11--电磁感应
- 格式:doc
- 大小:36.50 KB
- 文档页数:1
第11章电磁感应期末试题及参考答案一、填空题1、在竖直放置的一根无限长载流直导线右侧有一与其共面的任意形状的平面线圈。
直导线中的电流由下向上,当线圈平行于导线向右运动时,线圈中的感应电动势方向为___________(填顺时针或逆时针),其大小 (填>0,<0或=0 (设顺时针方向的感应电动势为正)2、如图所示,在一长直导线L 中通有电流I ,ABCD 为一矩形线圈,它与L 皆在纸面内,且AB 边与L 平行,矩形线圈绕AD 边旋转,当BC 边已离开纸面正向里运动时,线圈中感应动势的方向为___________。
(填顺时针或逆时针)3、金属杆AB 以匀速v 平行于长直载流导线运动, 导线与AB 共面且相互垂直,如图所示。
已知导线载有电流I ,则此金属杆中的电动势为 电势较高端为____。
4、金属圆板在均匀磁场中以角速度ω 绕中心轴旋转 均匀磁场的方向平行于转轴,如图所示,则盘中心的电势 (填最高或最低)5、一导线被弯成如图所示形状,bcde 为一不封口的正方形,边长为l ,ab 为l 的一半。
若此导线放在匀强磁场B 中,B 的方向垂直图面向内。
导线以角速度ω在图面内绕a 点匀速转动,则此导线中的电势为 ;最高的点是__________。
6、如图所示,在与纸面相平行的平面内有一载有向上方向电流的无限长直导线和一接有电压表的矩形线框。
当线框中有逆时针方向的感应电流时,直导线中的电流变化为________。
(填写“逐渐增大”或“逐渐减小”或“不变”)IVO O ′ B BAC 7、圆铜盘水平放置在均匀磁场中,B 的方向垂直盘面向上。
当磁场随时间均匀增加时,从下往上看感应电动势的方向为_______(填顺或逆时针)二、单选题1、如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω与B 同方向),BC 的长度为棒长的1/3,则( ) (A) A 点比B 点电势高 (B) A 点与B 点电势相等(C) A 点比B 点电势低 (D) 有稳恒电流从A 点流向B 点2、圆铜盘水平放置在均匀磁场中,B的方向垂直盘面向上。
专题11 电磁感应1.(2021届福建省厦门外国语高三质检)2020年爆发了新冠肺炎,该病毒传播能力非常强,因此研究新冠肺炎病毒珠的实验室必须是全程都在高度无接触物理防护性条件下操作。
武汉病毒研究所是我国防护等级最高的P4实验室,在该实验室中有一种污水流量计,其原理可以简化为如图所示模型。
污水内含有大量正、负离子,从直径为d 的圆柱形容器右侧流入,左侧流出,流量值Q 等于单位时间通过横截面的液体的体积。
空间有垂直纸面向里的磁感应强度为B 的匀强磁场,并测出M 、N 间的电压U ,则下列判断正确的是( )A .正、负离子所受洛伦兹力方向是相同的B .容器内液体的流速为Uv Bd=C .污水流量计也可以用于测量不带电的液体的流速D .污水流量为2UdQ Bπ=【答案】B【解析】根据左手定则,正、负离子所受洛伦兹力方向相反,故A 错误;容器内离子受力平衡,有Uq Bqv d=,化简得Uv Bd=,故B 正确;不带电的液体不受洛伦兹力,所以不会发生偏转,在MN 两点之间不会产生电压,无法由B 选项的分析测流速,故C 错误;污水的流量为2()24U d Ud Q vS Bd Bππ===,故D 错误。
故选B 。
2.(2021届福建省厦门外国语高三质检)放置的长直密绕螺线管接入如图甲所示的电路中,通有俯视顺时针方向的电流,其大小按图乙所示的规律变化.螺线管内中间位置固定有一水平放置的硬质闭合金属小圆环(未画出),圆环轴线与螺线管轴线重合.下列说法正确的是( )A .4Tt =时刻,圆环有扩张的趋势 B .4Tt =时刻,圆环有收缩的趋势C .4T t =和34T t =时刻,圆环内的感应电流大小相等D .34Tt =时刻,圆环内有俯视逆时针方向的感应电流【答案】BC【解析】4Tt =时刻,螺线管中电流增大,产生的磁场变强,圆环中的磁通量增多,圆环要阻碍磁通量的增多,有收缩的趋势.故选项A 错误,选项B 正确.4T t =和34Tt =时刻,螺线管内电流的变化率相等,所以圆环内的感应电流大小相等.故C 选项正确.34Tt =时刻,螺线管中俯视顺时针方向的电流减弱,圆环中的向下磁通量减少,圆环要阻碍磁通量的减少,产生向下的磁通量,所以圆环内有俯视顺时针方向的感应电流,故D 选项错误。
第11讲 电磁感应 命题规律 1.命题角度:(1)楞次定律与法拉第电磁感应定律的应用;(2)电磁感应中的图象问题;(3)电磁感应中的动力学与能量问题.2.常用方法:排除法、函数法.3.常考题型:选择题、计算题.考点一 楞次定律与法拉第电磁感应定律的应用1.感应电流方向的判断(1)楞次定律:线圈面积不变,磁感应强度发生变化的情形,往往用楞次定律.(2)右手定则:导体棒切割磁感线的情形往往用右手定则.2.楞次定律中“阻碍”的主要表现形式(1)阻碍原磁通量的变化——“增反减同”;(2)阻碍物体间的相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——一般情况下为“增缩减扩”;(4)阻碍原电流的变化(自感现象)——一般情况下为“增反减同”.3.求感应电动势的方法(1)法拉第电磁感应定律:E =n ΔΦΔt ⎩⎨⎧ S 不变时,E =nS ΔB Δt B 不变时,E =nB ΔS Δt(2)导体棒垂直切割磁感线:E =Bl v .(3)导体棒以一端为圆心在垂直匀强磁场的平面内匀速转动:E =12Bl 2ω. (4)线圈绕与磁场垂直的轴匀速转动(从线圈位于中性面开始计时):e =nBSωsin ωt .4.通过回路截面的电荷量q =I Δt =n ΔΦR 总Δt Δt =n ΔΦR 总.q 仅与n 、ΔΦ和回路总电阻R 总有关,与时间长短无关,与Φ是否均匀变化无关.例1 (多选)(2022·广东卷·10)如图所示,水平地面(Oxy 平面)下有一根平行于y 轴且通有恒定电流I 的长直导线.P 、M 和N 为地面上的三点,P 点位于导线正上方,MN 平行于y 轴,PN 平行于x 轴.一闭合的圆形金属线圈,圆心在P 点,可沿不同方向以相同的速率做匀速直线运动,运动过程中线圈平面始终与地面平行.下列说法正确的有( )A .N 点与M 点的磁感应强度大小相等,方向相同B .线圈沿PN 方向运动时,穿过线圈的磁通量不变C .线圈从P 点开始竖直向上运动时,线圈中无感应电流D .线圈从P 到M 过程的感应电动势与从P 到N 过程的感应电动势相等答案 AC解析 依题意,M 、N 两点连线与长直导线平行,两点与长直导线的距离相等,根据右手螺旋定则可知,通电长直导线在M 、N 两点产生的磁感应强度大小相等、方向相同,故A 正确;根据右手螺旋定则,线圈在P 点时,穿进线圈中的磁感线与穿出线圈中的磁感线相等,磁通量为零,在向N 点平移过程中,穿进线圈中的磁感线与穿出线圈中的磁感线不再相等,穿过线圈的磁通量发生变化,故B 错误;根据右手螺旋定则,线圈从P 点竖直向上运动过程中,穿进线圈中的磁感线与穿出线圈中的磁感线始终相等,穿过线圈的磁通量始终为零,没有发生变化,线圈中无感应电流,故C 正确;线圈从P 点到M 点与从P 点到N 点,穿过线圈的磁通量变化量相同,依题意从P 点到M 点所用时间较从P 点到N 点的时间长,根据法拉第电磁感应定律,可知两次的感应电动势不相等,故D 错误.例2 (多选)(2021·辽宁卷·9)如图(a)所示,两根间距为L 、足够长的光滑平行金属导轨竖直放置并固定,顶端接有阻值为R 的电阻,垂直导轨平面存在变化规律如图(b)所示的匀强磁场,t =0时磁场方向垂直纸面向里.在t =0到t =2t 0的时间内,金属棒水平固定在距导轨顶端L 处;t =2t 0时,释放金属棒.整个过程中金属棒与导轨接触良好,导轨与金属棒的电阻不计,则( )A .在t =t 02时,金属棒受到安培力的大小为B 02L 3t 0RB .在t =t 0时,金属棒中电流的大小为B 0L 2t 0RC .在t =3t 02时,金属棒受到安培力的方向竖直向上 D .在t =3t 0时,金属棒中电流的方向向右答案 BC解析 由题图(b)可知在0~t 0时间段内闭合回路产生的感应电动势为E =ΔΦΔt =B 0L 2t 0,根据闭合电路欧姆定律有,此时间段内的电流为I =E R =B 0L 2Rt 0,在t 02时磁感应强度大小为B 02,此时安培力大小为F =B 02IL =B 02L 32Rt 0,故A 错误,B 正确;由题图(b)可知,在t =3t 02时,磁场方向垂直纸面向外并逐渐增大,根据楞次定律可知产生顺时针方向的电流,再由左手定则可知金属棒受到的安培力方向竖直向上,故C 正确;由题图(b)可知,在t =3t 0时,磁场方向垂直纸面向外,金属棒向下掉的过程中穿过回路的磁通量增加,根据楞次定律可知金属棒中的感应电流方向向左,故D 错误.考点二 电磁感应中的图象问题1.电磁感应中常见的图象常见的有磁感应强度、磁通量、感应电动势、感应电流、速度、安培力等随时间或位移的变化图象.2.解答此类问题的两个常用方法(1)排除法:定性分析电磁感应过程中某个物理量的变化情况,把握三个关注,快速排除错误的选项.这种方法能快速解决问题,但不一定对所有问题都适用.