高一数学 函数练习题 新人教A版
- 格式:doc
- 大小:150.00 KB
- 文档页数:3
专题6:人教A 版第三章函数的应用综合测试题(解析版)一、单选题1.设()ln 2f x x x =+-,则函数()f x 的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)1.B【分析】根据()f x 的单调性,结合零点存在性定理,即可得出结论.【详解】 ()ln 2f x x x =+-在(0,)+∞单调递增,且(1)10,(2)ln20f f =-<=>,根据零点存在性定理,得()f x 存在唯一的零点在区间(1,2)上.故选:B【点睛】本题考查判断函数零点所在区间,结合零点存在性定理的应用,属于基础题. 2.若一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,则燃烧剩下的高度h(cm)与燃烧时间t(小时)的函数关系用图象表示为( )A .B .C .D . 2.B【解析】依题设可知,蜡烛高度h 与燃烧时间t 之间构成一次函数关系,又∵函数图象必过点(0,20)、(4,0)两点,且该图象应为一条线段.∴选B.3.利用二分法求方程3log 5x x =-的近似解,可以取得一个区间( ) A .(0,1)B .(1,2)C .(2,3)D .(3,4)3.D【分析】根据零点存在定理判断.【详解】设3()log 5f x x x =-+,则函数单调递增由于3(3)log 35310f =-+=-<,33(4)log 454log 410f =-+=->,∴()f x 在(3,4)上有零点.故选:D.【点睛】本题考查方程的解与函数零点问题.掌握零点存在定理是解题关键.4.若函数()27x f x x =+-的零点所在的区间为(,1)()k k k +∈Z ,则k =( )A .3B .4C .1D .24.D【分析】结合零点存在性定理和函数()f x 的单调性,求得k 的值.【详解】 ∵(2)4270,(3)8370,f f =+-<⎧⎨=+->⎩且()f x 单调递增,∴()f x 的零点所在的区间为(2,3),∴2k =. 故选:D【点睛】本小题主要考查零点存在性定理的运用,考查函数的单调性,属于基础题.5.用二分法求如图所示函数f(x)的零点时,不可能求出的零点是( )A .x 1B .x 2C .x 3D .x 45.C【解析】 观察图象可知:点x 3的附近两旁的函数值都为负值,∴点x 3不能用二分法求,故选C.6.函数21()f x x x =+,(0,)x ∈+∞的零点个数是( ). A .0B .1C .2D .36.A【分析】 根据函数定义域,结合零点定义,即可容易判断和求解.【详解】由于20x >,10x>, 因此不存在(0,)x ∈+∞使得21()0f x x x=+=, 因此函数没有零点.故选:A .【点睛】本题考查函数零点的求解,属简单题. 7.用二分法求函数()f x 的一个正实数零点时,经计算:()()0.640,0.720f f <>,()0.680f <,()0.740f >,则函数()f x 的一个精确度为0.1的正实数零点的近似值为A .0.64B .0.8C .0.7D .0.67.C【分析】由题意根据函数零点的判定定理可得,函数零点所在的区间为(0.68,0.72),从而得出结论.【详解】因为()0.680f <,()0.720f >,即()()0.680.720f f ⋅<,所以函数()f x 的零点在区间()0.68,0.72内.又0.720.680.040.1-=<,观察各选项可知函数()f x 的一个精确度为0.1的正实数零点的近似值为0.7.故选C .【点睛】本题主要考查函数零点的判定定理的应用,属于基础题.8.已知函数()221,11,1x x f x log x x ⎧-=⎨+>⎩,则函数()f x 的零点为( )A .1,02B .2-,0C .12D .08.D【分析】函数()f x 的零点,即令()0f x =分段求解即可.【详解】函数221,1()1,1x x f x log x x ⎧-=⎨+>⎩当1x 时,令()210x f x =-=,解得0x =当1x >时,令2()1log 0f x x =+=,解得12x =(舍去) 综上函数的零点为0故选:D .【点睛】本题考查函数的零点个数,考查分段函数的知识,属于基础题.9.设f (x )=3x +3x –8,用二分法求方程3x +3x –8在x ∈(1,2)内方程的近似解,则方程的根落在区间(参考数据31.25≈3.95)A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定9.B【分析】显然函数单调递增,然后利用二分法求(1,2)的中间值f (1.5)0>,再将范围限制(1,1.5),再利用二分法继续下次知道和选项逼近即可【详解】显然函数单调递增,f (1)<0,f (2)>0,f (1.5)=31.5+3×1.5–8=323 4.58+-=4.58->4.580->,f (1.25)=31.25+3×1.25–8<0,∴f (1.25)•f (1.5)<0,∴方程的根落在区间(1.25,1.5),故选B .【点睛】利用二分法判断函数零点的区间,首先确保函数在所给区间内连续,然后利用二分法算出所给区间的中间值,进而一步步将区间范围缩小10.已知碳14是一种放射性元素,在放射过程中,质量会不断减少.已知1克碳14经过5730年,质量经过放射消耗到0.5克,则再经过多少年,质量可放射消耗到0.125克( ) A .5730B .11460C .17190D .22920 10.B【分析】根据由题意可知再经过2个半衰期可消耗到0.125克.【详解】由题意可得:碳14的半衰期为5730年,则再过5730年后,质量从0.5克消耗到0.25克,过11460年后,质量可消耗到0.125克.故选:B.【点睛】本题考查指数函数的应用,属于基础题.11.已知二次函数22()(5)6(0)f x ax a x a a =+-+-≠的图象与x 轴交于()1,0M x ,()2,0N x 两点,且12112x x -<<<<,则a 的取值范围是( )A .(2,1+B .()1C .()1++∞D .(,2-∞- 11.B【分析】讨论0a >、0a <,根据零点的范围,结合二次函数的性质列不等式组求解即可得a 的取值范围.【详解】若0a >,则(1)0(1)0(2)0f f f ->⎧⎪<⎨⎪>⎩,即2221021106160a a a a a ⎧->⎪+-<⎨⎪+->⎩,解得21a <<;若0a <,则(1)0(1)0(2)0f f f -<⎧⎪>⎨⎪<⎩,即2221021106160a a a a a ⎧-<⎪+->⎨⎪+-<⎩,不等式组无解.故a的取值范围是()1.故选:B 12.已知函数()()()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩若函数()()2y f x f x m =+--()m R ∈恰有2个零点,则m 的取值范围是( )A .()2,+∞B .7,24⎛⎫ ⎪⎝⎭C .()0,2D .(),2-∞12.A【分析】求得函数()()2y f x f x =+-的解析式,画出()()2y f x f x =+-的图象,由此求得m 的取值范围.【详解】 由()()()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩得()()()2,02,0x x f x x x ⎧≥⎪-=⎨<⎪⎩, 所以()()()()()222,022,0234,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩,所以函数()()2y f x f x m =+--恰有2个零点等价于函数y m =与函数()()2y f x f x =+-的图象有2个公共点,由图象可知2m >.故选:A二、填空题13.