A.B.C.D.5.若方程x﹣3=0的解也是直线y=(4k+1)x﹣15与x轴的交点的横坐标,则k的值为()A.﹣1B.0C.1D.±16.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m >nx+4n>0的整数解为()A.﹣1B.﹣5 C.﹣4D.﹣38.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b<0的解集是()A.x<0B.0<x<1C.x<1 D.x>1二.填空题(共10小题)9.若直线y=2x+b与x轴交于点(﹣3,0),则方程2x+b=0的解是_________.10.如图是一次函数y=kx+b的图象,则方程kx+b=0的解为_________.11.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为_________.12.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.13.如图,直线y=kx+b分别交x轴和y轴于点A、B,则关于x的方程kx+b=0的解为_________.14.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.16.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为_________.17.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________.18.如图,函数y=kx和的图象相交于A (a,2),则不等式的解集为_________.三.解答题(共4小题)19.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=﹣3的解.20.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.(1)写出不等式2x>kx+3的解集:_________;(2)设直线l2与x轴交于点A,求△OAP的面积.21.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B两点,求不等式kx+b≤0的解.22.在直角坐标系xOy中,直线y=kx+b(k≠0)经过(﹣2,1)和(2,3)两点,且与x 轴、y轴分别交于A、B两点,求不等式kx+b≥0的解集.19.2.3 一次函数与方程、不等式一.选择题(共8小题)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2B.y=2C.x=﹣1D.y=﹣12.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为()A.x=﹣1B.x=2C.x=0D.x=33.一元一次方程ax﹣b=0的解x=3,函数y=ax﹣b的图象与x轴的交点坐标为()A.(3,0)B.(﹣3,0)C.(a,0)D.(﹣b,0)4.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()A.B.C.D.5.若方程x﹣3=0的解也是直线y=(4k+1)x﹣15与x轴的交点的横坐标,则k的值为()A.﹣1B.0C.1D.±16.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m >nx+4n>0的整数解为()A.﹣1B.﹣5 C.﹣4D.﹣38.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b<0的解集是()A.x<0B.0<x<1C.x<1 D.x>1二.填空题(共10小题)9.若直线y=2x+b与x轴交于点(﹣3,0),则方程2x+b=0的解是_________.10.如图是一次函数y=kx+b的图象,则方程kx+b=0的解为_________.11.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为_________.12.