(2)函数关系法:根据题目所给的条件写出物理量之间的函数关系,再对图象作出判断,这种方法得到的结果准确、详细,但不够简捷.例3 (多选)(2022·河北卷·8)如图,两光滑导轨水平放置在竖直向下的匀强磁场中,一根导轨位于x 轴上,另一根由ab 、bc 、cd 三段直导轨组成,其中bc 段与x 轴平行,导轨左端接入一电阻R .导轨上一金属棒MN 沿x 轴正向以速度v 0保持匀速运动,t =0时刻通过坐标原点O ,金属棒始终与x 轴垂直.设运动过程中通过电阻的电流强度为i ,金属棒受到安培力的大小为F ,金属棒克服安培力做功的功率为P ,电阻两端的电压为U ,导轨与金属棒接触良好,忽略导轨与金属棒的电阻.下列图象可能正确的是( )答案 AC解析 在0~L v 0时间内,在某时刻金属棒切割磁感线的长度L =l 0+v 0t tan θ(θ为ab 与ad 的夹角),则根据E =BL v 0,可得I =BL v 0R =B v 0R(l 0+v 0t tan θ),可知回路电流均匀增加;安培力F =B 2L 2v 0R =B 2v 0R (l 0+v 0t tan θ)2,则F -t 关系为二次函数关系,但是不过原点;安培力做功的功率P =F v 0=B 2L 2v 02R =B 2v 02R (l 0+v 0t tan θ)2,则P -t 关系为二次函数关系,但是不过原点;电阻两端的电压等于金属棒产生的感应电动势,即U =E =BL v 0=B v 0(l 0+v 0t tan θ),即U -t 图象是不过原点的直线;根据以上分析,可排除B 、D 选项;在L v 0~2L v 0时间内,金属棒切割磁感线的长度不变,感应电动势E 不变,感应电流I 不变,安培力F 大小不变,安培力的功率P 不变,电阻两端电压U 保持不变;同理可判断,在2L v 0~3L v 0时间内,金属棒切割磁感线长度逐渐减小,金属棒切割磁感线的感应电动势E 均匀减小,感应电流I 均匀减小,安培力F 大小按照二次函数关系减小,但是不能减小到零,与0~L v 0内是对称的关系,安培力的功率P 按照二次函数关系减小,但是不能减小到零,与0~L v 0内是对称的关系,电阻两端电压U 按线性均匀减小,综上所述选项A 、C 可能正确,B 、D 错误.例4 (多选)(2022·安徽省六校第二次联考)如图所示,水平面内有一足够长平行金属导轨,导轨光滑且电阻不计.匀强磁场与导轨平面垂直.阻值为R的导体棒垂直于导轨静止放置,且与导轨接触良好.开关S由1掷到2时开始计时,q、i、v和a分别表示电容器所带的电荷量、棒中的电流、棒的速度和加速度.下列图象可能正确的是()答案ACD解析开关S由1掷到2,电容器放电后会在电路中产生电流且此刻电流最大,导体棒通有电流后会受到安培力的作用产生加速度而加速运动,导体棒切割磁感线产生感应电动势,导体棒速度增大,则感应电动势E=Bl v增大,则实际电流减小,安培力F=BIL减小,加速度a=Fm即减小,因导轨光滑,所以在有电流通过棒的过程中,棒是一直做加速度减小的加速运动(变加速),故a-t图象即选项D是正确的;导体棒运动产生感应电动势会给电容器充电,当充电和放电达到一种平衡时,导体棒做匀速运动,因此最终电容器两端的电压能稳定在某个不为0的数值,即电容器的电荷量应稳定在某个不为0的数值(不会减少到0),电路中无电流,故B错误,A、C正确.考点三电磁感应中的动力学与能量问题1.电磁感应综合问题的解题思路2.求解焦耳热Q的三种方法(1)焦耳定律:Q=I2Rt,适用于电流恒定的情况;(2)功能关系:Q=W克安(W克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量).例5 (多选)(2022·全国甲卷·20)如图,两根相互平行的光滑长直金属导轨固定在水平绝缘桌面上,在导轨的左端接入电容为C 的电容器和阻值为R 的电阻.质量为m 、阻值也为R 的导体棒MN 静止于导轨上,与导轨垂直,且接触良好,导轨电阻忽略不计,整个系统处于方向竖直向下的匀强磁场中.开始时,电容器所带的电荷量为Q ,合上开关S 后( )A .通过导体棒MN 电流的最大值为Q RCB .导体棒MN 向右先加速、后匀速运动C .导体棒MN 速度最大时所受的安培力也最大D .电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热答案 AD解析 开始时电容器两极板间的电压U =Q C ,合上开关瞬间,通过导体棒的电流I =U R =Q CR ,随着电容器放电,通过电阻、导体棒的电流不断减小,所以在开关闭合瞬间,导体棒所受安培力最大,此时速度为零,A 项正确,C 项错误;由于回路中有电阻与导体棒,最终电能完全转化为焦耳热,故导体棒最终必定静止,B 项错误;由于导体棒切割磁感线,产生感应电动势,所以通过导体棒的电流始终小于通过电阻的电流,由焦耳定律可知,电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热,D 项正确.例6 (2022·山东济南市一模)如图所示,在水平虚线下方存在方向垂直纸面向外的匀强磁场,磁感应强度大小为B .磁场上方某高度处有一个正方形金属线框,线框质量为m ,电阻为R ,边长为L .某时刻将线框以初速度v 0水平抛出,线框进入磁场过程中速度不变,运动过程中线框始终竖直且底边保持水平.磁场区域足够大,忽略空气阻力,重力加速度为g ,求:(1)线框进入磁场时的速度v ;(2)线框进入磁场过程中产生的热量Q .答案 (1)v 02+m 2g 2R 2B 4L 4,速度方向与水平方向夹角的正切值为mgRB 2L 2v 0(2)mgL 解析 (1)当线框下边界刚进入磁场时,由于线框速度不变,对线框进行受力分析有BIL=mg由欧姆定律可得I=ER线框切割磁感线,由法拉第电磁感应定律可得E=BL v y由速度的合成与分解可得v=v02+v y2联立求解可得v=v02+m2g2R2B4L4设此时速度方向与水平面的夹角为θ,则tan θ=v yv0=mgR B2L2v0即此时速度方向与水平方向夹角的正切值为mgRB2L2v0.(2)线框进入磁场过程中速度不变,则从进入磁场开始到完全进入磁场,由能量守恒定律得Q=mgL.例7(2022·河南洛阳市模拟)如图甲所示,金属导轨MN和PQ平行,间距L=1 m,与水平面之间的夹角α=37°,匀强磁场磁感应强度大小B=2.0 T,方向垂直于导轨平面向上,MP 间接有阻值R=1.5 Ω的电阻,质量m=0.5 kg,接入电路中电阻r=0.5 Ω的金属杆ab垂直导轨放置,金属杆与导轨间的动摩擦因数为μ=0.2.现用恒力F沿导轨平面向上拉金属杆ab,使其由静止开始运动,当金属杆上滑的位移x=3.8 m时达到稳定状态,金属杆始终与导轨接触良好,对应过程的v-t图象如图乙所示.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8,导轨足够长且电阻不计.求:(1)恒力F的大小及金属杆的速度为0.4 m/s时的加速度大小;(2)从金属杆开始运动到刚达到稳定状态,通过电阻R的电荷量;(3)从金属杆开始运动到刚达到稳定状态,金属杆上产生的焦耳热.答案(1)5.8 N 2.4 m/s2(2)3.8 C(3)1.837 5 J解析(1)当金属杆匀速运动时,由平衡条件得F=μmg cos 37°+mg sin 37°+F安由题图乙知v =1 m/s ,则F 安=BIL =B 2L 2v R +r =2 N 解得F =5.8 N当金属杆的速度为0.4 m/s 时F 安1=BI 1L =B 2L 2v 1R +r=0.8 N 由牛顿第二定律有F -μmg cos 37°-mg sin 37°-F 安1=ma解得a =2.4 m/s 2.(2)由q =I ·ΔtI =E R +rE =ΔΦΔt 得q =ΔΦR +r =BLx R +r=3.8 C. (3)从金属杆开始运动到刚到达稳定状态,由动能定理得(F -μmg cos 37°-mg sin 37°)x +W 安=12m v 2-0 又Q =|W 安|=7.35 J ,所以解得Q r =r R +rQ =1.837 5 J.1.(多选)(2022·河南郑州市二模)在甲、乙、丙图中,MN 、PQ 是固定在同一水平面内足够长的平行金属导轨.导体棒ab 垂直放在导轨上,导轨都处于垂直水平面向下的匀强磁场中,导体棒和导轨间的摩擦不计,导体棒、导轨和直流电源的电阻均可忽略,甲图中的电容器C 原来不带电.现给导体棒ab 一个向右的初速度v 0,对甲、乙、丙图中导体棒ab 在磁场中的运动状态描述正确的是( )A .甲图中,棒ab 最终做匀速运动B .乙图中,棒ab 做匀减速运动直到最终静止C .丙图中,棒ab 最终做匀速运动D .甲、乙、丙中,棒ab 最终都静止答案 AC解析 题图甲中,导体棒向右运动切割磁感线产生感应电流而使电容器充电,当电容器C 极板间电压与导体棒产生的感应电动势相等时,电路中没有电流,此时ab 棒不受安培力作用,向右做匀速运动,故A 正确;题图乙中,导体棒向右运动切割磁感线产生感应电流,通过电阻R 转化为内能,ab 棒速度减小,当ab 棒的动能全部转化为内能时,ab 棒静止,又由I =BL v R,F =BIL ,由于速度减小,则产生的感应电流减小,导体棒所受安培力减小,根据牛顿第二定律可知导体棒的加速度减小,所以题图乙中,棒ab 做加速度减小的减速运动直到最终静止,故B 错误;题图丙中,导体棒先受到向左的安培力作用向右做减速运动,速度减为零后在安培力作用下向左做加速运动,当导体棒产生的感应电动势与电源的电动势相等时,电路中没有电流,此时ab 棒向左做匀速运动,故C 正确;由以上分析可知,甲、乙、丙中,只有题图乙中棒ab 最终静止,故D 错误.2.