在平面直角坐标系xOy 中,若直线y a =与函数2y x a a =-+-的图象有且只有一个公共点,则实数a 的值为______.13.1【分析】在同一坐标系中作出函数y a =与函数2y x a a=-+-的图象,根据只有一个公共点,利用数形结合法求解.【详解】在同一坐标系中作出函数y a =与函数2y x a a =-+-的图象,如图所示:因为只有一个公共点,所以2a a -=,解得1a =.故答案为:114.已知函数()1,2,x x x a f x x a+≤⎧=⎨>⎩,若存在两个不相等的实数12,x x ,使得()()12f x f x =,则实数a 的取值范围是__________.14.01a <<【分析】根据1y x =+与2xy =交于(0,1)和(1,2)点,即可求解结论.【详解】解:因为存在两个不相等的实数1x ,2x ,使得12()()f x f x =,故函数不是单调函数,又因为1y x =+与2x y =交于(0,1)和(1,2)点,故须01a <<.故答案为:(0,1).15.方程243x x m -+-=有四个互不相等的实数根,则实数m 的取值范围为_________. 15.()3,1-【分析】 方程243x x m -+-=有四个互不相等的实数根即243y x x =-+与y m =-的图象有四个不同的交点,作出函数图象可得实数m 的取值范围.【详解】 方程243x x m -+-=有四个互不相等的实数根即243y x x =-+与y m =-的图象有四个不同的交点 作出22243,04343,0x x x y x x x x x ⎧-+>=-+=⎨++≤⎩的函数图象如图所示:当2x =时,1y =-;0x =时,3y =,∴13m -<-<,()3,1m ∈-故答案为:()3,1-16.已知1x ,2x 是函数()()2221f x x k x k =-++的两个零点且一个大于1,一个小于1,则实数k 的取值范围是___________.16.02k <<【分析】根据二次函数的零点分布情况,得到()10f >,求解对应不等式,即可得出结果.【详解】因为1x ,2x 是函数()()2221f x x k x k =-++的两个零点且一个大于1,一个小于1, 二次函数()()2221f x x k x k =-++开口向上, 所以只需()()2211012f k k -++<=,即220k k -<, 解得02k <<.故答案为:02k <<.三、解答题17.已知函数32()2()3x f x x ax a R =--∈.(1)若()y f x =在()3,+∞上为增函数,求实数a 的取值范围; (2)若12a =-,设()ln(1)()g x x f x =-+,且方程3(1)(1)3xb g x x --=+有实根,求实数b 的最大值.17.(1)32a ≤(2)0 【解析】试题分析:(1)求导()'2220fx x x a =--≥在区间(3,+∞)上恒成立,从而转化为最值问题求解即可;(2)化简方程可得2ln b x x x x+-=,从而化为2(ln )b x x x x =+-在(0,+∞)上有解,从而讨论函数2()(ln )p x x x x x =+-的值域即可试题解析:(1)∵()f x 在区间()3,+∞上为增函数, ∴2'()220f x x x a =--≥即222a x x ≤-在区间()3,+∞上恒成立. ∵在()3,+∞内223x x -< ∴23a ≤即32a ≤(2)方程3(1)(1)3x b g x x --=+可化为2ln b x x x x +-=. ∴条件转化为2(ln )b x x x x =+-在()0,+∞上有解, 令2()(ln )p x x x x x =+-,∴即求函数2()(ln )p x x x x x =+-在()0,+∞上的值域. 令2()ln h x x x x =+-, 则1(21)(1)'()12x x h x x x x +-=+-=,∴当01x <<时'()0h x >,从而()h x 在()0,1上为增函数, 当1x >时'()0h x <,从而()h x 在()1,+∞上为减函数, 因此()(1)0h x h ≤=.又∵0x >,故()()0p x x h x =⋅≤,∴0b ≤因此当1x =时,b 取得最大值0.考点:根的存在性及根的个数判断;利用导数研究函数的单调性18.已知函数()lg f x kx =,()()lg 1g x x =+.(Ⅰ)当=1k 时,求函数()()y f x g x =+的单调区间;(Ⅱ)若方程()2()f x g x =仅有一个实根,求实数k 的取值集合.18.(1)单调递增区间为(0,)+∞,不存在单调递减区间;(2)0k <或4k =;【解析】试题分析:(1)由题可知,将=1k 代入,可得()()lg lg(1)lg (1)y f x g x x x x x =+=++=+,由于真数x (x+1)>0,可知x (x+1)在定义域上始终递增,外层对数函数始终递增,即单调递增区间为(0,)+∞,不存在单调递减区间;(2)由题可知,由()2()f x g x =,即lg 2lg(1)kx x =+,根据真数大于0,真数相等,可列出不等式组,对k 进行讨论,即可得出k 的取值; 试题解析:(Ⅰ)当=1k 时,()()lg lg(1)lg (1)y f x g x x x x x =+=++=+ (其中0x >),由复合函数单调性可知内层函数x (x+1)在定义域上始终递增,外层对数函数始终递增,所以,()()y f x g x =+的单调递增区间为(0,)+∞,不存在单调递减区间;(Ⅱ)由()2()f x g x =,即lg 2lg(1)kx x =+.该方程可化为不等式组 ()20101kx x kx x ⎧>⎪⎪+>⎨⎪=+⎪⎩(1)若0k >时,则0x >,原问题即为:方程2(1)kx x =+在(0,)+∞上有根,解得4k =;(2)若0k <时,则10x -<<,原问题即为:方程2(1)kx x =+在(1,0)-上有根,解得0k <.综上可得0k <或4k =为所求.考点:①复合函数的单调性②对数函数单调性的应用19.已知函数221()11x m f x x x x x -=----- (Ⅰ)若函数()f x 无零点,求实数m 的取值范围;(Ⅱ)若函数()f x 在(2,2)-有且仅有一个零点,求实数m 的取值范围.19.(Ⅰ) 47|{<m m 或2}m =;(Ⅱ)7{|4m m =或48}m ≤<。
专题5:人教A 版第三章函数的应用基础测试题(解析版)一、单选题1.已知函数()2f x ax bx c =++满足()20f <且()30f >,则()f x 在()2,3上的零点( ). A .至多有一个 B .有1个或2个 C .有且仅有一个 D .一个也没有1.C 【分析】由零点存在定理可判定出结果. 【详解】由题意知:()f x 在R 上至多有两个零点.由零点存在定理知:若()()230f f ⋅<,则()f x 在()2,3上有且仅有一个零点. 故选:C .2.函数()ln 4f x x x =+-的零点所在的区间是( ) A .()1,2 B .()2,3C .()3,4D .()4,52.B 【分析】计算区间端点处的函数值,根据零点存在定理判断. 【详解】(1)30f =-<,(2)ln 220f =-<,(3)ln 310f =->,∴零点在区间(2,3)上. 故选:B .3.函数()6ln f x x x =-+的零点所在区间应是( ) A .()2,3 B .()3,4C .()4,5D .()5,63.C 【分析】分别计算()2f ,()3f ,()4f ,()5f ,()6f ,根据零点存在性定理,即可得出结果. 【详解】因为()6ln f x x x =-+,所以()226ln 24ln 20f =-+=-+<,()336ln33ln30f =-+=-+<,()446ln 422ln 20f =-+=-+<, ()556ln51ln50f =-+=-+>,()666ln6ln60f =-+=>,由零点存在性定理,可得函数()6ln f x x x =-+的零点所在区间应是()4,5, 即C 正确,ABD 错误. 