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.13.如图,直线y=kx+b分别交x轴和y轴于点A、B,则关于x的方程kx+b=0的解为_________.14.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.16.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为_________.17.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________.18.如图,函数y=kx和的图象相交于A (a,2),则不等式的解集为_________.三.解答题(共4小题)19.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=﹣3的解.20.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.(1)写出不等式2x>kx+3的解集:_________;(2)设直线l2与x轴交于点A,求△OAP的面积.21.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B两点,求不等式kx+b≤0的解.22.在直角坐标系xOy中,直线y=kx+b(k≠0)经过(﹣2,1)和(2,3)两点,且与x 轴、y轴分别交于A、B两点,求不等式kx+b≥0的解集.。
人教版八年级上期末数学备考之几何综合一.解答题(共35小题)1.如图,在△ABC中,AB=AC,∠BAC=90°,点D是边BC上的动点,连接AD,点C 关于直线AD的对称点为点E,射线BE与射线AD交于点F.(1)在图中,依题意补全图形;(2)记∠DAC=α(α<45°),求∠ABF的大小;(用含α的式子表示)(3)若△ACE是等边三角形,猜想EF和BC的数量关系,并证明.2.如图,CN是等边△ABC的外角∠ACM内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.(1)依题意补全图形;(2)若∠ACN=α,求∠BDC的大小(用含α的式子表示);(3)用等式表示线段PB,PC与PE之间的数量关系,并证明.3.数学老师布置了这样一道作业题:在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,α+β=120°,连接AD,求∠ADB的度数.小聪提供了研究这个问题的过程和思路:先从特殊问题开始研究,当α=90°,β=30°时(如图1),利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形的相关知识便可解决这个问题.(1)请结合小聪研究问题的过程和思路,求出这种特殊情况下∠ADB的度数;(2)结合小聪研究特殊问题的启发,请解决数学老师布置的这道作业题;(3)解决完老师布置的这道作业题后,小聪进一步思考,当点D和点A在直线BC的异侧时,且∠ADB的度数与(1)中相同,则α,β满足的条件为(直接写出结果).4.如图1,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO 上一动点,过点H作直线l⊥AO于H,分别交直线AB、AC、BC于点N、E、M.(1)当直线l经过点C时(如图2),证明:BN=CD;(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;(3)请直接写出BN、CE、CD之间的等量关系.5.如图1,在等腰直角三角形ABC中,AB=AC,∠BAC=90°,点D在BC边上,连接AD,AE⊥AD,AE=AD,连接CE,DE.(1)求证:∠B=∠ACE;(2)点A关于直线CE的对称点为M,连接CM,EM.①补全图形并证明∠EMC=∠BAD;②利用备用图进行画图、试验、探究,找出当D,E,M三点恰好共线时点D的位置.请直接写出此时∠BAD的度数,并画出相应的图形.6.在△ABC中,AB=AC,在△ABC的外部作等边三角形△ACD,E为AC的中点,连接DE并延长交BC于点F,连接BD.