高中数学 模块综合检测 新人教B版选修_1
- 格式:doc
- 大小:101.50 KB
- 文档页数:8
数学选修1-1测试卷一、选择题:1、已知a、b为实数,则2" >2"是的( )A.必要非充分条件B.充分非必要条件C.充要条件D.既不充分也不必要条件2、给出命题:若函数y = .f(x)是幕函数,则函数y = f(x)的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A.OB.lC.2D.33、已知命题p:H VxG[l,2],x2-a>0,,J^题/?,/+2仮+2-0 = 0”,若命题“0人厂是真命题,则实数。
的取值范围是 ( )A.(-oo,-2]U{l}B.(-汽-2] U [1,2]C.[l,+8)D.[-2,l]4、设函数/(兀)在定义域内可导,y = /(x)的图象如左图所示,则导函数y = /©)可能为( )2 25、设片和坊为双曲线—1(。
>0#>0)的两个焦点,若耳,只,P(0,2b)是正三角形的三个顶点, CT b~则双曲线的离心率为()3,5A.-B.2C.-D.32 26、设斜率为2的直线/过抛物线y2 = ax{a 0)的焦点F,且和y轴交于点九若厶0AF(0为朋标原点)的而积为4,则抛物线方程为( )A. =±4xB. y2=±SxC. y2 = 4xD. y2 = 8x7、如图,曲线y = f(x)上任一点P的切线PQ交x轴于Q,过P作PT垂直于x轴于T,若△P7Q的面积为-,则y与y'的关系满足(・)A. y =)/B. y = -y"C. y - y1D. y2 - y'8^ 己知);=/(x)是奇函数,当XG (0,2) lit, f(x) = Inx-ax{a >—),当xw (-2,0)吋,/(x)的最小值为1,则a的值等于( )1 1 」A.—B.—C.—D..14 3 29、设函数y = /(X)在(。
0)上的导函数为广(x),r(x)在(a,b)上的导函数为f\x),若在(a,b)上,/"(X)<0恒成立,贝I」称函数函数/(兀)在(Q0)上为“凸函数已知当m<2时,/(兀)=-x3-—nu2 +无在6 2 (—1,2)上是“凸函数二则f(x)在(—1,2)上()A.既有极人值,也有极小值B.既有极人值,也有最小值C.有极大值,没有极小值D.没有极大值,也没有极小值己知两条曲线y = x2~l与)vi-F 在点兀。
模块综合检测(一)(时间120分钟,满分150分)一、选择题(共12小题,每小题5分,共60分) 1.方程C x 14=C 2x -414的解集为( )A .{4}B .{14}C .{4,6}D .{14,2}解析:选C 由C x 14=C 2x -414得x =2x -4或x +2x -4=14,解得x =4或x =6.经检验知x =4或x =6符合题意.2.设X 是一个离散型随机变量,则下列不能成为X 的概率分布列的一组数据是( ) A .0,12,0,0,12 B .0.1,0.2,0.3,0.4C .p,1-p (0≤p ≤1) D.11×2,12×3,…,17×8解析:选D 利用分布列的性质推断,任一离散型随机变量X 的分布列都具有下述两共性质:①p i ≥0,i =1,2,3,…,n ;②p 1+p 2+p 3+…+p n =1.选C 如图,由正态曲线的对称性可得P (a ≤X <4-a )=1-2P (X <a )=0.36. 3.已知随机变量X ~N (2,σ2),若P (X <a )=0.32,则P (a ≤X <4-a )等于( ) A .0.32 B .0.68 C .0.36 D .0.64解析:选C 如图,由正态曲线的对称性可得P (a ≤X <4-a )=1-2P (X <a )=0.36.4.已知x ,y 取值如下表:x 0 1 4 5 6 8 y1.31.85.66.17.49.3从所得的散点图分析可知:y 与x 线性相关,且y ^=0.95x +a ,则a 等于( ) A .1.30 B .1.45 C .1.65 D .1.80解析:选B 依题意得,x -=16×(0+1+4+5+6+8)=4,y -=16×(1.3+1.8+5.6+6.1+7.4+9.3)=5.25.又直线y ^=0.95x +a 必过样本中心点(x -,y -), 即点(4,5.25),于是有5.25=0.95×4+a , 由此解得a =1.45.5.甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6,0.5,现已知目标被击中,则它是被甲击中的概率是( )A .0.45B .0.6C .0.65D .0.75 解析:选D 目标被击中P 1=1-0.4×0.5=0.8, ∴P =0.60.8=0.75. 6.从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法有( ) A .36种 B .30种 C .42种 D .60种解析:选A 直接法:选出3名志愿者中含有1名女生和2名男生或2名女生和1名男生,故共有C 12C 26+C 22C 16=2×15+6=36种选法;间接法:从8名同学中选出3名,减去全部是男生的状况,故共有C 38-C 36=56-20=36种选法.7.⎝ ⎛⎭⎪⎫x +2x 2n 的开放式中只有第6项二项式系数最大,则开放式中的常数项是( )A .180B .90C .45D .360 解析:选A 由已知得,n =10,T r +1=C r10(x )10-r⎝ ⎛⎭⎪⎫2x 2r =2r ·C r 10x 5-52r ,令5-52r =0,得r =2,T 3=4C 210=180.8.(四川高考)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种解析:选B 当最左端排甲时,不同的排法共有A 55种;当最左端排乙时,甲只能排在中间四个位置之一,则不同的排法共有C 14A 44种.故不同的排法共有A 55+C 14A 44=9×24=216种.9.箱子里有5个黑球和4个白球,每次随机取出一个球.若取出黑球,则放回箱中,重新取球,若取出白球,则停止取球.那么在第4次取球之后停止的概率为( )A.C 35C 14C 45 B .⎝ ⎛⎭⎪⎫593×49C.35×14D .C 14⎝ ⎛⎭⎪⎫593×49解析:选B 记“从箱子里取出一球是黑球”为大事A ,“从箱子里取出一个球是白球”为大事B ,则P (A )=59,P (B )=49,在第4次取球后停止,说明前3次取到的都是黑球,第4次取到的是白球,又每次取球是相互独立的,由独立大事同时发生的概率公式,在第4次取球后停止的概率为59×59×59×49=⎝ ⎛⎭⎪⎫593×49.10.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变; ②设有一个回归方程y ^=3-5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归直线y ^=b ^x +a ^必过(x -,y -); ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个2×2列联表中,由计算得k =13.079.则其两个变量间有关系的可能性是90%. 其中错误的个数是( ) A .1 B .2 C .3D .4解析:选C 由方差的定义知①正确,由线性回归直线的特点知③正确,②④⑤都错误. 11.对两个变量y 和x 进行线性相关检验,已知n 是观看值组数,r 是相关系数,且已知: ①n =10,r =0.953 3;②n =15,r =0.301 2;③n =17,r =0.999 1;④n =3,r =0.995 0. 则变量y 和x 具有线性相关关系的是( ) A .①和② B .①和③ C .②和④D .③和④解析:选B 相关系数r 的确定值越接近1,变量x ,y 的线性相关性越强.②中的r 太小,④中观看值组数太小.12.某市政府调查市民收入与旅游欲望时,接受独立性检验法抽取3 000人,计算发觉k =6.023,则依据这一数据查阅下表,市政府断言市民收入增减与旅游欲望有关系的把握是( )P (K 2≥k )… 0.25 0.15 0.10 0.025 0.010 0.005 … k…1.3232.0722.7065.0246.6357.879…A.90% B .95% C .97.5%D .99.5%解析:选C ∵k =6.023>5.024,∴可断言市民收入增减与旅游欲望有关的把握为97.5%. 二、填空题(共4小题,每小题5分,共20分)13.有5名男生和3名女生,从中选出5人分别担当语文、数学、英语、物理、化学学科的科代表,若某女生必需担当语文科代表,则不同的选法共有________种.(用数字作答)解析:由题意知,从剩余7人中选出4人担当4个学科的科代表,共有A 47=840(种)选法. 答案:84014.某射手对目标进行射击,直到第一次命中为止,每次射击的命中率为0.6,现共有子弹4颗,命中后剩余子弹数目的均值是________.解析:设ξ为命中后剩余子弹数目,则P (ξ=3)=0.6,P (ξ=2)=0.4×0.6=0.24,P (ξ=1)=0.4×0.4×0.6=0.096,P (ξ=0)=0.4×0.4×0.4=0.064,E (ξ)=3×0.6+2×0.24+0.096=2.376.答案:2.37615.抽样调查表明,某校高三同学成果(总分750分)X 近似听从正态分布,平均成果为500分.已知P (400<X <450)=0.3,则P (550<X <600)=________.解析:由下图可以看出P (550<X <600)=P (400<X <450)=0.3.答案:0.316.某高校“统计初步”课程的老师随机调查了选该课的一些同学状况,具体数据如下表:专业性别非统计专业统计专业 男 13 10 女720为了推断主修统计专业是否与性别有关系,依据表中的数据,计算得到K 2=________(保留三位小数),所以判定________(填“能”或“不能”)在犯错误的概率不超过0.05的前提下认为主修统计专业与性别有关系.解析:依据供应的表格得 K 2=50×13×20-7×10223×27×20×30≈4.844>3.841.所以可以在犯错误的概率不超过0.05的前提下认为主修统计专业与性别有关系. 答案:4.844 能三、解答题(共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)若⎝⎛⎭⎪⎪⎫6x +16x n开放式中第2,3,4项的二项式系数成等差数列.(1)求n 的值.(2)此开放式中是否有常数项?为什么?解:(1)T k +1=C k n·⎝⎛⎭⎫6x n -k·⎝ ⎛⎭⎪⎪⎫16x k =C kn ·x n -2k 6,由题意可知C 1n +C 3n =2C 2n ,即n 2-9n +14=0, 解得n =2(舍)或n =7.∴n =7. (2)由(1)知T k +1=C k7·x 7-2k6. 当7-2k 6=0时,k =72,由于k ∉N *, 所以此开放式中无常数项.18.(本小题满分12分)某篮球队与其他6支篮球队依次进行6场竞赛,每场均决出胜败,设这支篮球队与其他篮球队竞赛胜场的大事是独立的,并且胜场的概率是13.(1)求这支篮球队首次胜场前已经负了2场的概率; (2)求这支篮球队在6场竞赛中恰好胜了3场的概率; (3)求这支篮球队在6场竞赛中胜场数的均值和方差.解:(1)这支篮球队首次胜场前已负2场的概率为P =⎝ ⎛⎭⎪⎫1-132×13=427.(2)这支篮球队在6场竞赛中恰好胜3场的概率为P =C 36×⎝ ⎛⎭⎪⎫133×⎝ ⎛⎭⎪⎫1-133=20×127×827=160729.(3)由于X 听从二项分布,即X ~B ⎝ ⎛⎭⎪⎫6,13,∴E (X )=6×13=2,D (X )=6×13×⎝⎛⎭⎪⎫1-13=43.故在6场竞赛中这支篮球队胜场的均值为2,方差为43.19.(本小题满分12分)某商场经销某商品,依据以往资料统计,顾客接受的付款期数X 的分布列为商场经销一件该商品,接受250元;分4期或5期付款,其利润为300元.Y 表示经销一件该商品的利润.(1)求大事:“购买该商品的3位顾客中,至少有1位接受1期付款”的概率P (A ); (2)求Y 的分布列及E (Y ).解:(1)由A 表示大事“购买该商品的3位顾客中至少有1位接受1期付款”知,A 表示大事“购买该商品的3位顾客中无人接受1期付款”.P (A )=(1-0.4)3=0.216, P (A )=1-P (A )=1-0.216=0.784.(2)Y 的可能取值为200元,250元,300元.P (Y =200)=P (X =1)=0.4,P (Y =250)=P (X =2)+P (X =3)=0.2+0.2=0.4,P (Y =300)=1-P (Y =200)-P (Y =250)=1-0.4-0.4=0.2, Y 的分布列为E (Y )20.(本小题满分12分)为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时. (1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望E (ξ). 解:(1)若两人所付费用相同,则相同的费用可能为0元,40元,80元, 两人都付0元的概率为P 1=14×16=124,两人都付40元的概率为P 2=12×23=13,两人都付80元的概率为P 3=⎝ ⎛⎭⎪⎫1-14-12×1-16-23=14×16=124,则两人所付费用相同的概率为P =P 1+P 2+P 3=124+13+124=512. (2)由题意得,ξ全部可能的取值为0,40,80,120,160.P (ξ=0)=14×16=124, P (ξ=40)=14×23+12×16=14, P (ξ=80)=14×16+12×23+14×16=512, P (ξ=120)=12×16+14×23=14, P (ξ=160)=14×16=124, ξ的分布列为E (ξ)=0×124+40×14+80×12+120×4+160×24=80.21.(本小题满分12分)甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,接受分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中的微量元素x ,y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据:编号1 2 3 4 5 x 169 178 166 175 180 y7580777081(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量.(2)当产品中的微量元素x ,y 满足x ≥175,且y ≥75,该产品为优等品.用上述样本数据估量乙厂生产的优等品的数量.(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值. 解:(1)乙厂生产的产品总数为5÷1498=35. (2)样品中优等品的频率为25,乙厂生产的优等品的数量为35×25=14.(3)ξ=0,1,2,P (ξ=i )=C i 2C 2-i3C 25(i =0,1,2),ξ的分布列为ξ 0 1 2 P31035110均值E (ξ)=1×35+2×110=45.22.(本小题满分12分)某煤矿发生透水事故时,作业区有若干人员被困.救援队从入口进入之后有L 1,L 2两条巷道通往作业区(如下图),L 1巷道有A 1,A 2,A 3三个易堵塞点,各点被堵塞的概率都是12;L 2巷道有B 1,B 2两个易堵塞点,被堵塞的概率分别为34,35.(1)求L 1巷道中,三个易堵塞点最多有一个被堵塞的概率;(2)若L 2巷道中堵塞点个数为X ,求X 的分布列及均值E (X ),并依据“平均堵塞点少的巷道是较好的抢险路线”的标准,请你挂念救援队选择一条抢险路线,并说明理由.解:(1)设“L 1巷道中,三个易堵塞点最多有一个被堵塞”为大事A ,则P (A )=C 03×⎝ ⎛⎭⎪⎫123+C 13×12×⎝ ⎛⎭⎪⎫122=12.(2)依题意,X 的可能取值为0,1,2,P (X =0)=⎝⎛⎭⎪⎫1-34×⎝⎛⎭⎪⎫1-35=110, P (X =1)=34×⎝⎛⎭⎪⎫1-35+⎝⎛⎭⎪⎫1-34×35=920,P (X =2)=34×35=920,所以随机变量X 的分布列为X 0 1 2 P110920920E (X )=0×110+1×920+2×920=2720.法一:设L 1巷道中堵塞点个数为Y ,则Y 的可能取值为0,1,2,3,P (Y =0)=C 03×⎝ ⎛⎭⎪⎫123=18,P (Y =1)=C 13×12×⎝ ⎛⎭⎪⎫122=38,P (Y =2)=C 23×⎝ ⎛⎭⎪⎫122×12=38, P (Y =3)=C 33×⎝ ⎛⎭⎪⎫123=18, 所以,随机变量Y 的分布列为Y0 1 2 3 P18383818E (Y )=0×18+1×38+2×38+3×18=2,由于E (X )<E (Y ),所以选择L 2巷道为抢险路线为好.法二:设L 1巷道中堵塞点个数为Y ,则随机变量Y ~B ⎝ ⎛⎭⎪⎫3,12, 所以,E (Y )=3×12=32,由于E (X )<E (Y ),所以选择L 2巷道为抢险路线为好.。
人教B 选择性必修第一册综合测验第一章 空间向量与立体几何............................................................................................ 1 第二章 平面解析几何 .................................................................................................... 15 模块综合测验 . (28)第一章 空间向量与立体几何一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在平行六面体ABCD-A'B'C'D'中,向量AB '⃗⃗⃗⃗⃗⃗ 、AD '⃗⃗⃗⃗⃗⃗ 、BD ⃗⃗⃗⃗⃗⃗ 是( ) A.有相同起点的向量 B .等长的向量C.共面向量 D .不共面向量AB '⃗⃗⃗⃗⃗⃗ 、AD '⃗⃗⃗⃗⃗⃗ 、BD⃗⃗⃗⃗⃗⃗ 显然不是有相同起点的向量,A 不正确; 由该平行六面体不是正方体可知,这三个向量不是等长的向量,B 不正确. 又∵AD '⃗⃗⃗⃗⃗⃗ −AB '⃗⃗⃗⃗⃗⃗ =B 'D '⃗⃗⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ , ∴AB '⃗⃗⃗⃗⃗⃗ ,AD '⃗⃗⃗⃗⃗⃗ ,BD⃗⃗⃗⃗⃗⃗ 共面,C 正确,D 不正确. 2.已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),则下列结论正确的是( ) A.a ∥c ,b ∥c B.a ∥b ,a ⊥c C.a ∥c ,a ⊥b D.以上都不对a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),∴a ·b =-4+0+4=0,∴a ⊥b .∵-4-2=-6-3=21,∴a ∥c .3.在长方体ABCD-A 1B 1C 1D 1中,BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ = ( ) A.D 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ B.D 1B ⃗⃗⃗⃗⃗⃗⃗ C.DB 1⃗⃗⃗⃗⃗⃗⃗⃗ D.BD 1⃗⃗⃗⃗⃗⃗⃗⃗,长方体ABCD-A 1B 1C 1D 1中,BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )+DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =BD 1⃗⃗⃗⃗⃗⃗⃗⃗ .4.如图所示,已知空间四边形ABCD ,连接AC ,BD.M ,G 分别是BC ,CD 的中点,则AB ⃗⃗⃗⃗⃗ +12BC ⃗⃗⃗⃗⃗ +12BD ⃗⃗⃗⃗⃗⃗ 等于 ( )A.AD ⃗⃗⃗⃗⃗B.GA ⃗⃗⃗⃗⃗C.AG ⃗⃗⃗⃗⃗D.MG ⃗⃗⃗⃗⃗⃗M ,G 分别是BC ,CD 的中点,∴12BC ⃗⃗⃗⃗⃗ =BM ⃗⃗⃗⃗⃗⃗ ,12BD ⃗⃗⃗⃗⃗⃗ =MG ⃗⃗⃗⃗⃗⃗ .∴AB ⃗⃗⃗⃗⃗ +12BC ⃗⃗⃗⃗⃗ +12BD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ +MG ⃗⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ +MG ⃗⃗⃗⃗⃗⃗ =AG⃗⃗⃗⃗⃗ . 5.在四棱锥P-ABCD 中,AB ⃗⃗⃗⃗⃗ =(4,-2,3),AD ⃗⃗⃗⃗⃗ =(-4,1,0),AP ⃗⃗⃗⃗⃗ =(-6,2,-8),则这个四棱锥的高h 等于 ( )A.1 B .2C.13D .26ABCD 的法向量为n =(x ,y ,z ),则{n ·AB ⃗⃗⃗⃗⃗ =0,n ·AD ⃗⃗⃗⃗⃗ =0,即{4x -2y +3z =0,-4x +y =0.不妨令x=3,则y=12,z=4,可得n =(3,12,4), 四棱锥的高h=|AP ⃗⃗⃗⃗⃗ ·n ||n |=2613=2.6.已知两不重合的平面α与平面ABC ,若平面α的法向量为n 1=(2,-3,1),AB ⃗⃗⃗⃗⃗ =(1,0,-2),AC ⃗⃗⃗⃗⃗ =(1,1,1),则( ) A.平面α∥平面ABC B.平面α⊥平面ABCC.平面α、平面ABC 相交但不垂直D.以上均有可能,n 1·AB ⃗⃗⃗⃗⃗ =2×1+(-3)×0+1×(-2)=0,得n 1⊥AB ⃗⃗⃗⃗⃗ ,n 1·AC ⃗⃗⃗⃗⃗ =2×1+(-3)×1+1×1=0,得n 1⊥AC⃗⃗⃗⃗⃗ , 所以n 1⊥平面ABC ,所以平面α的法向量与平面ABC 的法向量共线,则平面α∥平面ABC.7.直线AB 与直二面角α-l-β的两个面分别交于A ,B 两点,且A ,B 都不在棱l 上,设直线AB 与α,β所成的角分别为θ和φ,则θ+φ的取值范围是( ) A.0°<θ+φ<90° B.0°<θ+φ≤90° C.90°<θ+φ<180° D.θ+φ=90°,分别过点A ,B 向平面β,α作垂线,垂足为A 1,B 1,连接BA 1,AB 1.由已知α⊥β,所以AA 1⊥β,BB 1⊥α,因此∠BAB 1=θ,∠ABA 1=φ.由最小角定理得∠BAA 1≥θ,而∠BAA 1+φ=90°,故θ+φ=θ+90°-∠BAA 1≤90°,当AB ⊥l 时,θ+φ=90°,应选B .8.长方体A 1A 2A 3A 4-B 1B 2B 3B 4的底面为边长为1的正方形,高为2,则集合{x|x=A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A i B j ⃗⃗⃗⃗⃗⃗⃗⃗ ,i ∈{1,2,3,4},j ∈{1,2,3,4}}中元素的个数为( )A.1 B .2 C .3 D .4长方体A 1A 2A 3A 4-B 1B 2B 3B 4的底面为边长为1的正方形,高为2,∴建立如图的空间直角坐标系, 则A 1(1,1,0),A 2(0,1,0),A 3(0,0,0),A 4(1,0,0), B 1(1,1,2),B 2(0,1,2),B 3(0,0,2),B 4(1,0,2), 则A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,2),与A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,0,2)相等的向量为A 2B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =A 3B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =A 4B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2=4, 与A 1B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,-1,2)相等的向量为A 2B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2=4, 与A 4B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,1,2)相等的向量为A 3B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 4B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2=4,与A 2B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,0,2)相等的向量为A 3B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 2B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1+4=3,与A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,2)相等的向量为A 4B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ =1+4=5,体对角线向量为A 1B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,-1,2),此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗ =1+4=5,A 2B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,-1,2),A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 2B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1+4=3,A 3B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,1,2),A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 3B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1+4=3, A 4B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,1,2),A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 4B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =1+4=5,综上集合{x|x=A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A i B j ⃗⃗⃗⃗⃗⃗⃗⃗ ,i ∈{1,2,3,4},j ∈{1,2,3,4}}={3,4,5},集合中元素的个数为3个.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对得3分. 9.设向量a ,b ,c 可构成空间一个基底,下列选项中正确的是( ) A.若a ⊥b ,b ⊥c ,则a ⊥cB.则a,b,c两两共面,但a,b,c不可能共面C.对空间任一向量p,总存在有序实数组(x,y,z),使p=x a+y b+z cD.则a+b,b+c,c+a一定能构成空间的一个基底a,b,c是空间一个基底,知:在A中,若a⊥b,b⊥c,则a与c相交或平行,故A错误;在B中,a,b,c两两共面,但a,b,c不可能共面,故B正确;在C中,对空间任一向量p,总存在有序实数组(x,y,z),使p=x a+y b+z c,故C正确;在D中,a+b,b+c,c+a一定能构成空间的一个基底,故D正确.10.已知向量a=(1,2,3),b=(3,0,-1),c=(-1,5,-3),下列等式中正确的是()A.(a·b)c=b·cB.(a+b)·c=a·(b+c)C.(a+b+c)2=a2+b2+c2D.|a+b+c|=|a-b-c|左边为向量,右边为实数,显然不相等,不正确;B.左边=(4,2,2)·(-1,5,-3)=0,右边=(1,2,3)·(2,5,-4)=2+10-12=0,∴左边=右边,因此正确.C.a+b+c=(3,7,-1),左边=32+72+(-1)2=59,右边=12+22+32+32+0+(-1)2+(-1)2+52+(-3)2=59,∴左边=右边,因此正确.D.由C可得左边=√59,∵a-b-c=(-1,-3,7),∴|a-b-c|=√59,∴左边=右边,因此正确.故BCD正确.11.在正方体ABCD-A1B1C1D1中,E,F,G,H分别为AB,CC1,A1D1,C1D1的中点,则下列结论正确的是 ()A.A1E⊥AC1B.BF∥平面ADD1A1C.BF⊥DGD.A1E∥CH解析设正方体的棱长为1,以D 为原点,DA ,DC ,DD 1所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A 1(1,0,1),E (1,12,0),C (0,1,0),F (0,1,12),C 1(0,1,1),H 0,12,1,G (12,0,1),A (1,0,0),B (1,1,0),D (0,0,0),则A 1E ⃗⃗⃗⃗⃗⃗⃗ =(0,12,-1),AC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,1,1),BF ⃗⃗⃗⃗⃗ =(-1,0,12),DG ⃗⃗⃗⃗⃗ =(12,0,1),CH ⃗⃗⃗⃗⃗ =(0,-12,1), 所以A 1E ⃗⃗⃗⃗⃗⃗⃗ ·AC 1⃗⃗⃗⃗⃗⃗⃗ =-12,所以A 1E 与AC 1不垂直,故A 错误; 显然平面ADD 1A 1的一个法向量v =(0,1,0), 有BF ⃗⃗⃗⃗⃗ ·v =0,所以BF ∥平面ADD 1A 1,故B 正确; BF ⃗⃗⃗⃗⃗ ·DG ⃗⃗⃗⃗⃗ =0,所以BF ⊥DG ,故C 正确; A 1E ⃗⃗⃗⃗⃗⃗⃗ =-CH⃗⃗⃗⃗⃗ ,所以A 1E ∥CH ,故D 正确. 12.将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,有如下四个结论:①AC ⊥BD ;②△ACD 是等边三角形;③AB 与平面BCD 所成的角为60°;④AB 与CD 所成的角为60°.其中正确的结论有( ) A.① B.②C.③D.④,建立空间直角坐标系Oxyz ,设正方形ABCD 的边长为√2,则D (1,0,0),B (-1,0,0),C (0,0,1),A (0,1,0),所以AC ⃗⃗⃗⃗⃗ =(0,-1,1),BD ⃗⃗⃗⃗⃗⃗ =(2,0,0),CD ⃗⃗⃗⃗⃗ =(1,0,-1),AD ⃗⃗⃗⃗⃗ =(1,-1,0),AB ⃗⃗⃗⃗⃗ =(-1,-1,0),AC ⃗⃗⃗⃗⃗ ·BD⃗⃗⃗⃗⃗⃗ =0,故AC ⊥BD ,①正确.又|AC ⃗⃗⃗⃗⃗ |=√2,|CD ⃗⃗⃗⃗⃗ |=√2,|AD ⃗⃗⃗⃗⃗ |=√2, 所以△ACD 为等边三角形,②正确. 对于③,OA ⃗⃗⃗⃗⃗ 为平面BCD 的一个法向量, cos <AB ⃗⃗⃗⃗⃗ ,OA ⃗⃗⃗⃗⃗ >=AB ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ ||OA⃗⃗⃗⃗⃗⃗ |=√2·√1=√2=-√22.因为直线与平面所成的角∈[0°,90°],所以AB 与平面BCD 所成的角为45°,故③错误.又cos <AB ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ >=AB ⃗⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ ||CD⃗⃗⃗⃗⃗⃗ |=√2·√2=-12,因为异面直线所成的角为锐角或直角,所以AB 与CD 所成的角为60°,故④正确. 