故选:C.4.下列函数中,没有零点的是( )A .2()log 7f x x =-B .()1f xC .()1f x x= D .()2f x x x =+4.C 【分析】分别解函数对应的方程,逐项判断,即可得出结果. 【详解】A 选项,由2()log 70f x x =-=可得72x =,即函数2()log 7f x x =-有零点;B 选项,由()10f x =得1x =,即函数()1f x 有零点;C 选项,由()10f x x ==解得,x 不存在,即函数()1f x x=没有零点; D 选项,由()20f x x x =+=解得1x =-或0,即函数()2f x x x =+有零点. 故选:C.5.函数()228f x x x =--零点是( )A .2和4-B .2-和4C .()2,0和()4,0-D .()2,0-和()4,05.B 【分析】解方程()0f x =,即可得出函数()f x 的零点. 【详解】解方程()0f x =,即2280x x --=,解得2x =-或4x =.因此,函数()228f x x x =--的零点是2-和4.故选:B.6.为了求函数()237x f x x =+-的一个零点,某同学利用计算器得到自变量x 和函数()f x 的部分对应值,如表所示:x1.25 1.3125 1.375 1.4375 1.5 1.5625 ()f x-0.8716-0.5788-0.28130.21010.328430.64115则方程237x x +=的近似解(精确到0.1)可取为( ) A .1.2 B .1.3C .1.4D .1.56.C 【分析】根据二分法结合零点存在定理求解. 【详解】因为(1.375)0,(1.4375)0f f <>, 所以方程的解在区间()1.375,1.4375内, 又精确到0.1, 所以可取1.4 故选:C7.把函数2()log f x x =的图像向左平移1个单位,再向下平移2个单位后得到函数()g x 的图像,则函数()g x 的零点是( )A .3B .5C .34-D .547.A 【分析】根据平移变换得到()g x ,令()g x 0=,解方程可得结果. 【详解】依题意得2()log (1)2g x x =+-,由()0g x =得2log (1)2x +=,得14x +=,得3x =. 故选:A【点睛】关键点点睛:掌握函数零点的概念是本题解题关键.8.“道高一尺,魔高一丈”出于《西游记》第五十回“道高一尺魔高丈,性乱情昏错认家,可恨法身无坐位,当时行动念头差,”用来比喻取得一定成就后遇到的障碍会更大或正义终将战胜邪恶,若用下列函数中的一个来表示这句话的含义,则最合适的是( )A .10y x =,0x >B .110y x =,0x > C .10y x =+,0x > D .=9y x +,0x >8.A 【分析】根据一丈等于十尺,即可得出结果. 【详解】因为一丈等于十尺,所以“道高一尺魔高一丈”更适合用10y x =,0x >来表示; 故选:A.9.若32()22f x x x x =+--的一个正数零点附近的函数值用二分法逐次计算,数据如下表:那么方程32220x x x +--=的一个近似根(精确到0.1)为( ) A .1.2 B .1.3C .1.41D .1.59.C 【分析】利用零点存在性定理,判断根的较小区间,即可求得近似解. 【详解】因为(1.438)0.1650f =>,(1.4065)0.0520f =-<,(1.438)(1.4065)0f f ⨯<,所以方程的近似根在()1.4065,1.438,则近似根为1.41 故选:C10.已知函数()351f x x x =-+,则下列区间中一定包含()f x 零点的区间是( )A .()2,1--B .()1,0-C .()0,1D .()1,210.C 【分析】计算出各端点的函数值,利用零点存在性定理即可判断. 【详解】()351f x x x =-+,()32252130f ∴-=-+⨯+=>,()31151150f -=-+⨯+=>,()010f => ()31151130f =-⨯+=-<,()32252110f =-⨯+=-<,根据零点存在性定理可得一定包含()f x 零点的区间是()0,1. 故选:C.11.已知函数()25xf x ex --=-的零点位于区间(),1m m +,m ∈Z 上,则42log m m +=( )A .14-B .14C .12D .3411.D 【分析】利用零点存在定理求得整数m 的值,进而可求得42log mm +的值. 【详解】易知函数()f x 单调递减,又因为()2210f e -=->,()130f e -=-<,由零点存在定理可知,函数()f x 的零点在区间()2,1--内,则2m =-. 所以2441132log 2log 2424mm -+=+=+=. 故选:D. 【点睛】本题考查利用零点存在定理求参数值,同时也考查指数式与对数式的计算,考查计算能力,属于基础题.12.我们知道,人们对声音有不同的感觉,这与声音的强度有关系.声音的强度常用I (单位:瓦/米2,即2/m W )表示,但在实际测量时,声音的强度水平常用L (单位:分贝)表示,它们满足换算公式:010lgI L I =(0L ≥,其中1220110/m I W -=⨯是人们平均能听到的声音的最小强度).若使某小区内公共场所声音的强度水平降低10分贝,则声音的强度应变为原来的( ) A .15B .1100C .110D .12012.C 【分析】设该小区内公共场所声音的强度水平为1L ,2L ,相应声音的强度为1I ,2I ,代入可得选项. 【详解】设该小区内公共场所声音的强度水平为1L ,2L ,相应声音的强度为1I ,2I , 由题意,得1210L L -=,即120010lg 10lg 10I II I -=, 解得21110I I =. 故选:C. 【点睛】本题考查函数模型的应用,关键在于理解生活中的数据在数学应用中的表达,属于基础题.二、填空题13.函数()22f x x x =+-的零点为______________.13.2-和1 【分析】解方程220x x +-=,即可得出函数()y f x =的零点. 【详解】令()0f x =,得220x x +-=,解得1x =或2x =-. 因此,函数()22f x x x =+-的零点为2-和1.故答案为:2-和1.【点睛】本题考查函数零点的求解,熟悉函数零点的定义是解题的关键,考查运算求解能力,属于基础题.14.若二元一次方程37x y -=,231x y +=,9y kx =-有公共解,则实数k =_____________. 14.4 【分析】由题意建立关于x ,y 的方程组,求得x ,y 的值,再代入9y kx =-中,求得k 的值. 【详解】解37231x y x y -=⎧⎨+=⎩得21x y =⎧⎨=-⎩,代入9y kx =-得129k -=-, 解得4k =. 故答案为:4 【点睛】本题主要考查解二元一次方程组,意在考查学生对该知识的理解掌握水平. 15.燕子每年秋天都要从北方飞向南方过冬,专家发现,两岁燕子的飞行速度可以表示为函数25log 10Ov =,单位是m/s ,其中O 表示燕子的耗氧量.则当燕子静止时的耗氧量是______个单位. 15.10 【分析】当燕子静止时,速度为0,由此列方程,解方程求得O 的值. 【详解】若燕子静止,则0v =,即25log 0,11010O O==,所以10O =. 故填:10. 【点睛】本小题主要考查阅读理解能力,考查已知函数值以及函数解析式求自变量的值,属于基础题.16.已知函数3,0()1,0x x x f x x a x x ⎧+≤⎪=⎨-->⎪⎩有4个不同的零点,则实数a 的取值范围为_______. 16.()2,+∞ 【分析】当0x ≤时,即()f x 恒有1个零点;当0x >时,得到相切时a 的值,即可求解。
