一个方法——解决80%的代几综合题
- 格式:pdf
- 大小:989.43 KB
- 文档页数:15
数学常见的6种压轴题类型-初中
对于中考数学,压轴题往往是是考生最怕的。
很多考生都以为它一定很难,不敢碰它。
其实,对历年中考的压轴题作一番分析,就会发现,其实也不是很难。
常常有很多家长说,“孩子对于数学考试非常头疼,选择题和填空题都还勉强能做完,可对于大题就有点束手无策,特别是最后的压轴题,压根儿没碰过!”
其实压轴题难度也是有约定的:历年中考,压轴题一般都由3个小题组成。
第(1)题容易上手,得分率在0.8以上;
第(2)题稍难,一般还是属于常规题型,得分率在0.6与0.7之间,
第(3)题较难,能力要求较高,但得分率也大多在0.3与0.4之间。
而从近几年的中考压轴题来看,大多不偏不怪,得分率稳定在0.5与0.6之间,即考生的平均得分在7分或8分。
由此可见,压轴题也并不可怕。
1线段、角的计算与证明
中考的解答题一般是分两到三部分的。
第一部分基本上都是一些简单题或者中档题,目的在于考察基础。
第二部分往往就是开始拉分的中难题了。
对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
2一元二次方程与函数
在这一类问题当中,尤以涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方。
转化思想谈“转化思想”在初中数学解题中的应⽤布卢姆在《教育⽬标分类学》明确指出:数学转化思想是“把问题元素从⼀种形式向另⼀种形式转化的能⼒”。
如果学⽣在掌握双基的同时,接受了数学思想,学会了数学⽅法,就能激发学习数学兴趣,提⾼分析问题和解决问题的能⼒,并为以后的学习数学打下坚实的基础。
数学解题的本质就是转化,即把⽣疏问题转化为熟悉问题,把抽象问题转化为具体问题,把复杂问题转化为简单问题,把⼀般问题转化为特殊问题,把⾼次问题转化为低次问题;把未知条件转化为已知条件,把⼀个综合问题转化为⼏个基本问题;因此学⽣学会数学转化,它包含了数学特有的数、式、形的相互转换,也包含了⼼理达标的转换。
转化的⽬的是不断发现问题、分析问题,最终解决问题。
下⾯结合⾃⼰多年的教学实践,谈谈在数学解题中常见的基本转化类型和转化⽅法。
⼀、运⽤数与形之间的“转化”,化抽象为直观。
初中数学是以“数”与“形”这两个基本概念为基础⽽展开的。
《初中数学新课程标准》(以下简称《新课标》)在学习内容中要求:“能运⽤图形形象地描述问题,利⽤直观来进⾏思考。
”如运⽤平⾯直⾓坐标系来解决有关函数⽅⾯的问题,可以通过图形将复杂或抽象的数量关系,直观形象地翻译出来。
探索出⼀条合理⽽乘势的解题途径;达到解决学⽣⼼中存在的困惑,培养学⽣的数学解题能⼒⽬的。
例:(2009 ⼴东肇庆中考)如图,已知⼀次函数y1=x+m(m为常数)的图象与反⽐例函数y2= (k≠0)的图象相交于点A(1,3)。
(1)求这两个函数的解析式及其图象的另⼀个交B的坐标。
(2)观察图象,写出使函数值y1>y2的⾃变量的取值范围。
分析:(1)本题要求函数解析式,只要把点A(1,3)代⼊函数关系式(点转化为数),即解得m=2,k=3。
(2)要求两图象的另⼀交点B,只要解两个函数联⽴成的⽅程组,解得的另⼀组解(数转化为点),即得点B(-3,-1),此解题就是将数转化为形过程(使学⽣直接感受到抽象的⽅程组解,就是在平⾯直⾓坐标系中两个图象的交点的坐标)。
中考数学总复习知识点总结【优秀3篇】作为一名无私奉献的老师,时常需要用到教案,教案是教学活动的总的组织纲领和行动方案。
那么问题来了,教案应该怎么写?小编为您带来了3篇《中考数学总复习知识点总结》,希望能够给您提供一些帮助。
初三数学中考总复习计划篇一临近升学考试,做好九年级数学复习课教学,对大面积提高教学质量起着重要作用。
通过复习应达到以下目的:(1)使所学知识系统化、结构化、让学生将初中三年的数学知识连成一个有机整体,更利于学生理解;(2)多讲多练,巩固基本技能;(3)抓好方法教学,引导学生归纳、总结解题的方法;(4)做好综合题训练,提高学生综合运用知识分析问题的能力;(5)培养学生的良好学习习惯。
为了在较短的时间内达到此目的,本人特制定了以下复习计划:一、复习措施。
1、认真钻研教材、课标要求、吃透考试大纲,确定复习重点。
确定复习重点可从以下几方面考虑:(1)根据教材的教学要求提出四层次的基本要求:了解、理解、掌握和熟练掌握。
这是确定复习重点的依据和标准。
(2)熟识每一个知识点在初中数学教材中的地位、作用。
(3)熟悉近年来试题型类型,以及考试整改的情况。
2、正确分析学生的知识状况、和近期的思想状况。
(1)是对平时教学中掌握的情况进行定性分析;(2)每天对学生的作业及时批改,复习过程侧重评讲。
(3)是对每周所复习的知识进行测试,及时发现问题和解决问题。
(4)将学生很好的分类,牢牢的抓在手中。
(5)备课组成员每人出好两套模拟试题,优化及共享资源。
二、抓好教材中例题、习题的归类、变式的教学。
在数学复习课教学中,挖掘教材中的例题、习题等的功能,既是大面积提高教学质量的需要,又是对付考试的一种手段。
因此在复习中根据教学的目的、教学的重点和学生实际,对相关例题进行分析、归类,总结解题规律,提高复习效率。
对具有可变性的例习题,引导学生进行变式训练,使学生从多方面感知数学的方法、提高学生综合分析问题、解决问题的能力。
美术教师综合知识复习题1、《全日制义务教育美术课程标准》根据学生学习活动方式划分为欣赏与评述、造型与表现、设计与运用、综合与探索四大学习领域。
2、课程的改革不仅是内容的改革,也是(教学过程)和(教学方法)的改革。
3、对于教材的处理方式上,新旧两种美术教材观的不同之处在于旧教材观是教教材,新教材观是用教材。
4、美术学习活动大致可分为创作和欣赏两类,就活动特征而言,前者更倾向于外化,后者更偏重于内化。
5、课堂教学是教师提高和促进每一位学生发展的主要阵地,建立“以学论教、教为了促进学”的课堂教学设计已成为美术课程改革的主流,谈谈美术课堂教学设计的主要标准有教学目标多元、教学内容丰厚、教材处理变式、教学问题优化、教学活动有效、教学流程清晰、教学姿态平等、教学评价恰当、教学方法多样、媒体运用恰当。
6、美术课程标准的基本理念有使学生形成基本的美术素养,激发学生学习美术的兴趣,在广泛的文化情境中认识美术,培养创新精神和解决问题的能力,为促进学生发展而进行评价。
7、本次课程改革,要改变单纯以学科知识体系构建课程的思路和方法,从促进学生素质发展的角度,根据美术学习活动方式来划分学习领域。
因此,新课标划分了“造型·表现”、“设计·应用”、“欣赏·评述”和“综合·探索”四个学习领域。
8、教育部第13号令《学校艺术教育工作规程》中明确指出:艺术教育是学校实施美育的重要途径和内容,是素质教育的有机组成部分。
学校艺术教育工作包括:艺术类课程教学,课外艺术教育活动,校外、校园文化艺术环境建设。
33、美术课程具有人文性质,是学校进行美育的主要途径。
514、请你写出美术教学基本教学流程:课前准备、激趣导入、作品欣赏、技法分析、作业辅导、课堂作业点评和小结延伸等。
36、美术课程标准中,根据美术学习活动方式来分四大学习领域欣赏评述、设计应用、造型表现、综合探索。
37、美术课程标准的基本理念有使学生形成基本的美术素养,激发学生学习美术的兴趣,在广泛的文化情境中认识美术,培养创新精神和解决问题的能力,为促进学生发展而进行评价。
一年级下册数学解决问题100道一.解答题(共100题,共535分)1.看图提一个数学问题,并解答,不会的字可用拼音代替。
(1)提一个数学问题:(2)列式解答:2.小明有72张卡片,送给小华8张后,还剩多少张?3.六一儿童节,老师发给小兰15个红气球,14个黄气球,小兰不小心放飞了7个红气球,小兰还有几个红气球?4.小天有了多少本书?□○□=□(本)5.一把雨伞16元,可以怎样付钱?请写出两种付钱方法。
6.爸爸买了一些香蕉,吃了7个后还剩45个,爸爸一共买了多少个香蕉?7.跳绳比赛。
(1)小华比小花多跳几个?(2)小花和小桃一共跳了多少个?(3)你还能提出什么问题?问题:算式:8.一支牙膏2元2角,一把牙刷1元,一把牙刷比一支牙膏便宜多少钱?9.河里有11只鹅,上岸6只,河里还有多少只鹅?10.小兰、明明、佳佳看一本相同的书。
(1)这本书有多少页?(2)小兰和明明一共看了多少页?(3)佳佳从头开始看这本书,第一天看了14页,第二天看了20页。
她第三天要从第几页看起?11.4个大人带13个小朋友去公园玩,小男孩儿有7人,小女孩儿有几人?12.爸爸给了小明13元,小明花掉了8元,请问他还剩下多少钱?13.买一条毛巾5元,买一个脸盆12元,买毛巾和脸盆一共用多少元?14.扫地的有多少人?□○□=□(人)答:扫地的有_____人。
15.解答题。
(1)每件物品各买一个,至少要带多少钱?(2)用10元钱买了两件物品,买的是什么?(钱正好花完)16.一(1)班有46人,如果每人发一个口罩,还差3个。
我们班有多少个口罩?□○□=□()答:我们班有()个口罩。
17.小林计算48加一位数时,一不小心加到十位上去了,结果是88,你认为正确的结果应是多少?18.手工社团折纸花,明明折了17朵,佳佳折了10朵,丽丽折了8朵。
(1)明明比丽丽多折了几朵?(2)你还能提出什么问题?并解答。
19.下面是洋洋、小春和小敏在运动会上得到的分数。
第一章教学系统设计概论(一)填空题1、教学设计是应用(系统科学)方法分析和研究(教学问题和需求),确定解决它们的(教学策略、教学方法和教学步骤),并对教学结果做出评价的一种计划过程与操作程序。
2、20世纪90年代,(建构主义)与多媒体和网络通信技术的结合,使教学系统设计的理论与方法正逐渐从(以教为主)的教学设计向(以学为主)的教学设计方向发展,教学设计的技术手段也日益系统化、智能化、和网络化。