三、填空题:本题共4小题,每小题5分,共20分.13.在棱长为a 的正四面体中,AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ = . -a 22a 的正四面体中,AB=BC=a ,且AB ⃗⃗⃗⃗⃗ 与BC ⃗⃗⃗⃗⃗ 的夹角为120°,AC ⊥BD.∴AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =a ·a cos120°+0=-a22.14.已知a =(1,2,-y ),b =(x ,1,2),且(a +2b )∥(2a -b ),则xy= .2a +2b =(1+2x ,4,-y+4),2a -b =(2-x ,3,-2y-2),因为(a+2b )∥(2a-b ),所以存在λ∈R 使得1+2x=λ(2-x )且4=3λ且-y+4=λ(-2y-2),所以λ=43,x=12,y=-4,所以xy=-2.15.设PA ⊥Rt △ABC 所在的平面α,∠BAC=90°,PB ,PC 分别与α成45°和30°角,PA=2,则PA 与BC 的距离是 ;点P 到BC 的距离是 . √3 √7AD ⊥BC 于点D ,∵PA ⊥面ABC ,∴PA ⊥AD.∴AD 是PA 与BC 的公垂线.易得AB=2,AC=2√3,BC=4,AD=√3,连接PD ,则PD ⊥BC ,P 到BC 的距离PD=√7. 16.已知向量m =(a ,b ,0),n =(c ,d ,1),其中a 2+b 2=c 2+d 2=1,现有以下命题:①向量n 与z 轴正方向的夹角恒为定值(即与c ,d 无关); ②m ·n 的最大值为√2;③<m ,n >(m ,n 的夹角)的最大值为3π4;④若定义u ×v =|u |·|v |sin <u ,v >,则|m×n |的最大值为√2. 其中正确的命题有 .(写出所有正确命题的序号)取z 轴的正方向单位向量a =(0,0,1),则cos <n ,a >=n ·a|n ||a |=√c 2+d 2+12×1=√2=√22,∴向量n 与z 轴正方向的夹角恒为定值π4,命题正确;②m ·n =ac+bd ≤a 2+c 22+b 2+d 22=a 2+c 2+b 2+d 22=1+12=1,当且仅当a=c ,b=d 时取等号,因此m ·n 的最大值为1,命题错误;③由②可得|m ·n |≤1,∴-1≤m ·n ≤1, ∴cos <m ,n >=m ·n|m ||n | =√a 2+b 2·√c 2+d 2+12≥-1×√2=-√22, ∴<m ,n >的最大值是3π4,命题正确; ④由③可知:-√22≤cos <m ,n >≤√22,∴π4≤<m ,n >≤3π4,√22≤sin <m ,n >≤1,∴m×n =|m|×|n|×sin <m ,n >≤1×√2×1=√2,命题正确.综上可知,正确的命题序号是①③④.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)如图所示,在四棱锥M-ABCD 中,底面ABCD 是边长为2的正方形,侧棱AM 的长为3,且AM 和AB ,AD 的夹角都是60°,N 是CM 的中点,设a =AB ⃗⃗⃗⃗⃗ ,b =AD ⃗⃗⃗⃗⃗ ,c =AM ⃗⃗⃗⃗⃗⃗ ,试以a ,b ,c 为基向量表示出向量BN⃗⃗⃗⃗⃗⃗ ,并求BN 的长.⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CN ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +12CM ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +12(AM ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )=AD ⃗⃗⃗⃗⃗ +12[AM ⃗⃗⃗⃗⃗⃗ -(AD ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )] =-12AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ +12AM ⃗⃗⃗⃗⃗⃗ . 所以BN⃗⃗⃗⃗⃗⃗ =-12a+12b+12c , |BN ⃗⃗⃗⃗⃗⃗ |2=BN⃗⃗⃗⃗⃗⃗ 2=-12a+12b+12c 2 =14(a 2+b 2+c 2-2a ·b-2a ·c+2b ·c )=174. 所以|BN⃗⃗⃗⃗⃗⃗ |=√172,即BN 的长为√172.18.(12分)如图,正三棱柱ABC-A 1B 1C 1中,底面边长为√2. (1)设侧棱长为1,求证:AB 1⊥BC 1;(2)设AB 1与BC 1所成的角为π3,求侧棱的长.1=AB ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ ,BC 1⃗⃗⃗⃗⃗⃗⃗ =BB 1⃗⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ .因为BB 1⊥平面ABC , 所以BB 1⃗⃗⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0,BB 1⃗⃗⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0. 又△ABC 为正三角形,所以<AB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >=π-<BA ⃗⃗⃗⃗⃗ ,BC⃗⃗⃗⃗⃗ >=π-π3=2π3. 因为AB 1⃗⃗⃗⃗⃗⃗⃗ ·BC 1⃗⃗⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ )·(BB 1⃗⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ) =AB ⃗⃗⃗⃗⃗ ·BB 1⃗⃗⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ 2+BB 1⃗⃗⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |·|BC ⃗⃗⃗⃗⃗ |·cos <AB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >+BB 1⃗⃗⃗⃗⃗⃗⃗ 2=-1+1=0, 所以AB 1⊥BC 1.(1)知AB 1⃗⃗⃗⃗⃗⃗⃗ ·BC 1⃗⃗⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |·|BC ⃗⃗⃗⃗⃗ |·cos <AB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >+BB 1⃗⃗⃗⃗⃗⃗⃗ 2=BB 1⃗⃗⃗⃗⃗⃗⃗ 2-1.又|AB 1⃗⃗⃗⃗⃗⃗⃗ |=√AB ⃗⃗⃗⃗⃗ 2+BB 1⃗⃗⃗⃗⃗⃗⃗ 2=√2+BB 1⃗⃗⃗⃗⃗⃗⃗ 2=|BC 1⃗⃗⃗⃗⃗⃗⃗ |,所以cos <AB 1⃗⃗⃗⃗⃗⃗⃗ ,BC 1⃗⃗⃗⃗⃗⃗⃗ >=BB 1⃗⃗⃗⃗⃗⃗⃗⃗ 2-12+BB 1⃗⃗⃗⃗⃗⃗⃗⃗ 2=12,所以|BB 1⃗⃗⃗⃗⃗⃗⃗ |=2,即侧棱长为2.19.(12分)已知空间中三点A (2,0,-2),B (1,-1,-2),C (3,0,-4),设a =AB ⃗⃗⃗⃗⃗ ,b =AC ⃗⃗⃗⃗⃗ . (1)若|c |=3,且c ∥BC⃗⃗⃗⃗⃗ ,求向量c ; (2)已知向量k a +b 与b 互相垂直,求k 的值; (3)求△ABC 的面积.∵空间中三点A (2,0,-2),B (1,-1,-2),C (3,0,-4),设a =AB ⃗⃗⃗⃗⃗ ,b =AC⃗⃗⃗⃗⃗ , ∴BC⃗⃗⃗⃗⃗ =(3,0,-4)-(1,-1,-2)=(2,1,-2), ∵|c |=3,且c ∥BC⃗⃗⃗⃗⃗ , ∴c =m BC⃗⃗⃗⃗⃗ =m (2,1,-2)=(2m ,m ,-2m ), ∴|c |=√(2m )2+m 2+(-2m )2=3|m|=3,∴m=±1,∴c =(2,1,-2)或c =(-2,-1,2). (2)由题得a =(-1,-1,0),b =(1,0,-2),∴k a +b =k (-1,-1,0)+(1,0,-2)=(1-k ,-k ,-2),∵向量k a +b 与b 互相垂直,∴(k a +b )·b =1-k+4=0,解得k=5.∴k 的值是5. (3)AB ⃗⃗⃗⃗⃗ =(-1,-1,0),AC ⃗⃗⃗⃗⃗ =(1,0,-2),BC ⃗⃗⃗⃗⃗ =(2,1,-2), cos <AB ⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ >=AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |·|AC⃗⃗⃗⃗⃗ |=√2×√5=-√10,sin <AB ⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ >=√1-110=√10,∴S △ABC =12×|AB ⃗⃗⃗⃗⃗ |×|AC ⃗⃗⃗⃗⃗ |×sin <AB ⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ >=12×√2×√5×√10=32.20.(12分)已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)用向量法证明E ,F ,G ,H 四点共面; (2)用向量法证明:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM ⃗⃗⃗⃗⃗⃗ =14(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ ).如图,连接BG ,BD ⃗⃗⃗⃗⃗⃗ =2EH ⃗⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =2BF ⃗⃗⃗⃗⃗ ,则EG ⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ +BG ⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ +12(BC ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ )=EB ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗⃗ +EH ⃗⃗⃗⃗⃗⃗ =EF ⃗⃗⃗⃗⃗ +EH⃗⃗⃗⃗⃗⃗ , 由共面向量定理的推论知E 、F 、G 、H 四点共面.(2)因为EH ⃗⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗⃗ −AE ⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗=12(AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=12BD⃗⃗⃗⃗⃗⃗ . 所以EH ∥BD ,又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH.(3)连接OM ,OA ,OB ,OC ,OD ,OE ,OG , 由(2)知EH ⃗⃗⃗⃗⃗⃗ =12BD⃗⃗⃗⃗⃗⃗ , 同理FG ⃗⃗⃗⃗⃗ =12BD ⃗⃗⃗⃗⃗⃗ ,所以EH ⃗⃗⃗⃗⃗⃗ =FG⃗⃗⃗⃗⃗ , EH ∥FG ,EH=FG ,所以EG 、FH 交于一点M 且被M 平分,所以OM ⃗⃗⃗⃗⃗⃗ =12(OE ⃗⃗⃗⃗⃗ +OG ⃗⃗⃗⃗⃗ )=1212(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )+12(OC ⃗⃗⃗⃗⃗ +OD⃗⃗⃗⃗⃗⃗ ) =14(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD⃗⃗⃗⃗⃗⃗ ).21.(12分)(2021全国甲,理19)已知直三棱柱ABC-A 1B 1C 1中,侧面AA 1B 1B 为正方形,AB=BC=2,E ,F 分别为AC 和CC 1的中点,D 为棱A 1B 1上的点,BF ⊥A 1B 1. (1)证明:BF ⊥DE ;(2)当B 1D 为何值时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小?如图,连接A 1E ,取BC 中点M ,连接B 1M ,EM.∵E ,M 分别为AC ,BC 中点, ∴EM ∥AB.又AB ∥A 1B 1,∴A 1B 1∥EM ,则点A 1,B 1,M ,E 四点共面,故DE ⊂平面A 1B 1ME.又在侧面BCC 1B 1中,△FCB ≌△MBB 1,∴∠FBM=∠MB 1B. 又∠MB 1B+∠B 1MB=90°,∴∠FBM+∠B 1MB=90°,∴BF ⊥MB 1.又BF ⊥A 1B 1,MB 1∩A 1B 1=B 1,MB 1,A 1B 1⊂平面A 1B 1ME ,∴BF ⊥平面A 1B 1ME ,∴BF ⊥DE.(2)∵BF ⊥A 1B 1,∴BF ⊥AB ,∴AF 2=BF 2+AB 2=CF 2+BC 2+AB 2=9. 又AF 2=FC 2+AC 2,∴AC 2=8,则AB ⊥BC.如图,以B 为原点,BC ,BA ,BB 1为x 轴、y 轴、z 轴建立空间直角坐标系,则B (0,0,0),C (2,0,0),A (0,2,0),E (1,1,0),F (2,0,1).则EF ⃗⃗⃗⃗⃗ =(1,-1,1),ED ⃗⃗⃗⃗⃗ =(-1,t-1,2),设DB 1=t ,则D (0,t ,2),0≤t ≤2.则平面BB 1C 1C 的法向量为m =(0,1,0),设平面DEF 的法向量为n =(x ,y ,z ),∴{EF⃗⃗⃗⃗⃗ ·n =0,ED ⃗⃗⃗⃗⃗ ·n =0,即{x -y +z =0,-x +(t -1)y +2z =0,∴n =(1+t ,3,2-t ). 则cos <m ,n >=√(1+t )+32+(2-t )=√2t 2-2t+14.要求最小正弦值,则求最大余弦值.当t=1时二面角的余弦值最大,2时二面角正弦值最小.则B1D=1222.(12分)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平AD=1,CD=√3.面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=12(1)求证:平面PBC⊥平面PQB;(2)当PM的长为何值时,平面QMB与平面PDC所成的角的大小为60°?AD,AD∥BC,Q为AD的中点,BC=12∴BC∥QD,BC=QD,∴四边形BCDQ为平行四边形,∴BQ∥CD.∵∠ADC=90°,∴BC⊥BQ.∵PA=PD,AQ=QD,∴PQ⊥AD.又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PQ⊥平面ABCD,∴PQ ⊥BC.又∵PQ∩BQ=Q,∴BC⊥平面PQB.∵BC⊂平面PBC,∴平面PBC⊥平面PQB.(1)可知PQ⊥平面ABCD.如图,以Q为原点,分别以QA,QB,QP所在直线为x轴,y 轴,z轴,建立空间直角坐标系,则Q(0,0,0),D(-1,0,0),P(0,0,√3),B(0,√3,0),C(-1,√3,0),∴QB ⃗⃗⃗⃗⃗ =(0,√3,0),DC ⃗⃗⃗⃗⃗ =(0,√3,0),DP ⃗⃗⃗⃗⃗ =(1,0,√3),PC ⃗⃗⃗⃗⃗ =(-1,√3,-√3), PC=√(-1)2+(√3)2+(-√3)2=√7.设PM ⃗⃗⃗⃗⃗⃗ =λPC ⃗⃗⃗⃗⃗ ,则PM ⃗⃗⃗⃗⃗⃗ =(-λ,√3λ,-√3λ),且0≤λ≤1,得M (-λ,√3λ,√3−√3λ),∴QM ⃗⃗⃗⃗⃗⃗ =(-λ,√3λ,√3(1-λ)).设平面MBQ 的法向量为m =(x ,y ,z ),则{QM ⃗⃗⃗⃗⃗⃗ ·m =0,QB ⃗⃗⃗⃗⃗ ·m =0,即{-λx +√3λy +√3(1-λ)z =0,√3y =0.令x=√3,则y=0,z=λ1-λ,∴平面MBQ 的一个法向量为m =√3,0,λ1-λ. 设平面PDC 的法向量为n =(x',y',z'),则{DC ⃗⃗⃗⃗⃗ ·n =0,DP ⃗⃗⃗⃗⃗ ·n =0,即{√3y '=0,x '+√3z '=0.令x'=3,则y'=0,z'=-√3,∴平面PDC 的一个法向量为n =(3,0,-√3).∴平面QMB 与平面PDC 所成的锐二面角的大小为60°, ∴cos60°=|n ·m ||n ||m |=|3√3-√3·λ1-λ|√12·√3+(λ1-λ) 2=12,∴λ=12.∴PM=12PC=√72.即当PM=√72时,平面QMB 与平面PDC 所成的角大小为60°.第二章 平面解析几何一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x-my-2=0的距离,当θ,m 变化时,d 的最大值为 ( ) A.1 B.2C.3D.4cos 2θ+sin 2θ=1,∴P 为单位圆上一点,而直线x-my-2=0过点A (2,0),∴d 的最大值为|OA|+1=2+1=3,故选C .2.已知点P (-2,4)在抛物线y 2=2px (p>0)的准线上,则该抛物线的焦点坐标是( ) A.(0,2) B.(0,4) C.(2,0) D.(4,0)P (-2,4)在抛物线y 2=2px 的准线上,所以-p2=-2,所以p=4,则该抛物线的焦点坐标是(2,0).3.已知直线l 1:x cos 2α+√3y+2=0,若l 1⊥l 2,则l 2倾斜角的取值范围是( ) A.[π3,π2) B.[0,π6] C.[π3,π2] D.[π3,5π6]l 1:x cos 2α+√3y+2=0的斜率k 1=-2√3∈[-√33,0],当cos α=0时,即k 1=0时,k 不存在,此时倾斜角为12π,由l 1⊥l 2,k 1≠0时,可知直线l 2的斜率k=-1k 1≥√3,此时倾斜角的取值范围为[π3,π2).综上可得l 2倾斜角的取值范围为[π3,π2].4.(2021全国乙,文11)设B 是椭圆C :x 25+y 2=1的上顶点,点P 在C 上,则|PB|的最大值为( ) A.52 B.√6 C.√5 D.2方法一)由椭圆方程可得a=√5,b=1,故椭圆的上顶点为B (0,1).设P (x ,y ),则有x 25+y 2=1, 故x 2=5(1-y 2),由椭圆的性质可得-1≤y ≤1.则|PB|2=x 2+(y-1)2=5(1-y 2)+(y-1)2=-4y 2-2y+6=-4y 2+y2+6=-4y+142+254.因为-1≤y ≤1,所以当y=-14时,|PB|2取得最大值,且最大值为254,所以|PB|的最大值为52. (方法二)由题意可设P (√5cos θ,sin θ)(θ∈R ),又B (0,1),则|PB|2=5cos 2θ+(sin θ-1)2=5cos 2θ+sin 2θ-2sin θ+1=-4sin 2θ-2sin θ+6,于是当sin θ=-14时,|PB|2最大,此时|PB|2=-4×116-2×(-14)+6=-14+12+6=254,故|PB|的最大值为52.5.在一个平面上,机器人到与点C (3,-3)的距离为8的地方绕C 点顺时针而行,它在行进过程中到经过点A (-10,0)与B (0,10)的直线的最近距离为( ) A.8√2-8 B.8√2+8C.8√2D.12√2C (3,-3)距离为8的地方绕C 点顺时针而行,在行进过程中保持与点C 的距离不变,∴机器人的运行轨迹方程为(x-3)2+(y+3)2=64,如图所示;∵A (-10,0)与B (0,10),∴直线AB 的方程为x-10+y10=1,即为x-y+10=0, 则圆心C 到直线AB 的距离为d=√1+1=8√2>8,∴最近距离为8√2-8.6.设P 是双曲线x 2a 2−y 2b 2=1(a>0,b>0)上的点,F 1,F 2是焦点,双曲线的离心率是43,且∠F 1PF 2=90°,△F 1PF 2的面积是7,则a+b 等于( ) A.3+√7 B.9+√7C.10D.16,不妨设点P 是右支上的一点,|PF 1|=m ,|PF 2|=n ,则{ 12mn =7,m -n =2a ,m 2+n 2=4c 2,c a =43,∴a=3,c=4.∴b=√c 2-a 2=√7.∴a+b=3+√7.7.位于德国东部萨克森州的莱科勃克桥(如图所示)有“仙境之桥”之称,它的桥形可近似地看成抛物线,该桥的高度为h ,跨径为a ,则桥形对应的抛物线的焦点到准线的距离为()A.a 28ℎ B.a 24ℎC.a 22ℎD.a 2ℎ,以桥顶为坐标原点,桥形的对称轴为y 轴建立如图所示的平面直角坐标系,该抛物线方程可写为x 2=-2py (p>0).∵该抛物线经过点(a2,-ℎ),代入抛物线方程可得a 24=2hp ,解得p=a 28ℎ.∴桥形对应的抛物线的焦点到准线的距离即为p=a 28ℎ.8.平面直角坐标系中,设A (-0.98,0.56),B (1.02,2.56),点M 在单位圆上,则使得△MAB 为直角三角形的点M 的个数是( ) A.1 B.2C.3D.4,如图,若△MAB为直角三角形,分3种情况讨论:①∠MAB=90°,则点M在过点A与AB垂直的直线上,设该直线为l1,又由A(-0.98,0.56),B(1.02,2.56),则k AB=2.56-0.561.02-(-0.98)=1,则k l1=-1,直线l1的方程为y-0.56=-(x+0.98),即x+y+0.42=0,此时原点O到直线l1的距离d=√2=21√2100<1,直线l1与单位圆相交,有2个公共点,即有2个符合题意的点M;②∠MBA=90°,则点M在过点B与AB垂直的直线上,设该直线为l2,同理可得,直线l2的方程为y-2.56=-(x-1.02),即x+y-3.58=0,此时原点O到直线l2的距离d=√2=179√2100>1,直线l2与单位圆相离,没有公共点,即没有符合题意的点M;③∠AMB=90°,此时点M在以AB为直径的圆上,又由A(-0.98,0.56),B(1.02,2.56),设AB的中点为C,则C的坐标为(0.02,1.56),|AB|=√4+4=2√2,则以AB为直径的圆的圆心C为(0.02,1.56),半径r=12|AB|=√2,此时|OC|=√(0.02)2+(1.56)2=√2.4340,则有√2-1<|OC|<√2+1,两圆相交,有2个公共点,即有2个符合题意的点M.综合可得,共有4个符合条件的点M.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对得3分.9.已知圆C1:x2+y2=r2,圆C2:(x-a)2+(y-b)2=r2(r>0)交于不同的A(x1,y1),B(x2,y2)两点,下列结论正确的有()A.a(x1-x2)+b(y1-y2)=0B.2ax1+2by1=a2+b2C.x1+x2=aD.y1+y2=2bAB的方程为a2+b2-2ax-2by=0,即2ax+2by=a2+b2,故B正确;分别把A(x1,y1),B(x2,y2)两点代入2ax+2by=a2+b2得2ax1+2by1=a2+b2,2ax2+2by2=a2+b2,两式相减得2a(x1-x2)+2b(y1-y2)=0,即a(x1-x2)+b(y1-y2)=0,故A正确;由圆的性质可知,线段AB与线段C1C2互相平分,∴x1+x2=a,y1+y2=b,故C正确,D错误.10.若P是圆C:(x+3)2+(y-3)2=1上任一点,则点P到直线y=kx-1距离的值可以为()A.4B.6C.3√2+1D.8y=kx-1恒过定点A(0,-1)点,当直线与AC垂直时,点P到直线y=kx-1距离最大,等于AC+r,圆心坐标为(-3,3),所以为√(-3)2+(3+1)2+1=6,当直线与圆有交点时,点P到直线的距离最小为0,所以点P到直线y=kx-1距离的范围为[0,6].11.在平面直角坐标系中,曲线C上任意点P与两个定点A(-2,0)和点B(2,0)连线的斜率之和等于2,则关于曲线C的结论正确的有()A.曲线C是轴对称图形B.曲线C上所有的点都在圆x2+y2=2外C.曲线C是中心对称图形D.曲线C上所有点的横坐标x满足|x|>2P(x,y),则k PA+k PB=2,即yx+2+yx-2=2(x≠±2),整理得x2-xy=4(x≠±2),所以曲线C 是中心对称图形,不是轴对称图形,故C 正确,A 错误;由x 2-xy=4>2=x 2+y 2,所以曲线C 上所有的点都在圆x 2+y 2=2外,故B 正确; 由x 2-xy=4可知,x ∈R 且x ≠0,x ≠±2,故D 错误. 12.已知P 是椭圆E :x 28+y 24=1上一点,F 1,F 2为其左右焦点,且△F 1PF 2的面积为3,则下列说法正确的是 ( )A.P 点纵坐标为3B.∠F 1PF 2>π2C.△F 1PF 2的周长为4(√2+1)D.△F 1PF 2的内切圆半径为32(√2-1)P 点坐标为(x ,y ),S=12×2c×|y|=12×4×|y|=3,得y=32或y=-32,故A 错误;椭圆中焦点三角形面积为S=b 2tan θ2(θ为焦点三角形的顶角),S=4tan θ2=3,得tan θ2=34,则θ2<π4,∠F 1PF 2<π2,故B 错误;C △F 1PF 2=2a+2c=4(√2+1),故C 正确;设△F 1PF 2的内切圆半径为R ,12R (4√2+4)=3,得R=32(√2-1),故D 正确. 三、填空题:本题共4小题,每小题5分,共20分.13.经过点P (1,4),且在两坐标轴上的截距相反的直线方程是 .4x 或y=x+3,分2种情况讨论:①直线经过原点,则直线l 的方程为y=4x ;②直线不经过原点,设直线方程为x-y=a ,把点P (1,4)代入可得1-4=a ,解得a=-3,即直线的方程为y=x+3.综上可得,直线的方程为y=4x 或y=x+3.14.若双曲线x 2m −y 2m -5=1的一个焦点到坐标原点的距离为3,则m 的值为 .或-2c=3,当双曲线的焦点在x 轴上时,m>5,c 2=m+m-5=9,所以m=7;当双曲线的焦点在y 轴上时,m<0,c 2=-m+5-m=9,所以m=-2.综上,m=7或m=-2.15.如图,过抛物线y 2=4x 的焦点F 作直线,与抛物线及其准线分别交于A ,B ,C 三点,若FC ⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,则直线AB 的方程为 ,|AB|= .√3(x-1)163F (1,0),准线方程为x=-1,设C (-1,m ),B (a ,b ),∵FC ⃗⃗⃗⃗⃗ =3FB⃗⃗⃗⃗⃗ ,∴(-2,m )=3(a-1,b )=(3a-3,3b ),则3a-3=-2,m=3b ,即a=13,此时b 2=4×13,得b=-√43=-2√33,即m=-2√3,则C (-1,-2√3),则AB 的斜率k=2√32=√3,则直线方程为y=√3(x-1),代入y 2=4x ,得3x 2-10x+3=0,得x 1+x 2=103,即|AB|=x 1+x 2+2=103+2=163.16.已知点O (0,0),A (4,0),B (0,4).若从点P (1,0)射出的光线经直线AB 反射后过点Q (-2,0),则反射光线所在直线的方程为 ;若从点M (m ,0),m ∈(0,4)射出的光线经直线AB 反射,再经直线OB 反射后回到点M ,则光线所经过的路程是 (结果用m 表示).2y+2=0 √2m 2+32,设点P 1(a ,b )与点P (1,0)关于直线AB 对称,则P 1在反射光线所在直线上,又由A (4,0),B (0,4),则直线AB 的方程为x+y=4,则有{ba -1=1,a+12+b2=4,解得{a =4,b =3,即P 1(4,3), 反射光线所在直线的斜率k=3-04-(-2)=12, 则其方程为y-0=12(x+2),即x-2y+2=0;设点M 1(a 0,b 0)与点M 关于直线AB 对称,点M 2与M 关于y 轴对称,易得M 2(-m ,0); 线段M 1M 2的长度就是光线所经过的路程,则有{b 0a 0-m=1,m+a2+b 02=4,解得{a 0=4,b 0=4-m ,即M 1(4,4-m ),又由M 2(-m ,0),则|M 1M 2|=√(4+m )2+(4-m )2=√2m 2+32.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知△ABC 三个顶点的坐标分别为A (2,4),B (0,-5),C (10,0),线段AC 的垂直平分线为l.(1)求直线l 的方程;(2)点P 在直线l 上运动,当|AP|+|BP|最小时,求此时点P 的坐标.直线AC 的斜率为k AC =4-02-10=-12,所以直线l 的斜率为k 1=2,直线AC 的中点为(6,2),所以直线l 的方程为y-2=2(x-6),即2x-y-10=0.(2)由(1)得点A 关于直线l 的对称点为点C ,所以直线BC 与直线l 的交点即为|AP|+|BP|最小的点.由B (0,-5),C (10,0)得直线BC 的方程为x10+y-5=1,即x-2y-10=0,联立方程{x -2y -10=0,2x -y -10=0,解得{x =103,y =-103,所以点P 的坐标为(103,-103). 18.(12分)已知直线l :ax-y-3a+1=0恒过定点P ,过点P 引圆C :(x-1)2+y 2=4的两条切线,设切点分别为A ,B.(1)求直线AB 的一般式方程;(2)求四边形PACB 的外接圆的标准方程.∵直线l :y-1=a (x-3).∴直线l 恒过定点P (3,1).由题意可知直线x=3是其中一条切线,且切点为A (3,0). 由圆的性质可知AB ⊥PC ,∵k PC =1-03-1=12,∴k AB =-2,所以直线AB 的方程为y=-2(x-3),即2x+y-6=0. (2)由题意知|PC|=√(3-1)2+(1-0)2=√5.∵PA ⊥AC ,PB ⊥BC ,所以四边形PACB 的外接圆是以PC 为直径的圆,PC 的中点坐标为(2,12),所以四边形PACB 的外接圆为(x-2)2+(y -12)2=54.19.(12分)已知F 1,F 2分别是双曲线E :x 2a 2−y 2b 2=1(a>0,b>0)的左、右焦点,P 是双曲线上一点,F 2到左顶点的距离等于它到渐近线距离的2倍, (1)求双曲线的渐近线方程;(2)当∠F 1PF 2=60°时,△PF 1F 2的面积为48√3,求此双曲线的方程.因为双曲线的渐近线方程为bx ±ay=0,则点F 2到渐近线距离为√b 2+a 2=b (其中c 是双曲线的半焦距),所以由题意知c+a=2b.又因为a 2+b 2=c 2,解得b=43a ,故所求双曲线的渐近线方程是4x ±3y=0.(2)因为∠F 1PF 2=60°,由余弦定理得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos60°=|F 1F 2|2,即|PF 1|2+|PF 2|2-|PF 1|·|PF 2|=4c 2. 又由双曲线的定义得||PF 1|-|PF 2||=2a ,平方得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=4a 2,相减得|PF 1|·|PF 2|=4c 2-4a 2=4b 2.根据三角形的面积公式得S=12|PF 1|·|PF 2|sin60°=√34·4b 2=√3b 2=48√3,得b 2=48. 由(1)得a 2=916b 2=27,故所求双曲线方程是x 227−y 248=1.20.(12分)已知过抛物线x 2=2py (p>0)的焦点,斜率为√24的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB|=9. (1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗ ,求λ的值.抛物线x 2=2py 的焦点为(0,p2),所以直线AB 的方程为y=√24x+p 2, 联立{y =√24x +p2,x 2=2py ,消去x ,得4y 2-5py+p 2=0,所以y 1+y 2=5p4,由抛物线定义得|AB|=y 1+y 2+p=9,即5p4+p=9,所以p=4.