2020-2021学年新教材高一数学人教A 版必修第一册第五章 三角函数 单元测试题一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知扇形的圆心角为2 rad ,弧长为4 cm ,则这个扇形的面积是( )A .4 cm 2B .2 cm 2C .4π cm 2D .1 cm 22.已知a =tan 5π12,b =cos 3π5,c =cos ⎝ ⎛⎭⎪⎫-17π4,则( )A .b >a >cB .a >b >cC .b >c >aD .a >c >b3.要得到函数y =cos ⎝⎛⎭⎪⎫2x +π3的图象,只需将函数y =cos 2x 的图象( )A .向左平移π3个单位长度B .向左平移π6个单位长度C .向右平移π6个单位长度D .向右平移π3个单位长度4.已知sin ⎝ ⎛⎭⎪⎫π3-x =35,则cos ⎝ ⎛⎭⎪⎫x +7π6等于( ) A.35 B.45C .-35D .-455.函数f (x )=x sin x 的图象大致是( )6.化简⎝ ⎛⎭⎪⎫1sin α+1tan α(1-cos α)的结果是( )A .sin αB .cos αC .1+sin αD .1+cos α7.如图所示,某摩天轮设施,其旋转半径为50米,最高点距离地面110米,开启后按逆时针方向匀速旋转,转一周大约21分钟.某人在最低点的位置坐上摩天轮的座舱,并开始计时,则第7分钟时他距离地面的高度大约为( )A .75米B .85米C .(50+253)米D .(60+253)米8.已知函数f (x )=sin x -sin 3x ,x ∈[0,2π],则函数f (x )的所有零点之和等于( )A .4πB .5πC .6πD .7π二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列函数中,最小正周期为π,且为偶函数的有( )A .y =tan ⎝ ⎛⎭⎪⎫x +π3B .y =sin ⎝ ⎛⎭⎪⎫2x -π2C .y =sin|2x |D .y =|sin x |10.已知sin θ=-23,且cos θ>0,则( )A .tan θ<0B .tan 2θ>49C .sin 2θ>cos 2θD .sin 2θ>011.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4,则下列结论正确的是( )A .函数f (x )的最小正周期为πB .函数f (x )在[0,π]上有三个零点C .当x =π8时,函数f (x )取得最大值D .为了得到函数f (x )的图象,只要把函数y =2sin ⎝ ⎛⎭⎪⎫x +π4图象上所有点的横坐标变为原来的2倍(纵坐标不变)12.若函数f (x )=1+4sin x -t 在区间⎝ ⎛⎭⎪⎫π6,2π上有2个零点,则t 的可能取值为( )A .-2B .0C .3D .4三、填空题(本题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.tan 15°=________.14.如图,某港口一天中6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k ,据此可知,这段时间水深(单位:m)的最大值为________.15.在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos(π-B ),则A =________.16.已知函数f (x )=3sin 3x -a cos 3x +a ,且f ⎝ ⎛⎭⎪⎫29π=3,则实数a =________,函数f (x )的单调递增区间为________.四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)在平面直角坐标系xOy 中,锐角α的顶点在坐标原点O ,始边与x 轴非负半轴重合,终边与单位圆交于点A ,且点A 的纵坐标为45.(1)求cos α和sin α; (2)求tan 2α的值.18.(12分)已知函数f (x )=3sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f ⎝ ⎛⎭⎪⎫α2=34⎝ ⎛⎭⎪⎫π6<α<2π3,求cos ⎝ ⎛⎭⎪⎫α+3π2的值.19.(12分)(1)已知cos ⎝ ⎛⎭⎪⎫π2+α=2sin ⎝ ⎛⎭⎪⎫α-π2,求sin 2(π-α)+2sinαsin ⎝ ⎛⎭⎪⎫3π2-α+1的值; (2)已知cos ⎝ ⎛⎭⎪⎫π6-θ=13,求cos ⎝ ⎛⎭⎪⎫5π6+θ+2sin ⎝ ⎛⎭⎪⎫5π3-θ的值.20.(12分)在①tan α=43,②7sin 2α=2sin α,③cos α2=277这三个条件中任选一个,补充在下面问题中,并解决问题.已知α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,cos(α+β)=-13,________,求cosβ.注:如果选择多个条件分别解答,按第一个解答计分.21.(12分)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1.(1)求f (x )的单调递增区间;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的最值,并求出取最值时x 的值;(3)求不等式f (x )≥2的解集.22.(12分)已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|≤π2的部分图象如图所示.(1)求函数y =f (x )的表达式;(2)将函数y =f (x )的图象向左平移π6个单位长度得到函数g (x )的图象,若关于x 的方程f (x )+g (x )-a =0在⎣⎢⎡⎦⎥⎤0,π2上有实数解,求实数a的取值范围.三角函数单元测试参考答案1.解析:设半径为R ,由弧长公式得4=2R ,即R =2 cm ,则S =12×2×4=4 (cm 2),故选A.答案:A2.解析:a =tan 5π12>1,b =cos 3π5<0,1>c =cos ⎝ ⎛⎭⎪⎫-17π4=cosπ4>0.∴a >c >b .则12<t -14<1或-1<t -14<0,解得3<t <5或-3<t <1,故选ABD. 答案:ABD13.解析:tan 15°=tan(45°-30°)=1-tan 30°1+tan 30°=1-331+33=2- 3.答案:2- 314.解析:由图象可知:当sin ⎝ ⎛⎭⎪⎫π6x +φ=-1时,y min =k -3=2,∴k =5,当sin ⎝ ⎛⎭⎪⎫π6x +φ=1时,y max =5+3=8. 答案:8 15.解析:由sin(2π-A )=-2sin(π-B ),得sin A =2sin B ①. 由3cos A =-2cos(π-B ),得3cos A =2cos B ②. 由①2+②2得:sin 2A +3cos 2A =2,即2cos 2A =1.由②和A ,B 为三角形的内角,可知角A ,B 均为锐角,则cos A =22.所以A =π4.答案:π416.解析:①因为f ⎝ ⎛⎭⎪⎫29π=3,所以f ⎝ ⎛⎭⎪⎫2π9=3sin 2π3-a cos 2π3+a =3,解得:a =1;②将a =1代入,得f (x )=3sin 3x -cos 3x +1,化简得f (x )=2sin ⎝ ⎛⎭⎪⎫3x -π6+1,故-π2+2k π≤3x -π6≤π2+2k π,k ∈Z。