3、在教学系统设计实践中,存在着不同层次的教学系统设计。
按照教学中问题范围、大小的不同,教学系统设计可以分为三个层次:(以产品为中心的层次)、(以课堂为中心的层次)、(以系统为中心的层次)。
4、加涅的信息加工模型主要包括三大部分:(操着系统)、(执行控制系统)、(预期)。
5、教学设计的基本内容包括:(分析教学需求,确定教学目标),(设计教学策略),(进行学习评价)。
6、在加涅看来,学习的发生要同时依赖(外部条件)和(内部条件),教学的目的就是合理安排(外部条件),以支持、激发和促进学习的(内部条件)。
7、“肯普模式”中要解决的三个主要问题是(学生必须学习到什么)、(应如何教学)、(如何评定教学效果)。
8、瑞格卢斯提出的(细化理论)为教学内容的组织提供了符合认知学习理论的宏策略,梅瑞尔提出的(成分显示理论)为具体知识点的教学提供了行之有效的微策略。
(二)选择题1、根据AECT’94教育技术领域定义,教育技术的设计子范畴包含几个主要方面(C D)A、学习系统B、学习模式C、学习过程D、学习资源2、指导进行教学设计的基本原理包括(A,B,C,D )A、目标控制原理B、要素分析原理C、优选决策原理D、反馈评价原理E、学生主体原理F、最小代价原理3、在教学过程中,教学的各个要素要受到教学目标的控制,其中主要包括下列哪几项(A,B,E )A、教学目标控制学生活动B、教学目标控制教师活动C、教学目标控制教学流程D、教学目标控制教学形式E、教学目标控制媒体选择4、第一代教学设计的代表性模式“肯普模式”包括四个基本要素,它们是(A,B,D,E )A、教学目标B、学习者特征C、教学策略D、教学资源E、教学评价5、加涅将学习结果分为五种类型,下列哪几个属于五种类型中的分类(A,B,C,D)A、言语信息B、智慧技能C、认知策略D、情感态度E、思维技能6、“史密斯——雷根模式”在策略设计中提到三种策略,这三种策略是( A,B,D)A、组织策略B、传递策略C、评价策略D、管理策略(三)简答题1、应如何理解教学设计的定义,它在教育教学中的地位和作用如何?教学设计是一种以认知学习理论为基础,以教育传播过程为对象,应用系统科学的方法分析和研究教学问题和需求,确立解决问题的方法和步骤,并对教学结果做出评价的一种计划过程和操作程序。
2024-2025学年冀教版六年级上册期末综合练习数学试卷(解析版)一、判断题1.圆的半径长度等于直径的12。
( )2.圆周长的一半与半个圆的周长相等。
( )3.含盐率为0.8%,表示盐占水的0.8%克。
( )4.比例和方程都是等式。
( )5.干完同样的工作,甲用12分钟,乙用15分钟,甲、乙工作效率比为4:5.( )6.在扇形统计图中,有一个扇形的面积占整个圆面积的16,这个扇形的圆心角是90°。
( )7.一件商品原价的七五折是150元,原价是200元。
( )8.一个正方形的边长是4厘米,如果将它的边长减小1厘米,那么它的周长就减小4厘米。
( )9.π=3.14。
( )10.一种手表的零件长5毫米,在设计图上的长度是10厘米,图纸的比例尺是1:20。
二、填空题11.用一根9.42厘米长的铁丝围成一个最大的圆,这个圆的半径是( )厘米。
12.张奶奶把10000元存进银行,定期一年,年利率1.75%,到期得到利息( )元。
13.3克盐溶解在50克水中,盐与水的比是(),盐占盐水的() ().14.王叔叔买了一辆小轿车,按车价的9%缴纳车辆购置税1.8万元。
这辆小轿车的车价是( )万元。
15.如图所示,已知线段AB∶AC=3∶5,那么线段AB∶BC=( ),三角形ABD与三角形DBC的面积比是( )。
16.北京到石家庄的距离大约是320千米,用1∶5000000的比例尺画在地图上,图上距离大约是( )厘米。
17.()()()()()2445:10%20÷=÷====(填小数)。
三、选择题18.从对称轴数量的角度考虑,下面()图形与其他图形不是同一类。
A.扇形B.半圆C.圆19.一个圆环,内圆半径是外圆半径12,这个圆环的面积是内圆面积的()。
A.12B.2倍C.3倍D.4倍20.下列的数中,能和6、9、10组成比例的是()。
A.7B.6C.5.4D.1.521.一条裤子打八五折后是68元,这条裤子原价是()元。
2013中考总结复习冲刺练: 坐标系中的几何问题【前言】前面六讲我们研究了几何综合题及代数综合题的各种方面,相信很多同学都已经掌握了。
但是中考中,最难的问题往往都是几何和代数混杂在一起的,一方面涉及函数,坐标系,计算量很大,另一方面也有各种几何图形的性质体现。
所以往往这类问题都会在最后两道题出现,而且基本都是以多个小问构成。
此类问题也是失分最高的,往往起到拉开分数档次的关键作用。
作为想在中考数学当中拿高分甚至满分的同学,这类问题一定要重视。
此后的两讲我们分别从坐标系中的几何以及动态几何中的函数两个角度出发,去彻底攻克此类问题。
第一部分 真题精讲【例1】2012,石景山,一模已知:如图1,等边ABC ∆的边长为一边在x轴上且()10A -,AC 交y 轴于点E ,过点E 作EF∥AB 交BC 于点F .(1)直接写出点B C 、的坐标;(2)若直线()10y kx k =-≠将四边形EABF 的面积两等分,求k 的值;(3)如图2,过点A B C 、、的抛物线与y 轴交于点D ,M 为线段OB 上的一个动点,过x 轴上一点()2,0G -作DM 的垂线,垂足为H ,直线GH 交y 轴于点N ,当M 点在线段OB 上运动时,现给出两个结论:① GNM CDM ∠=∠ ②MGN DCM ∠=∠,其中有且只有一个结论是正确的,请你判断哪个结论正确,并证明.图2图1【思路分析】 很多同学一看到这种题干又长条件又多又复杂的代几综合压轴题就觉得头皮发麻,稍微看看不太会做就失去了攻克它的信心。
在这种时候要慢慢将题目拆解,条分缕析提出每一个条件,然后一步一步来。
第一问不难,C 点纵坐标直接用tg60°来算,七分中的两分就到手了。
第二问看似较难,但是实际上考生需要知道“过四边形对角线交点的任意直线都将四边形面积平分”这一定理就轻松解决了,这个定理的证明不难,有兴趣同学可以自己证一下加深印象。
由于EFAB 还是一个等腰梯形,所以对角线交点非常好算,四分到手。
小学数学六年级小升初毕业模拟综合试卷测试卷(附答案解析)一、选择题1.如果a—2b=0(a、b均不为0),那么a和b()。
A.成正比例B.成反比例C.不成比例D.无法确定2.小郑有两个正方形骰子,每个面上点数符合如下规则:骰子相对两个面上的点数之和为7.下面是四个骰子的展开图.其中哪两个可能是小郑的骰子?A.Ⅰ和ⅡB.Ⅱ和ⅢC.Ⅲ和ⅣD.Ⅰ和Ⅳ3.一堆石子,用去60%后还剩13吨,求这堆石子原来共有多少吨,正确的算式是()A.60%+13B.13÷60% C.13÷(1﹣60%)4.在一个三角形中,三个内角度数的比为2∶3∶4,这个三角形是()。
A.锐角三角形B.直角三角形C.钝角三角形5.甲仓库有x吨大米,乙仓库有y吨大米,如果从甲仓库取出12吨大米,放入乙仓库,那么两仓库的大米质量相等,下列方程正确的是()。
A.x+12=y-12 B.x-y=12×2 C.(x-y)÷2=86.下列图形中,从右面看的形状是的有()A.只有①B.②C.①和③7.根据下图,下面说法错误的是()。
A.鸭的只数比鹅少14B.鸭与鹅的只数之比是3∶4C.鹅与鸭的只数之比是5∶4 D.如果鹅有100只,鸭有75只8.如图,以点A为圆心的圆内,三角形ABC一定为等腰三角形。
做出这个判断是运用了圆的什么特征?()A.圆的周长是它的直径的π倍B.同一个圆的直径相等C.同一个圆的直径为半径的2倍D.同一个圆的半径相等9.下列说法中,正确的有()个。
①一个正方体铁块锻造成长方体铁块后,体积不变。
②一个数除以真分数,商一定小于这个数。
③如果大圆与小圆的半径比是2∶1,那么大圆与小圆的面积比是4∶1。
④一件上衣先降价20%再提价20%后,价格不变。
A.1 B.2 C.3 D.410.一张正方形的桌子可以坐4人,同学们吃饭的时候把桌子拼在—起,如下图,那么8张桌子可以坐多少人?()A.23 B.18 C.25 D.24二、填空题11.5.06公顷=(______)平方米;3时25分=(______)时。
石家庄市深泽县2022-2023学年三年级数学第二学期期末综合测试试题一、谨慎判一判。
1.99乘一个两位数,积一定是四位数。
(________)2.45+45=810。
(______)3.325÷8的商是4,余数是5。
(______)4.用8个小正方形拼成一个长方形,只有一种拼法.(_______)5.一个女士包的价格是480元,是一个男士包的2倍,男士包960元一个。
(______)二、仔细选一选。
6.小明要做一个长方形,他选择了2根5厘米长的小棒和2根8厘米长的小棒。
小明选择小棒运用了长方形的()特征。
A.四条边B.四个角C.四条边,对边相等D.四个角是都直角7.下面三道算式中,积最接近1000的算式是()。
A.20×49 B.19×50 C.19×498.21×51的积的末尾有( )个1.A.2B.3C.49.小红要写一篇500字的作文,写了25行,平均每行18个字,字数()。
A.够了B.不够C.不能确定10.一年中连续两个月都是31天的月份是()。
A.12月和1月B.10月和11月C.7月和8月三、认真填一填。
11.□÷6=△……☆,在这道算式中,☆最大是(________),□÷△=3……2,△最小是(______),当△是5时,□是(__________)。
12.20时用普通计时法表示是(_______);凌晨3:30用24时计时法表示是(________)。
13.一条裤子48元,一件上衣的价格是裤子的3倍,买一套衣服要用(______)元。