(1)如图1,若∠BAC=100°,求∠BDF的度数;(2)如图2,∠ACB的平分线交AB于点M,交EF于点N,连接BN.①补全图2;②若BN=DN,求证:MB=MN.7.在△ABC中,∠A=60°,BD,CE是△ABC的两条角平分线,且BD,CE交于点F.(1)如图1,用等式表示BE,BC,CD这三条线段之间的数量关系,并证明你的结论;小东通过观察、实验,提出猜想:BE+CD=BC.他发现先在BC上截取BM,使BM=BE,连接FM,再利用三角形全等的判定和性质证明CM=CD即可.①下面是小东证明该猜想的部分思路,请补充完整:ⅰ)在BC上截取BM,使BM=BE,连接FM,则可以证明△BEF与全等,判定它们全等的依据是;ⅱ)由∠A=60°,BD,CE是△ABC的两条角平分线,可以得出∠EFB=°;…②请直接利用ⅰ),ⅱ)已得到的结论,完成证明猜想BE+CD=BC的过程.(2)如图2,若∠ABC=40°,求证:BF=CA.8.在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA(如图1)(1)求证:∠BAD=∠EDC;(2)点E关于直线BC的对称点为M,连接DM,AM.①依题意将图2补全;②小姚通过观察,实验提出猜想:在点D运动的过程中,始终有DA=AM,小姚把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明DA=AM,只需证△ADM是等边三角形;想法2:连接CM,只需证明△ABD≌△ACM即可.请你参考上面的想法,帮助小姚证明DA=AM(一种方法即可)9.已知:△ABC是等边三角形.(1)如图1,点D在AB边上,点E在AC边上,BD=CE,BE与CD交于点F.试判断BF与CF的数量关系,并加以证明;(2)点D是AB边上的一个动点,点E是AC边上的一个动点,且BD=CE,BE与CD 交于点F.若△BFD是等腰三角形,求∠FBD的度数.10.已知:在△ABC中,∠ABC<60°,CD平分∠ACB交AB于点D,点E在线段CD上(点E不与点C、D重合),且∠EAC=2∠EBC.(1)如图1,若∠EBC=27°,且EB=EC,则∠DEB=°,∠AEC=°.(2)如图2,①求证:AE+AC=BC;②若∠ECB=30°,且AC=BE,求∠EBC的度数.11.在△ABC中,AD是△ABC的角平分线.(1)如图1,过C作CE∥AD交BA延长线于点E,若F为CE的中点,连接AF,求证:AF⊥AD;(2)如图2,M为BC的中点,过M作MN∥AD交AC于点N,若AB=4,AC=7,求NC的长.12.如图,在△ABC中,AC=BC,∠ACB=90°,D为△ABC内一点,∠BAD=15°,AD =AC,CE⊥AD于E,且CE=5.(1)求BC的长;(2)求证:BD=CD.13.在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E.(1)如图1,连接EC,求证:△EBC是等边三角形;(2)点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM的下方作∠BMG=60°,MG交DE延长线于点G.请你在图2中画出完整图形,并直接写出MD,DG与AD之间的数量关系;(3)如图3,点N是线段AD上的一点,以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G.试探究ND,DG与AD数量之间的关系,并说明理由.14.已知:如图,在△ABC中,如果∠A是锐角,点D,E分别在AB,AC上,且∠DCB=∠EBC=∠A.求证:BD=CE.15.在△ABC中,AB>BC,直线l垂直平分AC.(1)如图1,作∠ABC的平分线交直线l于点D,连接AD,CD.①补全图形;②判断∠BAD和∠BCD的数量关系,并证明.(2)如图2,直线l与△ABC的外角∠ABE的平分线交于点D,连接AD,CD.求证:∠BAD=∠BCD.16.在平面直角坐标系xOy中,△ABO为等边三角形,O为坐标原点,点A关于y轴的对称点为D,连接AD,BD,OD,其中AD,BD分别交y轴于点E,P.