第五章检测试题时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题每小题5分,共60分 1.已知cos ⎝ ⎛⎭⎪⎫3π2+σ=-35,且σ是第四象限角,则cos(-3π+σ)的值为( B )A.45 B .-45C .±45D.35解析:∵cos ⎝⎛⎭⎪⎫3π2+σ=sin σ=-35,且σ是第四象限角,∴cos σ=45.∴cos(-3π+σ)=-cos σ=-45.2.计算sin135°cos15°-cos45°sin(-15°)的值为( D ) A.12B.33 C.22D.32解析:原式=cos45°cos15°+si n45°sin15°=cos(45°-15°)=cos30°=32.故选D.3.函数y =2sin ⎝⎛⎭⎪⎫π6-2x (x ∈[0,π])为增函数的区间是( C )A.⎣⎢⎡⎦⎥⎤0,π3 B.⎣⎢⎡⎦⎥⎤π12,7π12C.⎣⎢⎡⎦⎥⎤π3,5π6D.⎣⎢⎡⎦⎥⎤5π6,π 解析:y =2sin ⎝ ⎛⎭⎪⎫π6-2x =-2sin ⎝⎛⎭⎪⎫2x -π6,原函数的单调递增区间就是y =2sin2x -π6的单调递减区间,即2k π+π2≤2x -π6≤2k π+3π2,k ∈Z ,k π+π3≤x ≤k π+5π6,k ∈Z ,对比各选项,令k =0,得选项C 正确.4.函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,若其图象向右平移π3个单位后关于y 轴对称,则( B )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=4,φ=π6D .ω=2,φ=-π6解析:T =2πω=π,所以ω=2.函数f (x )=sin(2x +φ)的图象向右平移π3个单位得函数g (x )=sin ⎝ ⎛⎭⎪⎫2x +φ-2π3的图象关于y 轴对称,所以φ-2π3=π2+k π,k ∈Z ,所以φ=76π+k π,k ∈Z .因为|φ|<π2,所以φ=π6,故选B.5.函数f (x )=A sin(ωx +φ)+b 的图象如图,则S =f (0)+f (1)+…+f (2 016)等于( C )A .0B .503C .2 017D .2 012解析:由题意知,函数f (x )=12sin π2x +1,周期T =4.S =f (0)+f (1)+…+f (2 016)=504[f (0)+f (1)+f (2)+f (3)]+1=504×4+1=2017.选C.6.已知sin2π+θtan π+θtan 3π-θcos ⎝ ⎛⎭⎪⎫π2-θtan -π-θ=1,则3sin 2θ+3sin θcos θ+2cos 2θ的值是( A ) A .1 B .2 C .3 D .6解析:∵sin2π+θtan π+θtan 3π-θcos ⎝ ⎛⎭⎪⎫π2-θtan -π-θ=sin θtan θtan -θ-sin θtan π+θ=-sin θtan θtan θ-sin θtan θ=tan θ=1, ∴3sin 2θ+3sin θcos θ+2cos 2θ =3sin 2θ+3cos 2θsin 2θ+3sin θcos θ+2cos 2θ=3tan 2θ+3tan 2θ+3tan θ+2=3+31+3+2=1,故选A. 7.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝⎛⎭⎪⎫α+β2=( C ) A.33 B .-33 C.539D .-69解析:根据条件可得α+π4∈⎝ ⎛⎭⎪⎫π4,34π,π4-β2∈⎝ ⎛⎭⎪⎫π4,π2,所以sin ⎝ ⎛⎭⎪⎫α+π4=223,sin ⎝ ⎛⎭⎪⎫π4-β2=63,所以cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2 =cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2=13×33+223×63=539.8.已知函数f (x )=3sin ωx +cos ωx (ω>0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是( C )A.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z B.⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12,k ∈Z C.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈Z D.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3,k ∈Z 解析:f (x )=3sin ωx +cos ωx =2sin(ωx +π6),由已知得周期T =π.∴ω=2,即f (x )=2sin(2x +π6).由2k π-π2≤2x +π6≤2k π+π2(k ∈Z )得k π-π3≤x ≤k π+π6(k ∈Z ).9.在区间⎣⎢⎡⎦⎥⎤-3π2,3π2X 围内,函数y =tan x 与函数y =sin x 的图象的交点的个数为( C )A .1B .2C .3D .4解析:在同一坐标系中,首先作出y =sin x 与y =tan x 在⎣⎢⎡⎦⎥⎤-π2,π2内的图象,需明确x ∈⎝⎛⎭⎪⎫0,π2时,有sin x <x <tan x (利用单位圆中的正弦线、正切线结合面积大小的比较就可证明),然后作出x ∈⎣⎢⎡⎦⎥⎤-3π2,3π2的两函数的图象,如图所示,由图象可知它们有3个交点.10.若ω>0,函数y =cos ⎝⎛⎭⎪⎫ωx +π3的图象向右平移π3个单位长度后与函数y =sin ωx的图象重合,则ω的最小值为( B )A.112B.52C.12D.32解析:y =cos ⎝ ⎛⎭⎪⎫ωx +π3向右平移π3个单位长度可得y =cos ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -π3+π3=cos ⎝ ⎛⎭⎪⎫ωx +π3-ωπ3=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫ωx +π3-ωπ3=sin ⎝ ⎛⎭⎪⎫ωx +56π-ωπ3. 因为函数y =cos ⎝ ⎛⎭⎪⎫ωx +π3的图象向右平移π3个单位长度后与函数y =sin ωx 图象重合,所以ωx +5π6-ωπ3=ωx +2k π(k ∈Z ).又ω>0,所以当k =0时,ω取最小值为52,故选B.11.将函数f (x )=12sin2x sin π3+cos 2x cos π3-12sin(π2+π3)的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,则函数g (x )在[0,π4]上的最大值和最小值分别为( C )A.12,-12B.14,-14C.12,-14D.14,-12解析:f (x )=12×32sin2x +12cos 2x -12sin 5π6=34sin2x +12cos 2x -14 =34sin2x +12×1+cos2x 2-14=12sin(2x +π6), 所以g (x )=12sin(4x +π6).因为x ∈[0,π4],所以4x +π6∈[π6,7π6],所以当4x +π6=π2时,g (x )取得最大值12;当4x +π6=7π6时,g (x )取得最小值-14.12.设函数f (x )=sin ⎝⎛⎭⎪⎫2x +π4⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,9π8,若方程f (x )=a 恰好有三个根,分别为x 1,x 2,x 3(x 1<x 2<x 3),则2x 1+3x 2+x 3的值为( D )A .π B.3π4C.3π2 D.7π4解析:由题意x ∈⎣⎢⎡⎦⎥⎤0,9π8,则2x +π4∈⎣⎢⎡⎦⎥⎤π4,5π2,画出函数的大致图象,如图所示.由图可得,当22≤a <1时,方程f (x )=a 恰有三个根. 由2x +π4=π2得x =π8;由2x +π4=3π2得x =5π8.由图可知,点(x 1,a )与点(x 2,a )关于直线x =π8对称;点(x 2,a )和点(x 3,a )关于x =5π8对称,所以x 1+x 2=π4,x 2+x 3=5π4,所以2x 1+3x 2+x 3=2(x 1+x 2)+(x 2+x 3)=7π4,故选D.