14.三位数乘两位数的积可能是(______)位数,也可能是(______)位数。
15.早晨,你面对太阳时,你的后面是(_______)面,右面是(________)面.16.长方形面积=________,正方形面积=_________。
17.吹东风时,烟囱冒出的烟往(________)面飘;刮西北风时,小树向(________)方向弯腰。
v1.0 可编辑可修改1一、 计算或在○里填上“>”<”“=”73-6= 35-7= 33-6= 63-7= 28+5= 76米-18米=( )米 40厘米+17厘米=( )厘米 45-6= 25+38= 54+9= 24+9= 54+9= 75-6= 63-6= 48+15 18+5= 96-28= 46-8= 32米-10米=( )米 14厘米+9厘米○25厘米 二、 ( )走的路线短。
三、 在 . 里填上“米”或“厘米”。
一扇门高2 . 电线杆高10 . 一本字典厚3 . 一支铅笔长16 . 一张桌面长90 . 一棵大树高8 .四、 下面哪种量法正确正确的请在( )里画“√”。
五、 解决问题。
(1) 小华家、小阳家和学校都在同一条街道上,小华家离学校35米,小阳家离学校45米,小华家和小阳家之间有多少米(2) 一根绳子先用去它的一半,再用去剩下的一半,这时剩下2厘米,这一根绳子原来长多少厘米六、 乌龟与蜗牛比赛。
(1)100米 90米 80米 70米 60米 50米 从图中可以看出( )比( )爬得快,快( )米。
算式:□○□=□米(2)100米 90米 80米 70米 60米 50米 乌龟睡觉时,蜗牛爬过了( )米。
算式:□○□=□米七、 我是小画家。
(1) 画一条比3厘米长3厘米的线段。
(2) 画一条比8厘米短4厘米的线段。
一、 数一数,下面的图形中一共有几条线段 (1)( )条v1.0 可编辑可修改2 (2)()条二、下列第()条线最长。
①②③④三、想一想,☆和△分别代表多少4 ☆+ △ 6 ☆= △=7 35 ☆- △ 3 ☆= △=2 4四、综合题。
1.乐乐带了100元,要买下面这两样物品,他带的钱够吗如果够,还剩多少钱如果不够,还差多少钱35元 56元2.小华在做一道加法题时,本来应该加上21,结果他加成了7,这样计算的结果是59,那么正确的结果应该是多少3.冬冬做数学题时,把下面题中的几个数字弄脏了,你能帮助他把那几个弄脏的数字找出来吗8 6 7 0 2 6- 5 7 - 4 9 - 1 02 9 2 1 64.妈妈到超市买了一箱苹果,共有64个。
中考冲刺:几何综合问题—知识讲解【中考展望】几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力.这类题型在近几年全国各地中考试卷中占有相当的分量,不仅有选择题、填空题、几何推理计算题以及代数与几何的综合计算题,还有更注重考查学生分析问题和解决问题能力的探究性的问题、方案设计的问题等等.主要特点是图形较复杂,覆盖面广、涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.几何综合题的呈现形式多样,如折叠类型、探究型、开放型、运动型、情景型等,背景鲜活,具有实用性和创造性,考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力.以几何为主的综合题常常在一定的图形背景下研究以下几个方面的问题:1、证明线段、角的数量关系(包括相等、和、差、倍、分及比例关系等);2、证明图形的位置关系(如点与线、线与线、线与圆、圆与圆的位置关系等);3、几何计算问题;4、动态几何问题等.【方法点拨】一、几何计算型综合问题,常常涉及到以下各部分的知识:1、与三角形有关的知识;2、等腰三角形,等腰梯形的性质;3、直角三角形的性质与三角函数;4、平行四边形的性质;5、全等三角形,相似三角形的性质;6、垂径定理,切线的性质,与正多边形有关的计算;7、弧长公式与扇形面积公式.二、几何论证型综合题的解答过程,要注意以下几个方面:1、注意图形的直观提示,注意观察、分析图形,把复杂的图形分解成几个基本图形,通过 添加辅助线补全或构造基本图形;2、注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础,要由已知联想经 验,由未知联想需要,不断转化条件和结论来探求思路,找到解决问题的突破点;3、要运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题,还要灵活运用 数学思想方法如数形结合、分类讨论、转化、方程等思想来解决问题.【典型例题】类型一、动态几何型问题1.如图,在矩形ABCD 中,AB=12cm ,BC=6cm ,点P 沿AB 边从点A 开始向点B 以2cm/s 的速度移动;点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动.如果P 、Q 同时出发,用t(s)表示移动的时间(0≤t ≤6),那么:⑴当t 为何值时,△QAP 为等腰直角三角形?⑵求四边形QAPC 的面积;提出一个与计算结果有关的结论;⑶当t 为何值时,以点Q 、A 、P 为顶点的三角形与△ABC 相似?D ABC QP【思路点拨】⑴中应由△QAP 为等腰直角三角形这一结论,需补充条件AQ=AP ,由AQ=6-t ,AP=2t ,可求出t 的值;⑵中四边形QAPC 是一个不规则图形,其面积可由矩形面积减去△DQC 与△PBC 的面积求出;⑶中由于题目中未给出三角形的相似对应方式,因此需分类讨论. 【答案与解析】解:(1)对于任何时刻t ,AP=2t ,DQ=t ,QA=6-t .当QA=AP 时,△QAP 为等腰直角三角形,即6-t=2t ,解得:t=2(s ),所以,当t=2s 时,△QAP 为等腰直角三角形.(2)在△QAC 中,QA=6-t ,QA 边上的高DC=12,∴S △QAC =12QA •DC=12(6-t )•12=36-6t . 在△APC 中,AP=2t ,BC=6, ∴S △APC =12AP •BC=12•2t •6=6t . ∴S 四边形QAPC =S △QAC +S △APC =(36-6t )+6t=36(cm 2).由计算结果发现:在P 、Q 两点移动的过程中,四边形QAPC 的面积始终保持不变.(也可提出:P 、Q 两点到对角线AC 的距离之和保持不变)(3)根据题意,可分为两种情况,在矩形ABCD 中:①当QA AP AB BC=时,△QAP ∽△ABC ,则有: 62126t t -=,解得t=1.2(s ), 即当t=1.2s 时,△QAP ∽△ABC ;②当QA AP BC AB=时,△PAQ ∽△ABC ,则有: 62612t t -=,解得t=3(s ), 即当t=3s 时,△PAQ ∽△ABC ;所以,当t=1.2s 或3s 时,以点Q 、A 、P 为顶点的三角形与△ABC 相似.【总结升华】本题是动态几何题,同时也是一道探究题.要求学生具有一定的发现、归纳和表达能力,这就要求我们通过计算分析,抓住其本质,揭示出变中不变的规律.四边形QAPC 的面积也可由△QAC 与△CAP 的面积求出,;⑶中考查了分类讨论的数学思想,结论具有一定的开放性.2.如图,在梯形ABCD 中,AD ∥BC ,AD=3,CD=5,BC=10,梯形的高为4,动点M 从点B 出发沿线段BC 以每秒2个单位长度向终点C 运动;动点N 同时从点C 出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒(1)直接写出梯形ABCD 的中位线长;(2)当MN ∥AB 时,求t 的值;(3)试探究:t 为何值时,使得MC=MN .【思路点拨】(1)直接利用梯形中位线的定理求出即可;(2)平移梯形的一腰,根据平行四边形的性质和相似三角形的性质求解;(3)利用MC=MN时,结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.【答案与解析】解:(1)∵AD=3,BC=10,∴梯形ABCD的中位线长为:(3+10)÷2=6.5;(2)如图1,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形.∵MN∥AB,∴MN∥DG,∴BG=AD=3.∴GC=10﹣3=7.由题意知,当M、N运动到t秒时,CN=t,CM=10﹣2t.∵DG∥MN,∴△MNC∽△GDC.∴=,即=.解得,t=;(3)当MC=MN时,如图2,过M作MF⊥CN于F点,FC=NC=t.∵∠C=∠C,∠MFC=∠DHC=90°,∴△MFC∽△DHC,∴=,即=,解得:t=.综上所述,t=时,MC=MN.【总结升华】解决动点问题,首先就是要找谁在动,谁没动,通过分析动态条件和静态条件之间的关系求解,但是对于大多数题目来说,都有一个由动转静的拐点.3.(1)已知:如图1,△ABC为等边三角形,点D为BC边上的一动点(点D不与B、C重合),以AD 为边作等边△ADE ,连接CE .求证:①BD=CE ,②AC=CE+CD ;聪明的小明做完上题后进行了进一步变式探究.(2)如图2,在△ABC 中,∠BAC=90°,AC=AB ,点D 为BC 上的一动点(点D 不与B 、C 重合),以AD 为边作等腰Rt △ADE ,∠DAE=90°(顶点A 、D 、E 按逆时针方向排列),连接CE ,类比题(1),请你猜想线段BD 、CD 、DE 之间会有怎样的关系,请直接写出,不需论证;(3)如图3,在(2)的条件下,若D 点在BC 的延长线上运动,以AD 为边作等腰Rt △ADE ,∠DAE=90°(顶点A 、D 、E 按逆时针方向排列),连接CE .