所以抛物线的方程为x 2=8y. (2)由p=4知,方程4y 2-5py+p 2=0, 可化为y 2-5y+4=0,解得y 1=1,y 2=4,故x 1=-2√2,x 2=4√2. 所以A (-2√2,1),B (4√2,4).则OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗ =(-2√2,1)+λ(4√2,4)=(-2√2+4√2λ,1+4λ).因为C 为抛物线上一点,所以(-2√2+4√2λ)2=8(1+4λ),整理得λ2-2λ=0,所以λ=0或λ=2.21.(12分)(2021全国乙,文20)已知抛物线C :y 2=2px (p>0)的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足PQ ⃗⃗⃗⃗⃗ =9QF ⃗⃗⃗⃗⃗ ,求直线OQ 斜率的最大值.在抛物线C 中,焦点F 到准线的距离为p ,故p=2,C 的方程为y 2=4x.(2)设点P (x 1,y 1),Q (x 2,y 2).又F (1,0),则PQ ⃗⃗⃗⃗⃗ =(x 2-x 1,y 2-y 1),QF ⃗⃗⃗⃗⃗ =(1-x 2,-y 2). 因为PQ ⃗⃗⃗⃗⃗ =9QF ⃗⃗⃗⃗⃗ ,所以x 2-x 1=9(1-x 2),y 2-y 1=-9y 2, 得x 1=10x 2-9,y 1=10y 2.又因为点P 在抛物线C 上,所以y 12=4x 1,所以(10y 2)2=4(10x 2-9), 则点Q 的轨迹方程为y 2=25x-925. 易知直线OQ 的斜率存在.设直线OQ 的方程为y=kx ,当直线OQ 和曲线y 2=25x-925相切时,斜率取得最大值、最小值.由{y =kx ,y 2=25x -925,得k 2x 2=25x-925,即k 2x 2-25x+925=0,(*)当直线OQ 和曲线y 2=25x-925相切时,方程(*)的判别式Δ=0,即(-25)2-4k 2·925=0,解得k=±13,所以直线OQ 斜率的最大值为13. 22.(12分)如图所示,取同离心率的两个椭圆成轴对称内外嵌套得一个标志,为美观考虑,要求图中标记的①,②,③三个区域面积彼此相等.已知椭圆面积为圆周率与长半轴、短半轴长度之积,即椭圆x 2a 2+y 2b 2=1(a>b>0)面积为S 椭圆=πab(1)求椭圆的离心率的值;(2)已知外椭圆长轴长为6,用直角角尺两条直角边内边缘与外椭圆相切,移动角尺绕外椭圆一周,得到由点M 生成的轨迹将两椭圆围起来,整个标志完成.请你建立合适的坐标系,求出点M 的轨迹方程.建立如图平面直角坐标系.设外椭圆的方程为x 2a 2+y 2b 2=1(a>b>0),∵内外椭圆有相同的离心率且共轴,可得内椭圆长轴为b ,设内椭圆短轴长为b',焦距长为c',得ca =c 'b ,c'=bca ,b'2=b 2-c'2=b 2-b 2c2a 2=b 2(a 2-c 2)a 2=b 4a 2.∴内椭圆的方程为y 2b 2+x 2b 4a 2=1.图中标记的①,②,③三个区域面积彼此相等,由对称性只需S 外=3S 内,即πab=3πb ·b 2a 得a 2=3b 2,即a 2=3(a 2-c 2),故e=√63.(2)同(1)建立如图平面直角坐标系,由于外椭圆长轴为6,∴a=3,又e=√63,∴c=√6,b 2=3. 则外椭圆方程为x 29+y 23=1.设点M (x 0,y 0),切线方程为y-y 0=k (x-x 0),代入椭圆方程得,(1+3k 2)x 2+6k (y 0-kx 0)x+3(y 0-kx 0)2-9=0.∴Δ=36k 2(y 0-kx 0)2-4(1+3k 2)[3(y 0-kx 0)2-9]=0.化简得(x 0-9)k 2-2x 0y 0k+y 02-3=0.∵两条切线互相垂直,∴k 1k 2=-1,即y 02-3x 02-9=-1,即x 02+y 02=12(x 0≠±3).当两切线与坐标轴垂直时,四点(3,±√3),(-3,±√3)也满足方程,∴轨迹方程为x 2+y 2=12.模块综合测验一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件两直线平行,∴斜率相等.即可得ab=4,又因为不能重合,当a=1,b=4时,满足ab=4,但是重合,故“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的必要不充分条件.2.如图,四面体S-ABC 中,D 为BC 中点,点E 在AD 上,AD=3AE ,则SE ⃗⃗⃗⃗⃗ =( ) A.13SA ⃗⃗⃗⃗⃗ +12SB ⃗⃗⃗⃗⃗ +13SC ⃗⃗⃗⃗B.23SA ⃗⃗⃗⃗⃗ +16SB ⃗⃗⃗⃗⃗ +16SC ⃗⃗⃗⃗ C.12SA ⃗⃗⃗⃗⃗ +14SB ⃗⃗⃗⃗⃗ +14SC ⃗⃗⃗⃗ D.12SA ⃗⃗⃗⃗⃗ +13SB ⃗⃗⃗⃗⃗ +16SC ⃗⃗⃗⃗S-ABC 中,D 为BC 中点,点E 在AD 上,AD=3AE ,∴SE ⃗⃗⃗⃗⃗ =SA ⃗⃗⃗⃗⃗ +13AD ⃗⃗⃗⃗⃗ =SA⃗⃗⃗⃗⃗ +13×12(AC ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )=SA ⃗⃗⃗⃗⃗ +16AC ⃗⃗⃗⃗⃗ +16AB ⃗⃗⃗⃗⃗ =SA ⃗⃗⃗⃗⃗ +16(SC ⃗⃗⃗⃗ −SA ⃗⃗⃗⃗⃗ )+16(SB ⃗⃗⃗⃗⃗ −SA ⃗⃗⃗⃗⃗ )=23SA ⃗⃗⃗⃗⃗ +16SB ⃗⃗⃗⃗⃗ +16SC ⃗⃗⃗⃗ .3.圆P :(x+3)2+(y-4)2=1关于直线x+y-2=0对称的圆Q 的标准方程是( ) A.(x+2)2+(y-1)2=1 B.(x+2)2+(y-5)2=1 C.(x-2)2+(y+5)2=1 D.(x-4)2+(y+3)2=1P :(x+3)2+(y-4)2=1,圆心(-3,4),半径1,关于直线x+y-2=0对称的圆半径不变,设对称圆的圆心为(a ,b ),则{a -32+b+42-2=0,b -4a+3=1,解得{a =-2,b =5,所求圆Q 的标准方程为(x+2)2+(y-5)2=1.4.(2021新高考Ⅰ,5)已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( ) A.13 B.12 C.9 D.6|MF 1|+|MF 2|=2a=6,则√|MF 1|·|MF 2|≤|MF 1|+|MF 2|2=3,则|MF 1|·|MF 2|≤9,当且仅当|MF 1|=|MF 2|=3时,等号成立. 故|MF 1|·|MF 2|的最大值为9.故选C .5.坐标原点O (0,0)在动直线mx+ny-2m-2n=0上的投影为点P ,若点Q (-1,-1),那么|PQ|的取值范围为( ) A.[√2,3√2] B.[√2,2√2] C.[2√2,3√2] D.[1,3√2]mx+ny-2m-2n=0,可化为m (x-2)+n (y-2)=0,故直线过定点M (2,2),坐标原点O (0,0)在动直线mx+ny-2m-2n=0上的投影为点P ,故∠OPM=90°,所以P 在以OM 为直径的圆上,圆的圆心N为(1,1),半径为√2,根据点与圆的关系,|NQ|=√(1+1)2+(1+1)2=2√2, 故√2=2√2−√2≤|PQ|≤√2+2√2=3√2.6.正确使用远光灯对于夜间行车很重要.已知某家用汽车远光灯(如图)的纵断面是抛物线的一部分,光源在抛物线的焦点处,若灯口直径是20 cm,灯深10 cm,则光源到反光镜顶点的距离是()A.2.5 cmB.3.5 cmC.4.5 cmD.5.5 cmxOy,如图所示,设对应抛物线的标准方程为y2=2px,由题意知抛物线过点(10,10),得100=2p×10,得p=5,=2.5,即焦点坐标为(2.5,0),则p2则光源到反光镜顶点的距离是2.5cm.7.如图,四棱锥S-ABCD 中,底面是正方形,各棱长都相等,记直线SA 与直线AD 所成角为α,直线SA 与平面ABCD 所成角为β,二面角S-AB-C 的平面角为γ,则( ) A.α>β>γ B.γ>α>β C.α>γ>β D.γ>β>αAC ,BD ,交于点O ,连接OS ,则OA ,OB ,OS 两两垂直,以O 为原点,OA 为x 轴,OB 为y 轴,OS 为z 轴,建立空间直角坐标系,设|AB|=2,则S (0,0,√2),A (√2,0,0),D (0,-√2,0),B (0,√2,0),SA ⃗⃗⃗⃗⃗ =(√2,0,-√2),AD ⃗⃗⃗⃗⃗ =(-√2,-√2,0),SB ⃗⃗⃗⃗⃗ =(0,√2,-√2),cos α=|SA ⃗⃗⃗⃗⃗ ·AD⃗⃗⃗⃗⃗⃗ ||SA⃗⃗⃗⃗⃗ |·|AD ⃗⃗⃗⃗⃗⃗ |=√4×√4=12,平面ABCD 的法向量n =(0,0,1),cos β=|n ·SA ⃗⃗⃗⃗⃗ ||n |·|SA⃗⃗⃗⃗⃗ |=√2√4=√22,设平面SAB 的法向量m =(x ,y ,z ),则{m ·SA ⃗⃗⃗⃗⃗ =√2x -√2z =0,m ·SB⃗⃗⃗⃗⃗ =√2y -√2z =0,取x=1,得m =(1,1,1),cos γ=|m ·n ||m |·|n |=√3=√33,∵cos α<cos γ<cos β,∴α>γ>β.8.设F 1,F 2是双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的左、右焦点,O 是坐标原点,过F 2作C 的一条渐近线的垂线,垂足为P.若|PF 1|=√6|OP|,则C 的离心率为( ) A.√5 B.√3 C.2 D.√2|PF 2|=b ,|OF 2|=c ,∴|PO|=a.在Rt △POF 2中,cos ∠PF 2O=|PF 2||OF 2|=bc ,∵在△PF 1F 2中,cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2||F 1F 2|=bc ,∴b 2+4c 2-(√6a )22b ·2c=bc ⇒c 2=3a 2,∴e=√3.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对得3分. 9.(2021新高考Ⅰ,11)已知点P 在圆(x-5)2+(y-5)2=16上,点A (4,0),B (0,2),则( ) A.点P 到直线AB 的距离小于10 B.点P 到直线AB 的距离大于2 C.当∠PBA 最小时,|PB|=3√2 D.当∠PBA 最大时,|PB|=3√2,记圆心为M ,半径为r ,则M (5,5),r=4.由条件得,直线AB 的方程为x4+y2=1,整理得x+2y-4=0,过点M 作MN 垂直于直线AB ,垂足为N ,直线MN 与圆M 分别交于点P 1,P 2,圆心M (5,5)到直线AB 的距离|MN|=√12+22=√5,于是点P 到直线AB 的距离最小值为|P 2N|=|MN|-r=√5-4,最大值为|P 1N|=|MN|+r=√5+4.又√5-4<2,√5+4<10,故A 正确,B 错误;过点B 分别作圆的两条切线BP 3,BP 4,切点分别为点P 3,P 4,则当点P 在P 3处时∠PBA 最大,在P 4处时∠PBA 最小.又|BP 3|=|BP 4|=√|BM |2-r 2=√52+(5-2)2-42=3√2,故C,D 正确.故选A,C,D .10.若a =(-1,λ,-2),b =(2,-1,1),a 与b 的夹角为120°,则λ的值为( ) A.17 B.-17 C.-1 D.1a =(-1,λ,-2),b =(2,-1,1),a 与b 的夹角为120°,∴cos120°=a ·b|a |·|b |=√5+λ2·√6,解得λ=-1或λ=17.11.已知P是椭圆C:x 26+y2=1上的动点,Q是圆D:(x+1)2+y2=15上的动点,则()A.C的焦距为√5B.C的离心率为√306C.圆D在C的内部D.|PQ|的最小值为2√55c=√6-1=√5,则C的焦距为2√5,e=√5√6=√306.设P(x,y)(-√6≤x≤√6),则|PD|2=(x+1)2+y2=(x+1)2+1-x 26=56(x+65)2+45≥45>15,所以圆D在C的内部,且|PQ|的最小值为√45−√15=√55.12.已知直线l过点P(1,0,-1),平行于向量a=(2,1,1),平面α过直线l与点M(1,2,3),则平面α的法向量可能是()A.(1,-4,2)B.(14,-1,12)C.(-14,1,-12) D.(0,-1,1),所研究平面的法向量垂直于向量a=(2,1,1)和向量PM⃗⃗⃗⃗⃗⃗ , 而PM⃗⃗⃗⃗⃗⃗ =(1,2,3)-(1,0,-1)=(0,2,4),选项A,(2,1,1)·(1,-4,2)=0,(0,2,4)·(1,-4,2)=0满足垂直,故正确;选项B,(2,1,1)·(14,-1,12)=0,(0,2,4)·(14,-1,12)=0满足垂直,故正确;选项C,(2,1,1)·(-14,1,-12)=0,(0,2,4)·(-14,1,-12)=0满足垂直,故正确;选项D,(2,1,1)·(0,-1,1)=0,但(0,2,4)·(0,-1,1)≠0,故错误.三、填空题:本题共4小题,每小题5分,共20分.13.过点(1,√2)的直线l将圆x2+y2-4x=0分成两段弧,当劣弧所对圆心角最小时,直线l的斜率k=.。
本册综合测试题(B)(时间:120分钟 满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2014~2015学年度某某德阳五中高一上学期月考)若集合A ={x |1<x <2},B ={x |x >a },满足A ⊆B ,则实数a 的取值X 围是( )A .a ≤1B .a <1C .a ≥1D .a ≤2[答案] A[解析] 将集合A 、B 分别表示在数轴上,如图所示.∵A ⊆B ,∴a ≤1.2.(2014~2015学年度某某市第一中学高一上学期期中测试)函数g (x )=2x+5x 的零点所在的一个区间是( )A .(0,1)B .(-1,0)C .(1,2)D .(-2,-1)[答案] B[解析] g (-1)=12-5<0,g (0)=20=1>0,故选B .3.已知f (x 2)=ln x ,则f (3)的值是( ) A .ln3 B .ln8 C .12ln3 D .-3ln2[答案] C[解析] 设x 2=t ,∵x >0,x =t , ∴f (t )=ln t =12ln t ,∴f (x )=12ln x ,∴f (3)=12ln3.4.(2014~2015学年度某某某某中学高一上学期月考)设f (x )是定义在R 上的偶函数,且x >0时,f (x )=x 2+1,则f (-2)=( )A .-5B .5C .3D .-3[答案] B[解析] ∵x >0时,f (x )=x 2+1,∴f (2)=5. 又∵f (x )是定义在R 上的偶函数,∴f (-2)=f (2)=5.5.若m =(2+3)-1,n =(2-3)-1,则(m +1)-2+(n +1)-2的值是( ) A .1 B .14 C .22D .23[答案] D[解析] ∵m =(2+3)-1=2-3,n =(2-3)-1=2+ 3.∴(m +1)-2+(n +1)-2=(3-3)-2+(3+3)-2=3+32+3-323-323+32=2436=23. 6.函数f (x )=x 2-5x +6x -2的定义域是( )A .{x |2<x <3}B .{x |x <2或x >3}C .{x |x ≤2或x ≥3}D .{x |x <2或x ≥3}[答案] D[解析] 解法一:验证排除法:x =3时,函数f (x )有意义,排除A 、B ;x =2时,函数f (x )无意义,排除C ,故选D .解法二:要使函数有意义,应满足⎩⎪⎨⎪⎧x 2-5x +6≥0x -2≠0,解得x <2或x ≥3,故选D .7.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y =x 2+bx +c 的图象经过(1,0),…,求证这个二次函数的图象关于直线x =2对称.根据已知信息,题中二次函数图象不具有的性质是( ) A .过点(3,0) B .顶点(2,-2) C .在x 轴上截线段长是2 D .与y 轴交点是(0,3) [答案] B[解析] ∵二次函数y =x 2+bx +c 的图象经过点(1,0), ∴1+b +c =0,又二次函数的图象关于直线x =2对称,∴b =-4,∴c =3.∴y =x 2-4x +3,其顶点坐标为(2,-1),故选B .8.(2015·某某文,3)设a =0.60.6,b =0.61.5,c =1.50.6,则a 、b 、c 的大小关系是( ) A .a <b <c B .a <c <b C .b <a <c D .b <c <a[答案] C[解析] ∵c =1.50.6>1,0<b =0.61.5<0.60.6=a <1,∴b <a <c .9.(2014~2015学年度某某某某市金台区高一上学期期中测试)若lg a +lg b =0(a ≠1,b ≠1),则函数f (x )=a x 与g (x )=b x 的图象( )A .关于直线y =x 对称B .关于x 轴对称C .关于y 轴对称D .关于原点对称[答案] C[解析] ∵lg a +lg b =0,∴lg ab =0,∴ab =1,∴b =1a.∴f (x )=a x 与g (x )=b x=⎝ ⎛⎭⎪⎫1ax 的图象关于y 轴对称.10.函数f (x )=log 2(-x 2+1)的单调递增区间为( )A .(-∞,0)B .(0,+∞)C .(-1,0]D .[0,1)[答案] C[解析] 由-x 2+1>0,得-1<x <1.令u =-x 2+1(-1<x <1)的单调递增区间为(-1,0], 又y =log2u 为增函数,∴函数f (x )的单调递增区间为(-1,0].11.(2015·某某理,10)设函数f (x )=⎩⎪⎨⎪⎧3x -1x <12xx ≥1,则满足f (f (a ))=2f (a )的a 的取值X 围是( )A .[23,1]B .[0,1]C .[23,+∞)D .[1,+∞)[答案] C[解析] 由f (f (a ))=2f (a )可得f (a )≥1,故有⎩⎪⎨⎪⎧a <13a -1≥1或⎩⎪⎨⎪⎧a ≥12a≥1,二者取并集即得a 的取值X 围是⎣⎢⎡⎭⎪⎫23,+∞,故选C . 12.已知某产品的总成本y (万元)与产量x (台)之间的函数关系是y =0.1x 2-11x +3 000,每台产品的售价为25万元,则生产者为获得最大利润,产量x 应定为( )A .55台B .120台C .150台D .180台[答案] D[解析] 设利润为S ,由题意得,S =25x -y =25x -0.1x 2+11x -3 000=-0.1x 2+36x -3 000=-0.1 (x -180)2+240, ∴当产量x =180台时,生产者获得最大利润,故选D .二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上) 13.(2014~2015学年度潍坊四县市高一上学期期中测试)已知f (x )=x 22-x+(3x +1)0,则函数f (x )的定义域为________________.[答案] ⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫-13,2 [解析] 由题意,得⎩⎪⎨⎪⎧2-x >03x +1≠0,∴x <2,且x ≠-13,故函数f (x )的定义域为⎝⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫-13,2.14.(2014~2015学年度某某南开中学高一上学期期中测试)已知f (x )=⎩⎪⎨⎪⎧x 2+1x <1-2x +3x ≥1,则f [f (2)]=____.[答案] 2[解析] f (2)=-4+3=1,f (-1)=(-1)2+1=2, ∴f [f (2)]=f (-1)=2.15.(2014~2015学年度某某一中高一上学期期中测试)函数y =x 2+1,x ∈[-1,2]的值域为__________.[答案] [1,5][解析] ∵x ∈[-1,2],∴当x =0时,y min =1,当x =2时,y max =5. ∴函数y =x 2+1,x ∈[-1,2]的值域为[1,5].16.设M 、N 是非空集合,定义M ⊙N ={x |x ∈M ∪N 且x ∉M ∩N }.已知M ={x |y =2x -x 2},N ={y |y =2x ,x >0},则M ⊙N 等于________.[答案] {x |0≤x ≤1或x >2}[解析] ∵M ={x |2x -x 2≥0}={x |0≤x ≤2},N ={y |y >1},∴M ∩N ={x |1<y ≤2},M ∪N ={x |x ≥0}, ∴M ⊙N ={x |0≤x ≤1或x >2}.三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)(2014~2015学年度某某某某市十三校高一上学期期中测试)已知非空集合A ={x |2a -2<x <a },B ={x |x ≤1或x ≥2},且A ∩B =A ,某某数a 的取值X 围.[解析] ∵A ∩B =A ,∴A ⊆B . ∴当A =∅时,2a -2≥a ,∴a ≥2.当A ≠∅时,由题意得⎩⎪⎨⎪⎧2a -2<a a ≤1或⎩⎪⎨⎪⎧2a -2<a2a -2≥2,解得a ≤1.综上可知,实数a 的取值X 围是a ≤1或a ≥2.18.(本小题满分12分)(2014~2015学年度某某某某中学高一上学期期中测试)计算下列各式的值:(1)⎝ ⎛⎭⎪⎫21412 -(-9.6)0-⎝ ⎛⎭⎪⎫33823 +(1.5)2+(2×43)4; (2)lg 25+lg2×lg500-12lg 125-log 29×log 32.[解析] (1)⎝ ⎛⎭⎪⎫21412 -(-9.6)0-⎝ ⎛⎭⎪⎫33823 +(1.5)2+(2×43)4=⎝ ⎛⎭⎪⎫9412 -(-9.6)0-⎝ ⎛⎭⎪⎫27823 +⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫212×3144=32-1-94+94+12=252. (2)lg 25+lg2×lg500-12lg 125-log 29×l og 32=lg 25+lg2(2+lg5)-lg 15-lg9lg2×lg2lg3=lg5(lg2+lg5)+lg4+lg5-2 =lg100-2=2-2=0.19.(本小题满分12分)(2014~2015学年度某某省实验中学高一月考)已知二次函数f (x )=2kx 2-2x -3k -2,x ∈[-5,5].(1)当k =1时,求函数f (x )的最大值和最小值;(2)某某数k 的取值X 围,使函数y =f (x )在区间[-5,5]上是单调函数. [解析] (1)当k =1时,f (x )=2x 2-2x -5=2⎝⎛⎭⎪⎫x -122-112,∵x ∈[-5,5],∴当x =12时,f (x )min =-112,当x =-5时,f (x )max =55.(2)当k =0时,f (x )=-2x -2在区间[-5,5]上是减函数,当k ≠0时,由题意得12k ≥5或12k≤-5, ∴0<k ≤110或-110≤k <0.综上可知,实数k 的取值X 围是⎣⎢⎡⎦⎥⎤-110,110.20.(本小题满分12分)某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出,当每辆车的月租金增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收入最大?最大月收入是多少元? [解析] (1)当每辆车的月租金定为3 600元时,未租出的车辆数为3 600-3 00050=12,所以能租出100-12=88辆车.(2)设每辆车的月租金定为x (x 为50的整数倍)元时,租赁公司的月收入为y 元,则y =⎝⎛⎭⎪⎫100-x -3 00050·(x -150)-x -3 00050×50=-150x 2+162x -21 000=-150(x -4 050)2+307 050.所以当x =4 050时,y max =307 050.故当每辆车的月租金定为4 050元时,租赁公司的月收入最大,最大月收入为307 050元.21.(本小题满分12分)(2014~2015学年度某某省实验中学高一月考)已知函数f (x )是定义在(0,+∞)上的增函数,且满足f (xy )=f (x )+f (y ).(1)求f (1)的值;(2)已知f (3)=1,且f (a )>f (a -1)+2,求a 的取值X 围; (3)证明:f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y ).[解析] (1)令x =y =1, 则f (1)=f (1)+f (1)=2f (1), ∴f (1)=0.(2)∵f (xy )=f (x )+f (y ), f (3)=1, ∴f (9)=f (3)+f (3)=2.∴f (a )>f (a -1)+2化为f (a )>f (a -1)+f (9)=f (9a -9),由题意得⎩⎪⎨⎪⎧a >0a -1>0a >9a -9, 解得1<a <98.(3)∵f (x )=f ⎝ ⎛⎭⎪⎫x y·y =f ⎝ ⎛⎭⎪⎫x y +f (y ),∴f ⎝ ⎛⎭⎪⎫x y=f (x )-f (y ).22.(本小题满分14分)已知函数f (x )=lg(m x-2x)(0<m <1). (1)当m =12时,求f (x )的定义域;(2)试判断函数f (x )在区间(-∞,0)上的单调性并给出证明; (3)若f (x )在(-∞,-1]上恒取正值,求m 的取值X 围.[解析] (1)当m =12时,要使f (x )有意义,须(12)x -2x >0,即2-x >2x,可得:-x >x ,∴x <0∴函数f (x )的定义域为{x |x <0}.(2)设x 2<0,x 1<0,且x 2>x 1,则Δ=x 2-x 1>0 令g (x )=m x-2x,则g (x 2)-g (x 1)=m x2-2 x2-m x1+2 x1 =m x2-m x1+2 x1-2 x 2 ∵0<m <1,x 1<x 2<0, ∴m x2-m x1<0,2 x1-2 x2<0g (x 2)-g (x 1)<0,∴g (x 2)<g (x 1)∴lg[g (x 2)]<lg[g (x 1)], ∴Δy =lg(g (x 2))-lg(g (x 1))<0, ∴f (x )在(-∞,0)上是减函数.(3)由(2)知:f (x )在(-∞,0)上是减函数, ∴f (x )在(-∞,-1]上也为减函数,∴f (x )在(-∞,-1]上的最小值为f (-1)=lg(m -1-2-1) 所以要使f (x )在(-∞,-1]上恒取正值, 只需f (-1)=lg(m -1-2-1)>0,即m -1-2-1>1,∴1m >1+12=32,∵0<m <1,∴0<m <23.。
新教材高中数学:模块测试卷(二)(时间:120分钟 满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数f (x )=-x 2+2x+4(x ∈R ),则它的值域与单调递增区间分别是( )A.值域[5,+∞),单调递增区间[1,+∞)B.值域[5,+∞),单调递增区间(-∞,1]C.值域(-∞,5],单调递增区间[1,+∞)D.值域(-∞,5],单调递增区间(-∞,1]f (x )=-x 2+2x+4=-(x 2-2x )+4=-(x-1)2+5,则函数f (x )=-x 2+2x+4(x ∈R )的值域是(-∞,5],单调递增区间为(-∞,1].故选D .2.(2021江苏扬州邗江高一期中)已知命题p :“∃x>0,x+t-1=0”,若p 为真命题,则实数t 的取值范围是( ) A.(1,+∞) B.(-∞,1) C.[1,+∞) D.(-∞,1]p :“∃x>0,x+t-1=0”,即“∃x>0,x=1-t ”,又p 为真命题,则1-t>0,即t<1.故选B . 3.已知函数f (x )=ax+1x 2+2是定义在R 上的偶函数,则实数a 的取值为( ) A.1 B.0C.-1D.2f (x )=ax+1x 2+2是定义在R 上的偶函数,所以f (x )=f (-x ),即ax+1x 2+2=-ax+1(-x )2+2,解得a=0.故选B . 4.(2021湖南长沙湖南师大附中高一期末)下列说法正确的是( ) A.若a>b ,则1a<1bB.若a<b<0,则|a|>|b|C.若a>b ,则ac 2>bc 2D.若ac>bc ,则a>ba>0>b 时,1a >1b ,故A 不正确;若a<b<0,则-a>-b>0,则|a|=-a>|b|=-b ,故B 正确;当c=0时,ac 2>bc 2不成立,故C 不正确;若ac>bc ,当c<0时,a<b ,故D 不正确.故选B.5.(2021山东济宁高一期末)中国南宋大数学家秦九韶提出了“三斜求积术”,即已知三角形三边长求三角形面积的公式.设三角形的三条边长分别为a ,b ,c ,则三角形的面积S 可由公式S=√p (p -a )(p -b )(p -c )求得,其中p 为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足a=3,b+c=5,则此三角形面积的最大值为( ) A.3B.3C.√7D.√11p=12×(3+5)=4,S=√4(4-a )(4-b )(4-c )=√4(4-b )(4-c )=2√(4-b )(4-c )≤8-(b+c )=3,当且仅当4-b=4-c ,即b=c 时,等号成立,∴此三角形面积的最大值为3.故选B .6.(2021湖北八市高三一模)已知M ,N 均为R 的子集,且M ⊆∁R N ,则∁R M ∩N=( ) A.⌀ B.MC.ND.R,如图所示,故∁R M ∩N=N.故选C .7.(2021辽宁营口高一期末)奇函数f (x )在(0,+∞)内单调递减且f (2)=0,则不等式(x+1)f (x )<0的解集为( )A.(-∞,-2)∪(-1,0)∪(2,+∞)B.(-2,-1)∪(2,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(-1,0)∪(0,2)f (x )在(0,+∞)内单调递减且f (2)=0,所以f (x )在(-∞,0)上单调递减,且f (-2)=0.由不等式(x+1)f (x )<0得{x +1>0,f (x )<0或{x +1<0,f (x )>0,即{x >-1,x >2或-2<x <0或{x <-1,0<x <2或x <-2,故x>2或-1<x<0或x<-2.故选A .8.(2021安徽江淮名校高一入学考试)设x ,y 均为正实数,且32+x +32+y =1,则x+y 的最小值为( ) A.8 B.16 C.9 D.6解析因为x ,y 均为正实数且32+x+32+y=1,所以x+y=2+x+2+y-4=[(2+x )+(2+y )]3x+2+3y+2-4=32+y+2x+2+x+2y+2-4≥32+2√y+2x+2·x+2y+2-4=12-4=8,当且仅当y+2x+2=x+2y+2,即x=y=4时,等号成立.因此x+y的最小值为8.故选A .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.(2021山东烟台高一期中)已知集合U=(-∞,+∞),A={x|2x 2-x ≤0},B={y|y=x 2},则( ) A.A ∩B=0,12 B.∁U A ⊆∁U BC.A ∪B=BD.∁B A=12,+∞解析∵集合U=(-∞,+∞),A={x|2x 2-x ≤0}=x 0≤x ≤12,B={y|y=x 2}={y|y ≥0},∴A ∩B=0,12,故A 正确;∁U A=x x<0或x>12,∁U B={y|y<0},∴∁U A ⊇∁U B ,故B 错误;A ∪B=[0,+∞)=B ,故C 正确;∁B A=12,+∞,故D 正确.故选ACD .10.(2021云南昆明高一期末)已知函数f (x )=ax 2+2x+1(a ≠0),若方程f (x )=0有两个不等的实数根x 1,x 2,且x 1<x 2,则( )A.当a>0时,不等式f (x )<0的解集为{x|x 1<x<x 2}B.当a>0时,不等式f (x )<0的解集为{x|x<x 1或x>x 2}C.若不等式f (x )>0的解集为{x|x 1<x<x 2},则x 1>0D.