(1)如图1,若点B在x轴的负半轴上时,直接写出∠BDO的度数;(2)如图2,将△ABO绕点O旋转,且点A始终在第二象限,此时AO与y轴正半轴夹角为α,60°<α<90°,依题意补全图形,并求出∠BDO的度数;(用含α的式子表示)(3)在第(2)问的条件下,用等式表示线段BP,PE,PO之间的数量关系.(直接写出结果)17.(1)老师在课上给出了这样一道题目:如图1,等边△ABC边长为2,过AB边上一点P作PE⊥AC于E,Q为BC延长线上一点,且AP=CQ,连接PQ交AC于D,求DE 的长.小明同学经过认真思考后认为,可以通过过点P作平行线构造等边三角形的方法来解决这个问题.请根据小明同学的思路直接写出DE的长.(2)【类比探究】老师引导同学继续研究:1.等边△ABC边长为2,当P为BA的延长线上一点时,作PE⊥CA的延长线于点E,Q为边BC上一点,且AP=CQ,连接PQ交AC于D.请你在图2中补全图形并求DE 的长.2.已知等边△ABC,当P为AB的延长线上一点时,作PE⊥射线AC于点E,Q为(①BC边上;②BC的延长线上;③CB的延长线上)一点,且AP=CQ,连接PQ交直线AC于点D,能使得DE的长度保持不变.(将答案的编号填在横线上)18.如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=20°,求∠AEB的度数;(3)连结CE,写出AE,BE,CE之间的数量关系,并证明你的结论.19.如图1,在△ABC中,∠A的外角平分线交BC的延长线于点D.(1)线段BC的垂直平分线交DA的延长线于点P,连接PB,PC.①利用尺规作图补全图形1,不写作法,保留痕迹;②求证:∠BPC=∠BAC;(2)如图2,若Q是线段AD上异于A,D的任意一点,判断QB+QC与AB+AC的大小,并予以证明.20.如图,在△ABC中,BA=BC,点D为△ABC外一点,连接DA,∠DAC恰好为25°,线段AD沿直线AC翻折得到线段AD′,过点C作AD的平行线交AD′于点E,连接BE.(1)求证:AE=CE;(2)求∠AEB的度数.21.如图①,在△ABC中,D、E分别是AB、AC上的点,AB=AC,AD=AE,然后将△ADE绕点A顺时针旋转一定角度,连接BD,CE,得到图②,将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图③,请解答下列问题:(1)在图②中,BD与CE的数量关系是;(2)在图③中,猜想AM与AN的数量关系,∠MAN与∠BAC的数量关系,并证明你的猜想.22.在等边△ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.(1)若点E是AB的中点,如图1,求证:AE=DB.(2)若点E不是AB的中点时,如图2,试确定线段AE与DB的大小关系,并写出证明过程.23.在解决线段数量关系问题中,如果条件中有角平分线,经常采用下面构造全等三角形的解决思路,如:在图1中,若C是∠MON的平分线OP上一点,点A在OM上,此时,在ON上截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形△OBC和△OAC,参考上面的方法,解答下列问题:如图2,在非等边△ABC中,∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,且AD,CE交于点F,求证:AC=AE+CD.24.如图:在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.(1)写出点O到△ABC的三个顶点A、B、C距离之间的关系;(2)如果点M、N分别在线段AB、AC上移动,移动中保持AN=BM,请判断△OMN 的形状,并证明你的结论.25.如图,△ABC是等边三角形,△ADC与△ABC关于直线AC对称,AE与CD垂直交BC 的延长线于点E,∠EAF=45°,且AF与AB在AE的两侧,EF⊥AF.(1)依题意补全图形.(2)①在AE上找一点P,使点P到点B,点C的距离和最短;②求证:点D到AF,EF的距离相等.26.如图,△ABC中,AB=AC,AD⊥BC于点D,延长AB至点E,使∠AEC=∠DAB.判断CE与AD的数量关系,并证明你的结论.27.