(2022·山东泰安市高三期末)如图所示,间距为L 的平行光滑足够长的金属导轨固定倾斜放置,倾角θ=30°,虚线ab 、cd 垂直于导轨,在ab 、cd 间有垂直于导轨平面向上、磁感应强度大小为B 的匀强磁场.质量均为m 、阻值均为R 的金属棒PQ 、MN 并靠在一起垂直导轨放在导轨上.释放金属棒PQ ,当PQ 到达ab 瞬间,再释放金属棒MN ;PQ 进入磁场后做匀速运动,当PQ 到达cd 时,MN 刚好到达ab .不计导轨电阻,两金属棒与导轨始终接触良好,重力加速度为g .则MN 通过磁场过程中,PQ 上产生的焦耳热为( )A.2m 3g 2R 2B 4L4 B.m 3g 2R 2B 4L 4 C.m 3g 2R 24B 4L4 D.m 3g 2R 22B 4L4 答案 D解析 由题意知PQ 进入磁场后做匀速运动,则由平衡条件得安培力为F =mg sin θ,又因为F =BIL =B 2L 2v 2R ,解得金属棒速度为v =mgR B 2L 2,电流为I =mg 2BL ,因为金属棒从释放到刚进入磁场时做匀加速直线运动,由牛顿第二定律知mg sin θ=ma,所以加速时间为t=va,由题意知当PQ到达cd时,MN刚好到达ab,即金属棒穿过磁场的时间等于进入磁场前的加速时间,且MN在磁场中的运动情况和PQ一致,故MN通过磁场过程中,PQ上产生的焦耳热为Q焦耳=I2Rt,解得Q焦耳=m3g2R22B4L4,故选D.专题强化练[保分基础练]1.(2022·上海市二模)如图,某教室墙上有一朝南的钢窗,将钢窗右侧向外打开,以推窗人的视角来看,窗框中产生()A.顺时针电流,且有收缩趋势B.顺时针电流,且有扩张趋势C.逆时针电流,且有收缩趋势D.逆时针电流,且有扩张趋势答案 D解析磁场方向由南指向北,将钢窗右侧向外打开,则向北穿过窗户的磁通量减少,根据楞次定律,以推窗人的视角来看,感应电流为逆时针电流,同时根据“增缩减扩”可知,窗框有扩张趋势,故选D.2.(2022·广东肇庆市二模)如图所示,开口极小的金属环P、Q用不计电阻的导线相连组成闭合回路,金属环P内存在垂直圆环平面向里的匀强磁场,匀强磁场的磁感应强度随时间的变化率为k,若使金属环Q中产生逆时针方向逐渐增大的感应电流,则()A.k>0且k值保持恒定B.k>0且k值逐渐增大C.k<0且k值逐渐增大D.k<0且k值逐渐减小答案 B解析若使金属环Q中产生逆时针方向逐渐增大的感应电流,则金属环P中也有逆时针方向逐渐增大的感应电流,根据楞次定律和安培定则可知,金属环P中向里的磁感应强度增加,且增加得越来越快,即k>0且k值逐渐增大,故选B.3.(2022·陕西宝鸡市模拟)如图所示,两根电阻不计的平行光滑长直金属导轨水平放置,导体棒a和b垂直跨在导轨上且与导轨接触良好,导体棒a的电阻大于b的电阻,匀强磁场方向竖直向下.当导体棒b在大小为F2的水平拉力作用下匀速向右运动时,导体棒a在大小为F1的水平拉力作用下保持静止状态.若U1、U2分别表示导体棒a和b与导轨两个接触点间的电压,那么它们的大小关系为()A.F1=F2,U1> U2B.F1< F2,U1< U2C.F1 > F2,U1< U2D.F1=F2,U1=U2答案 D解析导体棒a、b与导轨构成了闭合回路,流过a、b的电流是相等的;a静止不动,b匀速运动,都处于平衡状态,即拉力等于安培力,所以F1=F2=BIL,导体棒b相当于电源,导体棒a相当于用电器,由于电路是闭合的,所以导体棒a两端的电压U1=IR a,导体棒b切割磁感线产生的电动势E=BL v b=I(R a+R b),所以其输出的路端电压U2=E-IR b=IR a=U1,故选D.4.(2022·广东省模拟)如图所示,水平面内光滑的平行长直金属导轨间距为L,左端接电阻R,导轨上静止放有一导体棒.正方形虚线框内有方向竖直向下、磁感应强度大小为B的匀强磁场,该磁场正以速度v匀速向右移动,则()A.电阻R两端的电压恒为BL vB .电阻R 中有从a 到b 的电流C .导体棒以速度v 向左运动D .导体棒也向右运动,只是速度比v 小 答案 D解析 根据楞次定律,磁场正以速度v 匀速向右移动,磁通量减小,则导体棒也向右运动,阻碍磁通量的减小,但由于要产生感应电流,棒的速度比v 小,C 错误,D 正确;由此可认为磁场不动,棒向左切割,感应电流方向从b 到a 流过R ,B 错误;产生感应电动势的大小看棒与磁场的相对速度,故电阻R 两端的电压不恒定且小于或等于BL v ,A 错误. 5.(2022·全国甲卷·16)三个用同样的细导线做成的刚性闭合线框,正方形线框的边长与圆线框的直径相等,圆线框的半径与正六边形线框的边长相等,如图所示.把它们放入磁感应强度随时间线性变化的同一匀强磁场中,线框所在平面均与磁场方向垂直,正方形、圆形和正六边形线框中感应电流的大小分别为I 1、I 2和I 3.则( )A .I 1<I 3<I 2B .I 1>I 3>I 2C .I 1=I 2>I 3D .I 1=I 2=I 3答案 C解析 设圆线框的半径为r ,则由题意可知正方形线框的边长为2r ,正六边形线框的边长为r ;所以圆线框的周长为C 2=2πr ,面积为S 2=πr 2,同理可知正方形线框的周长和面积分别为C 1=8r ,S 1=4r 2,正六边形线框的周长和面积分别为C 3=6r ,S 3=33r 22,三个线框材料粗细相同,根据电阻定律R =ρL S 横截面,可知三个线框电阻之比为R 1∶R 2∶R 3=C 1∶C 2∶C 3=8∶2π∶6,根据法拉第电磁感应定律有I =E R =ΔB Δt ·SR ,可得电流之比为I 1∶I 2∶I 3=2∶2∶3,即I 1=I 2>I 3,故选C.6.(2022·黑龙江哈师大附中高三期末)如图,一线圈匝数为n ,横截面积为S ,总电阻为r ,处于一个均匀增强的磁场中,磁感应强度随时间的变化率为k (k >0且为常量),磁场方向水平向右且与线圈平面垂直,电容器的电容为C ,两个电阻的阻值分别为r 和2r .下列说法正确的是( )A .电容器下极板带正电B .此线圈的热功率为(nkS )2rC .电容器所带电荷量为3nSkC5D .电容器所带电荷量为nSkC2答案 D解析 根据楞次定律可以判断通过电阻r 的电流方向为从左往右,所以电容器上极板带正电,故A 错误;根据法拉第电磁感应定律可得线圈产生的感应电动势为E =n ΔΦΔt =nS ΔBΔt =nkS ,根据焦耳定律可得此线圈的热功率为P =(E 2r )2r =(nkS )24r ,故B 错误;电容器两端电压等于r两端电压,电容器所带电荷量为Q =CU =C ·rE 2r =nSkC2,故C 错误,D 正确.7.(2022·江苏盐城市二模)如图所示,三条平行虚线L 1、L 2、L 3之间有宽度为L 的两个匀强磁场区域Ⅰ、Ⅱ,两区域内的磁感应强度大小相等、方向相反,正方形金属线框MNPQ 的质量为m 、边长为L ,开始时MN 边与边界L 1重合,对线框施加拉力F 使其以加速度a 匀加速通过磁场区,以顺时针方向电流为正方向,下列关于感应电流i 和拉力F 随时间变化的图象可能正确的是( )答案 B解析 当MN 边向右运动0~L 的过程中,用时t 1=2L a ,则E 1=BLat ,电流I 1=E 1R =BLa Rt ,方向为正方向;拉力F 1=ma +F 安1=ma +B 2L 2aR t ;当MN 边向右运动L ~2L 的过程中,用时t 2=4L a-2La=(2-1)2L a =(2-1)t 1,E 2=2BLat ,电流I 2=E 2R =2BLa Rt ,方向为负方向,拉力F 2=ma +F 安2=ma +4B 2L 2aR t ;当MN 边向右运动2L ~3L 的过程中,用时t 3=6La-4La=(3-2)2L a =(3-2)t 1,E 3=BLat ,电流I 3=E 3R =BLa Rt ,方向为正方向,拉力F 3=ma +F 安3=ma +B 2L 2aRt ,对比四个选项可知,只有B 正确.[争分提能练]8.(多选)(2021·广东卷·10)如图所示,水平放置足够长光滑金属导轨abc 和de ,ab 与de 平行,bc 是以O 为圆心的圆弧导轨,圆弧be 左侧和扇形Obc 内有方向如图的匀强磁场,金属杆OP 的O 端与e 点用导线相接,P 端与圆弧bc 接触良好,初始时,可滑动的金属杆MN 静止在平行导轨上,若杆OP 绕O 点在匀强磁场区内从b 到c 匀速转动时,回路中始终有电流,则此过程中,下列说法正确的有( )A .杆OP 产生的感应电动势恒定B .杆OP 受到的安培力不变C .杆MN 做匀加速直线运动D .