若不等式f (x )>0的解集为{x|x 1<x<x 2},则x 2>0a>0时,函数图像开口方向向上,所以不等式f (x )<0的解集为{x|x 1<x<x 2},故A 正确,B 错误;若不等式f (x )>0的解集为{x|x 1<x<x 2},则a<0,对称轴-1a >0,函数又过定点(0,1),则x 1<0,故C 错误;若不等式f (x )>0的解集为{x|x 1<x<x 2},则a<0,对称轴-1a >0,则x 2>0,故D 正确.故选AD .11.(2021湖北黄冈、天门高一期末)下列各说法中,p 是q 的充要条件的有( ) A.p :四边形是正方形;q :四边形的对角线互相垂直且平分 B.p :两个三角形相似;q :两个三角形三边对应成比例 C.p :xy>0;q :x>0,y>0D.p :x=1是一元二次方程ax 2+bx+c=0的一个根;q :a+b+c=0(a ≠0),则四边形的对角线互相垂直且平分成立,但对角线互相垂直且平分的四边形可能是菱形,故p 不是q 的充要条件;两个三角形相似与两个三角形三边对应成比例可以互相推导,故p 是q 的充要条件;当xy>0时,可能x<0,y<0,故p 不是q 的充要条件;x=1是一元二次方程ax 2+bx+c=0的一个根,将x=1代入方程可得a+b+c=0,当a+b+c=0时,将c=-a-b 代入方程ax 2+bx+c=0得ax 2+bx-a-b=(ax+a+b )(x-1)=0,解得x=1,故p 是q 的充要条件.故选BD . 12.(2021山东威海高一期末)已知函数f (x )={x 2-2x ,x <0,-2x +3,x ≥0,则( )A.f [f (-1)]=-3B.若f (a )=-1,则a=2C.f (x )在R 上是减函数D.若关于x 的方程f (x )=a 有两解,则a ∈(0,3]f(-1)=(-1)2-2×(-1)=3,所以f[f(-1)]=f(3)=-2×3+3=-3,故A正确;当a<0时,f(a)=a2-2a=-1,解得a=1,不符合题意,舍去,当a≥0时,f(a)=-2a+3=-1,解得a=2,符合题意,故B正确;作出f(x)的图像,如图所示,所以f(x)在R上不是减函数,故C错误;方程f(x)=a有两解,则y=f(x)图像与y=a图像有两个公共点,如图所示.所以a∈(0,3],故D正确.故选ABD.三、填空题:本题共4小题,每小题5分,共20分.13.(2021河北石家庄一中高一月考)已知集合A={x|-1≤x≤2,x∈Z},集合B={x|x>0},则集合A∩B的子集个数为.A={x|-1≤x≤2,x∈Z}={-1,0,1,2},B={x|x>0},∴A∩B={1,2},共有2个元素, 故集合A∩B的子集个数为22=4个.14.(2021山东威海高一期末)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式,后人借助这种分割方法所得的图形证明了勾股定理.如图所示的矩形由两个这样的图形拼成,若a=2,b=3,则该矩形的面积为.x,∵a=2,b=3,∴AB=a+b=5, 在Rt △ABC 中,AC 2+BC 2=AB 2, 即(2+x )2+(3+x )2=52,即x 2+5x=6,则该矩形的面积为(2+x )(3+x )=x 2+5x+6=12.15.(2021广东深圳高三一模)已知函数的图像关于y 轴对称,且与直线y=x 相切,则满足上述条件的二次函数可以为f (x )= .2+14(答案不唯一)f (x )的图像关于y 轴对称,所以设f (x )=ax 2+c.由{y =ax 2+c ,y =x ,得ax 2-x+c=0, 所以Δ=1-4ac=0,即ac=14. 取a=1,c=14,则f (x )=x 2+14(答案不唯一).16.(2021河北邯郸高一期末)已知函数f (x )={|x +1|,x >0,x 2+1,x ≤0,若f (f (m ))=2,则m= .f (m )=t ,则f (t )=2,①当t>0时,|t+1|=2,则t=1,所以f (m )=1; 当m>0时,|m+1|=1,则m=0(舍去), 当m ≤0时,m 2+1=1,则m=0. ②当t ≤0时,t 2+1=2,则t=-1, 所以f (m )=-1;当m>0时,|m+1|=-1,显然此时方程无实数解,当m ≤0时,m 2+1=-1,显然此时方程无实数解.综上所述,m=0.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2021江西名校协作体高一联考)已知二次函数f (x )的最小值为1,函数y=f (x+1)是偶函数,且f (0)=3.(1)求f (x )的解析式;(2)若函数f (x )在区间[2a ,a+1]上不单调,求实数a 的取值范围.因为函数y=f (x+1)是偶函数,所以f (x )的图像关于x=1对称.又最小值为1,所以设f (x )=a (x-1)2+1. 又f (0)=3,解得a=2. ∴f (x )=2(x-1)2+1=2x 2-4x+3.(2)要使f (x )在区间[2a ,a+1]上不单调,则2a<1<a+1, ∴0<a<12.故实数a 的取值范围为0,12.18.(12分)(2021安徽安庆高一期末)已知正实数x ,y 满足4x+4y=1. (1)求xy 的最大值;(2)若不等式4x +1y ≥a 2+5a 恒成立,求实数a 的取值范围.x+4y=1,所以14=x+y ≥2√xy ,解得xy ≤164,当且仅当x=y=18时,等号成立,∴xy 的最大值为164. (2)4x+1y =4x+1y(4x+4y )=20+16y x+4x y≥20+2√16y x·4x y=36,当且仅当x=16,y=112时,等号成立, ∴a 2+5a ≤36,解得-9≤a ≤4, 即a 的取值范围是[-9,4].19.(12分)(2021江苏苏州新区吴县中学高一月考)已知f (x )={1,x <0,2,x ≥0,g (x )=3f (x -1)-f (x -2)2. (1)当1≤x<2时,求g (x );(2)当x ∈R 时,求g (x )的解析式,并画出其图像; (3)求函数h (x )=x f (g (x ))-2g (f (x ))的零点.当1≤x<2时,x-1≥0,x-2<0,故g (x )=6-12=52.(2)由(1)知,当1≤x<2时,g (x )=52. 当x<1时,x-1<0,x-2<0, 故g (x )=3-12=1. 当x ≥2时,x-1>0,x-2≥0,故g (x )=6-22=2.所以当x ∈R 时,g (x )的解析式为g (x )={1,x <1,52,1≤x <2,2,x ≥2.其函数图像如下:(3)因为g (x )>0,则f (g (x ))=2,x ∈R , 故g (f (x ))={g (1)=52,x <0,g (2)=2,x ≥0,所以方程x f (g (x ))=2g (f (x ))化简后可得x 2=5(x<0)或x 2=4(x ≥0), 解得x=-√5或x=2.20.(12分)(2021福建三明高一期末)某市居民用电收费方式有以下两种,用户可自由选择其中一种. 方式一:阶梯式递增电价,即把居民用户每月用电量划分为三档,电价实行分档递增,具体电价如下表:方式二:阶梯式递增电价基础上实行峰谷分时电价,即先按阶梯式递增电价标准计算各档电量的电费,然后高峰时段(8:00—22:00)每度加价0.03元,低谷时段(22:00至次日8:00)每度降价0.20元,得出用户的总电费.(1)假设某居民用户月均用电量为x 度,按方式一缴费,月均电价为y 元,求y 关于x 的函数解析式; (2)若该用户某月用电a 度(0<a<420),其中高峰时段用电量占该月总用电量的23,按方式二缴费,电费为143元,求该月用电量.由题意可得当0≤x ≤230时,y=0.5x ,当230<x ≤420时,y=230×0.5+0.6(x-230)=0.6x-23,当x>420时,y=230×0.5+0.6×(420-230)+0.8(x-420),即y=0.8x-107,所以y={0.5x ,0≤x ≤230,0.6x -23,230<x ≤420,0.8x -107,x >420.(2)因为该用户某月用电a 度,高峰时段用电量为23a 度,当0≤x ≤230时,用电费用为0.3×13a+0.53×2a3=143,解得a ≈315.4>230,不合题意,舍去.当230<x ≤420时,用电费用为0.3×13+0.53×23×230+0.4×13+0.63×23(a-230)=143,解得a ≈300, 所以该月用电量约为300度.21.(12分)(2021福建福州高一期末)已知函数f (x )=√x 2-(a -1)x +2a ,且f (1)=√3. (1)求实数a 的值;(2)判断f (x )在区间(-∞,0]上的单调性并用定义证明.由f (1)=√3,得1-(a-1)+2a=3,所以a=1.(2)由(1)知f (x )=√x 2+2,其定义域为R , f (x )在区间(-∞,0]上单调递减. 证明如下:任取x 1,x 2∈(-∞,0],且x 1<x 2,f (x 1)-f (x 2)=√x 12+2−√x 22+2=(√x 12+2-√x 22+2)(√x 12+2+√x 22+2)√x 1+2+√x 2+2=1222√x 1+2+√x 2+2 =1222√x 1+2+√x 2+2 =1212√x 1+2+√x 2+2.因为x 1≤0,x 2≤0,且x 1<x 2,所以x 1+x 2<0,x 1-x 2<0,√x 12+2+√x 22+2>0,则f (x 1)-f (x 2)>0,所以f (x 1)>f (x 2), 故f (x )在区间(-∞,0]上单调递减.22.(12分)(2021安徽滁州高一期末)设命题p :对任意x ∈[1,4],不等式x 2-4x+2≥m 2-3m 恒成立;命题q :存在x ∈0,12,使得不等式x 2-x+m-54≥0成立. (1)若p 为真命题,求实数m 的取值范围;(2)若命题p ,q 有且只有一个是真命题,求实数m 的取值范围.对任意x ∈[1,4],不等式x 2-4x+2≥m 2-3m 恒成立,即(x 2-4x+2)min ≥m 2-3m.x 2-4x+2=(x-2)2-2,当x=2时,x 2-4x+2取到最小值-2,即-2≥m 2-3m ,∴1≤m ≤2. 故p 为真命题时,实数m 的取值范围是[1,2].(2)命题q :存在x ∈0,12,使得不等式x 2-x+m-54≥0成立,故只需x 2-x+m-54max ≥0.而x 2-x+m-54=x-122+m-32, 所以当x=0时,x 2-x+m-54取到最大值m-54, 故m-54≥0,解得m ≥54.即命题q 为真命题时,实数m 的取值范围是54,+∞.依题意命题p ,q 一真一假,若p 为假命题,q 为真命题,则{m <1或m >2,m ≥54,,得m>2; 若q 为假命题,p 为真命题,则{1≤m ≤2,m <54,得1≤m<54.综上,实数m 的取值范围为1,54∪(2,+∞).。
选修1-1模块综合测试(一)(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.若命题p :∀x∈R,2x 2+1>0,则¬p 是( ) A .∀x ∈R,2x 2+1≤0 B .∃x ∈R,2x 2+1>0 C .∃x ∈R,2x 2+1<0 D .∃x ∈R,2x 2+1≤0 解析:¬p :∃x ∈R,2x 2+1≤0. 答案:D2.不等式x -1x>0成立的一个充分不必要条件是( )A. -1<x <0或x >1B. x <-1或0<x <1C. x >-1D. x >1解析:本题主要考查充要条件的概念、简单的不等式的解法.画出直线y =x 与双曲线y =1x 的图象,两图象的交点为(1,1)、(-1,-1),依图知x -1x>0⇔-1<x <0或x >1 (*),显然x >1⇒(*);但(*)x >1,故选D.答案:D3.[2014·某某模拟]命题“若a >b ,则a +1>b ”的逆否命题是( ) A .若a +1≤b ,则a >b B .若a +1<b ,则a >b C .若a +1≤b ,则a ≤b D .若a +1<b ,则a <b解析:“若a >b ,则a +1>b ”的逆否命题为“若a +1≤b ,则a ≤b ”,故选C. 答案:C4.[2014·某某省日照一中模考]下列命题中,为真命题的是( ) A. ∀x ∈R ,x 2-x -1>0B. ∀α,β∈R ,sin(α+β)<sin α+sin βC. 函数y =2sin(x +π5)的图象的一条对称轴是x =45πD. 若“∃x 0∈R ,x 20-ax 0+1≤0”为假命题,则a 的取值X 围为(-2,2)解析:本题主要考查命题的判定及其相关知识的理解.因为x 2-x -1=(x -12)2-54,所以A 错误;当α=β=0时,有sin(α+β)=sin α+sin β,所以B 错误;当x =4π5时,y =0,故C 错误;因为“∃x 0∈R ,x 20-ax 0+1≤0”为假命题,所以“∀x ∈R ,x 2-ax +1>0”为真命题,即Δ<0,即a 2-4<0,解得-2<a <2,即a 的取值X 围为(-2,2).故选D.答案:D5.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .12解析:设椭圆的另一焦点为F ,由椭圆的定义知 |BA |+|BF |=23,且|CF |+|AC |=23, 所以△ABC 的周长=|BA |+|BC |+|AC | =|BA |+|BF |+|CF |+|AC |=4 3. 答案:C6.过点(2,-2)与双曲线x 2-2y 2=2有公共渐近线的双曲线方程为( ) A.x 22-y 24=1 B.x 24-y 22=1 C.y 24-x 22=1 D. y 22-x 24=1解析:与双曲线x 22-y 2=1有公共渐近线方程的双曲线方程可设为x 22-y 2=λ,由过点(2,-2),可解得λ=-2. 所以所求的双曲线方程为y 22-x 24=1.答案:D7.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的右支上到原点和右焦点距离相等的点有两个,则双曲线离心率的取值X 围是( )A .e > 2B .1<e < 2C .e >2D .1<e <2解析:由题意,以原点及右焦点为端点的线段的垂直平分线必与右支交于两个点,故c2>a ,∴c a>2.答案:C8.把一个周长为12 cm 的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱的底面周长与高的比为( )A. 1∶πB. 2∶πC. 1∶2D. 2∶1解析:设圆柱高为x ,底面半径为r ,则r =6-x 2π,圆柱体积V =π(6-x 2π)2x =14π(x 3-12x 2+36x )(0<x <6),V ′=34π(x -2)(x -6). 当x =2时,V 最大.此时底面周长为6-x =4, (6-x )∶x =4∶2=2∶1. 答案:D9.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于( )A. 3 B .2 C. 5D. 6解析:双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b ax ,因为y =x 2+1与渐近线相切,故x2+1±bax =0只有一个实根,∴b 2a 2-4=0,∴c 2-a 2a 2=4, ∴c 2a2=5,∴e = 5. 答案:C10.[2014·某某五校联考]设函数f (x )=e x(sin x -cos x )(0≤x ≤2012π),则函数f (x )的各极小值之和为( )A. -e 2π1-e2012π1-e 2πB. -e 2π1-e1006π1-eπC. -e 2π1-e1006π1-e2πD. -e 2π1-e2010π1-e2π解析:f ′(x )=(e x)′(sin x -cos x )+e x(sin x -cos x )′=2e xsin x ,若f ′(x )<0,则x ∈(π+2k π,2π+2k π),k ∈Z ;若f ′(x )>0,则x ∈(2π+2k π,3π+2k π),k ∈Z .所以当x =2π+2k π,k ∈Z 时,f (x )取得极小值,其极小值为f (2π+2k π)=e2k π+2π[sin(2π+2k π)-cos(2π+2k π)]=e2k π+2π×(0-1)=-e2k π+2π,k ∈Z .因为0≤x ≤2012π,又在两个端点的函数值不是极小值,所以k ∈[0,1004],所以函数f (x )的各极小值构成以-e 2π为首项,以e 2π为公比的等比数列,共有1005项,故函数f (x )的各极小值之和为S 1005=-e 2π-e 4π-…-e2010π=e2π1-e2010π1-e2π.答案:D11.已知抛物线C :y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且|AK |=2|AF |,则△AFK 的面积为( )A .4B .8C .16D .32解析:∵抛物线C :y 2=8x 的焦点为F (2,0),准线为x =-2,∴K (-2,0). 设A (x 0,y 0),如下图所示,过点A 向准线作垂线,垂足为B ,则B (-2,y 0).∵|AK |=2|AF |,又|AF |=|AB |=x 0-(-2)=x 0+2, ∴由|BK |2=|AK |2-|AB |2,得y 20=(x 0+2)2, 即8x 0=(x 0+2)2,解得x 0=2,y 0=±4.∴△AFK 的面积为12|KF |·|y 0|=12×4×4=8,故选B.答案:B12.[2013·某某高考]如图,F 1、F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C. 32D.62解析:本题考查椭圆、双曲线的定义和简单的几何性质.设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0) ①,点A 的坐标为(x 0,y 0).由题意a 2+b 2=3=c 2②,|OA |=|OF 1|=3,∴⎩⎪⎨⎪⎧x 20+y 20=3x 20+4y 20=4,解得x 20=83,y 20=13,又点A 在双曲线C 2上,代入①得,83b 2-13a 2=a 2b2③,联立②③解得a =2,所以e =c a =62,故选D. 答案:D二、填空题(本大题共4小题,每小题5分,共20分)13.函数y =13ax 3-12ax 2(a ≠0)在区间(0,1)上是增函数,则实数a 的取值X 围是________.解析:y ′=ax 2-ax =ax (x -1),∵x ∈(0,1),y ′>0,∴a <0. 答案:a <014.已知命题p :∃x ∈R ,x 2+2ax +a ≤0,若命题p 是假命题,则实数a 的取值X 围是__________.解析:p 是假命题,则¬p 为真命题,¬p 为:∀x ∈R ,x 2+2ax +a >0,所以有Δ=4a 2-4a <0,即0<a <1.答案:(0,1)15.[2014·某某质检]已知a ∈R ,若实数x ,y 满足y =-x 2+3ln x ,则(a -x )2+(a +2-y )2的最小值是________.解析:(a -x )2+(a +2-y )2≥x -a +a +2-y22=x +x 2-3ln x +222.设g (x )=x+x 2-3ln x (x >0),则g ′(x )=1+2x -3x=2x +3x -1x,易知g (x )在(0,1)上为减函数,在(1,+∞)上为增函数,故g (x )≥g (1)=2,(a -x )2+(a +2-y )2≥2+222=8.答案:816.[2013·某某省某某一中月考]F 1、F 2分别是双曲线x 216-y 29=1的左、右焦点,P 为双曲线右支上一点,I 是△PF 1F 2的内心,且S △IPF 2=S △IPF 1-λS △IF 1F 2,则λ=________.解析:本题主要考查双曲线定义及标准方程的应用.设△PF 1F 2内切圆的半径为r ,则S △IPF 2=S △IPF 1-λS △IF 1F 2⇒12×|PF 2|×r =12×|PF 1|×r -12λ×|F 1F 2|×r ⇒|PF 1|-|PF 2|=λ|F 1F 2|,根据双曲线的标准方程知2a =λ·2c ,∴λ=a c =45.答案:45三、解答题(本大题共6小题,共70分)17.(10分)已知全集U =R ,非空集合A ={x |x -2x -3<0},B ={x |(x -a )(x -a 2-2)<0}.命题p :x ∈A ,命题q :x ∈B .(1)当a =12时,p 是q 的什么条件?(2)若q 是p 的必要条件,某某数a 的取值X 围. 解:(1)A ={x |x -2x -3<0}={x |2<x <3}, 当a =12时,B ={x |12<x <94},故p 是q 的既不充分也不必要条件.(2)若q 是p 的必要条件,即p ⇒q ,可知A ⊆B , 由a 2+2>a ,故B ={a |a <x <a 2+2},∴⎩⎪⎨⎪⎧a ≤2a 2+2≥3,解得a ≤-1或1≤a ≤2.18.(12分)已知c >0,设p :y =c x为减函数;q :函数f (x )=x +1x >1c 在x ∈[12,2]上恒成立,若“p ∨q ”为真命题,“p ∧q ”为假命题,求c 的取值X 围.解:由y =c x为减函数,得0<c <1.当x ∈[12,2]时,由不等式x +1x ≥2(x =1时取等号)知:f (x )=x +1x 在[12,2]上的最小值为2,若q 真,则1c <2,即c >12.若p 真q 假,则0<c <1且c ≤12,所以0<c ≤12.若p 假q 真,则c ≥1且c >12,所以c ≥1.综上:c ∈(0,12]∪[1,+∞).19.(12分)[2014·海淀期末]已知函数f (x )=(x +a )e x,其中a 为常数. (1)若函数f (x )是区间[-3,+∞)上的增函数,某某数a 的取值X 围; (2)若f (x )≥e 2在x ∈[0,2]时恒成立,某某数a 的取值X 围. 解:(1)f ′(x )=(x +a +1)e x,x ∈R .因为函数f (x )是区间[-3,+∞)上的增函数,所以f ′(x )≥0,即x +a +1≥0在[-3,+∞)上恒成立. 因为y =x +a +1是增函数,所以满足题意只需-3+a +1≥0,即a ≥2. (2)令f ′(x )=0,解得x =-a -1,f (x ),f ′(x )的变化情况如下:f (0)≥e 2,解得a ≥e 2,所以此时a ≥e 2;②当0<-a -1<2,即-3<a <-1时,f (x )在[0,2]上的最小值为f (-a -1), 若满足题意只需f (-a -1)≥e 2,求解可得此不等式无解, 所以a 不存在;③当-a -1≥2,即a ≤-3时,f (x )在[0,2]上的最小值为f (2),若满足题意只需f (2)≥e 2,解得a ≥-1,所以此时a 不存在.综上讨论,所某某数a 的取值X 围为[e 2,+∞).20.(12分)已知椭圆x 29+y 25=1,F 1、F 2分别是椭圆的左、右焦点,点A (1,1)为椭圆内一点,点P 为椭圆上一点.求|PA |+|PF 1|的最大值.解:由椭圆的定义知|PF 1|+|PF 2|=2a =6, 所以|PF 1|=6-|PF 2|,这样|PA |+|PF 1|=6+|PA |-|PF 2|.求|PA |+|PF 1|的最大值问题转化为6+|PA |-|PF 2|的最大值问题, 即求|PA |-|PF 2|的最大值问题, 如图在△PAF 2中,两边之差小于第三边,即|PA |-|PF 2|<|AF 2|,连接AF 2并延长交椭圆于P ′点时, 此时|P ′A |-|P ′F 2|=|AF 2|达到最大值, 易求|AF 2|=2,这样|PA |-|PF 2|的最大值为2, 故|PA |+|PF 1|的最大值为6+ 2.21.(12分)已知椭圆M 的对称轴为坐标轴,且抛物线x 2=-42y 的焦点是椭圆M 的一个焦点,又点A (1,2)在椭圆M 上.(1)求椭圆M 的方程;(2)已知直线l 的方向向量为(1,2),若直线l 与椭圆M 交于B 、C 两点,求△ABC 面积的最大值.解:(1)由已知抛物线的焦点为(0,-2),故设椭圆方程为y 2a 2+x 2a 2-2=1.将点A (1,2)代入方程得2a 2+1a 2-2=1,整理得a 4-5a 2+4=0,解得a 2=4或a 2=1(舍去). 故所求椭圆方程为y 24+x 22=1.(2)设直线BC 的方程为y =2x +m , 设B (x 1,y 1),C (x 2,y 2),代入椭圆方程并化简得4x 2+22mx +m 2-4=0, 由Δ=8m 2-16(m 2-4)=8(8-m 2)>0, 可得m 2<8.由x 1+x 2=-22m ,x 1x 2=m 2-44,故|BC |=3|x 1-x 2|=3×16-2m22.又点A 到BC 的距离为d =|m |3,故S △ABC =12|BC |·d =m216-2m24≤142×2m 2+16-2m22= 2.因此△ABC 面积的最大值为 2.22.(12分)[2014·某某质检]已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数).(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (2)求函数f (x )的极值;(3)当a =1时,若直线l :y =kx -1与曲线y =f (x )没有公共点,求k 的最大值. 解:(1)由f (x )=x -1+a e x ,得f ′(x )=1-aex ,又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,所以f ′(1)=0,即1-ae =0,解之得a =e.(2)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0,得e x=a ,x =ln a .当x ∈(-∞,ln a )时,f ′(x )<0;当x ∈(ln a ,+∞)时,f ′(x )>0, 所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增, 故f (x )在x =ln a 处取得极小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值.(3)当a =1时,f (x )=x -1+1e x .令g (x )=f (x )-(kx -1)=(1-k )x +1ex ,则直线l :y =kx -1与曲线y =f (x )没有公共点,等价于方程g (x )=0在R 上没有实数解.当k >1时,g (0)=1>0,g (1k -1)=-1+1e 1k -1<0, 又函数g (x )的图象在定义域R 上连续,由零点存在定理,可知g (x )=0至少有一实数解,与“方程g (x )=0在R 上没有实数解”矛盾,故k ≤1.当k =1时,g (x )=1e x >0,知方程g (x )=0在R 上没有实数解.所以k 的最大值为1.。
模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a ,b 是实数,则“a >b ”是“a 2>b 2”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【解析】 设a =1,b =-2,则有a >b ,但a 2<b 2,故a >bD a 2>b 2;设a =-2,b =1,显然a 2>b 2,但a <b ,即a 2>b 2Da >b .故“a >b ”是“a 2>b 2”的既不充分也不必要条件.【答案】 D2.过点P (1,-3)的抛物线的标准方程为( ) A .x 2=13y 或x 2=-13yB .x 2=13yC .y 2=-9x 或x 2=13yD .x 2=-13y 或y 2=9x【解析】P (1,-3)在第四象限,所以抛物线只能开口向右或向下,设方程为y 2=2px (p >0)或x 2=-2py (p >0),代入P (1,-3)得y 2=9x 或x 2=-13y .故选D.【答案】 D3.下列命题中,正确命题的个数是( )①命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x ≠1,则x 2-3x +2≠0”; ②“p ∨q 为真”是“p ∧q 为真”的充分不必要条件; ③若p ∧q 为假命题,则p ,q 均为假命题;④对命题p :∃x 0∈R ,使得x 20+x 0+1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0. A .1 B .2 C .3D .4【解析】①正确;②由p ∨q 为真可知,p ,q 至少有一个是真命题即可,所以p ∧q 不一定是真命题;反之,p ∧q 是真命题,p ,q 均为真命题,所以p ∨q 一定是真命题,②不正确;③若p ∧q 为假命题,则p ,q 至少有一个假命题,③不正确;④正确.【答案】 B4.函数f (x )=x 2+2xf ′(1),则f (-1)与f (1)的大小关系为( ) A .f (-1)=f (1) B .f (-1)<f (1) C .f (-1)>f (1)D .无法确定【解析】f ′(x )=2x +2f ′(1),令x =1,得f ′(1)=2+2f ′(1),∴f ′(1)=-2. ∴f (x )=x 2+2x ·f ′(1)=x 2-4x ,f (1)=-3,f (-1)=5.∴f (-1)>f (1). 【答案】 C5.命题“∀x ∈[0,+∞),x 3+x ≥0”的否定是( ) A .∀x ∈(-∞,0),x 3+x <0 B .∀x ∈(-∞,0),x 3+x ≥0 C .∃x 0∈[0,+∞),x 30+x 0<0 D .∃x 0∈[0,+∞),x 30+x 0≥0【解析】 故原命题的否定为:∃x 0∈[0,+∞),x 30+x 0<0.故选C. 【答案】 C6.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A.x 23+y 24=1B.x 24+y 23=1 C.x 24+y 22=1 D.x 24+y 23=1 【解析】 右焦点为F (1,0)说明两层含义:椭圆的焦点在x 轴上;c =1.又离心率为c a =12,故a =2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y 23=1,故选D.【答案】 D7.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( ) 【导学号:25650148】A .1 B.32C .2D .3【解析】 因为双曲线的离心率e =c a=2,所以b =3a ,所以双曲线的渐近线方程为y=±b a x =±3x ,与抛物线的准线x =-p 2相交于A ⎝ ⎛⎭⎪⎫-p 2,32p ,B ⎝ ⎛⎭⎪⎫-p 2,-32p ,所以△AOB的面积为12×p2×3p =3,又p >0,所以p =2.【答案】 C8.点P 在曲线y =x 3-x +3上移动,过点P 的切线的倾斜角的取值X 围为( )A .[0,π) B.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎦⎥⎤π2,3π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π【解析】f ′(x )=3x 2-1≥-1,即切线的斜率k ≥-1,所以切线的倾斜角的X 围为⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π.【答案】 B9.若直线mx +ny =4与圆x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .至少一个B .2个C .1个D .0个 【解析】 圆心到直线的距离为d =4m 2+n 2>2,∴m 2+n 2<2,∴m 2+n 2<4. 将P (m ,n )代入x 29+y 24得:m 29+n 24=4m 2+9n 236<9m 2+n 236<1.∴P (m ,n )在椭圆内部,∴一定有两个交点. 【答案】 B10.若函数f (x )=kx 3+3(k -1)x 2-k 2+1在区间(0,4)上是减函数,则k 的取值X 围是( )A.