已知C是线段AB垂直平分线m上一动点,连接AC,以AC为边作等边三角形ACD,点D在直线AB的上方,连接DB与直线m交于点E,连接BC,AE.(1)如图1,点C在线段AB上.①根据题意补全图1②求证:∠EAC=∠EDC;(2)如图2,点C在直线AB的上方,0°<∠CAB<30°,用等式表示线段BE,CE,DE之间的数量关系,并证明.28.在等边△ABC外作射线AD,使得AD和AC在直线AB的两侧,∠BAD=α(0°<α<180°),点B关于直线AD的对称点为P,连接PB,PC.(1)依题意补全图1;(2)在图1中,求∠BPC的度数;(3)直接写出使得△PBC是等腰三角形的α的值.29.在△DEF中,DE=DF,点B在EF边上,且∠EBD=60°,C是射线BD上的一个动点(不与点B重合,且BC≠BE),在射线BE上截取BA=BC,连接AC.(1)当点C在线段BD上时,①若点C与点D重合,请根据题意补全图1,并直接写出线段AE与BF的数量关系为;②如图2,若点C不与点D重合,请证明AE=BF+CD;(2)当点C在线段BD的延长线上时,用等式表示线段AE,BF,CD之间的数量关系(直接写出结果,不需要证明).30.解决下面问题:如图,在△ABC中,∠A是锐角,点D,E分别在AB,AC上,且∠DCB=∠EBC=∠A,BE与CD相交于点O,探究BD与CE之间的数量关系,并证明你的结论.小新同学是这样思考的:在平时的学习中,有这样的经验:假如△ABC是等腰三角形,那么在给定一组对应条件,如图a,BE,CD分别是两底角的平分线(或者如图b,BE,CD分别是两条腰的高线,或者如图c,BE,CD分别是两条腰的中线)时,依据图形的轴对称性,利用全等三角形和等腰三角形的有关知识就可证得更多相等的线段或相等的角.这个问题也许可以通过添加辅助线构造轴对称图形来解决.请参考小新同学的思路,解决上面这个问题.31.如图,在△ABC中,AB=AC,P为△ABC内一点,且∠BAP=70°,∠ABP=40°,(1)求证:△ABP是等腰三角形;(2)连接PC,当∠PCB=30°时,求∠PBC的度数.32.如图,在等边三角形ABC右侧作射线CP,∠ACP=α(0<α<60°),点A关于射线CP的对称点为点D,BD交CP于点E,连接AD,AE.(1)求∠DBC的大小(用含α的代数式表示);(2)在α(0°<α≤60°)的变化过程中,∠AEB的大小是否发生变化?如果发生变化,请直接写出变化的范围;如果不发生变化,请直接写出∠AEB的大小;(3)用等式表示线段AE,BD,CE之间的数量关系,并证明.33.如图,在等边△ABC中,点D是线段BC上一点作射线AD,点B关于射线AD的对称点为E,连接EC并延长,交射线AD于点F.(1)补全图形;(2)求∠AFE的度数;(3)用等式表示线段AF、CF、EF之间的数量关系,并证明.34.△ABC是等边三角形,AC=2,点C关于AB对称的点为C',点P是直线C'B上的一个动点,连接AP,作∠APD=60°交射线BC于点D.(1)若点P在线段C'B上(不与点C',点B重合).①如图1,若点P是线段C'B的中点,则AP的长为;②如图2,点P是线段C'B上任意一点,求证:PD=PA;(2)若点P在线段C'B的延长线上.①依题意补全图3;②直接写出线段BD,AB,BP之间的数量关系为:.35.等边△ABC的边长为4,D是射线BC上任一点,线段AD绕点D顺时针旋转60°得到线段DE,连接CE.(1)当点D是BC的中点时,如图1,判断线段BD与CE的数量关系,请直接写出结论:(不必证明);(2)当点D是BC边上任一点时,如图2,请用等式表示线段AB,CE,CD之间的数量关系,并证明;(3)当点D是BC延长线上一点且CD=1时,如图3,求线段CE的长.。
初二下期期末数学综合复习资料(一)一、知识点梳理:1、二次根式的定义.一般地,式子(≥0)叫做二次根式,a叫做被开方数。
两个非负数:(1)≥0 ;(2)≥02、二次根式的性质:(1).是一个________ 数 ; (2)__________(a≥0)(3)3、二次根式的乘除:积的算术平方根的性质:,二次根式乘法法则:(a≥0,b≥0)商的算术平方根的性质: 二次根式除法法则:1.被开方数不含分母;4、最简二次根式 2.分母中不含根号;3. 被开方数中不含能开得尽方的因数或因式.分母有理化:是指把分母中的根号化去,达到化去分母中的根号的目的.二、典型例题:例1:当x是怎样实数时,下列各式在实数范围内有意义?1 ⑵ ⑶ ⑷ (5)小结:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。