①题(2)的结论还成立吗?请说明理由;②连结BE ,若BE=10,BC=6,求AE 的长.【思路点拨】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,进而就可以得出△ABD ≌△ACE ,即可得出结论;②由△ABD ≌△ACE ,以及等边三角形的性质,就可以得出AC=DC+CE ;(2)先判定△ABD ≌△ACE (SAS ),得出∠B=∠ACE=45°,BD=CE ,在Rt △DCE 中,根据勾股定理得出CE 2+CD 2=DE 2,即可得到BD 2+CD 2=DE 2;(3)①运用(2)中的方法得出BD 2+CD 2=DE 2;②根据Rt △BCE 中,BE=10,BC=6,求得CE=22106-=8,进而得出CD=8﹣6=2,在Rt △DCE 中,求得DE=2228+=,最后根据△ADE 是等腰直角三角形,即可得出AE 的长.【答案与解析】解:(1)①如图1,∵△ABC 和△ADE 是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,∴∠BAC ﹣∠DAC=∠DAE ﹣∠DAC ,∴∠BAD=∠EAC .在△ABD 和△ACE 中,,∴△ABD ≌△ACE (SAS ),∴BD=CE ;②∵BD=CE ,AC=BC ,又∵BC=BD+CD ,∴AC=CE+CD ;(2)BD 2+CD 2=DE 2.证明:如图2,∵∠BAC=∠DAE=90°,∴∠BAC ﹣∠DAC=∠DAE ﹣∠DAC ,即∠BAD=∠CAE ,在△ABD 与△ACE 中,,∴△ABD ≌△ACE (SAS ),∴∠B=∠ACE=45°,BD=CE ,∴∠B+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°,∴Rt △DCE 中,CE 2+CD 2=DE 2,∴BD 2+CD 2=DE 2;(3)①(2)中的结论还成立.理由:如图3,∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC ,即∠BAD=∠CAE ,在△ABD 与△ACE 中,,∴△ABD ≌△ACE (SAS ),∴∠ABC=∠ACE=45°,BD=CE ,∴∠ABC+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°=∠ECD ,∴Rt △DCE 中,CE 2+CD 2=DE 2,∴BD 2+CD 2=DE 2;②∵Rt △BCE 中,BE=10,BC=6,∴22106-=8,∴BD=CE=8,∴CD=8﹣6=2,∴Rt △DCE 中,2228+68∵△ADE 是等腰直角三角形,∴683422== 【总结升华】本题属于三角形综合题,主要考查了全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质以及勾股定理的综合应用.举一反三:【变式】△ABC 是等边三角形,P 为平面内的一个动点,BP=BA ,若0︒<∠PBC <180°,且∠PBC 平分线上的一点D 满足DB=DA ,(1)当BP 与BA 重合时(如图1),∠BPD= °;(2)当BP 在∠ABC 的内部时(如图2),求∠BPD 的度数;(3)当BP 在∠ABC 的外部时,请你直接写出∠BPD 的度数,并画出相应的图形.【答案】(1)∠BPD= 30°;(2)如图3,连结CD .∵ 点D 在∠PBC 的平分线上,∴ ∠1=∠2.∵ △ABC 是等边三角形,∴ BA=BC=AC ,∠ACB= 60°.∵ BP=BA ,∴ BP=BC .∵ BD= BD ,∴ △PBD ≌△CBD .∴ ∠BPD=∠3.∵ DB=DA ,BC=AC ,CD=CD ,∴ △BCD ≌△ACD .∴ 134302ACB ∠=∠=∠=︒.∴ ∠BPD =30°.(3)∠BPD= 30°或 150°.类型二、几何计算型问题4.如图,直角三角形纸片ABC 中,∠ACB=90°,AC=8,BC=6.折叠该纸片使点B 与点C 重合,折痕与AB 、BC 的交点分别为D 、E.(1) DE 的长为 ;(2) 将折叠后的图形沿直线AE 剪开,原纸片被剪成三块,其中最小一块的面积等于 .【思路点拨】(1)由题意可得:DE是线段BC的垂直平分线,易证DE∥AC,即DE是△ABC的中位线,即可求得DE的长;(2)由DE∥AC,DE=12AC,易证△AOC∽△EOD,根据相似三角形的对应边成比例,即可求得OA:OE=2,然后求得△ACE的面积,利用等高三角形的面积比等于对应底的比,即可求得答案.【答案与解析】(1)根据题意得:DE⊥BC,CE=BE,∵∠ACB=90°,即AC⊥BC,∴DE∥AC,∴AD=BD,∴DE=12AC=12×8=4;(2)∵DE∥AC,DE=12 AC,∴△AOC∽△EOD,∴OA:OE=AC:DE=2,∵CE=12BC=12×6=3,∵∠ACB=90°,AC=8,∴S△ACE=12CE•AC=12×3×8=12,∴S△OCE=13S△ACE=4,∴S△ADE+S△ODE=S△ABC-4-12=8,∴其中最小一块的面积等于4.【总结升华】考查了折叠的性质、直角三角形的性质、三角形中位线的性质以及相似三角形的判定与性质.此题难度适中,注意数形结合思想的应用,注意掌握折叠前后图形的对应关系,是一道典型的几何综合题.举一反三【变式】在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB′E,那么△AB′E与四边形AECD重叠部分的面积是 . 【答案】在Rt△ABE中,∵∠B=45°,AB=2,∴AE=BE=2,∴S△ABE=1.由翻折的性质可知:△AB′E≌△ABE,∴EB′=EB=2∴B′C=BB′-BC=22-2,∵四边形ABCD是菱形,∴CF∥BA.∴∠ B′FC=∠B′AB=90°, ∠B′CF=∠B=45°∴CF=2'=2-22B C∴SB FC△'=221CF=3-22∴S阴=SB E′△A -SB FC′△=22-2.5.如图,在等腰梯形ABCD中,AB∥DC,∠A=45°,AB=10 cm,CD=4 cm,等腰直角△PMN的斜边MN=10 cm, A点与N点重合, MN和AB在一条直线上,设等腰梯形ABCD不动,等腰直角△PMN沿AB所在直线以1 cm/s的速度向右移动,直到点N与点B重合为止.(1)等腰直角△PMN在整个移动过程中与等腰梯形ABCD重叠部分的形状由________形变化为________形;(2)设当等腰直角△PMN移动x (s)时,等腰直角△PMN与等腰梯形ABCD重叠部分的面积为y(cm2),求y 与x之间的函数关系式;(3)当x=4 (s)时,求等腰直角△PMN与等腰梯形ABCD重叠部分的面积.【思路点拨】(1)根据已知求出∠PNM=∠DAB=45°,求出∠AEN,根据等腰直角三角形的判定判断即可;推出∠DAB=∠PNM=45°,根据等腰梯形的判定判断即可;(2)可分为以下两种情况:①当0<x≤6时,重叠部分的形状为等腰直角△EAN,AN=x(cm),过点E作EH⊥AB于点H,则EH平分AN,求出EH,根据三角形的面积公式求出即可;②当6<x≤10时,重叠部分的形状是等腰梯形ANED,求出AN=x(cm),CE=BN=10-x,DE=x-6,过点D作DF⊥AB于F,过点C作CG⊥AB于G,求出DF,代入梯形面积公式求出即可.【答案与解析】(1)等腰直角三角形;等腰梯形.(2)等腰直角△PMN在整个移动过程中与等腰梯形ABCD重合部分图形的形状可分为以下两种情况:①当0<x≤6时,重叠部分的形状为等腰直角△EAN(如图①).此时AN=x(cm),过点E作EH⊥AB于点H,则EH平分AN,∴EH=AN=x,∴y=S△ANE=AN·EH=x·x=.②当6<x≤10时,重叠部分的形状是等腰梯形ANED(如图②).此时,AN=x(cm),∵∠PNM=∠B=45°,∴EN∥BC,∵CE∥BN,∴四边形ENBC是平行四边形,CE=BN=10-x,DE=4-(10-x)=x-6,过点D作DF⊥AB于F,过点C作CG⊥AB于G,则AF=BG,DF=AF=(10-4)=3,∴y=S梯形ANED=(DE+AN)·DF=(x-6+x)×3=3x-9.综上,.(3)当等腰直角△PMN运动到PN边经过点D时,移动时间为6(s),∴当x=4 (s)时,y=x2=×42=4.∴当x=4 (s)时,等腰直角△PMN与等腰梯形ABCD重叠部分的面积是4cm2.【总结升华】本题主要考查对等腰梯形的性质和判定,等腰三角形的性质和判定,三角形的内角和定理,三角形的面积,平移的性质,等腰直角三角形等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.举一反三:【变式】如图,等腰梯形ABCD中,AB=15,AD=20,∠C=30°.点M、N同时以相同速度分别从点A、点D开始在AB、AD(包括端点)上运动.(1)设ND的长为x,用x表示出点N到AB的距离,并写出x的取值范围;(2)当五边形BCDNM面积最小时,请判断△AMN的形状.【答案】(1)过点N作BA的垂线NP,交BA的延长线于点P.则AM=x,AN=20-x.∵四边形ABCD是等腰梯形,AB∥CD,∠D=∠C=30°,∴∠PAN=∠D=30°.在Rt△APN中,PN=AN×sin∠PAN=(20-x),即N到AB距离为(20-x).∵点N在AD上,0≤x≤20,点M在AB上,0≤x≤15,∴x取值范围是0≤x≤15.(2)∵S五边形BCDNM=S梯形-S△AMN且S梯形为定值,∴当S五边形BCDMN最小时,应使S△AMN最大据(1),S△AMN=AM·NP=.∵<0,∴当x=10时,S△AMN有最大值.∴当x=10时,S五边形BCDNM有最小值.当x=10时,即ND=AM=10,AN=AD-ND=10,即AM=AN.则当五边形BCDNM面积最小时,△AMN为等腰三角形.。