第Ⅱ卷(非选择题,共90分)二、填空题每小题5分,共20分13.已知一扇形的半径为2,面积为4,则此扇形圆心角的绝对值为2弧度. 解析:设扇形圆心角的绝对值为α弧度,则4=12α·22,所以α=2.14.已知cos(α-π6)+sin α=435,则sin(α+7π6)的值为-45.解析:由已知得32cos α+32sin α=435, 所以12cos α+32sin α=45,即sin(α+π6)=45,因此,sin(α+7π6)=-sin(α+π6)=-45.15.已知f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0),f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3内有最小值,无最大值,则ω=143.解析:由题意知x =π6+π32=π4为函数的一条对称轴,且ω·π4+π3=2k π-π2(k ∈Z ),得ω=8k -103(k ∈Z ).①又π3-π6≤2πω(ω>0),∴0<ω≤12.② 由①②得k =1,ω=143.16.关于函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+cos ⎝ ⎛⎭⎪⎫2x +π6,有下列命题: ①y =f (x )的最大值为2; ②y =f (x )的最小正周期是π;③y =f (x )在区间⎣⎢⎡⎦⎥⎤π24,13π24上是减函数;④将函数y =2cos2x 的图象向右平移π24个单位后,与已知函数的图象重合.其中正确命题的序号是①②③④. 解析:f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+cos ⎝ ⎛⎭⎪⎫2x +π6 =cos ⎝ ⎛⎭⎪⎫2x -π3+sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫2x +π6 =cos ⎝ ⎛⎭⎪⎫2x -π3-sin ⎝ ⎛⎭⎪⎫2x -π3 =2⎣⎢⎡⎦⎥⎤22cos ⎝ ⎛⎭⎪⎫2x -π3-22sin ⎝ ⎛⎭⎪⎫2x -π3=2cos ⎝ ⎛⎭⎪⎫2x -π3+π4 =2cos ⎝⎛⎭⎪⎫2x -π12, ∴y =f (x )的最大值为2,最小正周期为π,故①②正确.又当x ∈⎣⎢⎡⎦⎥⎤π24,13π24时,2x -π12∈[0,π],∴y =f (x )在⎣⎢⎡⎦⎥⎤π24,13π24上是减函数,故③正确.由④得y =2cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π24 =2cos ⎝⎛⎭⎪⎫2x -π12,故④正确. 三、解答题写出必要的计算步骤,只写最后结果不得分,共70分17.(10分)函数f 1(x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的一段图象过点(0,1),如图所示.(1)求函数f 1(x )的表达式;(2)将函数y =f 1(x )的图象向右平移π4个单位,得函数y =f 2(x )的图象,求y =f 2(x )的最大值,并求出此时自变量x 的取值集合.解:(1)由题图知,T =π,于是ω=2πT=2.将y =A sin2x 的图象向左平移π12,得y =A sin(2x +φ)的图象,于是φ=2×π12=π6.将(0,1)代入y =A sin ⎝ ⎛⎭⎪⎫2x +π6,得A =2. 故f 1(x )=2sin ⎝ ⎛⎭⎪⎫2x +π6. (2)依题意,f 2(x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+π6=-2cos ⎝ ⎛⎭⎪⎫2x +π6.当2x +π6=2k π+π(k ∈Z ),即x =k π+5π12(k ∈Z )时,y max =2.x 的取值集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π+5π12,k ∈Z. 18.(12分)已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫2x -π4,x ∈R . (1)求函数f (x )的最小正周期和单调递增区间;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π8,π2上的最小值和最大值,并求出取得最值时的x 的值.解:(1)∵f (x )=2cos ⎝⎛⎭⎪⎫2x -π4,∴函数f (x )的最小正周期为T =2π2=π.由-π+2k π≤2x -π4≤2k π(k ∈Z ),得-3π8+k π≤x ≤π8+k π(k ∈Z ).故函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π(k ∈Z ). (2)∵f (x )=2cos ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡-π8,⎦⎥⎤π8上为增函数,在区间⎣⎢⎡⎦⎥⎤π8,π2上为减函数, 又f ⎝ ⎛⎭⎪⎫-π8=0,f ⎝ ⎛⎭⎪⎫π8=2,f ⎝ ⎛⎭⎪⎫π2=-1,∴函数f (x )在区间⎣⎢⎡⎦⎥⎤-π8,π2上的最大值为2,此时x =π8;最小值为-1,此时x =π2.19.(12分)设函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3+sin 2x .(1)求函数f (x )的最大值和最小正周期;(2)设A ,B ,C 为△ABC 的三个内角,若cos B =13,f ⎝ ⎛⎭⎪⎫C 2=-14,且C 为锐角,求sin A .解:(1)f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3+sin 2x=cos2x ·cos π3-sin2x ·sin π3+1-cos2x2=12cos2x -32sin2x -12cos2x +12=12-32sin2x , ∴当2x =-π2+2k π(k ∈Z ),即x =k π-π4(k ∈Z )时,f (x )max =1+32.T =2π2=π. 故f (x )的最大值为1+32,最小正周期为π.(2)由f ⎝ ⎛⎭⎪⎫C 2=-14,即12-32sin C =-14, 解得sin C =32. 又C 为锐角,∴C =π3.由cos B =13,得sin B =223.∴sin A =sin[π-(B +C )]=sin(B +C )=sin B ·cos C +cos B ·sin C =223×12+13×32=22+36.20.(12分)已知函数f (x )=A sin(ωx +φ)+B ⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的一系列对应值如下表:(2)根据(1)的结果,若函数y =f (kx )(k >0)的周期为2π3,当x ∈⎣⎢⎡⎦⎥⎤0,π3时,方程f (kx )=m 恰有两个不同的解,某某数m 的取值X 围.解:(1)设f (x )的最小正周期为T , 得T =11π6-⎝ ⎛⎭⎪⎫-π6=2π,由T =2πω,得ω=1.又⎩⎪⎨⎪⎧B +A =3,B -A =-1,解得⎩⎪⎨⎪⎧A =2,B =1.令ω·5π6+φ=π2+2k π(k ∈Z ),即5π6+φ=π2+2k π(k ∈Z ), 又|φ|<π2,∴φ=-π3,∴f (x )=2sin ⎝⎛⎭⎪⎫x -π3+1.(2)∵函数y =f (kx )=2sin ⎝ ⎛⎭⎪⎫kx -π3+1的周期为2π3,又k >0,∴k =3, 令t =3x -π3,∵x ∈⎣⎢⎡⎦⎥⎤0,π3,∴t ∈⎣⎢⎡⎦⎥⎤-π3,2π3.如图,sin t =s 在⎣⎢⎡⎦⎥⎤-π3,2π3上有两个不同的解,则s ∈⎣⎢⎡⎭⎪⎫32,1.∴方程f (kx )=m 在x ∈⎣⎢⎡⎦⎥⎤0,π3时恰好有两个不同的解,则m ∈[3+1,3),即实数m 的取值X 围是[3+1,3).21.