(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0例2:化简:(1) (2)例3: (1)已知y=++5,求的值.(2) 已知,求xy的值.小结:(1)常见的非负数有:(2)几个非负数之和等于 0,则这几个非负数都为0.例4:化简:(1); (2)2; (3) (4) (5)例5:计算:(1)(2) (3)例6:化去下列各式分母中的二次根式:(1) (2) (3) (4)三、强化训练:1、使式子有意义的的取值范围是()A、≤1;B、≤1且;C、;D、1且.2、已知0<x<1时,化简的结果是( )A 2X-1B 1-2XC -1D 13、已知直角三角形的一条直角边为9,斜边长为10,则别一条直角边长为()A、1;B、;C、19;D、.4、是整数,则正整数的最小值是()A、4;B、5;C、6;D、7.5、下列二次根式中,是最简二次根式的是()A、 B、 C、 D、6、下列计算正确的是( )A BC D7、等式成立的条件是( )A x≠3B x≥0C x≥0且x≠3D x>38、已知则的值为9、的关系是。
部编版八年级数学上册期末专题复习一、整数与代数1. 整数概念:整数是由自然数、0和负数组成的数集。
2. 整数的加减法运算:整数的加法运算遵循交换律和结合律,减法运算可以转化为加法运算。
3. 整数的乘法运算:整数的乘法运算遵循交换律和结合律,乘法分配律可以简化计算。
4. 整数的除法运算:整数的除法运算是按照倍数关系进行计算。
二、平面图形与三维图形1. 基本图形概念:点、线、线段、射线、角、多边形等。
2. 二维图形的性质:正方形、长方形、三角形、平行四边形等的性质与计算。
3. 三维图形的性质:立方体、棱柱、棱锥等的性质与计算。
三、比例与相似1. 比例的概念:比例是两个具有相同单位的数之间的等比关系。
2. 比例的性质和运算:比例的性质包括比例的比较、比例的综合运用等。
3. 相似的概念和判定:相似是指两个图形形状和大小成比例的关系。
4. 相似图形的性质和运算:相似图形的性质包括比例尺的计算、相似三角形的性质等。
四、方程与方程式1. 方程的概念:方程是含有未知数的等式,通过解方程可以确定未知数的值。
2. 一元一次方程的解法:利用逆运算、等式的等价变换等解一元一次方程。
3. 一元一次方程的应用:通过列方程、设未知数等进行实际问题的求解。
4. 二元一次方程组的解法:利用代入法、消元法等解二元一次方程组。
五、数据与图表1. 统计的概念和常用统计量:包括频数、频率、中位数、众数、平均数等。
2. 数据图的绘制和分析:绘制条形图、折线图、散点图等进行数据的可视化分析。
以上是部编版八年级数学上册期末专题复的主要内容,希望对你的研究有所帮助!。
八年级数学下期期末综合复习资料(一)_____班 姓名__________ 学号___________ 成绩_________一、选择题(每题2分,共36分)1、如果x--21是二次根式,那么x 应满足的条件是( ) A 、x ≠2的实数 B 、x <2的实数C 、x >2的实数D 、x >0且x ≠2的实数 2、一个多边形的内角和与外角和相等,则这个多边形是( )A 、三角形B 、四边形C 、五边形 D、六边形3、在12、32x 、5.0中、22y x -、x 73中,最简二次根式的个数有( ) A、4 B、3 C 、2 D 、14、即是轴对称图形,又是中心对称图形的是( )A 、菱形 B、等腰梯形 C、平行四边形 D、等腰三角形 5、下面结论正确的是( )A 、无限小数是无理数B 、无理数是开方开不尽的数C 、带根号的数是无理数D 、无限不循环小数是无理数6、一个多边形的内角和与外角的和为540°,则它是( )边形。
