微镜分辨率的理论极限。若用波长最短的可见光(λ= 390nm )作 照明源,则
r0≈200nm 200nm是光学显微镜分辨本领的极限
如何提高显微镜的分辨率
• 根据透镜分辨率的公式,要想提高显微镜的分辨率,关键 是降低照明光源的波长。
• 顺着电磁波谱朝短波长方向寻找,紫外光的波长在13390nm之间,比可见光短多了。但是大多数物质都强烈地 吸收紫外光,因此紫外光难以作为照明光源。
电子波长
• 根据德布罗意(de Broglie)的观点,运动的
电子除了具有粒子性外,还具有波动性。这一点
上和可见光相似。电子波的波长取决于电子运动
的速度和质量,即
h
式中,h为普郎克常数:h=6.626m×v10-34J.s;
m为电子质量;v为电子运动速度,它和加速电
压U之间存在如下关系:
1 mv2 eU 即 2
图为日立公司H800透射电子显微镜(镜筒)
高压系统
真空系统
一般是在物镜的背焦平面上放一称为物镜光阑的小孔径的光阑来达到这个目的。
当试样厚度t恒定时,强度
200~500nm厚的薄膜
如果g · R ≠整数 ,则e-iα≠1, (α ≠ 2π的整数倍。
不同加速电压下的电子波波长
ξg是衍衬理论中一个重要的参数,表示在精确符合布拉格条件时透射波与衍射波之间能量交换或强度振荡的深度周期。
供观察形貌结构的复型样品和非晶态物质样品的衬度是质厚衬度
1.原子核和核外电子对入射电子的散射
经典理论认为散射是入射电
子在靶物质粒子场中受力而发
生偏转。可采用散射截面的模
型处理散射问题,即设想在靶
物质中每一个散射元(一个电子
eZ
或原子核)周围有一个面积为σ