杆MN 中的电流逐渐减小 答案 AD解析 杆OP 匀速转动切割磁感线产生的感应电动势为E =12Br 2ω,因为OP 匀速转动,所以杆OP 产生的感应电动势恒定,故A 正确;杆OP 转动过程中产生的感应电流由M 到N 通过杆MN ,由左手定则可知,杆MN 会向左运动,杆MN 运动会切割磁感线,产生电动势,感应电流方向与原来电流方向相反,使回路电流减小,杆MN 所受合力为安培力,电流减小,安培力会减小,加速度减小,故D 正确,B 、C 错误.9.(多选)(2021·全国甲卷·21)由相同材料的导线绕成边长相同的甲、乙两个正方形闭合线圈,两线圈的质量相等,但所用导线的横截面积不同,甲线圈的匝数是乙的2倍.现两线圈在竖直平面内从同一高度同时由静止开始下落,一段时间后进入一方向垂直于纸面的匀强磁场区域,磁场的上边界水平,如图所示.不计空气阻力,已知下落过程中线圈始终平行于纸面,上、下边保持水平.在线圈下边进入磁场后且上边进入磁场前,可能出现的是( )A .甲和乙都加速运动B .甲和乙都减速运动C .甲加速运动,乙减速运动D .甲减速运动,乙加速运动 答案 AB解析 设线圈下边到磁场上边界的高度为h ,线圈的边长为l ,则线圈下边刚进入磁场时,有v =2gh ,感应电动势为E =nBl v ,两线圈材料相同(设密度为ρ0),质量相等(设为m ), 则m =ρ0·4nl ·S ,设材料的电阻率为ρ,则线圈电阻 R =ρ4nl S =16n 2l 2ρρ0m感应电流为I =E R =mB v 16nlρρ0所受安培力为F =nBIl =mB 2v16ρρ0由牛顿第二定律有mg -F =ma 联立解得a =g -Fm =g -B 2v 16ρρ0加速度与线圈的匝数、横截面积无关,则甲和乙进入磁场时,具有相同的加速度. 当g >B 2v16ρρ0时,甲和乙都加速运动,当g <B 2v 16ρρ0时,甲和乙都减速运动,当g =B 2v16ρρ0时,甲和乙都匀速运动,故选A 、B.10.(2022·山东省第二次模拟)如图所示,“凹”字形硬质金属线框质量为m ,相邻各边互相垂直,且处于同一平面内,ab 、bc 边长均为2l ,gf 边长为l .匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面.开始时,bc 边离磁场上边界的距离为l ,线框由静止释放,从bc 边进入磁场直到gf 边进入磁场前,线框做匀速运动.在gf 边离开磁场后,ah 、ed 边离开磁场之前,线框又做匀速运动.线框在下落过程中始终处于竖直平面内,且bc 、gf 边保持水平,重力加速度为g .(1)线框ah 、ed 边将要离开磁场时做匀速运动的速度大小是bc 边刚进入磁场时的几倍? (2)若磁场上下边界间的距离为H ,则线框完全穿过磁场过程中产生的热量为多少? 答案 (1)4 (2)mg (H -13l )解析 (1)设bc 边刚入磁场时速度为v 1,bc 边刚进入时, 有E 1=2Bl v 1,I 1=E 1R ,F 1=2BI 1l线框匀速运动,有F 1=mg 联立可得v 1=mgR4B 2l2设ah 、ed 边将离开磁场时速度为v 2,ah 、ed 边将离开磁场时,有E 2=Bl v 2,I 2=E 2R ,F 2=BI 2l ,线框匀速运动,有F 2=mg 联立可得v 2=mgRB 2l 2,综上所述v 2v 1=4即线框ah 、ed 边将要离开磁场时做匀速运动的速度大小是bc 边刚进入磁场时的4倍. (2)bc 边进入磁场前,根据动能定理, 有mgl =12m v 12穿过磁场过程中能量守恒,。
高二物理11第三章电磁感应知识点梳理电磁感应现象是指放在变化磁通量中的导体,会产生电动势。
以下是查字典物理网为大伙儿整理的高二物理选修1-1第三章电磁感应知识点,期望能够解决您所遇到的相关问题,加油,查字典物理网一直陪伴您。
1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。
(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。
(2)产生感应电动势的条件:不管回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。
产生感应电动势的那部分导体相当于电源。
(2)电磁感应现象的实质是产生感应电动势,假如回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。
2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过那个面的磁通量,定义式:=BS。
假如面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。
任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。
反之,磁通量为负。
所求磁通量为正、反两面穿入的磁感线的代数和。
3.★楞次定律(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。
楞次定律适用于一样情形的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情形,此种情形用右手定则判定比用楞次定律判定简便。
(2)对楞次定律的明白得①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。
②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。
③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。
④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。
(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个缘故,表现形式有三种:①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。
中考物理专题复习11:电磁感应(磁生电)20XX年中考物理专题复习11:电磁感应(磁生电)专题11 电磁感应(磁生电)典例1 电动机是一种高效、低污染的动力设备,广泛地应用研究在日常生活和生产实践中。
下列家用电器中应用到电动机的是()A.电热水器B.电饭锅C.洗衣机D.电热毯解析:电动机的工作特点是通电以后,电动机的转子会发生转动.所以要判断哪个用电器应用了电动机,就看哪个用电器通电以后,会发生转动。
洗衣机通电时,滚筒会发生转动,表明洗衣机内部有电动机,所以洗衣机应用了电动机;电热水器、电饭锅、电热毯通电时,电能转化为内能,它们是利用了电流的热效应。
本题答案为C.点评:电动机工作时的能量转化是电能转化为机械能,电热器工作时的能量转化是电能转化为热能,它们的能量转化截然不同,比较容易辨别。
典例2 微风吊扇通电后扇叶转动,此过程中能转化为动能.拔下插头,在插头处接发光二极管,用手旋转叶片,发光二极管发光,这是生电的现象,人们利用这一原理制成了(发电机/电动机).解析:吊扇工作时消耗电能,将电能转化为动能;用手旋转叶片时,线圈在磁场中做切割磁感线运动,产生了感应电流;感应电流通过发光二极管时,使发光二极管发光,此时的吊扇就是一个发电机。
20XX年中考物理专题复习11:电磁感应(磁生电)答案:电;磁;发电机点评:发电机主要是由线圈和磁体组成的,电动机的主要组成部分也是线圈和磁体,它们的工作原理不同,工作时的能量转换不同。
典例3 科学家经过长期研究,发现了电和磁有密切关系,其中最重要的两项研究如图所示,下列判断中不正确的是()A.左图是电动机的原理图B.右图是发电机的原理图C.在左图中,接通电源,导体ab上下运动D.在右图中,电路闭合,导体ab左右运动,电路中有感应电流解析:理解清楚教材中关于通电导体在磁场中受力和电磁感应的演示实验的装置图即可得到答案。
在左图中,闭合开关,电路中有电流,通电直导线在磁场中受力而运动;在右图中,没有电源,当导体在磁场中做切割磁感线运动时,通过电流表的指针是否偏转,来体现电路中是否产生感应电流,这是用来演示电磁感应现象的实验装置。
第13章 电磁感应 电磁场1820年奥斯特的发现第一次揭示了电流能够产生磁,法拉第很快想到磁能否产生电。
经过十年精心实验研究,于1831年第一次发现了电磁感应现象,并总结出了电磁感应定律。
§13-1电磁感应的基本定律一、电磁感应现象电磁感应现象:(1)条形磁铁插入线圈。
(2)通有电流的线圈代替条形磁铁。
(3)两线圈相对位置固定,用开关控制产生磁场线圈中的电流变化。
(4)导线在匀强磁场中运动。
结论:当穿过闭合回路的磁通量发生变化时,回路中就产生感应电流。
既然闭合回路中有感应电流存在,说明闭合回路中存在电动势。
这种由于磁通量变化而产生的电动势称为感应电动势。
回路不闭合,也会出现感应现象,这时只存在感应电动势,不存在感应电流。
二、法拉第电磁感应定律电磁感应定律:通过回路面积的磁通量发生变化时,回路中产生的感应电动势与磁通量对时间的变化率成正比。
SI 制中 md dt εΦ=- 负号代表感应电动势的方向密绕N 匝 m d d N d t d t εΦψ=-=- m N ψ=Φ → 磁通链磁通量的正负有赖于以回路为边界的曲面法向 n的选取,在闭合回路上任意规定一个绕行正方向,n的方向与回路绕行方向符合右手螺旋法则。