解析几何综合题解题思路案例分析解析几何综合题是高考命题的热点内容之一. 这类试题往往以解析几何知识为载体,综合函数、不等式、三角、数列等知识,所涉及到的知识点较多,对解题能力考查的层次要求较高,考生在解答时,常常表现为无从下手,或者半途而废。
据此笔者认为:解决这一类问题的关键在于:通观全局,局部入手,整体思维. 即在掌握通性通法的同时,不应只形成一个一个的解题套路,解题时不加分析,跟着感觉走,做到那儿算那儿. 而应当从宏观上去把握,从微观上去突破,在审题和解题思路的整体设计上下功夫,不断克服解题征途中的道道运算难关.1 判别式----解题时时显神功案例1 已知双曲线122:22=-x y C ,直线l 过点()0,2A ,斜率为k ,当10<<k 时,双曲线的上支上有且仅有一点B 到直线l 的距离为2,试求k 的值及此时点B 的坐标。
分析1:解析几何是用代数方法来研究几何图形的一门学科,因此,数形结合必然是研究解析几何问题的重要手段. 从“有且仅有”这个微观入手,对照草图,不难想到:过点B 作与l 平行的直线,必与双曲线C 相切. 而相切的代数表现形式是所构造方程的判别式0=∆. 由此出发,可设计如下解题思路:解题过程略.分析2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓“有且仅有一点B 到直线l 的距离为2”,相当于化归的方程有唯一解. 据此设计出如下解题思路:y ,令判别式0=∆l 的距离为2212222=+-+-k kx kx ()10<<k ()*于是,问题即可转化为如上关于x 的方程. 由于10<<k ,所以kx x x >>+22,从而有.222222k x kx k x kx +++-=-+-于是关于x 的方程()*⇔)1(22222+=+++-k k x kx⇔()⎪⎩⎪⎨⎧>+-++-+=+02)1(2,)2)1(2(222222kx k k kx k k x⇔()()()⎪⎩⎪⎨⎧>+-+=--++-++-.02)1(2,022)1(22)1(221222222kx k k kkx k k k x k由10<<k 可知: 方程()()()022)1(22)1(22122222=--++-++-k kx k k kx k 的二根同正,故02)1(22>+-+kx k k 恒成立,于是()*等价于()()()022)1(22)1(22122222=--++-++-k kx k k k x k.由如上关于x 的方程有唯一解,得其判别式0=∆,就可解得 552=k . 点评:上述解法紧扣解题目标,不断进行问题转换,充分体现了全局观念与整体思维的优越性.2 判别式与韦达定理-----二者联用显奇效案例2 已知椭圆C:x y 2228+=和点P (4,1),过P 作直线交椭圆于A 、B 两点,在线段AB 上取点Q ,使AP PB AQQB=-,求动点Q 的轨迹所在曲线的方程. 分析:这是一个轨迹问题,解题困难在于多动点的困扰,学生往往不知从何入手。
重难点04几何综合题(22年上海二模25题)几何题是中考数学中必考题目之一,主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。
这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.将几何综合题目分解为基本问题,转化为基本图形或者可与基本图形、方法类比,从而使问题得到解决。
【满分技巧】一、常考题型几何综合题的呈现形式多样,如折叠类型、探究型、开放型、运动型、情景型等,背景鲜活,具有实用性和创造性,考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力.以几何为主的综合题常常在一定的图形背景下研究以下几个方面的问题:1、证明线段、角的数量关系(包括相等、和、差、倍、分及比例关系等);2、证明图形的位置关系(如点与线、线与线、线与圆、圆与圆的位置关系等);3、几何计算问题;4、动态几何问题等.二、基本图形及辅助线解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。
在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。
1、与相似及圆有关的基本图形2、正方形中的基本图形3、基本辅助线(1)角平分线——过角平分线上的点向角的两边作垂线(角平分线的性质)、翻折;(2)与中点相关——倍长中线(八字全等),中位线,直角三角形斜边中线;(3)共端点的等线段——旋转基本图形(60°,90°),构造圆;垂直平分线,角平分线——翻折;转移线段——平移基本图形(线段)线段间有特殊关系时,翻折;(4)特殊图形的辅助线及其迁移——梯形的辅助线等作双高——上底、下底、高、腰(等腰梯形)三推一;面积;锐角三角函数平移腰——上下底之差;两底角有特殊关系(延长两腰);梯形——三角形平移对角线——上下底之和;对角线有特殊位置、数量关系。
压轴题01 解答题——电与力结合的综合分析题综合近几年中考压轴题,2023年中考对于电学与力学综合的考察仍然是照顾点。
综合应用题在科学中考中作为压轴出现,强调应用性,密切联系社会生活和社会热点,注重实际应用,强调解决实际问题,是评价学生理论联系实际能力,分析概括能力,以及综合计算能力的综合考察。
下边我就对中考解题时应对电学与力学压轴的方法和技巧。
一、电学1.对动态电路图的简化和分析动态电路全面考查了学生的综合分析能力、综合推理能力和综合计算能力。
因电路的变化会引起电路中电阻、电流、电压及电功率相关量的变化,稍有不慎就会造成连错反应,得出错误的结论。
这是电学实验综合问题的又一个难点。
所以在教学中要教给学生化难为易的方法,并可尝试多图解题标数据,以免乱用数据出现问题。
a.多个开关类动态图的简化我们要认真读懂题意,按照题意要求将开关调到相对应的位置,分析电路的通断情况,把断路的和短路的用电器、开关等去掉,就形成一个简单的串并联电路,并画出简图,标出对应的物理量和已知量,再依据欧姆定律进行分析,求出所需的物理量,为解决下个问题做准备。
B.滑动变阻器的动态电路的简化根据题意将滑动变阻器的滑片移到相应位置,删去断路和短路部分,对电路进行必要的简化,能够清楚、明白、迅速地解题。
C.电表类试题的简化主要采用去表法电表类综合试题也是中考中常见的类型,常用方法是根据电流表和电压表的特点,即电压表电阻很大视为开路,电流表电阻很小相当于短路,因此都可以去掉,这样就大大增强了电路的直观性,有利于分析和理解电路。
2.利用“已三求四”根据题目简化电路图后,能够根据欧姆定律利用已知的三个量求出四个量。
当在动态的情况下,可利用电源电压恒定不变,列方程求解。
3.分析法和综合法的运用分析法又称执果索因法,意思就是从需要求解的物理量起步,不断地追踪探寻需要的物理量,直至逼近试题中已知条件。
综合法称由因导果法,这是从已知的物理关系起步,不断地展开思考,去探索需要求解物理量的方法。
中考数学备考复习计划及备考策略(10篇)中考数学备考复习计划及备考策略(篇1)九年级总复习阶段是初中学生进行系统学习的最后阶段,也是九年学生参加毕业和升学考试前夕的冲刺阶段。
如何通过一个阶段的复习,使学生较好地把握整个初中阶段学习的知识体系,正确掌握并灵活运用各个知识点,形成较强的分析问题、解决问题的能力。
这就要求我们解决好复习中的问题:时间与效率;知识梳理与创新能力;复习与教研等。
处理和解决好这几个问题,是提高复习效率的关键。
同时由于教学时间紧,任务重,针对新课标如何提高数学总复习的质量和效率,就成为每位毕业班数学教师必须面对的问题。
下面就结合我校学生实际情况,将整个复习工作划分为四个阶段,按学生的认知规律,循序渐进,系统复习。
第一阶段:知识梳理形成知识网络(3月4日---5月12日)近几年中考数学试卷安排了较大比例的试题来考查“双基”,全卷的基础知识的覆盖面较广,起点低,许多试题源于课本,在课本中能找到原型,有的是对课本原型进行加工、组合、延伸和拓展。
复习中要紧扣教材,夯实基础,同时对典型问题进行变式训练,达到举一反三,触类旁通的目的。
做到以不变应万变,提高应变能力。
在这一阶段的复习教学,我们想结合《初中数学课程标准》进行如下单元整合:按《数与式》、《方程和不等式(组)》、《函数及其图象》、《统计与概率》、《直线型》、《锐角三角函数》、《圆》、《图形与变换》这八个单元进行系统复习。
配套练习是《中考复习指南》(状元宝典),复习完每个单元进行一次单元自测。
第一阶段复习的内容和时间安排2月23日—3月4日:复习《数与式》主要内容有:有理数、实数、代数式、整式、因式分解、分式、二次根式3月5日----3月14日:复习《方程和不等式(组)》主要内容:方程与方程组(包括一元一次方程、一元二次方程、分式方程、二元一次方程组)、不等式与不等式组3月15日—3月25日:复习《函数及其图象》主要内容有:平面直角坐标系、函数、一次函数、反比例函数、二次函数3月26日—4月1日:复习《统计与概率》主要内容有:统计、概率、课题学习4月2日—4月16日:复习《直线型》主要内容有:图形的初步认识、三角形、平行四边形、特殊的平行四边形、梯形、相似形4月17日—4月22日:复习《锐角三角函数》主要内容有:锐角三角函数、解直角三角形4月22日—4月30日:复习《圆》主要内容有:圆的有关性质、与圆有关的位置关系、正多边形和圆5月1日—5月8日:复习《图形与变换》主要内容有:视图与投影、图形的对称、图形的平移、图形的变换过程要求:(1)复习流程:“双基”梳理→例题精讲→基础训练→单元检测→分析讲评→校正巩固(2)讲练结合:在系统复习中,力求做到精讲精练、讲练结合、抓实抓细、突破重难点、使学生能力有所提高。