⎝⎛⎭⎪⎫-∞,13B.⎝ ⎛⎦⎥⎤0,13 C.⎣⎢⎡⎭⎪⎫0,13D.⎝⎛⎦⎥⎤-∞,13【解析】f ′(x )=3kx 2+6(k -1)x . 由题意知3kx 2+6(k -1)x ≤0,即kx +2k -2≤0在(0,4)上恒成立, 得k ≤2x +2,x ∈(0,4), 又13<2x +2<1,∴k ≤13. 【答案】 D11.若直线y =2x 与双曲线x 2a 2-y 2b2=1(a >0,b >0)有公共点,则双曲线的离心率的取值X围为( )A .(1, 5)B .(5,+∞)C .(1, 5]D .[5,+∞)【解析】 双曲线的两条渐近线中斜率为正的渐近线为y =b a x .由条件知,应有b a>2,故e =c a =a 2+b 2a=1+⎝ ⎛⎭⎪⎫b a 2> 5.【答案】 B12.若0<x 1<x 2<1,则( ) A .e x 2-e x 1>ln x 2-ln x 1 B .e x 2-e x 1<ln x 2-ln x 1 C .x 2e x 1>x 1e x 2 D .x 2e x 1<x 1e x 2【解析】 设f (x )=e x-ln x (0<x <1), 则f ′(x )=e x-1x =x e x -1x.令f ′(x )=0,得x e x-1=0.根据函数y =e x与y =1x的图象,可知两函数图象交点x 0∈(0,1),因此函数f (x )在(0,1)上不是单调函数,故A ,B 选项不正确.设g (x )=e xx(0<x <1),则g ′(x )=e xx -1x 2. 又0<x <1,∴g ′(x )<0.∴函数g (x )在(0,1)上是减函数. 又0<x 1<x 2<1,∴g (x 1)>g (x 2), ∴x 2e x 1>x 1e x 2. 【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知a ,b ,c ∈R ,命题“若a +b +c =3,则a 2+b 2+c 2≥3”的否命题是________. 【解析】a +b +c =3的否定是a +b +c ≠3,a 2+b 2+c 2≥3的否定是a 2+b 2+c 2<3.【答案】 若a +b +c ≠3,则a 2+b 2+c 2<3 14.曲线y =x e x+2x +1在点(0,1)处的切线方程为 ________. 【导学号:25650149】【解析】y ′=e x +x e x +2,k =y ′|x =0=e 0+0+2=3, 所以切线方程为y -1=3(x -0),即3x -y +1=0. 【答案】 3x -y +1=015.如图1为函数f (x )=ax 3+bx 2+cx +d 的图象,f ′(x )为函数f (x )的导函数,则不等式xf ′(x )<0的解集为________.图1【解析】 当x <0时,f ′(x )>0,此时f (x )为增函数, 由图象可知x ∈(-∞,-3);当x >0时,f ′(x )<0,此时f (x )为减函数,由图象可知x ∈(0, 2). ∴xf ′(x )<0的解集为(-∞,-3)∪(0, 2). 【答案】 (-∞,-3)∪(0, 2)16.若O 和F 分别是椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为________.【解析】 由椭圆x 24+y 23=1可得点F (-1,0),点O (0,0),设P (x ,y ),-2≤x ≤2,则OP →·FP →=x 2+x +y 2=x 2+x +3⎝ ⎛⎭⎪⎫1-x 24=14x 2+x +3=14(x +2)2+2,当且仅当x =2时,OP →·FP →取得最大值6.【答案】 6三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设命题p :方程x 21-2m +y 2m +4=1表示的曲线是双曲线;命题q :∃x ∈R,3x 2+2mx +m +6<0.若命题p ∧q 为假命题,p ∨q 为真命题,某某数m 的取值X 围.【解】 对于命题p ,因为方程x 21-2m +y 2m +4=1表示的曲线是双曲线,所以(1-2m )(m+4)<0,解得m <-4或m >12,则命题p :m <-4或m >12.对于命题q ,因为∃x ∈R,3x 2+2mx +m +6<0,即不等式3x 2+2mx +m +6<0在实数集R 上有解,所以Δ=(2m )2-4×3×(m +6)>0, 解得m <-3或m >6. 则命题q :m <-3或m >6.因为命题p ∧q 为假命题,p ∨q 为真命题,所以命题p 与命题q 有且只有一个为真命题. 若命题p 为真命题且命题q 为假命题, 即⎩⎪⎨⎪⎧ m <-4或m >12,-3≤m ≤6,得12<m ≤6; 若命题p 为假命题且命题q 为真命题, 即⎩⎪⎨⎪⎧-4≤m ≤12,m <-3或m >6,得-4≤m <-3.综上,实数m 的取值X 围为[-4,-3)∪⎝ ⎛⎦⎥⎤12,6.18.(本小题满分12分)设函数f (x )=x 3+bx 2+cx (x ∈R ),已知g (x )=f (x )-f ′(x )是奇函数.(1)求b ,c 的值;(2)求g (x )的单调区间与极值. 【解】 (1)∵f (x )=x 3+bx 2+cx , ∴f ′(x )=3x 2+2bx +c . 从而g (x )=f (x )-f ′(x ) =x 3+bx 2+cx -(3x 2+2bx +c ) =x 3+(b -3)x 2+(c -2b )x -c ∵g (x )是奇函数,∴-x 3+(b -3)x 2-(c -2b )x -c =-[x 3+(b -3)x 2+(c -2b )x -c ] 得(b -3)x 2-c =0对x ∈R 都成立.∴⎩⎪⎨⎪⎧b -3=0,c =0,得b =3,c =0.(2)由(1)知g (x )=x 3-6x ,从而g ′(x )=3x 2-6,由此可知,(-∞,-2)和(2,+∞)是函数g (x )的单调递增区间;(-2, 2)是函数g (x )的单调递减区间.g (x )在x =-2时,取得极大值,极大值为42,g (x )在x =2时,取得极小值,极小值为-4 2.19.(本小题满分12分)已知抛物线y 2=4x 截直线y =2x +b 所得的弦长为|AB |=3 5. (1)求b 的值;(2)在x 轴上求一点P ,使△APB 的面积为39.【解】 (1)联立方程组⎩⎪⎨⎪⎧y 2=4x ,y =2x +b ,消去y ,得方程:4x 2+(4b -4)x +b 2=0,设A (x 1,y 1),B (x 2,y 2),x 1+x 2=1-b ,x 1x 2=b 24,|AB |=5x 1+x 22-4x 1x 2=51-b 2-b 2=35,解得b =-4.(2)将b =-4代入直线y =2x +b ,得AB 所在的直线方程为2x -y -4=0, 设P (a,0),则P 到直线AB 的距离为d =|2a -4|5.△APB 的面积S =12×|2a -4|5×35=39,则a =-11或15,所以P 点的坐标为(-11,0)或(15,0).20.(本小题满分12分)某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x (单位:元,0≤x ≤30)的平方成正比,已知商品单价降低2元时,一星期多卖出24件.(1)将一个星期的商品销售利润表示成x 的函数; (2)如何定价才能使一个星期的商品销售利润最大?【解】 (1)设商品降低x 元时,多卖出的商品件数为kx 2,若记商品在一个星期的销售利润为f (x ),则依题意有f (x )=(30-x -9)·(432+kx 2) =(21-x )·(432+kx 2),又由已知条件24=k ·22,于是有k =6,所以f (x )=-6x 3+126x 2-432x +9 072,x ∈[0,30]. (2)根据(1),有f ′(x )=-18x 2+252x -432 =-18(x -2)(x -12).当x 变化时,f (x )与f ′(x )的变化情况如下表:故x =因为f (0)=9 072,f (12)=11 664,所以定价为30-12=18(元)能使一个星期的商品销售利润最大. 21.(本小题满分12分)已知函数f (x )=12x 2+a ln x (a <0).(1)若a =-1,求函数f (x )的极值;(2)若∀x >0,不等式f (x )≥0恒成立,某某数a 的取值X 围. 【解】 由题意,x >0.(1)当a =-1时,f (x )=12x 2-ln x ,f ′(x )=x -1x,令f ′(x )=x -1x>0,解得x >1,所以f (x )的单调增区间为(1,+∞);f ′(x )=x -1x<0,得0<x <1,所以f (x )的单调减区间为(0,1),所以函数f (x )在x =1处有极小值f (1)=12.(2)因为a <0,f ′(x )=x +a x. 令f ′(x )=0,所以x =-a , 列表:这时f (=-a2+a ln -a ,因为∀x >0,不等式f (x )≥0恒成立, 所以-a2+a ln -a ≥0,所以a ≥-e ,所以a 的取值X 围为[-e,0).22.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点A ⎝ ⎛⎭⎪⎫1,32,且离心率e =12.(1)求椭圆C 的标准方程;(2)若直线l :y =kx +m (k ≠0)与椭圆交于不同的两点M 、N ,且线段MN 的垂直平分线过定点G ⎝ ⎛⎭⎪⎫18,0,求k 的取值X 围. 【导学号:25650150】【解】 (1)由题意e =12,即e =c a =12,∴a =2c .∴b 2=a 2-c 2=(2c )2-c 2=3c 2.∴椭圆C 的方程可设为x 24c 2+y 23c2=1.代入A ⎝ ⎛⎭⎪⎫1,32,得14c 2+⎝ ⎛⎭⎪⎫3223c 2=1. 解得c 2=1,∴所求椭圆C 的方程为x 24+y 23=1,(2)由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +m ,消去y ,得(3+4k 2)x 2+8kmx +4m 2-12=0. 由题意,Δ=(8km )2-4(3+4k 2)(4m 2-12)>0, 整理得:3+4k 2-m 2>0,① 设M (x 1,y 1),N (x 2,y 2),MN 的中点为P (x 0,y 0), x 0=x 1+x 22=-4km3+4k 2,y 0=kx 0+m =3m3+4k2. 由已知,MN ⊥GP ,即k MN ·k GP =-1, 即k ·3m3+4k2-0-4km 3+4k 2-18=-1,整理得:m =-3+4k28k .代入①式,并整理得:k 2>120, 即|k |>510,∴k ∈⎝ ⎛⎭⎪⎫-∞,-510∪⎝ ⎛⎭⎪⎫510,+∞.。
章末综合测评(二) 平面解析几何一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若直线l 与直线y =1,x =7分别交于P 、Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A .13 B .-13 C .3D .-3B [设P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧ a +7=2,b +1=-2.∴⎩⎪⎨⎪⎧a =-5,b =-3,故直线l 的斜率为-3-17+5=-13.] 2.若直线l 1:ax +2y +6=0与直线l 2:x +(a -1)y +5=0垂直,则实数a 的值是( )A .23B .1C .12D .2A [直线l 1:ax +2y +6=0与直线l 2:x +(a -1)y +5=0垂直, 则a ×1+2(a -1)=0, 解得a =23.]3.若方程x 2+y 2-x +y -2m =0表示一个圆,则实数m 的取值范围是( ) A .⎝ ⎛⎭⎪⎫-∞,-14B .⎝ ⎛⎭⎪⎫14,+∞C .⎝ ⎛⎭⎪⎫-14,+∞D .⎝ ⎛⎭⎪⎫-∞,14C [根据题意,方程x 2+y 2-x +y -2m =0表示一个圆, 则有1+1-4×(-2m )>0,解的m >-14,即m 的取值范围为⎝ ⎛⎭⎪⎫-14,+∞.]4.过点A (1,0)的直线l 与圆(x -1)2+(y -1)2=1相交于A ,B 两点,若|AB |=2,则该直线的斜率为( )A .±1B .±2C .±3D .±2A [设直线l 方程为y =k (x -1),则圆心到直线l 的距离为|-1|1+k2=11+k2,则弦|AB |=21-11+k2=2,解得k =±1.] 5.已知点P 为双曲线x 216-y 29=1右支上一点,点F 1,F 2分别为双曲线的左、右焦点,M 为△PF 1F 2的内心.若S △PMF 1=S △PMF 2+8,则△MF 1F 2的面积为( )A .27B .10C .8D .6B [由题意知,a =4,b =3,c =5.又由双曲线的定义可知|PF 1|-|PF 2|=2a =8.设△PF 1F 2的内切圆的半径为R .∵S △PMF 1=S △PMF 2+8,∴12(|PF 1|-|PF 2|)R =8,即4R =8,∴R =2,∴S △MF 1F 2=12·2c ·R =10.故选B .]6.焦点为(0,±3),且与双曲线x 22-y 2=1有相同的渐近线的双曲线方程是( ) A .x 23-y 26=1 B .y 23-x 26=1 C .y 26-x 23=1D .x 26-y 23=1B [双曲线x 22-y 2=1中,a 2=2,b 2=1,所以渐近线方程为y =±12x ,所以所求双曲线的方程中a b =12,c =3,a 2+b 2=c 2,所以a 2=3,b 2=6,则双曲线方程为y 23-x 26=1,故选B .]7.若圆C1:(x-1)2+(y-1)2=1与圆C2:(x+2)2+(y+3)2=r2外切,则正数r的值是()A.2 B.3C.4 D.6C[圆C1:(x-1)2+(y-1)2=1,圆C2:(x+2)2+(y+3)2=r2,∴C1坐标为(1,1),半径为1,C2坐标为(-2,-3),半径为r,∴|C1C2|=r1+r2⇒(1+2)2+(1+3)2=r+1⇒r=4.]8.已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线与椭圆交于A,B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则椭圆的离心率为()A.22B.2- 3C.5-2 D.6- 3D[设|F1F2|=2c,|AF1|=m,若△ABF1是以A为直角顶点的等腰直角三角形,则|AB|=|AF1|=m,|BF1|=2m.由椭圆的定义可得△ABF1的周长为4a,即有4a=2m+2m,即m=(4-22)a,则|AF2|=2a-m=(22-2)a.在Rt△AF1F2中,|F1F2|2=|AF1|2+|AF2|2,即4c2=4(2-2)2a2+4(2-1)2a2,即c2=(9-62)a2,即c=(6-3)a,即e=ca=6-3.]二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对的得分5分,部分选对的得3分,有选错的得0分.9.已知平面上一点M(5,0),若直线上存在点P使|PM|=4,则称该直线为“切割型直线”.下列直线中是“切割型直线”的是()A.y=x+1 B.y=2C.y=43x D.y=2x+1BC[对于A,d1=|5-0+1|2=32>4;对于B,d2=2<4;对于C,d3=|5×4-3×0|5=4;对于D,d4=|5×2-0+1|5=115>4,所以符合条件的有BC.]10.实数x,y满足x2+y2+2x=0,则下列关于yx-1的判断正确的是()A.yx-1的最大值为 3B.yx-1的最小值为- 3C.yx-1的最大值为33D.yx-1的最小值为-33CD[由题意可得方程x2+y2+2x=0为圆心是C(-1,0),半径为1的圆,由yx-1为圆上的点与定点P(1,0)的斜率的值,设过P(1,0)点的直线为y=k(x-1),即kx-y-k=0,圆心到直线的距离d=r,即|-2k|1+k2=1,整理可得3k2=1,解得k=±33,所以yx-1∈⎣⎢⎡⎦⎥⎤-33,33,即yx-1的最大值为33,最小值为-33.]11.已知点A是直线l:x+y-10=0上一定点,点P,Q是圆C:(x-4)2+(y -2)2=4上的动点,若∠P AQ的最大值为60°,则点A的坐标可以是() A.(4,6) B.(2,8)C.(6,4) D.(8,2)AD[点A是直线l:x+y-10=0上一定点,点P,Q是圆C:(x-4)2+(y-2)2=4上的动点,如图:圆的半径为2,所以直线l 上的A 点到圆心的距离为4, 结合图形,可知A 的坐标(4,6)与(8,2)满足题意.]12.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为233,右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点,则有( )A .渐近线方程为y =±3xB .渐近线方程为y =±33x C .∠MAN =60° D .∠MAN =120°BC [由题意可得e =c a =233,可设c =2t ,a =3t ,t >0, 则b =c 2-a 2=t ,A (3t,0),圆A 的圆心为(3t,0),半径r 为t ,双曲线的渐近线方程为y =±b a x ,即y =±33x , 圆心A 到渐近线的距离为d =⎪⎪⎪⎪⎪⎪33·3t 1+13=32t ,弦长|MN |=2r 2-d 2=2t 2-34t 2=t =b ,可得三角形MNA 为等边三角形, 即有∠MAN =60°.]三、填空题:本题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.圆x 2+y 2-ax +2y +1=0关于直线x -y =1对称的圆的方程为x 2+y 2=1,则实数a 的值为 .2 [圆的方程可化为⎝ ⎛⎭⎪⎫x -a 22+(y +1)2=a 24,表示以A ⎝ ⎛⎭⎪⎫a 2,-1为圆心,以⎪⎪⎪⎪⎪⎪a 2为半径的圆,关于直线x -y =1对称的圆x 2+y 2=1的圆心为(0,0),故有-1-0a 2-0×1=-1,得a =2.]14.已知直线l 与直线y =1,x -y -7=0分别相交于P 、Q 两点,线段PQ 的中点坐标为(1,-1),那么直线l 的斜率为 .-23 [设P (a,1),Q (b ,b -7),由PQ 中点坐标为(1,-1)得⎩⎨⎧a +b2=1,1+b -72=-1,解得a =-2,b =4.∴P (-2,1),Q (4,-3) 直线l 的斜率为-3-14+2=-23.]15.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为33,过F 2的直线l 交椭圆C 于A ,B 两点,若△AF 1B 的周长为43,则椭圆C 的方程为 .x 23+y 22=1 [由椭圆的定义,可知△AF 1B 的周长为|AF 1|+|BF 1|+|AB |=|AF 1|+|BF 1|+|AF 2|+|BF 2|=4a =43,解得a =3.又离心率c a =33,所以c =1.由a 2=b 2+c 2,得b =2,所以椭圆C 的方程为x 23+y 22=1.]16.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则双曲线方程为 ,离心率为 .(本题第一空2分,第二空3分)x 24-y 24=12 [双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±ba x ,由题意知两条渐近线互相垂直,由双曲线的对称性可知ba =1,又正方形OABC 的边长为2,所以c =22,由a 2+b 2=c 2可得2a 2=(22)2,解得a =2.∴b =2,∴双曲线方程为x 24-y 24=1,离心率为e =ca =2.]四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)直线l 在两坐标轴上的截距相等,且P (4,3)到直线l 的距离为32,求直线l 的方程.[解] 若l 在两坐标轴上截距为0, 设l :y =kx ,即kx -y =0,则|4k -3|1+k2=32.解得k =-6±3214.此时l 的方程为y =⎝ ⎛⎭⎪⎫-6±3214x ; 若l 在两坐标轴上截距不为0,设l :x a +ya =1,即x +y -a =0,则|4+3-a |12+12=32.解得a =1或13.此时l 的方程为x +y -1=0或x +y -13=0. 综上,直线l 的方程为y =⎝ ⎛⎭⎪⎫-6±3214x 或x +y -1=0或x +y -13=0. 18.(本小题满分12分)过原点O 的圆C ,与x 轴相交于点A (4,0),与y 轴相交于点B (0,2).(1)求圆C 的标准方程.(2)直线l 过点B 与圆C 相切,求直线l 的方程,并化为一般式. [解] (1)设圆C 的标准方程为(x -a )2+(y -b )2=r 2, 分别代入原点和A (4,0),B (0,2),得⎩⎪⎨⎪⎧a 2+b 2=r 2,(4-a )2+b 2=r 2,a 2+(2-b )2=r 2,解得⎩⎪⎨⎪⎧a =2,b =1,r = 5.则圆C 的标准方程为(x -2)2+(y -1)2=5. (2)由(1)得圆心C (2,1),半径r =5, 由于直线l 过点B 与圆C 相切, 则设直线l :x =0或y =kx +2,当直线l :x =0时,C 到l 的距离为2,不合题意,舍去;当直线l :y =kx +2时,由直线与圆相切,得到圆心到直线距离d =r , 即有|2k -1+2|k 2+1=5,解得k =2,故直线l :y =2x +2,即2x -y +2=0.19.(本小题满分12分)已知椭圆的中心是坐标原点,长轴在x 轴上,离心率e =32,点P ⎝ ⎛⎭⎪⎫0,32到椭圆上的点的最远距离是7,求这个椭圆的方程.[解] 设所求椭圆的方程为x 2a 2+y 2b 2=1(a >b >0). ∵b a =a 2-c 2a 2=1-e 2=12,∴a =2b ,∴椭圆的方程为x 24b 2+y 2b 2=1.设椭圆上点M (x ,y )到点P ⎝ ⎛⎭⎪⎫0,32的距离为d ,则d 2=x 2+⎝ ⎛⎭⎪⎫y -322=4b 2⎝ ⎛⎭⎪⎫1-y 2b 2+y 2-3y +94=-3⎝ ⎛⎭⎪⎫y +122+4b 2+3,-b ≤y ≤b .记f (y )=-3⎝ ⎛⎭⎪⎫y +122+4b 2+3,-b ≤y ≤b .①当-b ≤-12,即b ≥12时,d 2max =f ⎝ ⎛⎭⎪⎫-12=4b 2+3=7,∴b =1,∴椭圆的方程为x 24+y 2=1;②当-12<-b ,即0<b <12时,d 2max =f (-b )=7,解得b =±7-32,与0<b <12矛盾.综上,可知所求椭圆的方程为x 24+y 2=1.20.(本小题满分12分)已知抛物线的顶点在坐标原点,焦点在x 轴的正半轴上,直线x +y -1=0与抛物线交于A ,B 两点,且|AB |=8611.(1)求抛物线的方程;(2)在x 轴上是否存在一点C ,使△ABC 为正三角形?若存在,求出点C 的坐标;若不存在,请说明理由.[解] (1)由题意,设所求抛物线的方程为y 2=2px (p >0).由⎩⎪⎨⎪⎧y 2=2px ,x +y -1=0,消去y ,得x 2-2(1+p )x +1=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2(1+p ),x 1x 2=1. ∵|AB |=8611, 即[1+(-1)2][(x 1+x 2)2-4x 1x 2]=8611,∴121p 2+242p -48=0, 解得p =211或p =-2411(舍去), ∴抛物线的方程为y 2=411x .(2)设AB 的中点为点D ,则D ⎝ ⎛⎭⎪⎫1311,-211.假设在x 轴上存在满足条件的点C (x 0,0),连接CD . ∵△ABC 为正三角形,∴CD ⊥AB ,即0-⎝ ⎛⎭⎪⎫-211x 0-1311·(-1)=-1,解得x 0=1511,∴C ⎝ ⎛⎭⎪⎫1511,0,∴|CD |=⎝ ⎛⎭⎪⎫1511-13112+⎝ ⎛⎭⎪⎫0+2112=2211. 又|CD |=32|AB |=12211≠2211,∴矛盾,不符合题目条件, ∴在x 轴上不存在一点C ,使△ABC 为正三角形.21.(本小题满分12分)已知半径为5的圆的圆心在x 轴上,圆心的横坐标是整数,且与直线4x +3y -29=0相切.(1)求圆的方程;(2)若直线ax -y +5=0(a ≠0)与圆相交于A ,B 两点,是否存在实数a ,使得过点P (-2,4)的直线l 垂直平分弦AB ?若存在,求出实数a 的值;若不存在,请说明理由.[解] (1)设圆心坐标为M (m,0)(m ∈Z ),由于圆与直线4x +3y -29=0相切,且圆的半径为5,所以|4m -29|5=5,即|4m -29|=25, 即4m -29=25或4m -29=-25,解得m =272或m =1.因为m 为整数,故m =1,故所求的圆的方程为(x -1)2+y 2=25.(2)设符合条件的实数a 存在,因为a ≠0,则直线l 的斜率为-1a ,所以直线l 的方程为y =-1a (x +2)+4,即x +ay +2-4a =0.由于直线l 垂直平分弦AB ,故圆心M (1,0)必在直线l 上,所以1+0+2-4a =0,解得a =34.经检验,当a =34时,直线ax -y +5=0与圆有两个交点,故存在实数a =34,使得过点P (-2,4)的直线l 垂直平分弦AB .22.(本小题满分12分)设斜率不为0的直线l 与抛物线x 2=4y 交于A ,B 两点,与椭圆x 26+y 24=1交于C ,D 两点,记直线OA ,OB ,OC ,OD 的斜率分别为k 1,k 2,k 3,k 4.(1)若直线l 过(0,4),证明:OA ⊥OB ;(2)求证:k 1+k 2k 3+k 4的值与直线l 的斜率的大小无关. [证明] (1)设直线方程为y =kx +4,A (x 1,y 1),B (x 2,y 2),由x 21=4y 1,x 22=4y 2,两式相乘可得(x 1x 2)2=16y 1y 2,由⎩⎪⎨⎪⎧ y =kx +4x 2=4y可得x 2-4kx -16=0, 则x 1x 2=-16,y 1y 2=16,x 1x 2+y 1y 2=0,即OA →·OB →=0,OA ⊥OB .(2)设直线y =kx +m ,A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4), ⎩⎪⎨⎪⎧y =kx +m x 2=4y可得x 2-4kx -4m =0,x 1+x 2=4k ,x 1x 2=-4m , k 1+k 2=y 1x 1+y 2x 2=x 14+x 24=k , 联立y =kx +m 和椭圆2x 2+3y 2=12,可得(2+3k 2)x 2+6kmx +3m 2-12=0, Δ=36k 2m 2-4(2+3k 2)(3m 2-12)>0,即4+6k 2>m 2,x 3+x 4=-6km 2+3k 2,x 3x 4=3m 2-122+3k 2, k 3+k 4=y 3x 3+y 4x 4=kx 3+m x 3+kx +m x 4=2k +m ⎝ ⎛⎭⎪⎫1x 3+1x 4=2k +m (x 3+x 4)x 3x 4=2k -6km 23m 2-12=-8k m 2-4, 则k 1+k 2k 3+k 4=-m 2-48与直线l 的斜率的大小无关.。