电动势存在于回路中,其方向相对于回路绕行方向确定。
图中0m Φ>,如果 m Φ ↑ , 0md dtΦ>, 0ε< (与绕行方向相反)图中0m Φ<,如果 m Φ ↑ ,0md dtΦ<, 0ε> (与绕行方向相同)磁通计只有电阻 R 的回路感应电流 1md i R R d tεΦ==- dt 时间内通过导线中任一截面的感应电量1m d q i d t d R==-Φ 1t —2t 时间内通过导线中任一截面的感应电量22111m m t m m t q idt d R RΦΦ∆Φ==-Φ=-⎰⎰ 磁通计(测磁感应强度) 在一段时间内通过导线中任一截面的电量与这段时间内导线所包围面积的磁通量的变化量成正比。
高一物理必修三11章知识点【高一物理必修三11章知识点】导读:高一物理必修三11章是关于电磁感应的内容,主要涵盖了法拉第电磁感应定律、电动势的概念与计算、电磁感应定律的应用、交流发电和变压器等知识点。
本文将围绕这些知识点展开讲解。
1. 法拉第电磁感应定律法拉第电磁感应定律又称为法拉第第一感应定律,它是指当电磁感应闭合线圈中的磁通量发生变化时,闭合线圈内产生感应电动势,大小与磁通量的变化率成正比。
其数学表达式为:ε = -N * ΔΦ/Δt其中,ε为感应电动势的大小,N为线圈的匝数,ΔΦ为磁通量的变化量,Δt为时间的变化量。
2. 电动势的概念与计算电动势是指单位正电荷所具有的能量,它可以通过导线两端的电压来表示。
在电磁感应中,电动势可以通过法拉第电磁感应定律来计算,即:ε = -N * ΔΦ/Δt其中,ε为电动势的大小,N为线圈的匝数,ΔΦ为磁通量的变化量,Δt为时间的变化量。
3. 电磁感应定律的应用电磁感应定律在生活中有着广泛的应用。
其中一个重要的应用是电磁感应刷卡技术。
磁卡中内置有一条铁磁材料制成的带有信息的磁带,当磁卡刷过读卡器时,读卡器中的线圈产生变化的磁通量,从而引起感应电动势,读取磁卡中的信息。
4. 交流发电交流发电是指利用电磁感应的原理产生交流电的过程。
交流发电的主要原理是通过转子在磁场中的旋转产生变化的磁通量,从而在线圈中感应出交流电。
交流发电具有成本低、传输距离远、效率高等优点,因而在现代电力系统中得到广泛应用。
5. 变压器变压器是一种利用电磁感应原理来改变交流电压大小的装置。
它由两个或多个线圈构成,通过变换线圈的匝数比例来改变输入输出电压。
变压器的工作原理是:当输入线圈中的交流电产生变化的磁通量时,变压器的输出线圈中就会感应出相应的电动势,并通过电磁感应定律来计算输出电压的大小。
结语:以上就是高一物理必修三第11章关于电磁感应的知识点的介绍。
掌握这些知识点对于理解电磁感应的原理及其在生活中和工业中的应用具有重要意义。
班级学号 第十一次 电磁感应和麦克斯韦电磁理论 姓名基本内容和主要公式1.法拉第电磁感应定律和楞次定律 法拉第电磁感应定律:d dtεΦ=-, d d N dtdtφεψ=-=-(多匝线圈)楞次定律:感应电流的效果总是反抗引起感应电流的原因。
(楞次定律是能量守恒定律在电磁感应现象中的具体表现)2.动生电动势和感生电动势(1)动生电动势:导体在磁场中作切割磁力线运动所产生的感应电动势称 为动生电动势产生动生电动势的非静电力是洛伦兹力Dv B dl ε+-=⨯⋅⎰ ()(一段导体运动)、 D dl ε=⨯⋅⎰(v B ) (整个回路运动) (2)感生电动势:由变化磁场所产生的感应电动势称为感生电动势 产生感生电动势的非静电力是有旋电场W EWWL SSd dBE dl B dS dS dt dttεΦ∂=⋅=-=-⋅=-⋅∂⎰⎰⎰⎰⎰(式中S 是以L 为边界的任意曲面)3.电场由两部分构成一部分是电荷产生的有源场0E : 00E dl ⋅=⎰另一部分是变化磁场所激励的有旋场W E : W L S BE dl dS t ∂⋅=-⋅∂⎰⎰⎰0W E E E =+ 、 L S B E dl dS t ∂⋅=-⋅∂⎰⎰⎰ 、 BE t ∂∇⨯=-∂4.自感现象和互感现象(1)自感现象:由回路中电流变化而在回路自身所产生的电磁感应现象叫做自感现象;所产生的电动势叫做自感电动势L I Φ= 、 L dI Ldtε=- 式中L 叫做自感系数(2)互感现象:由一回路中电流变化而在另一回路中产生的电磁感应现象 叫做互感现象;所产生的电动势叫做互感电动势 12121M I Φ=、21212M I Φ=、M dI M dtε=-、1221M M M ==式中M 叫做互感系数 5.磁场能量磁场能量密度: 12m w B H =⋅ , 一般情况下可写为 21122m B w BH μ== 磁场能量: 12m m VVW w dV B H dV ==⋅⎰⎰⎰⎰⎰⎰、 212m W L I = 6.位移电流和麦克斯韦方程组(1)位移电流密度:D Dj t∂=∂其实质是变化的电场(2)位移电流: DD D SSSd Dd I j dS dS D dS t dtdtΦ∂=⋅=⋅=⋅=∂⎰⎰⎰⎰⎰⎰、 0D j j t ∂=+∂称为全电流密度;00SD j dS t∂+⋅=∂⎰⎰() 此式表明全电流在任何情况下都是连续的(3)麦克斯韦方程组: 0SVD dS dV ρ⋅=⎰⎰⎰⎰⎰、 L S BE dl dS t ∂⋅=-⋅∂⎰⎰⎰0r B H μμ= 、0r D E εε=0SB dS ⋅=⎰⎰ 、 0LS DH dl j dS t∂⋅=+⋅∂⎰⎰⎰()、 0D ρ∇⋅= 、 B E t ∂∇⨯=-∂ 、 0B ∇⋅= 、0DH j t∂∇⨯=+∂、 0j E σ=练习题一、选择题1. 如图13-1,长为l 的直导线ab 在均匀磁场中以速度v垂直于导线运动。
第11章 电磁感应11.1 基本要求 12别感应电动势的方向。
34567一些简单情况下的磁场能量。
811.2 基本概念 1ε:把单位正电荷从负极通过电源内部移到正极时,非静电力所作的功,即W qε=23k E :变化的磁场在其周围所激发的电场。
与静电场不同,感生电场的电场线是闭合的,所以感生电场也称有旋电场。
4变化而产生的感应电动势。
5:有使回路保持原有电流不变的性质,是回路本身的“电磁惯性”的量度。
自感系数L ://m L I N I =ψ=Φ 6L ε:当通过回路的电流发生变化时,在自身回路中所产生的感应电动势。
7M :211212M I I ψψ== 812ε:当线圈2的电流2I 发生变化时,在线圈1中所产生的感应电动势。
9m W :贮存在磁场中的能量。
自感贮存磁能:212m W LI =磁能密度m w :单位体积中贮存的磁场能量22111222m B w μH HB μ===10D d d I dt Φ=s d t∂=∂⎰DS ,位移电流并不表示有真实的电荷在空 间移动。
但是,位移电流的量纲和在激发磁场方面的作用与传导电流是一致的。
11d t∂=∂D j 11.3 基本规律 1(1)楞次定律:感生电流的磁场所产生的磁通量总是反抗回路中原磁通量的改变。
楞 次定律是判断感应电流方向的普适定则。
(2)法拉第电磁感应定律:不论什么原因使通过回路的磁通量(或磁链)发生变化,回路 中均有感应电动势产生,其大小与通过该回路的磁通量(或磁链)随时间的变化成正比,即mi d dtεΦ=-2()BBK AAi εd d ==⨯⎰⎰E l v B l ,若0i ε>,则表示电动势方向由A B →;若0i ε<,则表示电动势方向B A →3m K ls i d Φd εd d dtdt =⋅=-=-⎰⎰BE l S (对于导体回路)BK Ai εd =⎰E l (对于一段导体)4L dIεL dt=- 512212d ΨdIεM dt dt=-=- 6sd ⋅⎰D S =0VdV q ρ=⎰l d ⋅⎰E l = - s d t∂⋅∂⎰BS =0sd ⋅⎰B Sc l sd d t ∂⎛⎫⋅=+⋅ ⎪∂⎝⎭⎰⎰D H l j S11.4 学习指导学习法拉第电磁感应定律要注意,公式中的电动势是整个回路的电动势,式中负号是楞 次定律的要求,用以判断电动势的方向。