中考数学6种常考的压轴题类型中考数学6种常考的压轴题类型历年中考,压轴题一样平常都由3个小题构成。
第(1)题轻易上手,得分率在0.8以上;第(2)题稍难,一样平常照旧属于通例题型,得分率在0.6与0.7之间,第(3)题较难,手段要求较高,但得分率也大多在0.3与0.4之间。
而从近几年的中考压轴题来看,大多不偏不怪,得分率不变在0.5与0.6之间,即考生的均匀得分在7分或8分。
由此可见,压轴题也并不行怕。
线段、角的计较与证明题目中考的解答题一样平常是分两到三部门的。
第一部门根基上都是一些简朴题可能中档题,目标在于考查基本。
第二部门每每就是开始拉分的中困难了。
对这些题轻松把握的意义不只仅在于得到分数,更重要的是对付整个做题进程中士气,军心的影响。
一元二次方程与二次函数在这一类题目傍边,尤以涉及的动态几许题目最为艰巨。
几许题目的难点在于想象,结构,每每偶然辰一条帮助线没有想到,整个一道题就卡壳了。
对比几许综合题来说,代数综合题倒不必要太多奇妙的要领,可是对考生的计较手段以及代数功底有了较量高的要求。
代数题目每每是以一元二次方程与二次函数为主体,多种其他常识点帮助的情势呈现的。
一元二次方程与二次函数题目傍边,纯粹的一元二次方程解法凡是会以简朴解答题的方法考查。
可是在后头的中难档大题傍边,凡是会和根的鉴别式,整数根和抛物线等常识点团结。
多种函数交错综合题目初中数学所涉及的函数就一次函数,反比例函数以及二次函数。
这类标题自己并不会太难,很少作为压轴题呈现,一样平常都是作为一道中档次标题来考查考生对付一次函数以及反比例函数的把握。
以是在中考中面临这类题目,必然要做到停止失分。
列方程(组)解应用题在中考中,有一类标题说难不难,说不难又难,有的时辰三两下就有了思绪,有的时辰苦思冥想好久也没有设法,这就是列方程或方程组解应用题。
方程可以说是初中数学傍边最重要的部门,以是也是中考中必考内容。
从连年来的中考来看,结适事势热门考的较量多,以是还必要考生有一些糊口履历。
2012北京各区第一学期期末代几综合题答案(丰台)25.解:(1) ∵1)1(2221+--=+-=x x x y ,------1分∴抛物线C 1的顶点坐标是(1,1),∴平移后的抛物线C 2顶点P (3,2).------2分∴2)3(22+--=x y . (或者7622-+-=x x y )------3分 (2) 存在点N (x ,y )满足条件.------ 4分∵以点O 、P 、M 、N 为顶点的四边形是平行四边形,∴N P y y -=,∴2-=N y . 当点N 在C 1上时,21-=y ,即21)1(2-=+--x ,解得31±=x ; ∴N 1(2,31-+), N 2(2,31--);当点N 在C 2上时,22-=y ,即22)3(2-=+--x ,解得1543==x x ,; ∴N 3(2,5-), N 4(2,1-). ∴满足条件的点N 有4个,分别是N 1(2,31-+)、N 2(2,31--)、N 3(2,5-)、N 4(2,1-).(石景山)xy(第25题)(怀柔)25. 解:(1)设抛物线为2(4)1y a x =--.∵抛物线经过点A (0,3),∴23(04)1a =--.∴14a =.∴抛物线为2211(4)12344y x x x =--=-+. …………2分(2) 答:l 与⊙C 相交. ……………………………………3分 证明:当21(4)104x --=时,12x =,26x =.∴B 为(2,0),C 为(6,0). ∴AB ==设⊙C 与B D 相切于点E ,连接C E , 则90B E C A O B ∠=︒=∠.∵90A B D ∠=︒,∴∠ABO +∠CBE =90°.又∵∠ABO +∠BAO =90°,∴B A O C B E ∠=∠.∴A O B ∆∽B E C ∆. ∴C E B CO BA B =.∴2C E =.∴2CE =>.…………4分∵抛物线的对称轴l 为4x =,∴C 点到l 的距离为2. ∴抛物线的对称轴l 与⊙C 相交. …………………5分 (3) 解:如图,过点P 作平行于y 轴的直线交A C 于点Q . 由点A (0,3)点C (6,0)可求出直线A C 的解析式为132y x =-+.………………6分设P 点的坐标为(m ,21234m m -+),则Q 点的坐标为(m ,132m -+).∴2211133(23)2442P Q m m m m m =-+--+=-+. ∵22113327()6(3)24244P A C P A Q P C Q S S S m m m ∆∆∆=+=⨯-+⨯=--+,∴当3m =时,P A C ∆的面积最大为274.此时,P 点的坐标为(3,34-). …………………8分解答(3)的关键是作PQ ∥y 轴交AC 于Q ,以PQ 为公共底,OC 就是高,用抛物线、直线解析式表示P 、Q 两点的纵坐标,利用三角形的面积推导出面积与P 点横坐标m 的函数关系式, 即:2327(3)44P A C S m ∆=--+.(顺义)25.解:(1)当顶点A 运动至与原点重合时,设BC 与 y 轴交于点D ,如图所示.∵BC ∥x 轴,BC=AC=32, ∴3=CD ,3=AD .∴C 点的坐标为)3,3(-. ……………1分 ∵当3=x 时,3332)3(2-=⨯-=y .∴当顶点A 运动至与原点重合时,顶点C 在抛物线上.……………2分(2)过点A 作BC AD ⊥于点D ,设点A 的坐标为(x ,x x 322-). ∵8:1:=下部分上部分S S , ∴)32(32x x AD -=. ∵等边A B C △的边长为32, ∴360sin =︒⋅=AC AD . ∴3)32(32=-x x . ∴01322=--x x . 解方程,得 =x 23±.∴顶点A 的坐标为)1,23(+或)1,23(-.…………………………5分(3)当顶点B 落在坐标轴上时,顶点C 的坐标为)0,632(-、)0,632(+、)6,32(-. …………………………………………………………… 8分(昌平)25.解:(1)在y =x -3中,分别令y =0和x =0,得x =3和y =-3.∴ B (3,0),C (0,-3). ………………………………… 2分(2)∵ 抛物线过点A (-1,0)、B (3,0),∴ 设抛物线的解析式为:y =a (x +1∵ 抛物线过点C (0,-3),∴ -3= a (0+1)(0-3).∴ a=1.∴ 抛物线的解析式为:y =(x +1)(x -3). ………………… 4分 即 y =x 2-2x -3.(3)由y =x 2-2x -3,得y =(x -1)2-4.∴ 抛物线的顶点M (1,-4). ………………… 5分 (4)如图,存在满足条件的P 1(1,-2)和P 2(-1,-4). 作MN ⊥y 轴于点N ,则∠CNM =90°. ∵ M (1,-4),C (0,-3), ∴ MN =NC =1. ∴ ∠MCN =45°.∵∠COB =90°,B (3,0),C (0,-3), ∴ ∠OCB =45°.∴ ∠BCM =90°. …………………………………………… 6分∴ 要使点P 在直线y =x -3上,必有PC =MC .∠MPC =∠CMP =45°.则 过点M 分别作x 轴和y 轴的垂线,交直线y =x -3于点P 1和P 2. 在y = x -3中,分别令x =1,y =-4,得y =-2,x =-1.则 P 1(1,-2)和P 2(-1,-4). ……………………………… 8分(通州)24.解:(1) 四边形A B C O 是平行四边形,4.O C AB ∴==(42)(02)(40)A B C ∴-,,,,,.………………………(1分) 抛物线2y ax bx c =++过点B , 2.c ∴=由题意,有1642016422a b a b -+=⎧⎨++=⎩,.解得1161.4a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴所求抛物线的解析式为211 2.164y x x =-++………………………(2分)(2)将抛物线的解析式配方,得211(2)2.164y x =--+∴抛物线的对称轴为 2.x =(80)(22)(2).D E F ∴,,,,,0欲使四边形POQE 为等腰梯形,则有..OP QE BP FQ ==即363.2t t t ∴=-=,即 ………………………(3分)(3)欲使以点P B O 、、为顶点的三角形与以点Q B O 、、为顶点的三角形相似,90PBO BOQ ∠=∠=∴ °,有B P O Q O BB O=或BP BO OBOQ=,即PB OQ =或2O B PB Q O =·.①若P Q 、在y 轴的同侧.当BP OQ =时,t =83t -,2t ∴=.当2O B PB Q O =·时,(83)4t t -=,即23840.t t -+= 解得1222.3t t ==, ………………………(4分)②若P Q 、在y 轴的异侧.当PB OQ =时,38t t -=,4t ∴=.当2O B PB Q O =·时,(38)4t t -=,即23840t t --=.解得43t ±=403t -=< .故舍去. 43t +∴=………………………(5分)∴当2t =或23t =或4t =或43t +=秒时,以P B O 、、为顶点的三角形与以点Q B O 、、为顶点的三角形相似. ………………………(6分)(海淀)25. 解:(1)∵ 抛物线过原点和A(-), ∴ 抛物线对称轴为3-=x .∴ B(3).设抛物线的解析式为23y a x =+(.