(12分)已知函数f (x )=23sin x cos x +2sin 2x .(1)若f (x )=0,x ∈⎝ ⎛⎭⎪⎫-π2,π,求x 的值;(2)将函数f (x )的图象向左平移π3个单位长度,再将图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数g (x )的图象,若y =h (x )与y =g (x )的图象关于直线x =π4对称,求函数h (x )在⎝ ⎛⎦⎥⎤-π6,2π3上的值域.解:f (x )=23sin x cos x +2sin 2x=3sin2x +1-cos2x =2sin ⎝⎛⎭⎪⎫2x -π6+1.(1)由f (x )=0,得2sin ⎝ ⎛⎭⎪⎫2x -π6+1=0, ∴sin ⎝⎛⎭⎪⎫2x -π6=-12,∴2x -π6=-π6+2k π或2x -π6=-5π6+2k π,k ∈Z .又∵x ∈⎝ ⎛⎭⎪⎫-π2,π,∴x =-π3或0或2π3.(2)将函数f (x )的图象向左平移π3个单位长度,可得函数图象的解析式为y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π3-π6+1=2sin2x +π2+1=2cos2x +1,再将图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数g (x )=2cos x +1.又y =h (x )与y =g (x )的图象关于直线x =π4对称,∴h (x )=g ⎝ ⎛⎭⎪⎫π2-x =2sin x +1. ∵x ∈⎝ ⎛⎦⎥⎤-π6,2π3,∴sin x ∈⎝ ⎛⎦⎥⎤-12,1.故函数h (x )的值域为(0,3].22.(12分)已知函数f (x )=3sin ωx cos ωx +cos 2ωx +b +1.(1)若函数f (x )的图象关于直线x =π6对称,且ω∈[0,3],求函数f (x )的单调递增区间;(2)在(1)的条件下,当x ∈⎣⎢⎡⎦⎥⎤0,7π12时,函数f (x )有且只有一个零点,某某数b 的取值X 围.解:(1)函数f (x )=3sin ωx cos ωx +cos 2ωx +b +1=32sin2ωx +1+cos2ωx2+b +1=sin ⎝⎛⎭⎪⎫2ωx +π6+32+b .∵函数f (x )的图象关于直线x =π6对称,∴2ω·π6+π6=k π+π2,k ∈Z ,且ω∈[0,3],∴ω=1.由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),解得k π-π3≤x ≤k π+π6(k ∈Z ),∴函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ). (2)由(1)知f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6+32+b .∵x ∈⎣⎢⎡⎦⎥⎤0,7π12,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,4π3.当2x +π6∈⎣⎢⎡⎦⎥⎤π6,π2,即x ∈⎣⎢⎡⎦⎥⎤0,π6时,函数f (x )单调递增;当2x +π6∈⎣⎢⎡⎦⎥⎤π2,4π3,即x ∈⎣⎢⎡⎦⎥⎤π6,7π12时,函数f (x )单调递减.又f (0)=f ⎝ ⎛⎭⎪⎫π3, ∴当f ⎝ ⎛⎭⎪⎫π3>0≥f ⎝ ⎛⎭⎪⎫7π12或f ⎝ ⎛⎭⎪⎫π6=0时,函数f (x )有且只有一个零点, 即sin 4π3≤-b -32<sin 5π6或1+32+b =0,∴b ∈⎝ ⎛⎦⎥⎤-2,3-32∪⎩⎨⎧⎭⎬⎫-52 .。
人教A 版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷(共22题)一、选择题(共10题)1. 下面关于函数 f (x )=log 12x ,g (x )=(12)x和 ℎ(x )=x −12 在区间 (0,+∞) 上的说法正确的是( ) A . f (x ) 的递减速度越来越慢,g (x ) 的递减速度越来越快,ℎ(x ) 的递减速度越来越慢 B . f (x ) 的递减速度越来越快,g (x ) 的递减速度越来越慢,ℎ(x ) 的递减速度越来越快 C . f (x ) 的递减速度越来越慢,g (x ) 的递减速度越来越慢,ℎ(x ) 的递减速度越来越慢 D . f (x ) 的递减速度越来越快,g (x ) 的递减速度越来越快,ℎ(x ) 的递减速度越来越快2. 甲用 1000 元人民币购买了一手股票,随即他将这手股票卖给乙,获利 10%,而后乙又将这手股票卖给甲,但乙损失了 10%,最后甲又按乙卖给甲的价格的九成将这手股票卖给了乙.在上述股票交易中 ( ) A .甲刚好盈亏平衡 B .甲盈利 9 元 C .甲盈利 1 元D .甲亏本 1.1 元3. 若 a =0.32,b =log 20.3,c =20.3,则 a ,b ,c 三者的大小关系是 ( ) A . b <c <a B . b <a <c C . a <c <b D . a <b <c4. 已知当 x ∈[0,1] 时,函数 y =(mx −1)2 的图象与 y =√x +m 的图象有且只有一个交点,则正实数 m 的取值范围是 ( ) A . (0,1]∪[2√3,+∞) B . (0,1]∪[3,+∞) C . (0,√2]∪[2√3,+∞) D . (0,√2]∪[3,+∞)5. 已知函数 f (x )={15x +1,x ≤1lnx,x >1,则方程 f (x )=kx 恰有两个不同的实根时,实数 k 的取值范围是 ( ) A . (0,1e )B . (0,15)C . [15,1e )D . [15,1e ]6. 若函数 f (x )=2x +a 2x −2a 的零点在区间 (0,1) 上,则 a 的取值范围是 ( ) A . (−∞,12)B . (−∞,1)C . (12,+∞)D . (1,+∞)7. 已知定义在 R 上的函数 f (x )={x 2+2,x ∈[0,1)2−x 2,x ∈[−1,0),且 f (x +2)=f (x ).若方程 f (x )−kx −2=0 有三个不相等的实数根,则实数 k 的取值范围是 ( )A . (13,1)B . (−13,−14)C . (−1,−13)∪(13,1)D . (−13,−14)∪(14,13)8. 定义域为 R 的偶函数 f (x ),满足对任意的 x ∈R 有 f (x +2)=f (x ),且当 x ∈[2,3] 时,f (x )=−2x 2+12x −18,若函数 y =f (x )−log a (∣x∣+1) 在 R 上至少有六个零点,则 a 的取值范围是 ( ) A . (0,√33) B . (0,√77) C . (√55,√33)D . (0,13)9. 方程 log 3x +x =3 的解所在的区间是 ( ) A . (0,1) B . (1,2) C . (2,3) D . (3,+∞)10. 函数 f (x )=√1−x 2lg∣x∣的图象大致为 ( )A .B .C .D .二、填空题(共6题)11. 已知函数 f (x )={√4−x 2,x ∈(−2,2]1−∣x −3∣,x ∈(2,4],满足 f (x −3)=f (x +3),若在区间 [−4,4] 内关于x 的方程 3f (x )=k (x −5) 恰有 4 个不同的实数解,则实数 k 的取值范围是 .12. 已知关于 x 的一元二次方程 x 2+(2m −1)x +m 2=0 有两个实数根 x 1 和 x 2,当 x 12−x 22=0时,m 的值为 .13. 已知 A ={x∣ 3x <1},B ={x∣ y =lg (x +1)},则 A ∪B = .14. 已知函数 f (x )={x 2+4x −1,x ≤02x −3−k,x >0,若方程 f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解,则实数 k 的取值范围是 .15. 