2025版《南方凤凰台5A 教案基础版物理第11章 电磁感应含答案微专题17 电磁感应中的电路和图像问题 电磁感应中的电路与电荷量问题 1.内电路和外电路(1) 切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源.(2) 该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电路.2.电磁感应中电路知识关系图3.解决电磁感应中的电路问题三步骤4.电磁感应中电荷量的两个计算公式(1) q =I t (该公式适用于电流恒定的情况,若电流变化应用电流的平均值).(2) q =I t =n ΔΦR +r. (2024·金陵中学)如图所示,竖直平面内有一金属环,半径为a ,总电阻为R (指拉直时两端的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面,与环的最高点A 铰链连接的长度为2a 、电阻为R 2的导体棒AB 由水平位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v .此时AB 两端的电压大小为( D )A .Ba vB .Ba v 6C .2Ba v 3D .Ba v 3解析:导体棒AB 由水平位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,感应电动势大小为E =B ·2a ·v +02=Ba v ,分析电路特点知,外电路相当于是R 2的两个电阻并联,则R 并=R22=R 4,故此时AB 两端的电压大小为U =R4R 2+R 4·E =Ba v 3,故选D.类题固法11.如图所示,有一个磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里,一半径为r 、电阻为2R 的金属圆环放置在磁场中,金属圆环所在的平面与磁场垂直.金属杆Oa 一端可绕环的圆心O 旋转,另一端a 搁在环上,电阻值为R ;另一金属杆Ob 一端固定在O 点,另一端b 固定在环上,电阻值也是R .已知Oa 杆以角速度ω匀速旋转,所有接触点接触良好,Ob 不影响Oa 的转动,则下列说法中错误的是( C )A .流过Oa 的电流可能为B ωr 25RB .流过Oa 的电流可能为 6B ωr 225RC .Oa 旋转时产生的感应电动势的大小为B ωr 2D .Oa 旋转时产生的感应电动势的大小为 12B ωr 2解析:Oa 旋转时产生的感应电动势的大小为E =12B ωr 2,D 正确,C 错误;当Oa 旋转到与Ob 共线但不重合时,等效电路如图甲所示,此时有I min =E 2.5R =B ωr 25R ,当Oa 与Ob 重合时,环的电阻为0,等效电路如图乙所示,此时有I max=E 2R =B ωr 24R ,所以B ωr 25R ≤I ≤B ωr 24R ,A 、B 正确.2.如图所示,由某种粗细均匀的总电阻为3R 的金属条制成的矩形线框abcd ,固定在水平面内且处于方向竖直向下的匀强磁场中.一接入电路电阻为R 的导体棒PQ ,在水平拉力作用下沿ab 、dc 以速度v 匀速滑动,滑动过程PQ 始终与ab 垂直,且与线框接触良好,不计摩擦.在PQ 从靠近ad 处向bc 滑动的过程中( C )A .PQ 中电流先增大,后减小B .PQ 两端电压先减小,后增大C .PQ 上拉力的功率先减小,后增大D .线框消耗的电功率先减小,后增大解析:设PQ 左侧金属线框的电阻为r ,则右侧电阻为3R -r ,PQ 相当于电源,其电阻为R ,则电路的外电阻为R 外=r (3R -r )r +(3R -r )=-⎝ ⎛⎭⎪⎫r -3R 22+⎝ ⎛⎭⎪⎫3R 223R ,当r =3R 2时,R 外max =34R ,此时,PQ 处于矩形线框的中心位置,即PQ 从靠近ad 处向bc 滑动的过程中外电阻先增大,后减小,PQ 中的电流为干路电流I =E R 外+R 内,可知干路电流先减小,后增大,A 错误;PQ 两端的电压为路端电压U =E -U 内,因E =Bl v 不变,U 内=IR 先减小,后增大,所以路端电压先增大,后减小,B 错误;拉力的功率大小等于安培力的功率大小,P =F 安v =BIl v ,可知因干路电流先减小,后增大,PQ 上拉力的功率也先减小,后增大,C 正确;线框消耗的电功率即为外电阻消耗的功率,因外电阻最大值为34R ,小于内阻R ,根据电源的输出功率与外电阻大小的变化关系,外电阻越接近内阻时,输出功率越大,可知线框消耗的电功率先增大,后减小,D错误.电磁感应中的图像问题1.图像问题图像类型(1) 磁感应强度B,磁通量Φ,感应电动势E和感应电流I随时间t变化的图像,即B-t图像、Φ-t图像、E-t图像和I-t图像(2) 对于切割磁感线产生感应电动势和感应电流的情况,还常涉及感应电动势E和感应电流I随导体位移x变化的图像,即E-x图像和I-x图像问题类型(1) 由给定的电磁感应过程选出或画出正确的图像(2) 由给定的有关图像分析电磁感应过程,求解相应的物理量应用知识右手定则、安培定则、楞次定律、法拉第电磁感应定律、欧姆定律、牛顿运动定律和相关数学知识等2.分析方法3.电磁感应中图像类选择题的两种常见解法(1) 排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是物理量的正负,排除错误的选项.(2) 函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图像作出分析和判断,这未必是最简捷的方法,但却是最有效的方法.(2023·如皋期末)如图所示,等边三角形金属框的一个边与有界磁场边界平行,金属框在外力F作用下以垂直于边界的速度匀速进入磁场,则线框进入磁场的过程中,线框中的感应电流i、外力大小F、线框中电功率的瞬时值P、通过导体某横截面的电荷量q与时间t的关系可能正确的是(C)A B C D解析:设线框边长为L 0,则切割磁感线的有效长度为L =L 0-2v t tan 60°=L 0-23v t 3,感应电流为I =B ⎝ ⎛⎭⎪⎫L 0-23v t 3v R=BL 0v R -23B v 2t 3R ,可知感应电流随时间均匀减小,A 错误;金属框匀速运动,外力与安培力平衡,外力大小为F =BIL=B 2⎝ ⎛⎭⎪⎫L 0-23v t 32v R可知,外力随时间的图像为抛物线,B 错误;电功率为P =I 2R =B 2⎝ ⎛⎭⎪⎫L 0-23v t 32v 2R 可知,电功率随时间的图像为开口向上的抛物线,C 正确;根据E =ΔΦΔt,I =E R ,q =I t ,得q =ΔΦR =B ΔS R ,磁场通过线框的有效面积随时间变化关系为ΔS =12(L +L 0)v t =L 0v t -3v 2t 23,得q =B R ⎝⎛⎭⎪⎫L 0v t -3v 2t 23,可知通过导体某横截面的电荷量随时间的图像为开口向下的抛物线,D 错误.类题固法21.如图所示,边长为2L 的等边三角形区域abc 内部的匀强磁场垂直纸面向里,b 点处于x 轴的坐标原点O ;一与三角形区域abc 等高的直角闭合金属线框ABC ,∠ABC =60°,BC 边处在x 轴上.现让线框ABC 沿x 轴正方向以恒定的速度穿过磁场,在t =0时,线框B 点恰好位于原点O 的位置.规定逆时针方向为线框中感应电流的正方向,下列能正确表示线框中感应电流i 随位移x 变化关系的是( D )A B C D解析:线框从0~L 过程,产生逆时针方向的电流,有效长度从0增大到32L ,故电流逐渐变大;从L ~2L 过程,产生逆时针方向的电流,有效长度从32L 逐渐减小到0,故电流逐渐变小;从2L ~3L 过程,产生顺时针方向的电流,有效长度从3L 逐渐减小到0,故电流逐渐变小;故D 正确.2.如图所示,竖直放置的U 形光滑导轨与一电容器串联,导轨平面有垂直于纸面的匀强磁场,金属棒ab 与导轨接触良好,由静止释放后沿导轨下滑.电容C 足够大,原来不带电,不计一切电阻.设金属棒的速度为v 、动能为E k 、两端的电压为U ab 、电容器上的电荷量为q ,它们与时间t 、位移x 的关系图像正确的是( B )A B C D解析:设导轨间距为L ,释放后电容器充电,电路中充电电流i ,棒受到向上的安培力,设瞬时加速度为a ,根据牛顿第二定律得mg -BiL =ma ,i =ΔQ Δt=C ·ΔU Δt =C ·BL Δv Δt =CBLa ,由此得mg -BLCBLa =ma ,解得a =mg m +B 2L 2C ,可见加速度不变,做匀加速直线运动,即v =at ,U ab =BL v =BLat ,故A 、C 错误;根据E k =12m v 2=12m ·2ax ,故B 正确;根据q =CU ab =BCLat ,与时间成正比,即与位移不是正比关系,故D 错误.配套精练一、 选择题1.如图所示,垂直纸面的正方形匀强磁场区域内,有一位于纸面的正方形导体框abcd ,现将导体框分别朝两个方向以v 、3v 速度匀速拉出磁场,则导体框从两个方向移出磁场的两个过程中( C )A .导体框中产生的感应电流方向相反B .导体框ad 边两端电势差之比为1∶3C .导体框中产生的焦耳热之比为1∶3D .通过导体框截面的电荷量之比为1∶3解析:将线圈拉出磁场的过程中,穿过线圈的磁通量都减小,由楞次定律判断出感应电流的方向都沿逆时针方向,A 错误;设正方形的边长为L ,线圈以v运动时,dc 边产生的感应电动势为E 1=BL v ,ad 边两端电势差为U 1=14E 1=14BL v ;线圈以3v 运动时,ad 边产生感应电动势为E 2=3BL v ,ad 边两端电势差为U 2=34E 2=94BL v ,电势差之比为U 1∶U 2=1∶9,B 错误;线圈以v 运动时,产生的焦耳热为Q 1=⎝ ⎛⎭⎪⎫E 1R 2·R ·L v =B 2L 3v R ,线圈以3v 运动时,产生的焦耳热为Q 2=⎝ ⎛⎭⎪⎫E 2R 2·R ·L 3v =3B 2L 3v R ,焦耳热之比为Q 1∶Q 2=1∶3,C 正确;将线圈拉出磁场的过程中,穿过线圈的磁通量的变化量相同,根据q =ΔΦR 可知,通过导体框截面的电荷量相同,D 错误.2.(2023·金陵中学)如图所示,宽为2L 的两条平行虚线间存在垂直纸面向里的匀强磁场.金属线圈位于磁场左侧,线圈平面与磁场方向垂直,af 、de 、bc 边与磁场边界平行,ab 、bc 、cd 、de 边长为L ,ef 、fa 边长为2L .