阶段性测试题一(第一章基本知能检测)时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列语句中,不表示命题的一个是( )A .3>8B .0是自然数C .杭州是省会城市D .他去哪儿 [答案] D[解析] 选项D 不涉及真假.2.下列命题是真命题的为( )A .若1x =1y ,则x =yB .若x 2=1,则x =1C .若x =y ,则x =yD .若x <y ,则x 2<y 2 [答案] A[解析] 判断命题的真假,根据选项容易选出A.3.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题和逆否命题中( )A .都真B .都假C .否命题真D .逆否命题真 [答案] D[解析] 原命题与其逆否命题同真假,原命题真,故选D.4.命题“π≥3.14”使用的逻辑联结词的情况是( )A .没有使用逻辑联结词B .使用了逻辑联结词“且”C .使用了逻辑联结词“或”D .使用了逻辑联结词“非”[答案] C[解析] “π≥3.14”的意思为:“π>3.14或π=3.14”.故选C.5.设p :x <-1或x >1;q :x <-2或x >1,则¬p 是¬q 的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] ¬p :-1≤x ≤1,¬q :-2≤x ≤1,¬p ⇒¬q ,而¬q ⇒/ ¬p .6.如果一个命题的逆命题是真命题,那么这个命题的否命题( )A .是真命题B .是假命题C .不一定是真命题D .不一定是假命题 [答案] A[解析] 一个命题的逆命题与否命题真值相同.7.设集合M ={x |0<x ≤3},N ={x |0<x ≤2},那么“a ∈M ”是“a ∈N ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] B[解析] ∵N M ,∴若a ∈N ,则a ∈M ,当a =52时,a ∈M ,但a ∉N ,故选B. 8.a =3是直线ax +2y +3a =0和直线3x +(a -1)y =a -7平行且不重合的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件[答案] C[解析] 当直线ax +2y +3a =0和直线3x +(a -1)y =a -7平行时,有a (a -1)=6,解得a =3或a =-2.当a =-2时,两直线重合.9.下列判断不正确...的是( ) A .命题“若p 则q ”与“若¬q 则¬p ”互为逆否命题B .“am 2<bm 2”是“a <b ”的充要条件C .“矩形的两条对角线相等”的否定为假D .命题“∅{1,2}或4∈{1,2}”为真[答案] B[解析] 由am 2<bm 2⇒a <b ,但a <b ⇒/ am 2<bm 2.例如:m =0时,故选B.10.如果命题“¬(p 或q )”为假命题,则( )A .p 、q 均为真命题B .p 、q 均为假命题C .p 、q 中至少有一个真命题D .p 、q 中至多有一个真命题[答案] C[解析] “¬(p 或q )”为假,则“p 或q ”为真,故p 、q 中至少有一个为真.11.“1x 2>1y 2”是“|x |<|y |”的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] |x |<|y |⇔x 2<y 2,1x 2>1y 2⇔1x 2-1y 2>0 ⇔y 2-x 2x 2y 2>0⇔y 2-x 2>0⇔x 2<y 2. 当x 2=0,y 2≠0时,x 2<y 2成立,但1x 2无意义,故选A. 12.“a =18”是“对任意的正数x,2x +a x≥1”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] a =18⇒2x +a x=2x +18x ≥22x ×18x=1. 另一方面,对任意正数x,2x +a x≥1, 只要2x +a x ≥22x ×a 8x =22a ≥1⇒a ≥18,所以选A. 二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上)13.命题“如果ab 不为零,则a ,b 都不为零”的逆否命题是________.[答案] 如果a ,b 至少有一个为零,则ab 为零[解析] 将原命题的结论和条件进行“换位”及“换质”,即得其逆命题.14.用“p ∨q ”“p ∧q ”“¬q ”填空.命题“-x 2+2≤2”是________形式,命题“奇数的平方不是偶数”是________形式.[答案] “p ∨q ” “¬p ”15.设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0.若¬p 是¬q 的必要而不充分条件,则实数a 的取值范围是________.[答案] 0≤a ≤12[解析] 命题p :|4x -3|≤1⇔12≤x ≤1; 命题q :x 2-(2a +1)x +a (a +1)≤0⇔a ≤x ≤a +1.∵¬p 是¬q 的必要而不充分条件,∴p 是q 的充分而不必要条件,则有⎩⎪⎨⎪⎧a ≤12a +1≥1,∴0≤a ≤12. 16.已知:①命题“如果xy =1,则x ,y 互为倒数”的逆命题;②命题“所有模相等的向量相等”的否定;③命题“如果m ≤1,则x 2-2x +m =0有实根”的逆否命题;④命题“如果A ∩B =A ,则A B ”的逆否命题.其中能构成真命题的是________(填上你认为正确的命题的序号).[答案] ①②③[解析] ①逆命题:若x ,y 互为倒数,则xy =1,是真命题.②的否定是:“存在模相等的向量不相等”.是真命题.如,a =(1,1),b =(-1,1),有|a|=|b|=2,但a ≠b .③命题“若m ≤1,则x 2-2x +m =0”是真命题.这是因为当m <0时Δ=(-2)2-4m =4-4m >0恒成立,故方程有根,所以其逆否命题也是真命题.④若A ∩B =A ,则A ⊆B .故原命题是假命题,因此其逆否命题也是假命题.三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)写出命题“若x -2+(y +1)2=0,则x =2且y =-1”的逆命题、否命题、逆否命题,并判断它们的真假.[解析] 逆命题:若x =2且y =-1,则x -2+(y +1)2=0;真命题. 否命题:若x -2+(y +1)2≠0,则x ≠2或y ≠-1;真命题.逆否命题:若x ≠2或y ≠-1,则x -2+(y +1)2≠0;真命题.18.(本题满分12分)已知命题p {x |1-c <x <1+c ,c >0},命题q (x -3)2<16,且p 是q的充分而不必要条件.求c 的取值范围.[解析] 命题p 对应的集合A ={x |1-c <x <1+c ,c >0},由(x -3)2<16可解得命题q 对应的集合B ={x |-1<x <7},∵p 是q 的充分而不必要条件,∴A B ,∴⎩⎪⎨⎪⎧ c >01-c ≥-11+c ≤7,解得:0<c ≤2,经检验知c =2也符合题意,所以所求c 的取值范围为0<c ≤2.19.(本题满分12分)已知命题p :关于x 的方程x 2+mx +1=0有两个不等的负实根;命题q :关于x 的方程4x 2+4(m -2)x +1=0无实根,已知命题p 和q 中,一个为真命题,一个为假命题,求m 的取值范围.[解析] p :⎩⎪⎨⎪⎧Δ=m 2-4>0m >0解得m >2. q :Δ=16(m -2)2-16=16(m 2-4m +3)<0解得1<m <3.∵p ,q 中一真一假.∴有两种可能,即p 真q 假或者p 假q 真,即⎩⎪⎨⎪⎧ m >2m ≤1或m ≥3或⎩⎪⎨⎪⎧m ≤21<m <3, 解得:m ≥3或1<m ≤2.20.(本题满分12分)指出下列各组命题中,p 是q 的什么条件?(在“充分而不必要条件”、“必要而不充分条件”、“充要条件”、“既不充分也不必要条件”中选出一种)(1)在△ABC 中,p :∠A >∠B ,q :BC >AC ;(2)p :a =3,q :(a +2)(a -3)=0;(3)p :a >2,q :a >5;(4)p :a <b ,q :a b<1. [解析] (1)在△ABC 中,∠A >∠B ⇔BC >AC .所以p 是q 的充要条件.(2)a =3⇒(a +2)(a -3)=0,但(a +2)(a -3)=0⇒/ a =3.所以p 是q 的充分而不必要条件.(3)a >2⇒/ a >5,但a >5⇒a >2,所以p 是q 的必要而不充分条件.(4)a <b ⇒/ a b <1,且a b<1⇒/ a <b ,所以p 是q 的既不充分也不必要条件. 21.(本题满分12分)已知p :函数f (x )=lg(ax 2-x +116a )的定义域为R ;q :a ≥1.如果命题“p ∨q 为真,p ∧q 为假”,求实数a 的取值范围.[解析] 由p 真可知⎩⎪⎨⎪⎧a >0Δ=1-4a ·116a <0,解得a >2,由p ∨q 为真,p ∧q 为假知,p 和q 中一个为真、一个为假.若p 真q 假时a 不存在,若p 假q 真时1≤a ≤2.综上,实数a 的取值范围是1≤a ≤2.22.(本题满分14分)已知a >0,a ≠1,设p :函数y =log a (x +1)在x ∈(0,+∞)内单调递减;q :曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点,如果p 与q 有且只有一个正确,求a 的取值范围.[解析] 当0<a <1时,函数y =log a (x +1)在(0,+∞)内单调递减;当a >1时,y =log a (x +1)在(0,+∞)内不是单调递减.曲线y =x 2+(2a -3)x +1与x 轴交于不同两点等价于(2a -3)2-4>0.即a <12或a >52. (1)p 正确,q 不正确.则a ∈(0,1)∩⎩⎨⎧⎭⎬⎫a ⎪⎪12≤a ≤52且a ≠1,即a ∈⎣⎡⎭⎫12,1. (2)p 不正确,q 正确.则a ∈(1,+∞)∩⎩⎨⎧⎭⎬⎫a ⎪⎪0<a <12或a >52, 即a ∈⎝⎛⎭⎫52,+∞.综上所述,a 的取值范围为⎣⎡⎭⎫12,1∪⎝⎛⎭⎫52,+∞.。
模块综合测评(一)(时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一个等差数列的第5项等于10,前3项的和等于3,那么( ) A .它的首项是-2,公差是3 B .它的首项是2,公差是-3 C .它的首项是-3,公差是2 D .它的首项是3,公差是-2A [由题意得⎩⎪⎨⎪⎧a 5=10,S 3=3,即⎩⎪⎨⎪⎧a 1+4d =10,3a 1+3×22×d =3,解得a 1=-2,d =3.]2.2+1与2-1的等比中项是( ) A .1 B .-1 C .±1 D.12C [设x 为2+1与2-1的等比中项,则x 2=(2+1)(2-1)=1,∴x =±1.] 3.一辆汽车按规律s =at 2+1做直线运动,若汽车在t =2时的瞬时速度为12,则a =( ) A.12 B.13C .2D .3 D [由s =at 2+1得v (t )=s ′=2at ,依题意v (2)=12,所以2a ·2=12,得a =3.] 4.曲线y =4x -x 3在点(-1,-3)处的切线方程是( ) A .y =7x +4 B .y =x -4 C .y =7x +2D .y =x -2D [y ′|x =-1=(4-3x 2)|x =-1=1,∴切线方程为y +3=x +1,即y =x -2.]5.在等差数列{a n }中,a 5,a 10是方程x 2-10x -6=0的两个根,则{a n }的前14项和为( ) A .55 B .60 C .65 D .70D [∵在等差数列{a n }中,a 5,a 10是方程x 2-10x -6=0的两个根,∴a 5+a 10=10, ∴{a n }的前14项和S 14=142(a 1+a 14)=7(a 5+a 10)=7×10=70.故选D.]6.已知等比数列{a n }(a 1≠a 2)的公比为q ,且a 7,a 1,a 4成等差数列,则q 等于( ) A .1或-32 B .-32 C.32 D .1B [在等比数列{a n }中,由a 1≠a 2,得q ≠1, 因为a 7,a 1,a 4成等差数列,所以a 7+a 4=2a 1,即a 4(q 3+1)=2a 4q 3,所以q 6+q 3-2=0,解得q 3=1(舍)或q 3=-2.所以q =-32.]7.下列函数中,x =0是其极值点的函数是( ) A .f (x )=-x 3 B .f (x )=-cos x C .f (x )=sin x -xD .f (x )=1xB [对于A ,f ′(x )=-3x 2≤0恒成立,在R 上单调递减,没有极值点;对于B ,f ′(x )=sin x ,当x ∈(-π,0)时,f ′(x )<0,当x ∈(0,π)时,f ′(x )>0,故f (x )=-cos x 在x =0的左侧区间(-π,0)内单调递减,在其右侧区间(0,π)内单调递增,所以x =0是f (x )的一个极小值点;对于C ,f ′(x )=cos x -1≤0恒成立,在R 上单调递减,没有极值点;对于D ,f (x )=1x 在x =0处没有定义,所以x =0不可能成为极值点.综上可知,答案选B.]8.设S n 为数列{a n }的前n 项和,且S n =32(a n -1)(n ∈N *),则a n =( )A .3(3n -2n )B .3n +2nC .3nD .3·2n -1C [由S n =32(a n -1)(n ∈N *)可得S n -1=32(a n -1-1)(n ≥2,n ∈N *),两式相减可得a n =32a n-32a n -1(n ≥2,n ∈N *),即a n =3a n -1(n ≥2,n ∈N *).又a 1=S 1=32(a 1-1),解得a 1=3,所以数列{a n }是以3为首项,3为公比的等比数列,则a n =3n .]二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.若物体的运动规律是s =f (t ),则物体在时刻t 0的瞬时速度可以表示为( ) A .li m Δt →0f (t 0+Δt )-f (t 0)ΔtB .li m Δt →0f (t 0)-f (t 0+Δt )ΔtC .f ′(t 0)D .f ′(t )AC [物体在时刻t 0的瞬时速度,即为该点处的导数,故选AC.]10.已知S n 是等差数列{a n }的前n 项和,且S 3=2a 1,则下列结论正确的是( ) A .a 4=0 B .S 4=S 3C .S 7=0D .{a n }是递减数列ABC [设等差数列{a n }的公差为d ,由S 3=2a 1,得3a 1+3d =2a 1,即a 1+3d =0,所以a 4=0,S 4=S 3,S 7=7a 1+21d =7(a 1+3d )=0,故选项A ,B ,C 正确.]11.等差数列{a n }的公差d <0,且a 21=a 211,则数列{a n }的前n 项和S n 取最大值时的项数n可能是( )A .4B .5 C. 6 D .7BC [由题设可知a 1=-a 11,所以a 1+a 11=0,所以a 6=0.因为d <0,故a 5>0,a 7<0,所以n =5或6.]12.在平面直角坐标系中,横、纵坐标均为整数的点叫做格点.若函数图像恰好经过k 个格点,则称函数为k 阶格点函数.已知函数:①y =sin x; ②y =cos;③y =e x -1;④y =x 2.其中为一阶格点函数的序号有( ) A .① B .② C .③ D .④AC [对于①,注意到y =sin x 的值域是[-1,1];当sin x =0时,x =k π(k ∈Z ),此时相应的整数x =0;当sin x =±1时,x =k π+π2(k ∈Z ),此时没有相应的整数x ,因此函数y =sin x 仅过唯一的整点(0,0),该函数是一阶格点函数.同理可知,对于②,函数y =cos不是一阶格点函数.对于③,令y =e x -1=k (k ∈Z )得e x =k +1>0,x =ln(k +1),仅当k =0时,x =0∈Z ,因此函数y =e x -1是一阶格点函数.对于④,注意到函数y =x 2的图像经过多个整点,如点(0,0),(1,1),因此函数y =x 2不是一阶格点函数.综上所述知选AC.]三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知S n 是等比数列{a n }的前n 项和,a 5=-2,a 8=16,则公比q =________,S 6等于________.(本题第1空2分,第2空3分)-2218 [∵{a n }为等比数列,∴a 8=a 5q 3,∴q 3=16-2=-8,∴q =-2. 又a 5=a 1q 4,∴a 1=-216=-18,∴S 6=a 1(1-q 6)1-q =-18[1-(-2)6]1+2=218.]14.已知f (x )=x (2 019+ln x ),f ′(x 0)=2 020,则x 0=________. 1 [f ′(x )=2 019+ln x +1=2 020+ln x ,又∵f ′(x 0)=2 020,∴f ′(x 0)=2 020+ln x 0=2 020,则ln x 0=0,x 0=1.]15.已知数列{a n }的通项公式a n =(-1)n (2n -1),则a 1+a 2+a 3+…+a 10=________. 10 [观察可知a 1+a 2=2,a 3+a 4=2,…,a 9+a 10=2,故a 1+a 2+a 3+…+a 10=10.] 16.定义域为R 的函数f (x )满足f (1)=1,且f (x )的导函数f ′(x )>12,则满足2f (x )<x +1的x 的集合为________.{x |x <1} [令g (x )=2f (x )-x -1.因为f ′(x )>12,所以g ′(x )=2f ′(x )-1>0.所以g (x )为单调增函数.因为f (1)=1,所以g (1)=2f (1)-1-1=0.所以当x <1时,g (x )<0,即2f (x )<x +1.]四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)和为114的三个数是一个公比不为1的等比数列的连续三项,也是一个等差数列的第1项,第4项,第25项,求这三个数.[解] 由题意,设这三个数分别是a q ,a ,aq ,且q ≠1,则aq +a +aq =114.①令这个等差数列的公差为d ,则a =aq +(4-1)·d,∴d =13⎝⎛⎭⎫a -a q . 又有aq =a q +24×13×⎝⎛⎭⎫a -a q ,② 由②得(q -1)(q -7)=0,∵q ≠1,∴q =7, 代入①得a =14,则所求三个数为2,14,98.18.(本小题满分12分)已知函数f (x )=a 23x 3-2ax 2+bx ,其中a 、b ∈R ,且曲线y =f (x )在点(0,f (0))处的切线斜率为3.(1)求b 的值;(2)若函数f (x )在x =1处取得极大值,求a 的值.[解] (1)f ′(x )=a 2x 2-4ax +b ,由题意得f ′(0)=b =3.∴b =3. (2)∵函数f (x )在x =1处取得极大值, ∴f ′(1)=a 2-4a +3=0,解得a =1或a =3.①当a =1时,f ′(x )=x 2-4x +3=(x -1)(x -3), x 、f ′(x )、f (x )的变化情况如下表:由上表知,函数f (x )在x =1处取得极大值,符合题意. ②当a =3时,f ′(x )=9x 2-12x +3=3(3x -1)(x -1), x 、f ′(x )、f (x )的变化情况如下表:由上表知,函数f (x )在x =1处取得极小值,不符合题意. 综上所述,若函数f (x )在x =1处取得极大值,a 的值为1. 19.(本小题满分12分)求数列1,3a,5a 2,7a 3,…,(2n -1)·a n -1的前n 项和.[解] 当a =0时,S n =1.当a =1时,S n =1+3+5+7+…+(2n -1)=(1+2n -1)n 2=n 2.当a ≠0且a ≠1时,S n =1+3a +5a 2+…+(2n -3)a n -2+(2n -1)a n -1, aS n =a +3a 2+5a 3+…+(2n -3)a n -1+(2n -1)a n , 两式相减,有(1-a )S n =1+2a +2a 2+…+2a n -1-(2n -1)a n =1+2a (1-a n -1)1-a -(2n -1)a n ,此时S n =2a (1-a n -1)(1-a )2+a n +1-2na n1-a .当a =0时,也满足此式.综上,S n=⎩⎪⎨⎪⎧n 2,a =1,2a (1-an -1)(1-a )2+a n +1-2na n1-a,a ≠1.20.(本小题满分12分)某个体户计划经销A ,B 两种商品,据调查统计,当投资额为x (x ≥0)万元时,在经销A ,B 商品中所获得的收益分别为f (x )万元与g (x )万元,其中f (x )=a (x -1)+2,g (x )=6ln(x +b )(a >0,b >0).已知投资额为零时收益为零.(1)求a ,b 的值;(2)如果该个体户准备投入5万元经销这两种商品,请你帮他制定一个资金投入方案,使他能获得最大利润.[解] (1)由投资额为零时收益为零,可知f (0)=-a +2=0,g (0)=6ln b =0, 解得a =2,b =1.(2)由(1)可得f (x )=2x ,g (x )=6ln (x +1).设投入经销B 商品的资金为x 万元(0<x ≤5),则投入经销A 商品的资金为(5-x )万元, 设所获得的收益为S (x )万元,则S (x )=2(5-x )+6ln (x +1)=6ln (x +1)-2x +10(0<x ≤5). S ′(x )=6x +1-2,令S ′(x )=0,得x =2.当0<x <2时,S ′(x )>0,函数S (x )单调递增; 当2<x ≤5时,S ′(x )<0,函数S (x )单调递减.所以,当x =2时,函数S (x )取得最大值,S (x )max =S (2)=6ln 3+6≈12.6万元. 所以,当投入经销A 商品3万元,B 商品2万元时,他可获得最大收益,收益的最大值约为12.6万元.21.(本小题满分12分)已知数列{a n }的前n 项和为S n ,a 1=-2,且满足S n =12a n +1+n +1(n ∈N *).(1)求数列{a n }的通项公式; (2)若b n =log 3(-a n +1),设数列的前n 项和为T n ,求证:T n <34.[解] (1)由S n =12a n +1+n +1(n ∈N *),得S n -1=12a n +n (n ≥2,n ∈N *),两式相减,并化简,得a n +1=3a n -2,即a n +1-1=3(a n -1). 因为a 1-1=-2-1=-3≠0,所以{a n -1}是以-3为首项,3为公比的等比数列, 所以a n -1=(-3)·3n -1=-3n ,故a n =-3n +1.22.(本小题满分12分)已知函数f (x )=x 3+3ax 2+3x +1. (1)当a =-2时,讨论f (x )的单调性;(2)若x ∈[2,+∞)时,f (x )≥0,求a 的取值范围.[解] (1)当a =-2时,f (x )=x 3-32x 2+3x +1,f ′(x )=3x 2-62x +3. 令f ′(x )=0,得x 1=2-1,x 2=2+1.当x ∈(-∞,2-1)时,f ′(x )>0,f (x )在(-∞,2-1)上是增函数; 当x ∈(2-1,2+1)时,f ′(x )<0,f (x )在(2-1,2+1)上是减函数; 当x ∈(2+1,+∞)时,f ′(x )>0,f (x )在(2+1,+∞)上是增函数. (2)由f (2)≥0,得a ≥-54.当a ≥-54,x ∈[2,+∞)时, f ′(x )=3(x 2+2ax +1)≥3⎝⎛⎭⎫x 2-52x +1=3⎝⎛⎭⎫x -12·(x -2)>0, 所以f (x )在[2,+∞)上是增函数,于是当x ∈[2,+∞)时,f (x )≥f (2)≥0. 综上,a 的取值范围是⎣⎡⎭⎫-54,+∞.。
模块综合检测(B)(时间:120分钟 满分:150分)一、选择题(本大题12小题,每小题5分,共60分)1.已知命题“p :x≥4或x≤0”,命题“q :x ∈Z”,如果“p 且q”与“非q”同时为假命题,则满足条件的x 为( )A .{x|x≥3或x≤-1,x ∉Z}B .{x|-1≤x≤3,x ∉Z}C .{-1,0,1,2,3}D .{1,2,3}2.“a>0”是“|a|>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知2x +y =0是双曲线x 2-λy 2=1的一条渐近线,则双曲线的离心率是( ) A. 2 B. 3 C. 5 D .24.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为( ) A.x 24-y 212=1 B.x 212-y 24=1 C.x 210-y 26=1 D.x 26-y 210=1 5.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .126.过点(2,-2)与双曲线x 2-2y 2=2有公共渐近线的双曲线方程为( ) A.x 22-y 24=1 B.x 24-y 22=1 C.y 24-x 22=1 D.y 22-x 24=1 7.曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为( ) A .y =3x -4 B .y =-3x +2 C .y =-4x +3 D .y =4x -58.函数f(x)=x 2-2ln x 的单调递减区间是( ) A .(0,1] B .[1,+∞) C .(-∞,-1],(0,1) D .[-1,0),(0,1] 9.已知椭圆x 2+2y 2=4,则以(1,1)为中点的弦的长度为( ) A .3 2 B .2 3 C.303 D.326 10.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( ) A .2 B.12 C .-12D .-211.若函数y =f(x)的导函数在区间[a ,b]上是增函数,则函数y =f(x)在区间[a ,b]上的图象可能是( )12.已知函数f(x)的导函数f′(x)=4x 3-4x ,且f(x)的图象过点(0,-5),当函数f(x)取得极小值-6时,x 的值应为( )A .0B .-1C .±1D .1二、填空题(本大题共4小题,每小题5分,共20分)13.已知双曲线x 2-y 23=1,那么它的焦点到渐近线的距离为________.14.点P 是曲线y =x 2-ln x 上任意一点,则P 到直线y =x -2的距离的最小值是________.15.给出如下三种说法:①四个实数a ,b ,c ,d 依次成等比数列的必要而不充分条件是ad =bc. ②命题“若x≥3且y≥2,则x -y≥1”为假命题. ③若p ∧q 为假命题,则p ,q 均为假命题. 其中正确说法的序号为________.16.双曲线x 2a 2-y 2b2=1 (a>0,b>0)的两个焦点F 1、F 2,若P 为双曲线上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为________.三、解答题(本大题共6小题,共70分)17.(10分)命题p :方程x 2+mx +1=0有两个不等的负实数根,命题q :方程4x 2+4(m -2)x +1=0无实数根.若“p 或q”为真命题,“p 且q”为假命题,求m 的取值范围.18.(12分)F 1,F 2是椭圆的两个焦点,Q 是椭圆上任意一点,从任一焦点向△F 1QF 2中的∠F 1QF 2的外角平分线引垂线,垂足为P ,求点P 的轨迹.19.(12分)若r(x):sin x +cos x>m ,s(x):x 2+mx +1>0.已知∀x ∈R ,r(x)为假命题且s(x)为真命题,求实数m 的取值范围.20.(12分)已知椭圆x 2a 2+y 2b 2=1 (a>b>0)的一个顶点为A(0,1),离心率为22,过点B(0,-2)及左焦点F 1的直线交椭圆于C ,D 两点,右焦点设为F 2.(1)求椭圆的方程; (2)求△CDF 2的面积.21.(12分)已知函数f(x)=x 3+bx 2+cx +d 的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x -y +7=0.(1)求函数y =f(x)的解析式; (2)求函数y =f(x)的单调区间.22.(12分)已知f(x)=23x 3-2ax 2-3x (a ∈R),(1)若f(x)在区间(-1,1)上为减函数,求实数a 的取值范围; (2)试讨论y =f(x)在(-1,1)内的极值点的个数.模块综合检测(B) 答案1.D2.A [因为|a|>0⇔a>0或a<0,所以a>0⇒|a|>0,但|a|>0 ⇒a>0,所以“a>0”是“|a|>0”的充分不必要条件.]3.C4.A [由题意知c =4,焦点在x 轴上, 又e =ca =2,∴a =2,∴b 2=c 2-a 2=42-22=12, ∴双曲线方程为x 24-y 212=1.]5.C [设椭圆的另一焦点为F ,由椭圆的定义知 |BA|+|BF|=23,且|CF|+|AC|=23, 所以△ABC 的周长=|BA|+|BC|+|AC| =|BA|+|BF|+|CF|+|AC|=4 3.]6.D [与双曲线x 22-y 2=1有公共渐近线方程的双曲线方程可设为x 22-y 2=λ,由过点(2,-2),可解得λ=-2. 所以所求的双曲线方程为y 22-x 24=1.]7.B [y′=3x 2-6x ,∴k =y′|x =1=-3, ∴切线方程为y +1=-3(x -1), ∴y =-3x +2.] 8.A [由题意知x>0,若f′(x)=2x -2x =2(x 2-1)x≤0,则0<x≤1,即函数f(x)的递减区间是(0,1].]9.C [令直线l 与椭圆交于A(x 1,y 1),B(x 2,y 2),则⎩⎪⎨⎪⎧x 21+2y 21=4 ①x 22+2y 22=4 ② ①-②得:(x 1+x 2)(x 1-x 2)+2(y 1+y 2)(y 1-y 2)=0, 即2(x 1-x 2)+4(y 1-y 2)=0,∴k l =-12,∴l 的方程:x +2y -3=0,由⎩⎪⎨⎪⎧x +2y -3=0x 2+2y 2-4=0,得6y 2-12y +5=0. ∴y 1+y 2=2,y 1y 2=56.∴|AB|=⎝⎛⎭⎫1+1k 2(y 1-y 2)2=303.] 10.D [y =x +1x -1,∴y′|x =3=-2(x -1)2|x =3=-12. 又∵-a×⎝⎛⎭⎫-12=-1,∴a =-2.] 11.A [依题意,f ′(x)在[a ,b]上是增函数,则在函数f(x)的图象上,各点的切线的斜率随着x 的增大而增大,观察四个选项中的图象,只有A 满足.]12.C [f(x)=x 4-2x 2+c. 因为过点(0,-5),所以c =-5.由f′(x)=4x(x 2-1),得f(x)有三个极值点,列表判断±1均为极小值点,且f(1)=f(-1)=-6.] 13. 3解析 焦点(±2,0),渐近线:y =±3x , 焦点到渐近线的距离为23(3)2+1= 3.14. 2解析 先设出曲线上一点,求出过该点的切线的斜率,由已知直线,求出该点的坐标,再由点到直线的距离公式求距离.设曲线上一点的横坐标为x 0 (x 0>0),则经过该点的切线的斜率为k =2x 0-1x 0,根据题意得,2x 0-1x 0=1,∴x 0=1或x 0=-12,又∵x 0>0,∴x 0=1,此时y 0=1,∴切点的坐标为(1,1),最小距离为|1-1-2|2= 2.15.①②解析 对①,a ,b ,c ,d 成等比数列,则ad =bc ,反之不一定,故①正确;对②,令x =5,y =6,则x -y =-1,所以该命题为假命题,故②正确;对③,p ∧q 假时,p ,q 至少有一个为假命题,故③错误.16.(1,3]解析 设|PF 2|=m , 则2a =||PF 1|-|PF 2||=m , 2c =|F 1F 2|≤|PF 1|+|PF 2|=3m.∴e =c a =2c2a ≤3,又e>1,∴离心率的取值范围为(1,3].17.解 命题p :方程x 2+mx +1=0有两个不等的负实根⇔⎩⎪⎨⎪⎧Δ=m 2-4>0m>0⇔m>2.命题q :方程4x 2+4(m -2)x +1=0无实根 ⇔Δ′=16(m -2)2-16=16(m 2-4m +3)<0 ⇔1<m<3.∵“p 或q”为真,“p 且q”为假, ∴p 为真、q 为假或p 为假、q 为真,则⎩⎪⎨⎪⎧ m>2m≤1或m≥3或⎩⎨⎧m≤21<m<3,解得m≥3或1<m≤2. 18.解设椭圆的方程为x 2a 2+y 2b 2=1 (a>b>0),F 1,F 2是它的两个焦点,Q 为椭圆上任意一点,QP是△F 1QF 2中的∠F 1QF 2的外角平分线(如图),连结PO ,过F 2作F 2P ⊥QP 于P 并延长交F 1Q 的延长线于H ,则P 是F 2H 的中点,且|F 2Q|=|QH|, 因此|PO|=12|F 1H|=12(|F 1Q|+|QH|)=12(|F 1Q|+|F 2Q|)=a , ∴点P 的轨迹是以原点为圆心,以椭圆半长轴长为半径的圆(除掉两点即椭圆与x 轴的交点).19.解 由于sin x +cos x =2sin ⎝⎛⎭⎫x +π4∈[-2,2], ∀x ∈R ,r(x)为假命题即sin x +cos x>m 恒不成立. ∴m≥ 2. ① 又对∀x ∈R ,s(x)为真命题. ∴x 2+mx +1>0对x ∈R 恒成立.则Δ=m 2-4<0,即-2<m<2. ② 故∀x ∈R ,r(x)为假命题,且s(x)为真命题, 应有2≤m<2.20.解 (1)由题意知b =1,e =c a =22,又∵a 2=b 2+c 2,∴a 2=2. ∴椭圆方程为x 22+y 2=1.(2)∵F 1(-1,0),∴直线BF 1的方程为y =-2x -2, 由⎩⎪⎨⎪⎧y =-2x -2x 22+y 2=1,得9x 2+16x +6=0. ∵Δ=162-4×9×6=40>0, ∴直线与椭圆有两个公共点, 设为C(x 1,y 1),D(x 2,y 2),则⎩⎨⎧x 1+x 2=-169x 1x 2=23,∴|CD|=1+(-2)2|x 1-x 2| =5·(x 1+x 2)2-4x 1x 2 =5·⎝⎛⎭⎫-1692-4×23=1092, 又点F 2到直线BF 1的距离d =455,故S △CDF 2=12|CD|·d =4910.21.解 (1)由f(x)的图象经过P(0,2)知d =2, ∴f(x)=x 3+bx 2+cx +2, f′(x)=3x 2+2bx +c.由在点M(-1,f(-1))处的切线方程是6x -y +7=0,知-6-f(-1)+7=0, 即f(-1)=1,f′(-1)=6.∴⎩⎪⎨⎪⎧ 3-2b +c =6,-1+b -c +2=1,即⎩⎪⎨⎪⎧b -c =0,2b -c =-3, 解得b =c =-3.故所求的解析式是f(x)=x 3-3x 2-3x +2. (2)f′(x)=3x 2-6x -3,令3x 2-6x -3=0, 即x 2-2x -1=0.解得x 1=1-2,x 2=1+ 2.当x<1-2或x>1+2时,f′(x)>0. 当1-2<x<1+2时,f′(x)<0.故f(x)=x 3-3x 2-3x +2在(-∞,1-2)和(1+2,+∞)内是增函数,在(1-2,1+2)内是减函数.22.解 (1)∵f(x)=23x 3-2ax 2-3x ,∴f′(x)=2x 2-4ax -3,∵f(x)在区间(-1,1)上为减函数, ∴f′(x)≤0在(-1,1)上恒成立;∴⎩⎪⎨⎪⎧f ′(-1)≤0f′(1)≤0 得-14≤a≤14.故a 的取值范围是⎣⎡⎦⎤-14,14. (2)当a>14时,∵⎩⎨⎧f′(-1)=4⎝⎛⎭⎫a -14>0f′(1)=-4⎝⎛⎭⎫a +14<0,∴存在x 0∈(-1,1),使f′(x 0)=0, ∵f′(x)=2x 2-4ax -3开口向上,∴在(-1,x 0)内,f′(x)>0,在(x 0,1)内,f′(x)<0, 即f(x)在(-1,x 0)内单调递增,在(x 0,1)内单调递减, ∴f(x)在(-1,1)内有且仅有一个极值点,且为极大值点.当a<-14时,∵⎩⎨⎧f′(-1)=4⎝⎛⎭⎫a -14<0f′(1)=-4⎝⎛⎭⎫a +14>0,∴存在x 0∈(-1,1)使f′(x 0)=0. ∵f′(x)=2x 2-4ax -3开口向上, ∴在(-1,x 0)内f′(x)<0, 在(x 0,1)内f′(x)>0.即f(x)在(-1,x 0)内单调递减,在(x 0,1)内单调递增, ∴f(x)在(-1,1)内有且仅有一个极值点,且为极小值点. 当-14≤a≤14时,由(1)知f(x)在(-1,1)内递减,没有极值点.综上,当a>14或a<-14时,f(x)在(-1,1)内的极值点的个数为1,当-14≤a≤14时,f(x)在(-1,1)内的极值点的个数为0.。