∵ 抛物线经过(0, 0),∴ 0=3a+3. ∴ a=-1. ∴3)3(2++-=x y ……………………………………………1分=.322x x --∵ C 为AB 的中点, A(-)、B(3),可得C(322-) .可得直线OC 的解析式为xy 33-=. ……………………………………………2分(2)连结OB. 依题意点E 为抛物线xxy 322--=与直线xy 33-=的交点(点E 与点O 不重合).由23,y x y x ⎧=-⎪⎨⎪=--⎩,解得5,3x y ⎧=-⎪⎪⎨⎪=⎪⎩或0,0.x y =⎧⎨=⎩(不合题意,舍). ∴ E(533-) …………………………3分过E 作EF ⊥y 轴于F, 可得OF=53,∵ OE=DE ,EF ⊥y 轴, ∴ OF=DF .∴ DO=2OF=103.∴ D(0,10)3.∴ =.(3)E 点的坐标为(322-)或(122-). (通州)22. 解:(1)如图,过点C 作CE ⊥x 轴于点E ,∵点C (1,1),⊙C 的半径为2, ∴cos ∠ACE==,∴∠ACE=60°, ∴∠ACB=2∠ACE=2×60°=120°,根据圆周角定理可得∠APB=∠ACB=×120°=60°,所以,∠ADB=180°﹣∠APB=180°﹣60°=120°;(2)在Rt△ACE中,根据勾股定理,AE===,根据对称性,BE=AE=,所以,OA=﹣1,OB=+1,所以,点A(1﹣,0),B(+1,0);(3)∵抛物线的顶点P在⊙C上,圆的半径为2,圆心C的坐标(1,1),∴顶点P的坐标为(1,3),设抛物线的解析式为y=a(x﹣1)2+3,则a(+1﹣1)2+3=0,解得a=﹣1,所以,抛物线解析式为y=﹣(x﹣1)2+3;(4)∵点M在y轴上,∴设点M的坐标为(m,0),①AC是平行四边形的边时,如图1,点N在x轴下方是,坐标为(﹣,m﹣1),∵点N在抛物线上,∴﹣(﹣﹣1)2+3=m﹣1,解得m=﹣2,所以,点M的坐标为(0,﹣2),点N在x轴上方时,坐标为(,m+1),∵点N在抛物线上,∴﹣(﹣1)2+3=m+1,解得m=2﹣2,所以,点M的坐标为(0,2﹣2);②AC是对角线时,∵点A(1﹣,0),C(1,1),∴平行四边形的中心坐标为(1﹣,),∴点N的横坐标为2(1﹣)=2﹣,纵坐标为×2﹣m=1﹣m,所以,N(2﹣,1﹣m),∵点N在抛物线上,∴﹣(2﹣﹣1)2+3=1﹣m,解得m=2﹣2,所以,点M 的坐标为(0,2﹣2),综上所述,点M 的坐标为(0,﹣2)或(0,2﹣2(大兴)25.解:(1)由21342y x x =-+得32b x a=-=∴D(3,0) …………………………1分 (2)∵ 21342y x x =-+∴顶点坐标93,4⎛⎫⎪⎝⎭设抛物线向上平移h 个单位,则得到()0,C h ,顶点坐标93,4M h ⎛⎫+ ⎪⎝⎭∴平移后的抛物线:()219344y x h =--++ ……………………2分当0y =时,()2193044x h --++=,得 13x =- 23x =+∴ A (30)- B (30)+ ……………………3分易证△AOC ∽△COBO C O B O AO C=∴2OC =OA ·OB ……………………4分)233h =∴ 14h =,()20h =舍去∴平移后的抛物线: ()()22191253434444y x x =--++=--+………5分(3)如图2, 由抛物线的解析式213442y x x =-++可得 A (-2 ,0),B (8 ,0) C (0,4) ,25(3,)4M ……………………6分过C 、M 作直线,连结CD ,过M 作MH 垂直y 轴于H , 则3M H = ∴2225625()416D M ==22222252253(4)416CMM H CH =+=+-=在Rt △COD 中,CD 5==AD∴点C 在⊙D 上 ……………………7分 ∴2222225256255()16416CD CM +=+==∴222DM CM CD =+ ∴△CDM 是直角三角形, ∴CD ⊥CM∴直线CM 与⊙D 相切 …………………………………8分(门头沟)25.解:(1)由题意,得⎩⎨⎧=++=++030339b a b a解得,⎩⎨⎧-=-=21b a抛物线的解析式为y=-x 2-2x+3 …………………………………1分顶点C 的坐标为(-1,4)………………………2分(2)假设在y 轴上存在满足条件的点D , 过点C由∠CDA =90°得,∠1+∠2=90°. 又∠2+∠∴∠3=∠1. 又∵∠CED =∠DOA =90°, ∴△CED ∽△DOA ,∴AODO EDCE =.设D (0,c ),则341c c=-. …………3分变形得0342=+-c c ,解之得1231c ,c ==.综合上述:在y 轴上存在点D (0,3)或(0,1使△ACD 是以AC 为斜边的直角三角形. …………………………………4分 (3)①若点P 在对称轴右侧(如图①),只能是△PCQ ∽△CAH ,得∠QCP =∠CAH .延长CP 交x 轴于M ,∴AM =CM , ∴AM 2=CM 2. 设M (m ,0),则( m +3)2=42+(m +1)2,∴m =2,即M (2,0). 设直线CM 的解析式为y=k 1x+b 1,则⎩⎨⎧=+=+-0241111b k b k , 解之得341-=k ,381=b .∴直线CM 的解析式3834+-=x y .…………………………………………… 5分3238342+--=+-x x x , 解得311=x ,12-=x (舍去). 9201=y .∴)92031(,P .………………………………………………6分②若点P 在对称轴左侧(如图②),只能是△PCQ ∽△ACH ,得∠PCQ =∠ACH .过A 作CA 的垂线交PC 于点F ,作FN ⊥x 轴于点N .由△CFA ∽△CAH 得2==AH CH AF CA , 由△FNA ∽△AHC 得21===CAAF HCNA AHFN .∴12==FN AN ,, 点F 坐标为(-5,1).设直线CF 的解析式为y=k 2x+b 2,则⎩⎨⎧=+-=+-1542222b k b k ,解之得419,4322==b k .∴直线CF 的解析式41943+=x y . ……………………………………………7分32419432+--=+x x x , 解得471-=x , 12-=x (舍去).∴)165547(,-P . …………………………………8分 ∴满足条件的点P 坐标为)201(,或)5547(,-(东城)(图①)(图②)(平谷)(延庆)25.(1) …………………………………………1分 …………………………………………………………2分 (2)①t=1 ………………………………………………………………4分…………………………………………时,(房山)∵点P 的坐标为()a ,2.∴点P 到y 轴的距离为2----------2分 ∵⊙P 的半径为2∴点P 到y 轴的距离=⊙P 的半径∴y 轴与⊙P 相切.------------------3分 (2)过点P 作PE ⊥AB 于点E ,联结PA 并延长PA 交x 轴于点C. -----4分 ∵PE ⊥AB ,AB=2∴AE=21AB=1. --------5分∵PA=2在Rt △PAE 中,由勾股定理得:PE=1 ∴PE=AE, ∴∠PAE=45°∵函数x y =的图象与y 轴的夹角为45° ∴y 轴∥PA, ∴∠PCO=90°∴A 点的横坐标为2∵A 点在直线x y =上,∴A 点的纵坐标为2∴PC=22∴a =22 ---------------------------------------7分 (房山)24、探究 : (1)①(1,0);②(-2,21);-------------------------------1分(2) AB 中点D 的坐标为(3,2)------------------------------------2分 (3)AB 中点D 的坐标为(2c a +,2d b +).--------------------3分归纳:2c a +,2d b +.----------------------------------------------4分运用:①由图象知:交点的坐标为A (-1,-3),B (3,1) .-----------5分 ②以AB 为对角线时,由上面的结论知AB 中点M 的坐标为(1,-1) . ∵平行四边形对角线互相平分, ∴OM =OP ,即M 为OP 的中点.∴P 点坐标为(2,-2) .--------------------------------6分 同理可得分别以OA ,OB 为对角线时, 点P 坐标分别为 (-4,-4) , (4,4).∴满足条件的点P 有三个,坐标分别是(2,-2) ,(4,4) , (-4,-4) .--------------------------------------------------------7分(房山)25、解:(1)∵抛物线y=﹣x 2+bx+c 的对称轴为直线x=1 ∴2b=1,∴b=21又∵抛物线最小值为3 ∴3=-c+⨯+⨯121141,∴c=411∴抛物线解析式为:41121412++-=x x y ---------------2分(2)把x=0代入抛物线得:y=,∴点A (0,).--------------------------------------3分∵抛物线的对称轴为x=1, ∴OC=1.