线圈向右匀速通过磁场区域,以de 边刚进入磁场时为计时零点,则线圈中感应电流随时间变化的图线可能正确的是(感应电流的方向顺时针为正)(A)A B C D解析:第一阶段:从de边进入磁场到bc边将进入磁场这段时间内,de边切割磁感线产生感应电动势大小为E1=BL v,感应电流方向为逆时针即负方向,设此阶段的电流大小为I1;第二阶段:从bc边进入磁场到af边将进入磁场这段时间内,de、bc边一起切割磁感线产生总的感应电动势大小为E2=2BL v,感应电流大小I2=2I1,方向仍为逆时针即负方向;第三阶段:从de边离开磁场到bc边将离开磁场这段时间内,bc、af边一起切割磁感线产生总的感应电动势大小为E3=BL v,感应电流大小I3=I1,方向为顺时针即正方向;第四阶段:从bc边离开磁场到af边将离开磁场这段时间内,af边切割磁感线产生的感应电动势大小为E4=2BL v,感应电流大小I4=2I1,方向仍为顺时针即正方向.综上,感应电流随时间变化的图线如选项A图所示,故选A.3.(2023·宿迁期末)如图所示,倾斜放置的光滑平行足够长的金属导轨MN、PQ间静置一根质量为m的导体棒,阻值为R的电阻接在M、P间,其他电阻忽略不计,磁感应强度为B的匀强磁场垂直导轨平面向下.t=0时对导体棒施加一个沿导轨平面向上的力F,使得导体棒能够从静止开始向上做匀加速直线运动,则在导体棒向上运动的过程中,施加的力F、力F的功率P、产生的感应电流I、电阻R上产生的热量Q随时间变化的图像正确的是(A)A B C D解析:导体棒向上做匀加速运动,则F -B 2L 2at R =ma ,即F =B 2L 2a R t +ma ,故A 正确;力F 的功率P =F v =⎝ ⎛⎭⎪⎫B 2L 2a R t +ma at =B 2L 2a 2R t 2+ma 2t ,则P -t 图像为开口向上的抛物线,故B 错误;产生的感应电流I =BLat R ,则I -t 图像是过原点的直线,故C 错误;电阻R 上产生的热量Q =I 2Rt =B 2L 2a 2t 3R ,则 Q -t 图像一定不是过原点的直线,故D 错误.4.(2023·金陵中学)如图所示,平行金属导轨与水平面成θ角,导轨与固定电阻R 1和R 2相连,匀强磁场垂直穿过导轨平面.有一导体棒ab ,质量为m ,导体棒的电阻与固定电阻R 1和R 2的阻值均相等,与导轨之间的动摩擦因数为μ,导体棒ab 沿导轨向上滑动,当上滑的速度为v 时,受到安培力的大小为F .下列说法中错误的是( A )A .电阻R 1的电功率为 F v 3B .电阻R 2的电功率为 F v 6C .整个装置因摩擦而产生的热功率为μmg v cos θD .整个装置消耗的机械功率为 (F +μmg cos θ)v解析:设ab 长度为L ,磁感应强度为B ,电阻均为R ,电路中感应电动势为E =BL v ,R 1、R 2并联电阻大小为R ′=R ·R R +R =R 2,ab 中感应电流为I =E R +R ′,解得ab 所受安培力为F =2B 2L 2v 3R ,电阻R 1消耗的热功率为P 1=⎝ ⎛⎭⎪⎫I 22R =B 2L 2v 29R =16F v ,电阻R 2消耗的功率与R 1消耗的功率相等,故A 错误,B 正确;整个装置因摩擦而消耗的热功率为P 2=μmg cos θ·v =μmg v cos θ,故C 正确;整个装置消耗的机械功率为P 3=F v +P 2=(F +μmg cos θ)v ,故D 正确.5.(2023·南通适应性考试)如图所示,竖直向下的匀强磁场中水平放置两足够长的光滑平行金属导轨,导轨的左侧接有电容器,金属棒静止在导轨上,棒与导轨垂直,t =0时,棒受到水平向右的恒力F 作用,t =t 0时,撤去F ,则棒的速度v 、电容器所带的电荷量q 、棒中安培力的冲量I 、棒克服安培力做的功W 与时间t 的关系图像正确的是( D )A B C D解析:设某一时刻t ,根据牛顿第二定律有F -F 安=ma ,设该时刻电流大小为i ,则F 安=BiL ,F -BiL =ma ,在很短时间间隔内ΔQ =i ·Δt ,ΔQ =C ·ΔU ,ΔU =BL ·Δv ,联立可得i =BLC Δv Δt=BLCa ,结合前式可得F -B 2L 2Ca =ma ,可得a =F m +B 2L 2C ,v =at =F ·t m +B 2L 2C,可知t 0之前金属棒做匀加速运动,即v -t 图像为一倾斜直线.撤去力F 后感应电动势等于电容器两端电压,电容器不再充电,电流为零,开始做匀速运动,A 错误;由上面分析可知ΔQ Δt=i =BLCa ,t 0之前q -t 图像为倾斜直线,t 0之后电容器不充放电,电荷量不变,B 错误;安培力的冲量I =BiL ·t =B 2L 2Ca ·t ,加速度a 定值,可知I -t 图线为一倾斜直线,C 错误;棒克服安培力做的功W =F 安v ·t =B 2L 2Ca 2t 2,D 正确.6.(2023·扬州中学考前模拟)空间中存在如图所示的磁场,Ⅰ、Ⅱ区域的宽度均为2R ,磁感应强度均为B (Ⅰ区域垂直纸面向里,Ⅱ区域垂直纸面向外),半径为R 的圆形导线圈在外力作用下以速度v 匀速通过磁场区域,设任意时刻导线圈中电流为I (逆时针为正),导线圈所受安培力为F (向左为正),从导线圈刚进入Ⅰ区域开始将向右运动的位移记为x ,则下列图像正确的是( D )A B C D解析:当圆环在磁场Ⅰ区域向右运动过程中,设圆环切割磁感线的有效长度为l ,则有(R -x )2+⎝ ⎛⎭⎪⎫l 22=R 2 整理得l =2-(x -R )2+R 2,则圆环产生的感应电动势为E =Bl v ,感应电流为I =E R 阻=2B v -(x -R )2+R 2R 阻,可知电流与位移不成线性相关,B 错误;当圆环圆心运动到Ⅰ、Ⅱ区域的边界时,此时产生的感应电流大小为I ′=2E R 阻=4B v -(x -R )2+R 2R 阻,即x =3R 的电流大小为x =R 的电流的两倍,方向沿着顺时针方向,A 错误;通过分析可知,除了x =2R 、x =4R 、x =6R 三个特殊位置,电流为0,受力为0,在0<x <6R 区域内,圆环受力方向水平向左,若圆环在x =R 位置受力为F 0,则圆环在x =3R 处,由于电流变为2倍,圆环左右半圆均受力,因此圆环受力为4F 0,C 错误,D 正确.二、 非选择题7.(2023·盐城期末)如图所示,电阻不计的矩形导线圈abcd ,在ab 间接电阻为R 的均匀电阻丝甲,线圈放在方向垂直于线圈平面、磁感应强度为B 的匀强磁场中.现有电阻为12R 的金属棒PQ 刚好架在导线圈上,PQ 长度为L ,并以恒定速度v 从ad 边滑向bc 边.PQ 在滑动过程中与导线圈的接触良好.求:(1) PQ 产生的感应电动势E .答案:BL v解析:PQ 产生的感应电动势为E =BL v(2) 甲消耗电功率的最大值P max .答案:4B 2L 2v 29R解析:当金属棒滑上甲后,令甲左端电阻为R x ,则甲右端电阻为R -R x ,左右两端并联,则并联电阻为R 并=R x (R -R x )R x +R -R x=R x (R -R x )R 由于0≤R x ≤R ,可知0≤R 并≤R 4甲消耗电功率为P =⎝ ⎛⎭⎪⎪⎫E 12R +R 并2R 并=E 2R 24R 并+R 并+R 可知,当R 并=R 4时,甲消耗功率最大,则有P max =⎝ ⎛⎭⎪⎪⎫E 12R +14R 2·14R 结合上述解得P max =4B 2L 2v 29R(3) PQ 所受安培力的最小值F min .答案:4B 2L 2v 3R解析:根据上述可知,通过金属棒的电流 I =E12R +R 并金属棒所受安培力F =BIL解得F =B 2L 2v 12R +R 并可知,当R 并=R 4时,金属棒所受安培力最小F min =B 2L 2v 12R +14R=4B 2L 2v 3R8.(2023·海安中学模拟)如图甲所示,两根足够长的平行光滑金属导轨MN 、PQ 被固定在水平面上,导轨间距l =0.6 m ,两导轨的左端用导线连接电阻R 1及理想电压表V ,电阻为r =2 Ω的金属棒垂直于导轨静止在AB 处;右端用导线连接电阻R 2,已知 R 1=2 Ω,R 2=1 Ω,导轨及导线电阻均不计.在矩形区域CDFE 内有竖直向上的磁场,CE =0.2 m ,磁感应强度随时间的变化规律如图乙所示.开始时电压表有示数,当电压表示数变为零后,对金属棒施加一水平向右的恒力F,使金属棒刚进入磁场区域时电压表的示数又变为原来的值,金属棒在磁场区域内运动的过程中电压表的示数始终保持不变.求:甲乙(1) t=0.1 s时电压表的示数.答案:0.3V解析:设磁场宽度为d=CE,在0~0.2 s的时间内,有E=ΔΦΔt=ΔBΔtld=0.6 V此时,R1与金属棒并联后再与R2串联R=R并+R2=1 Ω+1 Ω=2 ΩU=ER R并=0.3 V(2) 恒力F的大小.答案:0.27 N解析:金属棒进入磁场后,R1与R2并联后再与r串联,有I′=UR1+UR2=0.45 AF A=BI′l=1×0.45×0.6 N=0.27 N由于金属棒进入磁场后电压表的示数始终不变,所以金属棒做匀速运动,有F=F A=0.27 N(3) 从t=0时刻到金属棒运动出磁场的过程中整个电路产生的热量.答案:0.09 J解析:在0~0.2 s的时间内有Q=E2R t=0.036 J金属棒进入磁场后,有R′=R1R2R1+R2+r=83ΩE′=I′R′=1.2 V E′=Bl v,得v=2 m/st′=dv=0.22s=0.1 sQ′=E′I′t′=0.054 JQ总=Q+Q′=0.036 J+0.054 J=0.09 J补不足、提能力,老师可增加训练:《抓分题·基础天天练》《一年好卷》。