A 、5B 、4C 、3D 、不确定7、计算38-的值为( )A 、-2 B、2 C、±2 D、22-8、矩形各内角的平分线能围成一个( )A、矩形 B、菱形 C、等腰梯形 D、正方形 9、二次根式21x +中x 的取值范围是( )A、x >-1 B 、x <-1 C 、x ≠-1 D 、一切实数10、平行四边形、矩形、菱形、正方形共有的性质是( )A 、对角线相等B 、对角线互相平分C 、对角线互相垂直D 、对角形互相垂直平分11、计算2)3(π-的值是( )A 、π-3B 、-0.14C 、 3-πD 、 2)3(π-12、矩形ABCD 的两条对角线相交于点O ,∠AOD =120°,AB =5cm ,则矩形的对角线长是( )A 、5cmB 、10cmC 、cm 52D 、2.5cm 13、161的算术平方根是( ) A 、41 B 、41- C 、21 D 、±21 14、直角梯形的一个内角为120°,较长的腰为6cm ,一底为5cm ,则这个梯形的面积为( )A 、23221cm B 、23239cm C 、2325cm D 、 23221cm 或23239cm 15、将11)1(---c c 中的根号外的因式移入根号内后为( ) A 、c -1 B 、 1-c C 、 1--c D 、 c --1 16、下面四组二次根式中,同类二次根式是( )A 、181163和-B 、ac b b a 435)1(9+和 C 、)(625y x yx x y ++和 D 、175)1(1253++c c 与 17、不能判定四边形ABCD 为平行四边形的题设是( )A 、AB =CD AB ∥CD B 、∠A =∠C ∠B =∠DC 、AB =AD BC =CD D 、AB =CD AD =BC18、若12,1212+++=x x x 则等于( )A 、2B 、22+C 、2D 、12-二、填空题(每题3分,共15分)1、一个菱形的两条对角线分别为12cm 、16cm ,这个菱形的边长为______;面积S =_________。
科登教育KEDENGJIAOYU课题八年级上册数学期末综合复习(-)教学目标重点、难点教学内容—■、本册知识重难点全析第一章:平行线r(1)三线八角的运用:已知两直线和截线,判断同位角、内错角、同旁内角和已知两个角,要判别是哪两条直线被第3条直线所截而形成的什么位置关系的角<(2)平行线的判定和性质:综合运用平行线的判定和性质进行有条理的分析、表达。
另一个重要的运用就是“橡皮筋数学”的各种变化和规律总结。
(3)平行线之间的距离。
这里可以联想到点与点的距离,点与直线的距离。
第二章:特殊三角形(1)等腰三角形:首先是要掌握等腰三角形的定义,在这里学生要重点注意分类讨论,接下来是等腰三角形的性质和判断。
等边对等角,三线合一是这里常考的理论依据(2)等边三角形:等边三角形的轴对称性,三边上的三线合一性旋转变换是这一节的重点。
尤其是在等边三角形的判定上学生容易忘记两边相等任一个角为60°这个定理。
(3)直角三角形:这一节说起来最简单学生却最不会运用。
首先就是直角三角形的性质引出的同角或等角的余角相等,然后就是''两个一半”的正反运用,接下来就是大家都非常熟悉的“勾股定理” 了。
最后就是“HL”的运用。
(4)其实这一章知识点总结起来不多,但是学生难的还是在于综合运用,所以本章节的重点需要放在各种题型的解题技巧上。
第三章:直棱柱(1)直棱柱的认知,顶点,棱数与面之间的关系,直棱柱的表面展开图。
重点记住“一线不过四,由凹应弃之,相间“Z”端为对面”(2)立体图形中三视图的画法,根据三视图来判断几何体个个数以及根据三视图求物体的表面积或体积均是本章节的重点。
第四章:样本与数据的分析初步(1)抽样中涉及到的个体,总体,样本容量是选择题的常考对象,然后是平均数,众数,中位数,方差等数据的求法,各自代表的意义。
这也是期末考试中后面一道大题的(2)另一个重点就是各数据的变化导致的平均数和方差的变化方向。
如图,直线AB 交x 轴于点A (a ,0),交y 轴于点B (0,b ),且a 、b 满足()2
5a b a ++-=0。
(1)点A 的坐标为 ,点B 的坐标为 ;
(2)如图,若点C 的坐标为(﹣3,﹣2),且BE ⊥AC 于点E ,OD ⊥OC 交BE 延长线于D ,试求点D 的坐标;