-------------------------------------------------4分 (3)①如图:∵此抛物线与y 轴交于点A ,顶点为B ∴B (1,3)分别过点D 作DM ⊥x 轴于M ,DN ⊥PQ 于点N ,∵PQ ∥BC ,∴∠DMQ=∠DNQ=∠MQN=90°, ∴DMQN 是矩形. ∵△CDE 是等腰直角三角形, ∴DC=DE ,∠CDM=∠EDN ∴△CDM ≌△EDN ∴DM=DN , ∴DMQN 是正方形, ∴∠BQC=45° ∴CQ=CB=3 ∴Q (4,0)设BQ 的解析式为:y=kx+b , 把B (1,3),Q (4,0)代入解析式得:k=﹣1,b=4.所以直线BQ 的解析式为:y=﹣x+4.-------------------------------6分 ②所求的点P 的坐标为:P 1(1+,),P 2(1+3,﹣),P 3(1﹣,),P 4(1﹣3,﹣).------------------------8分(求对一个给1分,其余3个1分)(朝阳)25.(本小题满分8分) 解:(1)根据题意,得C (0,6).在Rt △AOC 中,61tan =∠ACO ,OC =6,∴OA =1. ∴A (-1,0). ……………………………………………………………1分 (2)∵OC OB 21=,∴OB =3. ∴B (3,0).由题意,得 ⎩⎨⎧=++=+-.0639,06b a b a 解得 ⎩⎨⎧=-=.4,2b a∴6422++-=x x y .∴D (1,8). ……………………………………………………………………2分 可求得直线CD 的解析式为62+=x y .∴E (-3,0). ……………………………………………………………………3分 (3)假设存在以点A 、C 、F 、E 为顶点的平行四边形,则F 1(2,6),F 2(-2,6),F 3(-4,-6).经验证,只有点(2,6)在抛物线6422++-=x x y 上,∴F (2,6). ………………………………………………………………………4分(4)如图,作NQ ∥y 轴交AM 于点Q ,设N (m , 6422++-m m ).当x =2时,y =6,∴M (2,6). 可求得直线AM 的解析式为22+=x y . ∴Q (m ,2m +2).∴NQ =422)22(64222++-=+-++-m m m m m . ∵AMN ABM S S S ∆∆+=,其中126421=⨯⨯=∆ABM S ,∴当AMN S ∆最大时,S 值最大. ∵MNQ ANQ AMN S S S ∆∆∆+=)422(3212++-⨯⨯=m m ,6332++-=m m , 427)21(32+--=m .∴当21=m 时,AMN S ∆的最大值为427.∴S 的最大值为475.……………………………………………………………………6分当21=m 时,2156422=++-m m .∴N (21,215). ……………………………………………………………………7分(5)P 1(1,15-),P 2(1,15--). …………………………………………8分说明:写成P 1(1,154+),P 2(1,154--)不扣分.(西城)25.解:(1)图2中的m 1分(2)∵ 图11(原题图2)中四边形ODEF 是等腰梯形,点D 的坐标为(,12)D m ,∴ 12E D y y ==,此时原题图1中点P 运动到与点B 重合, ∵ 点B 在x 轴的正半轴上,∴ 1131222BO C C S O B y O B ∆=⨯⨯=⨯⨯=.解得 8O B =,点B 的坐标为(8,0). ………………………………………2分此时作AM ⊥OB 于点M ,CN ⊥OB 于点N .(如图12).∵ 点C 的坐标为(,3)C n -,∴ 点C 在直线3y =-上.又由图11(原题图2)中四边形ODEF 是等腰梯形可知图12中的点C 在过点O 与AB 平行的直线l 上,∴ 点C 是直线3y =-与直线l 的交点,且ABM C O N ∠=∠. 又∵ 3A C y y ==,即AM= CN ,可得△ABM ≌△CON .∴ ON=BM=6,点C 的坐标为(6,3)C -.……………………………………3分∵ 图12中 AB ==∴ 图11中DE =,2D O F x D E =+= …………………4分(3)①当点P 恰为经过O ,B 两点的抛物线的顶点时,作PG ⊥OB 于点G .(如图13)∵ O ,B 两点的坐标分别为(0,0)O ,(8,0)B ,∴ 由抛物线的对称性可知点P 的横坐标为4,即OG=BG=4. 由3tan 6AM PG ABM BMBG∠===可得PG=2.∴ 点P 的坐标为(4,2)P .………………5分 设抛物线W 的解析式为(8)y ax x =-(a ≠0). ∵ 抛物线过点(4,2)P ,∴ 4(48)2a -=.解得 18a =-.∴ 抛物线W 的解析式为218y x x =-+.…………………………………6分②如图14.i )当BP 为以B ,P ,Q ,R 为顶点的菱形的边时,∵ 点Q 在直线1y =-上方的抛物线W上,点P 为抛物线W 的顶点,结合抛 物线的对称性可知点Q 只有一种情况,点Q 与原点重合,其坐标为1(0,0)Q .……………………………………7分ii )当BP 为以B ,P ,Q ,R 为顶点的菱形的对角线时,可知BP 的中点的坐标为(6,1),BP 的中垂线的解析式为211y x =-. ∴ 点2Q 的横坐标是方程212118x x x -+=-的解.将该方程整理得 28880x x +-=. 解得4x =-±由点Q 在直线1y =-上方的抛物线W 上,结合图14可知点2Q 的横坐标为4.∴ 点2Q 的坐标是24,19)Q . …………………………8分 综上所述,符合题意的点Q 的坐标是1(0,0)Q ,24,19)Q .(燕山)25. ⑴∵△AOB ∽△BOC (相似比不为1),∴OAOB OBOC =. 又∵OA=4, OB=3,图13∴OC=32×41=49. ∴点C(49, 0). …………………1分设图象经过A 、B 、C 三点的函数解析式是y=ax 2+bx+c,则c= -3,且⎪⎩⎪⎨⎧=++=+-0.c b 49a 1681,0c 4b 16a即⎩⎨⎧=+=-16.12b 27a ,34b 16a解得,a=31, b=127.∴这个函数的解析式是y =31x 2+127x -3. ⑵∵△AOB ∽△BOC (相似比不为1),∴∠BAO=∠CBO.又∵∠ABO+ ∠BAO =90°,∴∠ABC=∠ABO+∠CBO=∠ABO+∠BAO=90°. ………………4分 ∴AC 是△ABC 外接圆的直径. ∴ r =21AC=21×[49-(-4)]=825. ………………5分⑶∵点N 在以BM 为直径的圆上,∴ ∠MNB=90°. ……………………6分 ①. 当AN=ON 时,点N 在OA 的中垂线上,∴点N 1是AB 的中点,M 1是AC 的中点. ∴AM 1= r =825,点M 1(-87, 0),即m 1= -87. ………………7分②. 当AN=OA 时,Rt △AM 2N 2≌Rt △ABO , ∴AM 2=AB=5,点M 2(1, 0),即m 2=1.③. 当ON=OA 时,点N 显然不能在线段AB 上. 综上,符合题意的点M (m ,0)存在,有两解: m= -87,或1. ……………………8分(密云)25. 解:(1)如图,∵圆以点A (3,0)为圆心,5为半径, ∴根据圆的对称性可知 B (-2,0),C (8,0). 连接AD .在Rt △AOD 中,∠AOD=90°,OA=3,AD=5, ∴OD=4.∴点D 的坐标为(0,-4). 设抛物线的解析式为y=ax 2+bx-4,又∵抛物线经过点C (8,0),且对称轴为x=3,。
2021小学典型应用题综合(二)含答案【基础训练】1. 学校运回12立方米的土,把这些土平铺在一条长100米、宽2. 5米的校园主干道上,可以铺几厘米厚?2. 小华看一本书,已经看了3天,平均每天看46页.已知看了3天后还剩下28页,这本书一共有几页?3. —辆货车和一辆客车同时从甲、乙两地相对而行,相遇时,客车比货车多行100千米。
已知客车和货车的速度比是 6: 5, 求甲、乙两地相距几千米?4. 文化用品商店按批发价买进一批练习本,每本0. 35元,零售价每本0. 4元。
当卖到剩200本练习本时,已经收回全部成本,还获利10元。
商店买进练习本几本?5. 李老师买了2个书包和8个文具盒共用去116元,已知每个书包比每个文具盒贵18元.书包和文具盒的单价各是几元?6. 有一份稿件,甲打字员单独打10天完成,乙打字员单独打8天完成, . 乙每天比甲多打4页。
这份稿件一共有几页?7. 甲、乙、丙三人数学考试的平均分是 84分,加上丁的成绩后,四人的平均分比84分提髙了1. 5分。
丁的成绩是几分?8. 某工程队修一条路,第一天修了全长的527, 第二天修了余下的311,第三天修了第二天余下的56, 第四天修了 8千米,刚好修完。
求这条路的总长。
9. 某工厂要加工500个零件,已经加工了 3天,每天加工96个,余下的要2天完成。
这2天平均每天要加工几个?10.小华和小英共重67千克,小刚和小华共重65千克,小英和小刚共重62千克,那么小华、小英、小刚各重几千克?11. 甲、乙两港相距140千米,一艘轮船从甲港驶往乙港用了4. 5小时,返回时因为是逆行,比去时多用了 1小时,求这艘轮船往返的平均速度。
12.为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙、丙三种树的价格之比为2: 2: 3,甲种树每棵200元,现计划用210000 元资金,购买这三种树共1000棵。
(1)求乙、丙两种树每棵各几元?(2)若购买甲种树的棵数是乙种树的 2倍,恰好用完计划资金,求这三种树各能购买几棵?(3)若又增加了10120元的购树款,在购买总棵数不变的前提下,求丙种树最多可以购买几棵?13. 单独完成某工程,甲队需10天,乙队需15天, 丙队需20天。