高中数学学习材料马鸣风萧萧*整理制作人教新课标B版模块考试(必修1)期末试题一、选择题(本题共12小题,每小题5分,共60分)1. 已知全集U={0,2,4,6,8,10},集合A={2,4,6},B={1},则U A∪B等于(A){0,1,8,10} (B){1,2,4,6}(C){0,8,10} (D)Φ2. 下列关系中正确的个数为①0∈{0},②Φ{0},③{0,1}{(0,1)},④{(a,b)}={(b,a)}(A)1(B)2 (C)3(D)43. 不等式(x+1)(2-x)>0的解集为(A)(B)(C)(D)4. 方程组的解集为(A){2,1} (B){1,2} (C){(2,1)} (D)(2,1)5. 下列对应中是集合A到集合B的映射的个数为①A={1,3,5,7,9},B={2,4,6,8,10},对应法则f:x→y = x+1,x∈A,y∈B;②A={x|00<x<900,B={y|0<y<1,对应法则f:x→y = sinx,x∈A,y∈B;③A={x|x∈R},B={y|y≥0},对应法则f:x→y = x2,x∈A,y∈B.(A)0 (B)1 (C)2 (D)36. 三个数,,的大小顺序为(A)(B)((C)(D)7. 函数的定义域为(A)(B)(C)(D)8. 直线y=3与函数y=|x2-6x |图象的交点个数为(A)4个(B)3个(C)2个(D)1个9. 某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林(A)14400亩(B)172800亩(C)17280亩(D)20736亩10. 若,则对任意实数x1,x2,下列不等式总成立的是(A)≤(B)<(C)≥(D)>11. 某学生从家里去学校上学,骑自行车一段时间,因自行车爆胎,后来推车步行,下图中横轴表示出发后的时间,纵轴表示该生离学校的距离,则较符合该学生走法的图是12.若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,那么下列命题中正确的是(A)函数f(x)在区间(0,1)内有零点(B)函数f(x)在区间(0,1)或(1,2)内有零点(C)函数f(x)在区间[2,16内无零点(D)函数f(x)在区间(1,16)内无零点二.填空题(本题共4小题,每小题4分,共16分)13.若A={0,1,2,4,5,7,8},B={1,3,6,7,9},C={3,4,7,8},那么集合(A∩B)∪C=____________________.14.已知f(x)=,则f [f(-2)]=________________..15.函数的零点个数为16.一个高中研究性学习小组对本地区2000年至2002年快餐公司发展情况进行了调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售量的平均数情况条形图(如图),根据图中提供的信息可以得出这三年中该地区每年平均销售盒饭万盒.三.解答题(本大题共6小题,满分共74分)17.(本小题满分12分)已知A={1,2,x2-5x+9},B={3,x2+ax+a},如果A={1,2,3},2 ∈B,求实数a的值.18.(本小题满分12分)已知M={x| -2≤x≤5}, N={x| a+1≤x≤2a-1}.(Ⅰ)若M N,求实数a的取值范围;(Ⅱ)若M N,求实数a的取值范围.19.(本小题满分12分)建造一个容积为8立方米,深为2米的无盖长方体蓄水池,池壁的造价为每平方米100元,池底的造价为每平方米300元,把总造价y(元)表示为底面一边长x(米)的函数.20.(本小题满分12分)已知函数f ( x )=x 2+ax+b,且对任意的实数x都有f (1+x)=f (1-x) 成立.(Ⅰ)求实数a的值;(Ⅱ)利用单调性的定义证明函数f(x)在区间[1,+∞上是增函数.21.(本小题满分12分)A、B两城相距100km,在两地之间距A城x km处D地建一核电站给A、B两城供电,为保证城市安全.核电站距市距离不得少于10km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数.若A城供电量为20亿度/月,B城为10亿度/月.(Ⅰ)把月供电总费用y表示成x的函数,并求定义域;(Ⅱ)核电站建在距A城多远,才能使供电费用最小.22.(本小题满分14分)我国从1998年到2002年,每年的国内生产总值如下表:年份19981999200020012002生产总值(亿元)78345820678944295933102398(Ⅰ)根据已知数据,估计我国2003年的国内生产总值;(Ⅱ)据资料可知我国2003年的国内生产总值为116694亿元,你的预测是否准确,若误差较大,能修正你所构造的模型吗?参考答案一、选择题题号123456789101112答案A B D C D D C A C A D C二、填空题13.{1,3,4,7,8} ;14. ;15.2;16. 85.三、解答题17. 解:由A={1,2,x2-5x+9}={1,2,3},知x2-5x+9=3,解得x=2或x=3,又2 ∈B,则x2+ax+a=2,当x=2时,a=,当x=3时,a=.故a=或.18. 解:(Ⅰ)由于M N,则,解得a∈Φ.(Ⅱ)①当N=Φ时,即a+1>2a-1,有a<2;②当N≠Φ,则,解得2≤a≤3,综合①②得a的取值范围为a≤3.19.解:由于长方体蓄水池的容积为8立方米,深为2米,因此其底面积为4平方米,设底面一边长为x米,则另一边长为米,又因为池壁的造价为每平方米100元,而池壁的面积为2(2x+2·)平方米,因此池壁的总造价为100·2(2x+2·),而池底的造价为每平方米300元,池底的面积为4平方米,因此池底的总造价为1200元,故蓄水池的总造价为:y=100·2(2x+2·)+1200=400·(x+)+1200(x>0).20. 解:(Ⅰ)由f (1+x)=f (1-x)得,(1+x)2+a(1+x)+b=(1-x)2+a(1-x)+b,整理得:(a+2)x=0,由于对任意的x都成立,∴a=-2.(Ⅱ)根据(Ⅰ)可知f ( x )=x 2-2x+b,下面证明函数f(x)在区间[1,+∞上是增函数. 设,则=()-()=()-2()=()(-2)∵,则>0,且-2>2-2=0,∴>0,即,故函数f(x)在区间[1,+∞上是增函数.21. 解:(Ⅰ)y=5x2+(100—x)2(10≤x≤90);(Ⅱ)由y=5x2+(100—x)2=x2-500x+25000=+.则当x=米时,y最小.故当核电站建在距A城米时,才能使供电费用最小.22.解:(Ⅰ)本小题只要能建立一个正确的数学模型即可给分(例如根据两点得出直线方程等).下面利用excel给出几个模型,供参考:(1)直线型:将x=6代入y=6197.2x+71045中得2003年的国内生产总值为108228.2亿元.(2)二次函数型:将x=6代入y=328.71x2+4224.9x+73346中得2003年的国内生产总值为110529亿元.(3)四次函数型:将x=6代入y=224.79x4-3004.1x3+14231x2-21315x+88208中得2003年的国内生产总值为115076.2亿元.(4)指数函数型:将x=6代入y=72492e0.0692x中得2003年的国内生产总值为109797亿元.(5)幂函数型:将x=6代入y=76113x0.1658中得2003年的国内生产总值为102441.6亿元.(Ⅱ)从以上的5个模型可以看成,四次函数型最接近2003年的实际国内生产总值,其实从其R2值也可以看成,因为四次函数型中R2=1. 根据自己所建模型予以调整.。
模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2015·湖北高考)i为虚数单位,i607的共轭复数....为( )A.i B.-iC.1 D.-1【解析】因为i607=i4×151+3=i3=-i,所以其共轭复数为i,故选A.【答案】 A2.根据二分法求方程x2-2=0的根得到的程序框图可称为( )A.工序流程图B.程序流程图C.知识结构图D.组织结构图【解析】由于该框图是动态的且可以通过计算机来完成,故该程序框图称为程序流程图.【答案】 B3.利用独立性检测来考查两个分类变量X,Y是否有关系,当随机变量K2的值( )【导学号:19220070】A.越大,“X与Y有关系”成立的可能性越大B.越大,“X与Y有关系”成立的可能性越小C.越小,“X与Y有关系”成立的可能性越大D.与“X与Y有关系”成立的可能性无关【解析】由K2的意义可知,K2越大,说明X与Y有关系的可能性越大.【答案】 A4.(2016·安庆高二检测)用反证法证明命题“a,b∈N,如果ab可被5整除”,那么a,b至少有一个能被5整除.则假设的内容是( )A.a,b都能被5整除B.a,b都不能被5整除C.a不能被5整除D.a,b有一个不能被5整除【解析】“至少有一个”的否定为“一个也没有”,故应假设“a,b都不能被5整除”.【答案】 B5.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误【解析】 一般的演绎推理是三段论推理:大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理对特殊情况作出的判断.此题的推理不符合上述特征,故选C.【答案】 C6.(2015·安徽高考)设i 是虚数单位,则复数2i1-i在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【解析】2i1-i=2i 1+i 1-i 1+i=2i -12=-1+i ,由复数的几何意义知-1+i 在复平面内的对应点为(-1,1),该点位于第二象限,故选B.【答案】 B7.(2016·深圳高二检测)在两个变量的回归分析中,作散点图是为了( ) A .直接求出回归直线方程 B .直接求出回归方程C .根据经验选定回归方程的类型D .估计回归方程的参数【解析】 散点图的作用在于判断两个变量更近似于什么样的函数关系,便于选择合适的函数模型.【答案】 C8.给出下面类比推理:①“若2a <2b ,则a <b ”类比推出“若a 2<b 2,则a <b ”; ②“(a +b )c =ac +bc (c ≠0)”类比推出“a +bc =a c +bc(c ≠0)”; ③“a ,b ∈R ,若a -b =0,则a =b ”类比推出“a ,b ∈C ,若a -b =0,则a =b ”; ④“a ,b ∈R ,若a -b >0,则a >b ”类比推出“a ,b ∈C ,若a -b >0,则a >b (C 为复数集)”.其中结论正确的个数为( ) A .1 B .2 C .3D .4【解析】 ①显然是错误的;因为复数不能比较大小,所以④错误,②③正确,故选B.【答案】 B9.(2015·全国卷Ⅰ)执行如图1的程序框图,如果输入的t =0.01,则输出的n =( )图1A .5B .6C .7D .8【解析】 运行第一次:S =1-12=12=0.5,m =0.25,n =1,S >0.01;运行第二次:S =0.5-0.25=0.25,m =0.125,n =2,S >0.01; 运行第三次:S =0.25-0.125=0.125,m =0.062 5,n =3,S >0.01; 运行第四次:S =0.125-0.062 5=0.062 5,m =0.031 25,n =4,S >0.01; 运行第五次:S =0.031 25,m =0.015 625,n =5,S >0.01; 运行第六次:S =0.015 625,m =0.007 812 5,n =6,S >0.01; 运行第七次:S =0.007 812 5,m =0.003 906 25,n =7,S <0.01. 输出n =7.故选C. 【答案】 C10.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 33为( ) A .3 B .-3 C .6D .-6【解析】 a 1=3,a 2=6,a 3=a 2-a 1=3,a 4=a 3-a 2=-3,a 5=a 4-a 3=-6,a 6=a 5-a 4=-3,a 7=a 6-a 5=3,a 8=a 7-a 6=6,…观察可知{a n }是周期为6的周期数列,故a 33=a 3=3. 【答案】 A11.(2016·青岛高二检测)下列推理合理的是( ) A .f (x )是增函数,则f ′(x )>0B .因为a >b (a ,b ∈R ),则a +2i >b +2i(i 是虚数单位)C .α,β是锐角△ABC 的两个内角,则sin α>cos βD .A 是三角形ABC 的内角,若cos A >0,则此三角形为锐角三角形【解析】 A 不正确,若f (x )是增函数,则f ′(x )≥0;B 不正确,复数不能比较大小;C 正确,∵α+β>π2,∴α>π2-β,∴sin α>cos β;D 不正确,只有cos A >0,cos B >0,cos C >0,才能说明此三角形为锐角三角形.【答案】 C12.有人收集了春节期间平均气温x 与某取暖商品销售额y 的有关数据如下表:根据以上数据,用线性回归的方法,求得销售额y 与平均气温x 之间线性回归方程y ^=b ^x +a ^的系数b ^=-2.4,则预测平均气温为-8℃时该商品销售额为( )A .34.6万元B .35.6万元C .36.6万元D .37.6万元【解析】 x =-2-3-5-64=-4,y =20+23+27+304=25,所以这组数据的样本中心点是(-4,25). 因为b ^=-2.4,把样本中心点代入线性回归方程得a ^=15.4, 所以线性回归方程为y ^=-2.4x +15.4. 当x =-8时,y =34.6.故选A. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上.) 13.已知复数z =m 2(1+i)-m (m +i)(m ∈R ),若z 是实数,则m 的值为________.【导学号:19220071】【解析】 z =m 2+m 2i -m 2-m i =(m 2-m )i , ∴m 2-m =0, ∴m =0或1. 【答案】 0或114.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:“否”).【解析】 因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,即ba +b =1858,dc +d =2742,两者相差较大,所以经直观分析,收看新闻节目的观众与年龄是有关的.【答案】 是15.(2016·天津一中检测)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________.【解析】 已知等式可改写为:13+23=(1+2)2;13+23+33=(1+2+3)2;13+23+33+43=(1+2+3+4)2,由此可得第五个等式为13+23+33+43+53+63=(1+2+3+4+5+6)2=212. 【答案】 13+23+33+43+53+63=21216.(2016·江西吉安高二检测)已知等差数列{a n }中,有a 11+a 12+…+a 2010=a 1+a 2+…+a 3030,则在等比数列{b n }中,会有类似的结论________.【解析】 由等比数列的性质可知,b 1b 30=b 2b 29=…=b 11b 20, ∴10b 11b 12…b 20=30b 1b 2…b 30.【答案】 10b 11b 12…b 20=30b 1b 2…b 30三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)(2016·哈三中模拟)设z =1-4i1+i +2+4i3+4i,求|z |.【解】 z =1+i -4i +4+2+4i 3+4i =7+i 3+4i ,∴|z |=|7+i||3+4i|=525= 2.18.(本小题满分12分)我校学生会有如下部门:文娱部、体育部、宣传部、生活部、学习部.请画出学生会的组织结构图.【解】 学生会的组织结构图如图.19.(本小题满分12分)给出如下列联表:患心脏病 患其他病 总计 高血压 20 10 30 不高血压 30 50 80 总计5060110(参考数据:P (K 2≥6.635)=0.010,P (K 2≥7.879)=0.005) 【解】 由列联表中数据可得 k =110×20×50-10×30230×80×50×60≈7.486.又P (K 2≥6.635)=0.010,所以在犯错误的概率不超过0.010的前提下,认为高血压与患心脏病有关系. 20.(本小题满分12分)已知非零实数a ,b ,c 构成公差不为0的等差数列,求证:1a,1b ,1c不能构成等差数列.【导学号:19220072】【证明】 假设1a ,1b ,1c 能构成等差数列,则2b =1a +1c,因此b (a +c )=2ac .而由于a ,b ,c 构成等差数列,且公差d ≠0,可得2b =a +c , ∴(a +c )2=4ac ,即(a -c )2=0,于是得a =b =c , 这与a ,b ,c 构成公差不为0的等差数列矛盾. 故假设不成立,即1a ,1b ,1c不能构成等差数列.21.(本小题满分12分)已知a 2+b 2=1,x 2+y 2=1,求证:ax +by ≤1(分别用综合法、分析法证明).【证明】 综合法:∵2ax ≤a 2+x 2,2by ≤b 2+y 2, ∴2(ax +by )≤(a 2+b 2)+(x 2+y 2). 又∵a 2+b 2=1,x 2+y 2=1, ∴2(ax +by )≤2,∴ax +by ≤1. 分析法:要证ax +by ≤1成立, 只要证1-(ax +by )≥0, 只要证2-2ax -2by ≥0, 又∵a 2+b 2=1,x 2+y 2=1,∴只要证a 2+b 2+x 2+y 2-2ax -2by ≥0, 即证(a -x )2+(b -y )2≥0,显然成立.22.(本小题满分12分)某班5名学生的数学和物理成绩如下表:(2)求物理成绩y 对数学成绩x 的回归直线方程; (3)一名学生的数学成绩是96,试预测他的物理成绩. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:b ^=∑i =1nx i y i -n x -y-∑i =1nx 2i -n x 2,a ^=y -b ^x -.【解】 (1)散点图如图,(2)x =15×(88+76+73+66+63)=73.2,y =15×(78+65+71+64+61)=67.8.∑i =15x i y i =88×78+76×65+73×71+66×64+63×61=25 054.∑i =15x 2i =882+762+732+662+632=27 174. 所以b ^=∑i =15x i y i -5x -y-∑i =15x 2i -5x -2=25 054-5×73.2×67.827 174-5×73.22≈0.625.a ^=y -b ^x -≈67.8-0.625×73.2=22.05. 所以y 对x 的回归直线方程是y ^=0.625x +22.05.(3)x =96,则y ^=0.625×96+22.05≈82,即可以预测他的物理成绩是82分.。
模块综合检测本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.倾斜角为120°,在x 轴上的截距为-1的直线方程是( ) A .3 x -y +1=0 B .3 x -y -3 =0 C .3 x +y -3 =0D .3 x +y +3 =0解析:选D 由于倾斜角为120°,故斜率k =-3 .又直线过点(-1,0),所以直线方程为y =-3 (x +1),即3 x +y +3 =0.2.已知向量a =(-1,1,0),b =(1,0,2),且k a +b 与a -2b 互相垂直,则k =( ) A .-114B .15C .35D .114解析:选D k a +b =(-k +1,k ,2),a -2b =(-3,1,-4),由(k a +b )·(a -2b)=3(k -1)+k -8=0,解得k =114.3.经过点(1,0),且圆心是两直线x =1与x +y =2的交点的圆的方程为( ) A .(x -1)2+y 2=1 B .(x -1)2+(y -1)2=1 C .x 2+(y -1)2=1D .(x -1)2+(y -1)2=2解析:选B 由⎩⎪⎨⎪⎧x =1,x +y =2, 得⎩⎪⎨⎪⎧x =1,y =1,即所求圆的圆心坐标为(1,1), 又由该圆过点(1,0),得其半径为1, 故圆的方程为(x -1)2+(y -1)2=1.4.若双曲线C 1:x 22 -y 28 =1与C 2:x 2a 2 -y 2b 2 =1(a >0,b >0)的渐近线相同,且双曲线C 2的焦距为45 ,则b =( )A .2B .4C .6D .8解析:选B 由题意得,b a=2⇒b =2a .①因为C 2的焦距2c =45 ,所以c =a 2+b 2=25 .② 联立①②,得b =4,故选B.5.直线x -2y +2=0关于直线x =1对称的直线方程是( ) A .x +2y -4=0 B .2x +y -1=0 C .2x +y -3=0D .2x +y -4=0解析:选A 法一:设P (x ,y )为所求直线上的点,该点关于直线x =1的对称点为(2-x ,y ),且该对称点在直线x -2y +2=0上,代入可得x +2y -4=0.故选A.法二:直线x -2y +2=0与直线x =1的交点为P ⎝ ⎛⎭⎪⎫1,32 ,则所求直线过点P .因为直线x -2y +2=0的斜率为12,所以所求直线的斜率为-12,故所求直线的方程为y -32=-12(x-1),即x +2y -4=0.故选A.6.正方体ABCD A 1B 1C 1D 1中,E ,F 分别是DD 1,BD 的中点,则直线AD 1与EF 所成角的余弦值是( )A .12 B .32 C .63D .62解析:选C 以D 为坐标原点,建立如图所示的空间直角坐标系Dxyz ,设正方体的棱长为2,则A (2,0,0),D 1(0,0,2),E (0,0,1),F (1,1,0),所以AD 1―→=(-2,0,2),EF ―→=(1,1,-1),故cos 〈AD 1―→,EF ―→〉=AD 1―→·EF ―→| AD 1―→||EF ―→| =-422×3 =-63 ,所以直线AD 1与EF 所成角的余弦值是63. 故选C.7.在椭圆x 24 +y 2=1上有两个动点P ,Q ,E (1,0)为定点,EP ⊥EQ ,则EP ―→·QP ―→的最小值为( )A .4B .3-3C .23D .1解析:选C 由题意得EP ―→·QP ―→=EP ―→·(EP ―→-EQ ―→)=EP ―→2-EP ―→·EQ ―→=EP ―→2.设椭圆上一点P (x ,y ),则EP ―→=(x -1,y ),∴EP ―→2=(x -1)2+y 2=(x -1)2+⎝ ⎛⎭⎪⎫1-x 24 =34 ⎝ ⎛⎭⎪⎫x -432+23 ,又-2≤x ≤2,∴当x =43时,EP ―→2取得最小值23.8.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面的中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周).若AM ⊥MP ,则点P 形成的轨迹的长度为( )A .76 B .75 C .74D .72解析:选D 建立空间直角坐标系,如图.设A (0,-1,0),B (0,1,0),S (0,0,3 ),M ⎝ ⎛⎭⎪⎫0,0,32 ,P (x ,y ,0).于是有AM ―→=⎝ ⎛⎭⎪⎫0,1,32 ,MP ―→=⎝⎛⎭⎪⎫x ,y ,-32 .因为AM ⊥MP ,所以AM ―→·MP ―→=0,即⎝ ⎛⎭⎪⎫0,1,32 ·⎝ ⎛⎭⎪⎫x ,y ,-32 =0,即y =34 ,此为P 点形成的轨迹方程,其在底面圆内的长度为2×1-⎝ ⎛⎭⎪⎫342 =72 .故选D.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.平行于直线x +y +1=0,且与圆x 2+y 2=4相切的直线的方程是( ) A .x +y +22 =0 B .x +y -2=0 C .x +y -22 =0D .x +y +2=0解析:选AC 根据题意,所求直线平行于直线x +y +1=0,则设所求直线的方程为x +y +m =0,若所求直线与圆x 2+y 2=4相切,则|m |2=2,解得m =±22 ,则所求直线的方程为x +y ±22 =0.10.如图,在平行六面体ABCD A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,平行六面体的各棱长均相等.给出下列结论,正确的是( )A .A 1M ∥D 1PB .A 1M ∥B 1QC .A 1M ∥平面DCC 1D 1 D .A 1M ∥平面D 1PQB 1解析:选ACD ∵A 1M ―→=A 1A ―→+AM ―→=A 1A ―→+12 AB ―→,D 1P ―→=D 1D ―→+DP ―→=A 1A ―→+12AB ―→,∴A 1M ―→∥D 1P ―→,从而A 1M ∥D 1P ,可得A 、C 、D 正确. 又B 1Q 与D 1P 不平行,∴B 1Q 与A 1M 不平行,可得B 错误.11.已知两点A (-5,0),B (5,0),若直线上存在点P ,使|PA |-|PB |=6,同时存在点Q ,使|QB |-|QA |=6,则称该直线为“一箭双雕线”,给出下列直线,其中为“一箭双雕线”的是( )A .y =x +1B .y =2C .y =43xD .y =2x解析:选AB 由题意知,满足条件的直线应与双曲线x 29-y 216=1的左、右两支分别相交,双曲线的渐近线方程为y =±43x ,∵选项A :y =x +1,斜率k =1,直线与双曲线的左、右两支分别相交,选项B :y =2,斜率为0,直线与双曲线的左、右两支分别相交,∴A 、B 满足题意.12.已知O 是坐标原点,A ,B 是抛物线y =x 2上不同于O 的两点,OA ⊥OB ,下列四个结论中,所有正确的结论是( )A .|OA |·|OB |≥2 B .|OA |+|OB |≥22C .直线AB 过抛物线y =x 2的焦点 D .O 到直线AB 的距离小于等于1解析:选ABD 设A (x 1,x 21 ),B (x 2,x 22 ),则OA ―→·OB ―→=0,即x 1x 2(1+x 1x 2)=0,所以x 2=-1x 1.对于A ,|OA |·|OB |=x 21(1+x 21)·1x 21 ⎝⎛⎭⎪⎫1+1x 21 =1+x 21 +1x 21+1 ≥2.当且仅当x 1=±1时取等号,正确;对于B ,|OA |+|OB |≥2|OA |·|OB | ≥22 ,正确;对于C ,直线AB 的方程为y -x 21 =⎝⎛⎭⎪⎫x 1-1x 1(x -x 1),不过点⎝ ⎛⎭⎪⎫0,14,错误;对于D ,原点到直线AB :⎝⎛⎭⎪⎫x 1-1x1x -y +1=0的距离d =1⎝ ⎛⎭⎪⎫x 1-1x 12+1 ≤1,正确.第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知方程x 2+y 2-2x -2y +F =0表示半径为2的圆,则实数F =________. 解析:法一:因为方程x 2+y 2-2x -2y +F =0表示半径为2的圆,所以4+4-4F 4 =4,得F =-2.法二:方程x 2+y 2-2x -2y +F =0可化为(x -1)2+(y -1)2=2-F .因为方程x 2+y 2-2x -2y +F =0表示半径为2的圆,所以F =-2.答案:-214.已知直线l 1:ax +y +3a -4=0和l 2:2x +(a -1)y +a =0,则原点到l 1的距离的最大值是________;若l 1∥l 2,则a =________.解析:直线l 1:ax +y +3a -4=0等价于a (x +3)+y -4=0,则直线过定点A (-3,4),当原点到l 1的距离最大时,满足OA ⊥l 1,此时原点到l 1的距离的最大值为|OA |=(-3)2+42=5.若l 1∥l 2,则a (a -1)-2=0,∴a =2(舍去),a =-1. 答案:5 -115.已知双曲线x 2a 2 -y 2b2 =1(a >0,b >0)的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为________.解析:由题意可得e =ca=2,则c =2a ,其中一个焦点为F (c ,0),渐近线方程为bx ±ay =0,所以bc b 2+a2=bcc =b =1, 又c 2=4a 2=a 2+b 2,所以a 2=13,所以所求的双曲线方程为3x 2-y 2=1. 答案:3x 2-y 2=116.如图,在长方体ABCD A 1B 1C 1D 1中,AB =1,BC =3 ,点M 在棱CC 1上,且MD 1⊥MA ,则当△MAD 1的面积最小时,棱CC 1的长为________.解析:建立如图所示的空间直角坐标系,则D (0,0,0),A (3 ,0,0). 设M (0,1,t ),D 1(0,0,z ),0≤t ≤z , 则MD 1―→=(0,-1,z -t ),AM ―→=(-3 ,1,t ). ∵MD 1⊥MA ,∴MD 1―→·AM ―→=-1+t (z -t )=0, 即z -t =1t,则S △MAD 1 =12|AM ||MD 1|=12 ×4+t 2 ×1+(z -t )2 =12 (4+t 2)⎝⎛⎭⎪⎫1+1t 2=125+t 2+4t2≥12 5+4 =32, 当且仅当t 2=4t 2 ,即t =2 ,z =322 时等号成立,故CC 1的长为322 .答案:322四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知双曲线的渐近线方程是y =±23 x ,焦距为226 ,求双曲线的标准方程.解:若双曲线的焦点在x 轴上,则⎩⎪⎨⎪⎧b a =23,c 2=a 2+b 2=26,解得a 2=18,b 2=8,所以所求双曲线的方程为x 218 -y 28=1.若双曲线的焦点在y 轴上,则⎩⎪⎨⎪⎧a b =23,c 2=a 2+b 2=26,解得a 2=8,b 2=18,所以所求双曲线的方程为y 28 -x 218=1.综上,所求双曲线的方程为x 218-y 28=1或y 28-x 218=1.18.(本小题满分12分)已知圆C 的圆心C 在直线y =x 上,且与x 轴正半轴相切,点C与坐标原点O 的距离为2 .(1)求圆C 的标准方程;(2)斜率存在的直线l 过点M ⎝ ⎛⎭⎪⎫1,12 且与圆C 相交于A ,B 两点,求弦长|AB |的最小值. 解:(1)由题意可设C (a ,a ),半径为r . ∵|CO |=2 =a 2+a 2,∴a =±1. 又圆C 与x 轴正半轴相切,∴a =1,r =1, ∴圆C 的标准方程为(x -1)2+(y -1)2=1. (2)设直线l 的方程为y -12 =k (x -1),点C 到直线l 的距离d =121+k 2, 弦长|AB |=21-14(1+k 2), ∴当k =0时,弦长|AB |的最小值为3 .19.(本小题满分12分)如图,在四棱锥P ABCD 中,PA ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,PA =AD =2,AC =1.(1)证明:PC ⊥AD ;(2)求二面角A PC D 的正弦值.解:如图,以点A 为坐标原点,AD ,AC ,AP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则A (0,0,0), D (2,0,0),C (0,1,0),B ⎝⎛⎭⎪⎫-12,12,0 ,P (0,0,2). (1)证明:易得PC ―→=(0,1,-2), AD ―→=(2,0,0),则PC ―→·AD ―→=0, 所以PC ⊥AD .(2)易得PC ―→=(0,1,-2),CD ―→=(2,-1,0). 设平面PCD 的法向量为n =(x ,y ,z ). 由⎩⎪⎨⎪⎧n ·PC ―→=0,n ·CD ―→=0, 得⎩⎪⎨⎪⎧y -2z =0,2x -y =0.令z =1,可得n =(1,2,1).又AD ―→=(2,0,0)是平面PAC 的一个法向量, 所以cos 〈AD ―→,n 〉=AD ―→·n |AD ―→||n| =66 ,从而sin 〈AD ―→,n 〉=306 .所以二面角A PC D 的正弦值为306. 20.(本小题满分12分)已知抛物线y 2=2px (p >0)过点A (2,y 0),且点A 到其准线的距离为4.(1)求抛物线的方程;(2)直线l :y =x +m 与抛物线交于两个不同的点P ,Q ,若OP ⊥OQ ,求实数m 的值. 解:(1)已知抛物线y 2=2px (p >0)过点A (2,y 0),且点A 到准线的距离为4, ∴2+p2=4,∴p =4,∴抛物线的方程为y 2=8x .(2)由⎩⎪⎨⎪⎧y =x +m ,y 2=8x 得x 2+(2m -8)x +m 2=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=8-2m ,x 1x 2=m 2,y 1+y 2=x 1+x 2+2m =8,y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2=8m .∵OP ⊥OQ ,∴x 1x 2+y 1y 2=m 2+8m =0, ∴m =0或m =-8.经检验,当m =0时,直线与抛物线交点中有一点与原点O 重合,不符合题意. 当m =-8时,Δ=242-4×64>0,符合题意. 综上,实数m 的值为-8.21.(本小题满分12分)如图,平面ABCD ⊥平面ADEF ,其中ABCD 为矩形,ADEF 为梯形,AF ∥DE ,AF ⊥FE ,AF =AD =2DE =2.(1)求证:EF ⊥平面BAF ; (2)若二面角A BF D 的余弦值为24,求AB 的长. 解:(1)证明:∵四边形ABCD 为矩形,∴BA ⊥AD ,∵平面ABCD ⊥平面ADEF ,又平面ABCD ∩平面ADEF =AD ,BA ⊂平面ABCD ,∴BA ⊥平面ADEF .又EF ⊂平面ADEF ,∴BA ⊥EF . 又AF ⊥EF ,且AF ∩BA =A , ∴EF ⊥平面BAF .(2)设AB =x (x >0).以F 为坐标原点,AF ,FE 所在直线分别为x 轴,y 轴建立空间直角坐标系F xyz ,如图.则F (0,0,0),E (0,3 ,0),D (-1,3 ,0),B (-2,0,x ),∴DF ―→=(1,-3 ,0),BF ―→=(2,0,-x ).由(1)知EF ⊥平面ABF ,∴平面ABF 的一个法向量可取n 1=(0,1,0). 设n 2=(x 1,y 1,z 1)为平面BFD 的一个法向量, 则⎩⎪⎨⎪⎧n 2·BF ―→=0,n 2·DF ―→=0,即⎩⎨⎧2x 1-z 1x =0,x 1-3y 1=0,令y 1=1,则n 2=⎝ ⎛⎭⎪⎫3,1,23x .∵cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=14+12x2=24,解得x =3 (负值舍去),∴AB =3 . 22.(本小题满分12分)如图,已知椭圆x 2a 2 +y 2b2 =1(a >b >0)的离心率e =63 ,过点A (0,-b )和B (a ,0)的直线与原点的距离为32. (1)求椭圆的方程;(2)已知定点E (-1,0),若直线y =kx +2(k ≠0)与椭圆交于C ,D 两点,问:是否存在k 的值,使以CD 为直径的圆过E 点,请说明理由.解:(1)直线AB 的方程为:bx -ay -ab =0.依题意⎩⎪⎨⎪⎧c a =63,ab a 2+b 2=32,解得⎩⎨⎧a =3,b =1.∴椭圆方程为x 23+y 2=1.(2)假设存在这样的k 值,由⎩⎪⎨⎪⎧y =kx +2,x 2+3y 2-3=0, 得 (1+3k 2)x 2+12kx +9=0. ∴Δ=(12k )2-36(1+3k 2)>0.①设C (x 1,y 1),D (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=-12k 1+3k2,x 1x 2=91+3k 2.②而y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4.要使以CD 为直径的圆过点E (-1,0),当且仅当CE ⊥DE 时,则y 1x 1+1·y 2x 2+1=-1.即y 1y 2+(x 1+1)(x 2+1)=0.∴(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5=0.③将②式代入③整理解得k =76 .经验证k =76 使①成立.综上可知,存在k =76,使得以CD 为直径的圆过点E .。