(3)如图,M 、N 分别为OA 、OB 边上的点,OM =ON ,OP ⊥AN 交AB 于点P ,过点P 作PG ⊥BM 交AN 的延长线于点G ,请写出线段AG 、OP 与PG 之间的数列关系并证明你的结论。
【例题精讲】
1、如图,直角坐标系中,点A (0,a ),点B (b ,0),若a 、b 满足()2
8240a b a b --++-=,C 是B 点关于y 轴的对称点。
(1)求出C 点的坐标;
(2)如图1,动E 点从B 点出发,沿BA 方向向A 点匀速运动,同时,动点F 以相同的速度,从C 点出发,在AC 延长线上沿AC 方向运动,EF 与BC 交点为M ,当E 运动到A 时,两点同时停止运动,在此过程中,EM 与FM 的大小关系是否不变?请说明理由;
(3)如图2,在(2)的条件下,过M 作MN ⊥EF 交y 轴于点N ,N 点的位置是否改变?若不改变,请求出N 点的坐标,若改变,请说明理由。
2、已知A (a ,0),B (0,b ),且a ,b 满足0)3
(
182222=++-b a b a (1)如图1,求证:OA =OB ;
(2)如图2,将△AOB 沿y 轴翻折得△COB ,D 为线段BC 上一动点,OE ⊥OD 交AB 于点E ,求ODBE S 四边形;
(3)如图3,在(2)的条件下,过点C 作CF ⊥OD 交y 轴于点F (F 在B 的上方),垂足为G .点H 为y 轴负半轴上任意一点,连DH ,交x 轴于I .当OH =BF 时,下列两个结论:① ∠BCF =∠HDO ;② ∠DOH =∠DIO 。
有且只有一个是正确的,请指出并证明。
【课堂练习】
1、已知A(a,0)、B(0,b),且满足2a2+b2+4a-4b=-6,以A为直角顶点,且以AB为腰作等腰直角△ABC。
(1)求C点的坐标;
(2)如图1,若点C在第二象限,点M在BC的延长线上,且AM=AN,AM⊥AN,则CM与BN存在怎样的关系?请予以证明;
(3)如图2,若点C在第二象限,以AB为边在直线AB的另一侧做等边△ABD,连接CD,过A作AF⊥BC于F,AF与CD交于点E,试判断线段CE、AE、CD之间存在何种数量关系,并证明你的结论。
(图1)(图2)
2、如图,平面直角坐标系中,已知A(a,4)、B(b,0),且满足1
a+b2-6b+9=0。
(1)求A、B两点的坐标;
(2)如图1,若点C在第一象限内,且△ABC为等腰直角三角形,求点C的坐标;
(3)如图2,点N(1,0),R(4,3),点P为线段AN上的一动点,连接PR,以PR为一边作∠PRM=45°,交x轴于点M,连PM,请问点P在运动的过程中,线段PM、AP、BM之间有怎样的数量关系,证明你的结论。
1、如图,已知A (0,4)、B (3,0)、M (1,1),AB =5,MH ⊥BO ,P 为x 轴负半轴上一动点.作x 轴关于直线PM 对称的直线PQ 交y 轴于点Q ,交AB 于R ,OD 平分∠POQ 交PM 于D 。
(1)求证:BM 平分∠ABO ;
(2)当21 PQ OQ 时,求DM
OD 的值; (3)记△AQR 的面积和周长分别为S △AQ R 和C △AQ R .① S △AQ R 是定值;② C △AQ R 是定值,只有一个是正确的,请证明你的判断。
2、如图,平面直角坐标系中,已知A (-a ,a )、B (2a ,0)、C (0,-a )。
(1)求AC 与BC 的关系;
(2)若AC 与x 轴交于点D ,AB 交y 轴于点E ,若a =8,求D 点坐标,并求证:∠ADE =∠BDC ;
(3)若点M 为BC 中点,DM 交y 轴于点P ,作MN ⊥BC 交y 轴于N ,MH ⊥DM 于M ,交x 轴于H ,请问无论a 如何变化,PN
BH CN 是否改变,请证明你的结论。
3、已知:如图A (m ,0)、B (0,n ),且m 、n 满足n m m m +-+-=242。
(1)求S △AOB ;
(2)AM 平分∠BAx ,AM 交y 轴于C ,作BD ⊥AM 于D ,求证:AC =2BD ;
(3)过A 作直线AE 交y 轴于E ,作OH ⊥AE 于H ,交AB 的延长线于F ,G 为y 轴上一点,且BG =OE ,FG 交EA 于P ,下面两个结论:① PA
OF PF -为定值;② PA OF PF +为定值,请选择一个证明,并求值。