专题11 电磁感应问题目录近年真题对比考向一法拉第电磁感应定律的理解和应用问题带电粒子在有界磁场中运动考向二电磁感应的综合问题命题规律解密名校模拟探源易错易混速记【命题意图】考查法拉第电磁感应定律综合应用问题,意在考查考生分析问题,通过图象获取有用信息的能力和应用数学知识解决问题的能力。
电磁感应中的电路、法拉第电磁感应定律、能量转换及电量的计算等知识点,意在考查考生对电磁感应电路的分析以及对电磁感应中功能关系的正确理解和应用2022年高考考查的内容较大概率以法拉第电磁感应定律的理解及其应用为核心,侧重要注重法拉第电磁感应定律的理解及应用。
有时还与实际生活、生产科技相结合,考查考生利用物理知识分析解决实际问题的能力。
【考查要点】主要考相法拉第电磁感应定律、楞次定律、闭合电路欧姆定律、功和功率、焦耳定律、能量守恒定律、功能关系、动能定理等,既有以选择题形式出现的,也有计算题的形式。
【课标链接】①理解法拉第电磁感应定律、楞次定律②能分析电磁感应中的电路问画出等效电路图。
能用力学中的能量守恒定律、功能关系、动能定理分析电磁感应问题。
考向一法拉第电磁感应定律的理解和应用问题带电粒子在有界磁场中运动1. (2023海南卷)汽车测速利用了电磁感应现象,汽车可简化为一个矩形线圈abcd,埋在地下的线圈分别为1、2,通上顺时针(俯视)方向电流,当汽车经过线圈时()A. 线圈1、2产生的磁场方向竖直向上B. 汽车进入线圈1过程产生感应电流方向为abcdC. 汽车离开线圈1过程产生感应电流方向为abcdD. 汽车进入线圈2过程受到的安培力方向与速度方向相同【答案】C【解析】由题知,埋在地下的线圈1、2通顺时针(俯视)方向的电流,则根据右手定则,可知线圈1、2产生的磁场方向竖直向下,A 错误;汽车进入线圈1过程中,磁通量增大,根据楞次定律可知产生感应电流方向为adcb (逆时针),B 错误;汽车离开线圈1过程中,磁通量减小,根据楞次定律可知产生感应电流方向为abcd (顺时针),C 正确;汽车进入线圈2过程中,磁通量增大,根据楞次定律可知产生感应电流方向为adcb (逆时针),再根据左手定则,可知汽车受到的安培力方向与速度方向相反,D 错误。
第十一章电磁感应◆【三年高考】一、选择题1.原书P95第2题2.原书P95第3题3.原书P95第1题4.原书P95第4题5.原书P96第5题6.原书P96第6题7.原书P96第7题8.原书P96第8题9.原书P96第10题10.原书P96第9题二.非选择题11.原书P97第15题12.原书P98第17题13.原书P98第18题14.原书P97第16题15.原书P99第19题16.原书P99第20题17.原书P99第21题18.原书P99第22题19.原书P100第23题◆【规律点睛】考点突破:近几年高考中对本章内容的考查,命题率较高,电磁学到了本专题,可以说集中了所有力学中的解题方法,对考生的分析问题的能力,处理问题的技巧都提出了非常高的要求,在的新的《考试说明》中列出了如下的知识点:电磁感应现象、磁通量、法拉第电磁感应定律、棱次定律,导体切割磁感线时的感应电动势、右手定则,自感现象,日光灯.本章内容在历年高考中所占的比例都比较大,以前的高考中所考到的本章内容有:感应电流方向的判断,法拉第电磁感应定律的应用,电磁感应与力学综合,电磁感应与电路、电场、磁场等综合,自感现象等,涉及面很广,但其中考得最多的还是综合题,在今后的高考中重点要考的还应该是电磁感应与力学、电学的其它知识的综合问题.会涉及到受力分析、运动分析、能量动量分析、电路分析、磁场问题分析、图象等,要掌握本章内容,需要深刻理解各考点知识的内涵和外延,注意训练和掌握综合性问题的分析思路和方法.方法攻略:一.电路法:掌握电磁感应与电路知识综合问题分析方法在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路相当于电源.因此,电磁感应问题往往与电路问题联系在一起,解决与电路相联系的问题,常用的方法:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向. (2)画等效电路图.(3)运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解. 二.能量守恒法:1.充分运用动能定理求解,可以不考虑过程,只要注意始末状态。
dtd R I Φ-=1,在从0=t 到t 时间内,通过电路的电量)(1110000Φ-Φ=Φ⋅=⋅Φ=⋅=⎰⎰⎰ΦΦR d R dt dt d R dt I q t t 可见,q 与)(0Φ-Φ成正比,而与磁通量改变快慢无关。
设0=t 时00=Φ,只要测出R 和q 、即可得到Φ;如果已知回路面积、就可以算出磁感应强度B 。
这就是磁通计原理。
§11. 2 动生电动势与感生电动势一、动生电动势 1.在磁场中运动的导线内的感应电动势 电动势的定义:电源的电动势定义为单位正电荷绕闭合回路运动一周时、电源中非静电力作的功。
即 ⎰⋅=l E k d εk E 为单位正电荷受的非静电力。
如果导线不闭合、则单位正电荷从导线一端a 运动到另一端b 时,非静电力k E 作的功就是导线a 、b 两端的电动势。
即⎰⋅=baab d l E k ε2、动生电动势: 当导线ab 在磁场B 中以速度v 运动时,导线ab 中的电子也以速度v 运动,磁场B 作用在上的电子洛伦兹力 B v f ⨯-=e而单位正电荷受的洛伦兹力B fE k ⨯=-=υe就是动生电动势中的非静电力。
所以,动生电动势⎰⋅⨯=baab )(l Bd υε。
当导线回路闭合时、回路中的动生电动势 ⎰⋅⨯=l B d )(υε。
这是动生电动势的一般表示式。
对此式要注意两个角度的关系: (1) υ与B 的夹角θ1; (2)(υ×B )与dl 的夹角θ2。
如θ1=0(或π),或22πθ=,都会使得0=ε。
例11.1 在长直导线电流I 的附近有一长度为L 的共面导线ab 与长直导线垂直,a 端距长直导线为d 、ab 以平行于长直导线的速度v 向上运动。
求:ab 上的感应电动势。
解:在ab 上取d l 、与长直导线的距离为r ,该点的磁场 r2ΙμB π0= 所以d l 上的感应电动势 dr r2Iv πdr r 2I d d πμπυμυε00cos )(-==⋅⨯=l Bab 上的感应电动势 ⎰++==dL dab d dL πv I μ-dr r πIv μ-εln 2200 感应电动势ab ε为负值表示其方向从b 到a ,即a 点电势高。
11、电磁感应识记知识点
变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体,它们均能引起电流的产生,我们把这些现象称为电磁感应现象,产生的电流称为感应电流。
电磁感应现象的本质是感应电动势的产生,而不是感应电流。
电磁感应现象中产生的电动势称为感应电动势,产生感应电动势的那部分导体相当于电路的电源。
1、感应电流的产生条件:穿过闭合回路的磁通量发生变化磁通量可以从两个方面理解:
①磁通量形象地理解为穿过某一闭合回路的磁感线的条数
②公式角度磁通量θ
sin
BS
=
Φ
2、两步走判定感应电流的方向:
①用楞次定律判感应磁场方向
②用安培定则判感应电流方向楞次定律:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
从磁感线的角度理解楞次定律可简化为“增反减同”,增和减是指穿过闭合回路的磁通量是增加或减少,反和同是指穿过闭合回路的原磁场和感应电流产生的感应磁场的方向是相同或者相反。
右手定则用于判定导体切割磁感线时感应电流的方向:磁感线进入手心,大拇指指向导体运动方向,四指的指向即为感应电流的方向。
3、两步走计算感应电流的大小:
①用法拉第电磁感应定律求电动势
②用闭合电路欧姆定律求电流大小法拉第电磁感应定律:感应电动势的大小,跟穿过这一回路的磁通量的变化率成正比,公式形式为:
t
n
E
∆
∆Φ
=,此公式一般用于求平均感应电动势。
感生电动势:kS
S
t
B
t
B
B
S
t
S
B
S
B
t
t
E=
∆
∆
=
∆
-
=
∆
-
=
∆
Φ
-
Φ
=
∆
∆Φ
=
)
(1
2
1
2
1
2
动生电动势BLV
t
BLVt
t
S
B
t
S
S
B
t
BS
BS
t
t
E=
=
∆
=
-
=
-
=
Φ
-
Φ
=
∆
∆Φ
=
)
(1
2
1
2
1
2
L为有效长度,具体含义为导体两端点间连线沿垂直于速度方向上的投影的长度。
旋转切割电动势:ϖ
ϖ2
2
1
2
1
BL
L
BL
V
BL
E=
=
=
-
4、常用推论1、电磁感应现象中通过干路某一横截面电荷量的计算公式:
R
Q
∆Φ
=,R为回路的总电阻。
2、自感现象中,闭合开关,与线圈串联的灯泡缓慢变亮,断开开关,当线圈中电流大于灯泡中电流时,灯泡会闪亮一下在熄灭,若小于,则缓慢熄灭,不会再闪亮一下。
第 1 页共1 页。