模块学习评判(时刻:120分钟,总分值:150分)一、选择题(本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.)1.(2021·临沂高二检测)命题“a ∉A 或b ∉B ”的否定形式是( ) A .假设a ∉A ,那么b ∉B B .a ∈A 或b ∈B C .a ∉A 且b ∉BD .a ∈A 且b ∈B【解析】 “p 或q ”的否定为“綈p 且綈q ”,D 正确. 【答案】 D 2.假设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,那么双曲线x 2a 2-y 2b 2=1的离心率为( )A.54 B.52 C.32D.54【解析】 由题意,1-b 2a 2=(32)2=34,∴b 2a 2=14,而双曲线的离心率e 2=1+b 2a 2=1+14=54,∴e =52.【答案】 B3.(2021·广州高二检测)假设a =(0,1,-1),b =(1,1,0),且(a +λb )⊥a ,那么实数λ的值是( ) A .-1 B .0 C .1D .-2【解析】 ∵a +λb =(0,1,-1)+(λ,λ,0)=(λ,1+λ,-1) ∵(a +λb )⊥a ,∴(a +λb )·a =1+λ+1=0,∴λ=-2. 【答案】 D4.(2021·亳州高二检测)以下说法正确的选项是( ) A .“x 2=1”是“x =1”的充分没必要要条件 B .“x =-1”是“x 2-5x -6=0”的必要不充分条件C .命题“∃x ∈R ,使得x 2+x +1<0”的否定是“∀x ∈R ,均有x 2+x +1<0”D .命题“假设α=β,那么sin α=sin β”的逆否命题为真命题【解析】 “x 2=1”是“x =1”的必要不充分条件,“x =-1”是“x 2-5x -6=0”的充分没必要要条件,A 、B 均不正确;C 中命题的否定应该为“∀x ∈R ,均有x 2+x +1≥0”,故C 不正确.【答案】 D5.假设点P 在曲线2x 2-y =0上移动,那么点A (0,-1)与点P 连线中点M 的轨迹方程是( ) A .y =2x 2 B .y =8x 2 C .2y =8x 2-1D .2y =8x 2+1【解析】 设P 、M 点的坐标别离为(x 0,y 0)、(x ,y ),那么有:⎩⎪⎨⎪⎧ 2x =x 02y =y 0-1,即⎩⎪⎨⎪⎧x 0=2x y 0=2y +1. 将(x 0,y 0)代入2x 2-y =0中得8x 2-2y -1=0 即2y =8x 2-1. 【答案】 C6.(2021·北京高考)双曲线x 2-y 2m=1的离心率大于2的充分必要条件是( ) A .m >12B .m ≥1C .m >1D .m >2【解析】 ∵双曲线x 2-y 2m=1的离心率e =1+m ,又∵e >2,∴1+m >2,∴m >1.【答案】 C7.如图1,在正方体ABCD —A 1B 1C 1D 1中,M 、N 别离为A 1B 1、CC 1的中点,P 为AD 上一动点,记α为异面直线PM 与D 1N 所成的角,那么α的集合是( )图1 A .{π2}B .{α|π6≤α≤π2}C .{α|π4≤α≤π2}D .{α|π3≤α≤π2}【解析】 别离以DA 、DC 、DD 1所在的直线为x 、y 、z 轴,D 为原点建系,连结AM 、DM ,能够证明AM →⊥D 1N →,DM →⊥D 1N →,故D 1N ⊥平面ADM ,∴D 1N ⊥PM ,即α=π2.【答案】 A8.(2021·天津高考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线别离交于A ,B 两点,O 为坐标原点.假设双曲线的离心率为2,△AOB 的面积为3,那么p =( )A .1 B.32 C .2D .3【解析】 由已知得c a=2,因此a 2+b 2a 2=4,解得b a=3,即渐近线方程为y =±3x .而抛物线准线方程为x =-p2,于是A ⎝ ⎛⎭⎪⎪⎫-p 2,-3p 2,B ⎝ ⎛⎭⎪⎪⎫-p 2,3p 2,从而△AOB 的面积为12·3p ·p 2=3,可得p =2. 【答案】 C9.给出两个命题:p :|x |=x 的充要条件是x 为正实数,q :不等式|x -y |≤|x |+|y |取等号的条件是xy <0,那么以下命题是真命题的是( )A .p ∧qB .p ∨qC .(綈p )∧qD .(綈p )∨q【解析】 命题p 为假,因为x =0时,也有|x |=x 成立;命题q 也为假,因为当x =0或y =0时,|x -y |≤|x |+|y |也成立,因此只有(綈p )∨q 为真命题.【答案】 D10.(2021·济南高二检测)直线y =x -3与抛物线y 2=4x 交于A 、B 两点,过A 、B 两点向抛物线的准线作垂线,垂足为P 、Q ,那么梯形APQB 的面积为( )A .48B .56C .64D .72【解析】 联立⎩⎪⎨⎪⎧y 2=4xy =x -3可解得A (1,-2),B (9,6)∵抛物线准线为x =-1,∴|AP |=2,|BQ |=10,|PQ |=8, ∴S =2+10×82=48.【答案】 A11.已知OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),点Q 在直线OP 上运动,那么当QA →·QB →取得最小值时,点Q 的坐标为( )A .(12,34,13)B .(12,32,34)C .(43,43,83)D .(43,43,73)【解析】 设点Q (x ,y ,z ),由点Q 在OP →上, ∴OQ →∥OP →,那么有Q (λ,λ,2λ)(λ为参数), ∴QA →=(1-λ,2-λ,3-2λ), QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=6λ2-16λ+10 =6(λ-43)2-23. 当λ=43时,QA →·QB →取得最小值. 故现在Q (43,43,83).【答案】 C12.(2021·课标全国卷Ⅰ)已知椭圆E :x 2a2+y 2b 2=1(a >b >0)的右核心为F (3,0),过点F 的直线交E 于A ,B两点.假设AB 的中点坐标为(1,-1),那么E 的方程为( )A.x 245+y 236=1 B.x 236+y 227=1C.x 227+y 218=1 D.x 218+y 29=1 【解析】 设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 21a 2+y 21b 2=1, ①x 22a 2+y 22b 2=1. ②①-②得x 1+x 2x 1-x 2a 2=-y 1-y 2y 1+y 2b 2.∴y 1-y 2x 1-x 2=-b 2x 1+x 2a 2y 1+y 2.∵x 1+x 2=2,y 1+y 2=-2,∴k AB =b 2a 2.而k AB =0--13-1=12,∴b 2a 2=12,∴a 2=2b 2,∴c 2=a 2-b 2=b 2=9,∴b =c =3,a =32,∴E 的方程为x 218+y 29=1. 【答案】 D二、填空题(本大题共4小题,每题5分,共20分.) 13.(2021·南昌高二检测)已知双曲线x 29-y 2a =1的右核心为(13,0),那么该双曲线的渐近线方程为________.【解析】 由题意得:9+a =13,∴a =4,故渐近线方程为y =±23x .【答案】 y =±23x14.已知a ,b 是两个命题,若是a 是b 的充分条件,那么“綈a ”是“綈b ”的________条件. 【解析】 由题意a ⇒b 成立,故其逆否命题为綈b ⇒綈a 也成立. ∴“綈a ”是“綈b ”的必要条件.【答案】 必要15.已知正方体ABCD —A 1B 1C 1D 1,P 、M 为空间任意两点,若是有PM →=PB 1→+6AA 1→+7BA →+4A 1D 1→,那么M 点必然在平面________内.【解析】 ∵B 1M →=PM →-PB 1→=BA →+6BA →+6AA 1→+4A 1D 1→=BA →+6BA 1→+4A 1D 1→=B 1A 1→+2BA 1→+4BD 1→, ∴B 1M →-B 1A 1→=2BA 1→+4BD 1→, 即A 1M →=2BA 1→+4BD 1→.故A 1M →,BA 1→,BD 1→共面,即M 点在平面A 1BCD 1内. 【答案】 A 1BCD 116.(2021·宁波高二检测)有以下命题:①双曲线x 225-y 29=1与椭圆x 235+y 2=1有相同的核心;②“-12<x <0”是“2x 2-5x -3<0”的必要不充分条件;③若a 与b 共线,那么a ,b 所在直线平行;④若a ,b ,c 三向量两两共面,那么a ,b ,c 三向量必然也共面;⑤∀x ∈R ,x 2-3x +3≠0.其中正确的命题有________.(把你以为正确的命题的序号填在横线上)【解析】 ①中,双曲线c 21=25+9=34,椭圆c 22=35-1=34,故①正确;②中,∵2x 2-5x -3<0,∴-12<x <3. 又-12<x <0⇒-12<x <3,小范围推出大范围,而大范围推不出小范围,∴是充分而没必要要条件,故②错; ③中,a 和b 所在直线可能重合,故③错;④中,a ,b ,c 能够不共面,例如平行六面体以一个极点为起点引出的三个向量,故④错; ⑤中,Δ=9-12<0,故对∀x ∈R ,x 2-3x +3≠0成立,故⑤正确. 【答案】 ①⑤三、解答题(本大题共6小题,共70分,解许诺写出文字说明,证明进程或演算步骤.)17.(本小题总分值10分)已知p :2x 2-9x +a <0,q :⎩⎪⎨⎪⎧x 2-4x +3<0,x 2-6x +8<0,且綈q 是綈p 的必要条件,求实数a 的取值范围.【解】 由⎩⎪⎨⎪⎧x 2-4x +3<0,x 2-6x +8<0,得⎩⎪⎨⎪⎧1<x <3,2<x <4,即2<x <3. ∴q :2<x <3.设A ={x |2x 2-9x +a <0},B ={x |2<x <3}, ∵綈p ⇒綈q ,∴q ⇒p .∴B A .即2<x <3知足不等式2x 2-9x +a <0.设f (x )=2x 2-9x +a , 要使2<x <3知足不等式2x 2-9x +a <0,需⎩⎪⎨⎪⎧ f 2≤0,f 3≤0,即⎩⎪⎨⎪⎧8-18+a ≤0,18-27+a ≤0.∴a ≤9.故所求实数a 的取值范围是{a |a ≤9}.18.(本小题总分值12分)如图2,四边形MNPQ 是圆C 的内接等腰梯形,向量CM →与PN →的夹角为120°,QC →·QM →=2.(1)求圆C 的方程;(2)求以M ,N 为核心,过点P ,Q 的椭圆方程. 图2【解】 (1)成立如图坐标系,由题意得:△CQM 为正三角形. ∴QC →·QM →=r 2·cos 60°=2,∴r =2, ∴圆C 的方程为:x 2+y 2=4. (2)M (2,0),N (-2,0),Q (1,3),2a =|QN |+|QM |=23+2.∴c =2,a =3+1,b 2=a 2-c 2=2 3.∴椭圆方程为:x 24+23+y 223=1.19.(本小题总分值12分)如图3,在四棱锥P —ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,PA =AD =2,AB =1,BM ⊥PD 于点M .图3(1)求证:AM ⊥PD ;(2)求直线CD 与平面ACM 所成的角的余弦值.【解】 (1)证明 ∵PA ⊥平面ABCD ,AB ⊆平面ABCD , ∴PA ⊥AB .∵AB ⊥AD ,AD ∩PA =A , ∴AB ⊥平面PAD . ∵PD ⊂平面PAD , ∴AB ⊥PD .∵BM ⊥PD ,AB ∩BM =B , ∴PD ⊥平面ABM .∵AM ⊂平面ABM ,∴AM ⊥PD .(2)如下图,以点A 为坐标原点,成立空间直角坐标系Axyz ,那么A (0,0,0),P (0,0,2),B (1,0,0),C (1,2,0),D (0,2,0),M (0,1,1),于是AC →=(1,2,0),AM →=(0,1,1),CD →=(-1,0,0). 设平面ACM 的一个法向量为n =(x ,y ,z ),由n ⊥AC →,n ⊥AM →可得⎩⎪⎨⎪⎧x +2y =0,y +z =0.令z =1,得x =2,y =-1,于是n =(2,-1,1). 设直线CD 与平面ACM 所成的角为α,那么sin α=|CD →·n|CD →||n ||=63,cos α=33.故直线CD 与平面ACM 所成的角的余弦值为33.图420.(本小题总分值12分)(2021·江苏高考)如图4,在直三棱柱A 1B 1C 1—ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值; (2)求平面ADC 1与平面ABA 1所成二面角的正弦值.【解】 (1)以A 为坐标原点,成立如下图的空间直角坐标系A —xyz ,那么A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4) ,C 1(0,2,4),因此A 1B →=(2,0,-4),C 1D →=(1,-1,-4).因为cos 〈A 1B →,C 1D →〉=A 1B →·C 1D→|A 1B →||C 1D →|=1820×18=31010,因此异面直线A 1B 与C 1D 所成角的余弦值为31010.(2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD →=(1,1,0),AC 1→=(0,2,4),因此n 1·AD →=0,n 1·AC 1→=0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,因此,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面AA 1B 的一个法向量为n 2=(0,1,0),设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=29×1=23,得sin θ=53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53. 21.(本小题总分值12分)(2021·课标全国卷)设抛物线C :x 2=2py (p >0)的核心为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(1)假设∠BFD =90°,△ABD 的面积为42,求p 的值及圆F 的方程;(2)假设A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.【解】 (1)由已知可得△BFD 为等腰直角三角形,|BD |=2p ,圆F 的半径|FA |=2p .由抛物线概念可得A到l 的距离d =|FA |=2p .因为△ABD 的面积为42,因此12|BD |·d =42,即12·2p ·2p =42,解得p =-2(舍去)或p =2.因此F (0,1),圆F 的方程为x 2+(y -1)2=8.(2)因为A ,B ,F 三点在同一直线m 上,因此AB 为圆F 的直径,∠ADB =90°. 由抛物线概念知|AD |=|FA |=12|AB |,因此∠ABD =30°,m 的斜率为33或-33.当m 的斜率为33时,由已知可设n :y =33x +b ,代入x 2=2py 得x 2-233px -2pb =0.由于n 与C 只有一个公共点,故Δ=43p 2+8pb =0.解得b =-p6.因为m 的截距b 1=p 2,|b 1||b |=3,因此坐标原点到m ,n 距离的比值为3.当m 的斜率为-33时,由图形对称性可知,坐标原点到m ,n 距离的比值也为3.综上,坐标原点到m ,n 距离的比值为3.22.(本小题总分值12分)设x ,y ∈R ,i 、j 为直角坐标平面内x ,y 轴正方向上的单位向量,假设向量a +b =2x i +2y j ,a -b =4j ,|a |+|b |=8.(1)求动点M (x ,y )的轨迹C 的方程;(2)过点(0,3)作直线l 与曲线C 交于A ,B 两点,设AP →=OB →,是不是存在如此的直线l ,使四边形OAPB 是矩形?假设存在,求出l 的方程;假设不存在,请说明理由.【解】 (1)|a |+|b |=8,得x 2+y +22+x 2+y -22=8.∴M (x ,y )到两定点F 1(0,-2),F 2(0,2)的距离之和为8,且|F 1F 2|<8,那么动点M 的轨迹C 是以F 1,F 2为核心的椭圆.故点M 的轨迹C 的方程为:x 212+y 216=1. (2)由题意可知直线l 的斜率存在,设其方程为y =kx +3,代入椭圆方程得(4+3k 2)x 2+18kx -21=0. Δ=(18k )2+84(4+3k 2)>0恒成立,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-18k 4+3k 2,x 1x 2=-214+3k 2. 由AP →=OB →,∴四边形OAPB 为平行四边形,假设存在直线l ,使四边形OAPB 为矩形,那么OA ⊥OB ,即OA →·OB →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+3k (x 1+x 2)+9=0.那么(1+k 2)·(-214+3k 3)+3k ·(-18k 4+3k 2)+9=0. 解得:k =±54,∴存在直线l 为:y =±54x +3,现在四边形OAPB 为矩形.。
模块综合检测(时间:90分钟,总分120分)一、选择题(本大题共10个小题,每小题5分,共50分) 1.若直线l 的参数方程为⎩⎪⎨⎪⎧x =1+3t ,y =2-4t (t 为参数),则直线l 的倾斜角的余弦值为( )A .-45B .-35C.35D.452.柱坐标⎝ ⎛⎭⎪⎫2,π3,1对应的点的直角坐标是( )A .(3,-1,1)B .(3,1,1)C .(1,3,1)D .(-1,3,1)3.在极坐标系中,点A 的极坐标是(1,π),点P 是曲线C :ρ=2sin θ上的动点,则|PA |的最小值是( )A .0 B. 2 C.2+1D.2-14.直线⎩⎪⎨⎪⎧x =sin θ+t sin 15°,y =cos θ-t sin 75°(t 为参数,θ是常数)的倾斜角是( )A .105°B .75°C .15°D .165°5.(安徽高考)在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为( )A .θ=0(ρ∈R )和ρcos θ=2B .θ=π2(ρ∈R )和ρcos θ=2C .θ=π2(ρ∈R )和ρcos θ=1D .θ=0(ρ∈R ) 和ρcos θ=16.(安徽高考)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C的极坐标方程是ρ=4cos θ,则直线l 被圆C 截得的弦长为( )A.14 B .214 C. 2D .2 27.已知点P 的极坐标为(π,π),过点P 且垂直于极轴的直线的极坐标方程为( ) A .ρ=π B .ρ=cos θ C .ρ=πcos θD .ρ=-πcos θ8.已知直线l :⎩⎪⎨⎪⎧x =2+t ,y =-2-t(t 为参数)与圆C :⎩⎪⎨⎪⎧x =2cos θ+1,y =2sin θ(0≤θ≤2π),则直线l 的倾斜角及圆心C 的直角坐标分别是( )A.π4,(-1,0) B.π4,(-1,0) C.3π4,(1,0) D.3π4,(-1,0) 9.在极坐标系中,若过点A (3,0)且与极轴垂直的直线交曲线ρ=4cos θ于A ,B 两点,则|AB |=( )A .2 3 B. 3 C .2D .110.在极坐标系中,由三条直线θ=0,θ=π3,ρcos θ+ρsin θ=1围成的图形的面积为( )A.14B.3-34C.2-34D.13二、填空题(本大题有4小题,每小题5分,共20分)11.(北京高考)在极坐标系中,点⎝ ⎛⎭⎪⎫2,π6到直线ρsin θ=2的距离等于________.12.(湖北高考)已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =t ,y =3t3(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.则C 1与C 2交点的直角坐标为________.13.(重庆高考)已知直线l的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =3+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0(ρ≥0,0≤θ<2π),则直线l 与曲线C 的公共点的极径ρ=________.14.(广东高考)在极坐标系中,曲线C 1 与C 2 的方程分别为 2ρcos 2θ=sin θ与 ρcos θ=1,以极点为平面直角坐标系的原点,极轴为 x 轴的正半轴,建立平面直角坐标系,则曲线C 1 与C 2交点的直角坐标为________.三、解答题(本大题共有4小题,共50分)15.(本小题满分12分)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α,0≤α≤2π,M 是C 1上的动点,P 点满足OP ―→=2OM ―→,P 点的轨迹为曲线C 2.(1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.16.(本小题满分12分)(新课标卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.17.(本小题满分12分)(新课标卷Ⅰ)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t(t为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.18.(本小题满分14分)(辽宁高考)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.答 案1.选B 由l 的参数方程可得l 的普通方程为4x +3y -10=0,设l 的倾斜角为θ,则tan θ=-43.由1cos 2θ=sin 2θ+cos 2θcos 2θ=tan 2θ+1,得cos 2θ=925.又π2<θ<π, ∴cos θ=-35.2.选C 由直角坐标与柱坐标之间的变换公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z ,可得⎩⎨⎧x =1,y =3,z =1.3.选D A 的直角坐标为(-1,0),曲线C 的直角坐标方程为x 2+y 2=2y ,即x 2+(y -1)2=1,|AC |=2,则|PA |min =2-1.4.选A 参数方程⎩⎪⎨⎪⎧x =sin θ+t sin 15°,y =cos θ-t sin 75°⇒⎩⎪⎨⎪⎧x =sin θ+t cos 75°,y =cos θ-t sin 75°.消去参数t ,得y -cos θ=-tan 75°(x -sin θ), ∴k =-tan 75°=tan(180°-75°)=tan 105°. 故直线的倾斜角是105°.5.选B 由ρ=2cos θ,可得圆的直角坐标方程为(x -1)2+y 2=1,所以垂直于x 轴的两条切线方程分别为x =0和x =2,即所求垂直于极轴的两条切线方程分别为θ=π2(ρ∈R )和ρcos θ=2,故选B.6.选D 由题意得,直线l 的普通方程为y =x -4,圆C 的直角坐标方程为(x -2)2+y 2=4,圆心到直线l 的距离d =|2-0-4|2=2,直线l 被圆C 截得的弦长为222-22=2 2.7.选D设M (ρ,θ)为所求直线上任意一点, 由图形知OM cos ∠POM =π, ∴ρcos (π-θ)=π. ∴ρ=-πcos θ.8.选C 因为直线l 的普通方程为y =-x ,所以其斜率是-1,倾斜角是3π4.将圆的参数方程化为普通方程得(x -1)2+y 2=4,所以圆心C 的直角坐标是(1,0),故选C.9.选A 曲线ρ=4cos θ可转化为(x -2)2+y 2=4,则圆心(2,0)到直线x =3的距离是1,所以|AB |=2 4-1=2 3.10.选B 三条直线的直角坐标方程依次为y =0,y =3x ,x +y =1,如图.围成的图形为△OPQ ,可得S △OPQ =12|OQ |·|y P |=12×1×33+1=3-34. 11.解析:由题意知,点⎝⎛⎭⎪⎫2,π6的直角坐标是(3,1),直线ρsin θ=2的直角坐标方程是y =2,所以所求的点到直线的距离为1.答案:112.解析:由题意,得⎩⎪⎨⎪⎧x =t y =3t3 ⇒x 2=3y 2(x ≥0,y ≥0),曲线C 2的普通方程为x2+y 2=4,联立⎩⎪⎨⎪⎧x 2+y 2=4x 2=3y 2,得⎩⎨⎧x =3,y =1,即C 1与C 2的交点坐标为(3,1).答案:(3,1)13.解析:依题意,直线l 与曲线C 的直角坐标方程分别是x -y +1=0,y 2=4x .由⎩⎪⎨⎪⎧x -y +1=0,y 2=4x 得x 2-2x +1=0,解得x =1,则y =2,因此直线l 与曲线C 的公共点的直角坐标是(1,2),该点与原点的距离为12+22=5,即直线l 与曲线C 的公共点的极径ρ= 5.答案: 514.解析:由2ρcos 2θ=sin θ⇒2ρ2cos 2θ=ρsin θ⇒2x 2=y ,又由ρcos θ=1⇒x =1,由⎩⎪⎨⎪⎧2x 2=y ,x =1⇒⎩⎪⎨⎪⎧x =1,y =2,故曲线C 1与C 2交点的直角坐标为(1,2).答案:(1,2)15.解:(1)设P (x ,y ),则由条件知M ⎝ ⎛⎭⎪⎫x 2,y2.因为M 点在C 1上,所以 ⎩⎪⎨⎪⎧x 2=2cos α,y 2=2+2sin α,即⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α.从而C 2的参数方程为⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α.(α为参数)(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ1=8sin θ. 射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3,射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3.所以|AB |=|ρ2-ρ1|=2 3.16.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝ ⎛⎭⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭⎪⎫32,32. 17.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|.则|PA |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255. 当sin(θ+α)=1时,|PA |取得最小值,最小值为255.18.解:(1)设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1,即曲线C 的方程为x 2+y 24=1.故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t(t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 即ρ=34sin θ-2cos θ.。