设函数 f (x )={−4x 2,x <0x 2−x,x ≥0,若 f (a )=−14,则 a = ,若方程 f (x )−b =0 有三个不同的实根,则实数 b 的取值范围是 .16. 设函数 f (x )={e x ,x ≤0−x 2+x +14,x >0,则 f [f (0)]= ,若方程 f (x )=b 有且仅有 3 个不同的实数根,则实数 b 的取值范围是 .三、解答题(共6题)17. 如图,直角边长为 2 cm 的等腰直角三角形 ABC ,以 2 cm/s 的速度沿直线向右运动.(1) 求该三角形与矩形 CDEF 重合部分面积 y (cm 2)与时间 t 的函数关系(设 0≤t ≤3). (2) 求出 y 的最大值.(写出解题过程)18. 已知函数 f (x )=a x +k 的图象过点 (1,3),它的反函数的图象过点 (2,0).(1) 求函数 f (x ) 的解析式; (2) 求 f (x ) 的反函数.19. 已知函数 g (x )=log a x ,其中 a >1.(注:∑∣m (x i )−m (x i−1)∣n i=1=∣m (x 1)−m (x 0)∣+∣m (x 2)−m (x 1)∣+⋯+∣m (x n )−m (x n−1)∣) (1) 当 x ∈[0,1] 时,g (a x +2)>1 恒成立,求 a 的取值范围;(2) 设 m (x ) 是定义在 [s,t ] 上的函数,在 (s,t ) 内任取 n −1 个数 x 1,x 2,⋯,x n−2,x n−1,且 x 1<x 2<⋯<x n−2<x n−1,令 x 0=s ,x n =t ,如果存在一个常数 M >0,使得 ∑∣m (x i )−m (x i−1)∣n i=1≤M 恒成立,则称函数 m (x ) 在区间 [s,t ] 上具有性质 P . 试判断函数 f (x )=∣g (x )∣ 在区间 [1a ,a 2] 上是否具有性质 P ?若具有性质 P ,请求出 M的最小值;若不具有性质 P ,请说明理由.20. 已知函数 g (x )=ax 2−2ax +1+b (a ≠0,b <1),在区间 [2,3] 上有最大值 4,最小值 1,设f (x )=g (x )x.(1) 求常数 a ,b 的值;(2) 方程 f (∣2x −1∣)+k (2∣2x −1∣−3)=0 有三个不同的解,求实数 k 的取值范围.21. 已知函数 f (x )=x 2−3mx +n 的两个零点分别为 1 和 2.(1) 求实数 m ,n 的值;(2) 若不等式 f (x )−k >0 在 x ∈[0,5] 上恒成立,求实数 k 的取值范围.22. 已知函数 f (x )=(12)ax,a 为常数,且函数的图象过点 (−1,2).(1) 求 a 的值;(2) 若 g (x )=4−x −2,且 g (x )=f (x ),求满足条件的 x 的值.答案一、选择题(共10题)1. 【答案】C【解析】观察函数f(x)=log12x,g(x)=(12)x和ℎ(x)=x−12在区间(0,+∞)上的图象(图略),由图可知:函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且递减速度越来越慢.同样,函数g(x)的图象在区间(0,+∞)上递减较慢,且递减速度越来越慢.函数ℎ(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且递减速度越来越慢.【知识点】对数函数及其性质、指数函数及其性质2. 【答案】C【解析】由题意知甲两次付出为1000元和(1000×1110×910)元,两次收入为(1000×1110)元和(1000×1110×910×910)元,因为1000×1110+1000×1110×910×910−1000−1000×1110×910=1,所以甲盈利1元.【知识点】函数模型的综合应用3. 【答案】B【解析】因为0<a=0.32<0.30=1,b=log20.3<log21=0,c=20.3>20=1,所以b<a<c.【知识点】指数函数及其性质、对数函数及其性质4. 【答案】B【解析】应用排除法.当m=√2时,画出y=(√2x−1)2与y=√x+√2的图象,由图可知,两函数的图象在[0,1]上无交点,排除C,D;当m=3时,画出y=(3x−1)2与y=√x+3的图象,由图可知,两函数的图象在[0,1]上恰有一个交点.【知识点】函数的零点分布5. 【答案】C【解析】因为方程f(x)=kx恰有两个不同实数根,所以y=f(x)与y=kx有2个交点,又因为k表示直线y=kx的斜率,x>1时,y=f(x)=lnx,所以yʹ=1x;设切点为(x0,y0),则k=1x0,所以切线方程为y−y0=1x0(x−x0),又切线过原点,所以y0=1,x0=e,k=1e,如图所示:结合图象,可得实数k的取值范围是[15,1e ).【知识点】函数零点的概念与意义6. 【答案】C【解析】因为f(x)单调递增,所以f(0)f(1)=(1−2a)(2+a2−2a)<0,解得a>12.【知识点】零点的存在性定理7. 【答案】C【知识点】函数的零点分布8. 【答案】A【解析】当x∈[2,3]时,f(x)=−2x2+12x−18=−2(x−3)2,图象为开口向下,顶点为(3,0)的抛物线.因为函数y=f(x)−log a(∣x∣+1)在(0,+∞)上至少有三个零点,令g(x)=log a(∣x∣+1),因为f(x)≤0,所以g(x)≤0,可得0<a<1.要使函数y=f(x)−log a(∣x∣+1)在(0,+∞)上至少有三个零点,如图要求g(2)>f(2).log a(2+1)>f(2)=−2⇒log a3>−2,可得3<1a2⇒−√33<a<√33,a>0,所以 0<a <√33.【知识点】函数的零点分布9. 【答案】C【解析】把方程的解转化为函数 f (x )=log 3x +x −3 对应的零点.令 f (x )=log 3x +x −3,因为 f (2)=log 32−1<0,f (3)=1>0,所以 f (2)f (3)<0,且函数 f (x ) 在定义域内是增函数,所以函数 f (x ) 只有一个零点,且零点 x 0∈(2,3),即方程 log 3x +x =3 的解所在的区间为 (2,3). 故选C .【知识点】零点的存在性定理10. 【答案】B【解析】(1)由 {1−x 2≥0,∣x ∣≠0且∣x ∣≠1, 得 −1<x <0 或 0<x <1,所以 f (x ) 的定义域为 (−1,0)∪(0,1),关于原点对称.又 f (x )=f (−x ),所以函数 f (x ) 是偶函数,图象关于 y 轴对称,排除A ; 当 0<x <1 时,lg ∣x ∣<0,f (x )<0,排除C ;当 x >0 且 x →0 时,f (x )→0,排除D ,只有B 项符合. 【知识点】对数函数及其性质、函数图象、函数的奇偶性二、填空题(共6题) 11. 【答案】 (−2√217,−38)∪{0}【知识点】函数的零点分布12. 【答案】 14【解析】由题意得 Δ=(2m −1)2−4m 2=0,解得 m ≤14. 由根与系数的关系,得 x 1+x 2=−(2m −1),x 1x 2=m 2.由 x 12−x 22=0,得 (x 1+x 2)(x 1−x 2)=0. 若 x 1+x 2=0,即 −(2m −1)=0,解得 m =12. 因为 12>14,可知 m =12 不合题意,舍去;若 x 1−x 2=0,即 x 1=x 2,由 Δ=0,得 m =14.故当 x 12−x 22=0 时,m =14.【知识点】函数零点的概念与意义13. 【答案】 R【解析】由 3x <1,解得 x <0,即 A =(−∞,0). 由 x +1>0,解得 x >−1,即 B =(−1,+∞). 所以 A ∪B =R .【知识点】对数函数及其性质、交、并、补集运算14. 【答案】 (−2,−32]∪(−1,2)【解析】当 x ≤0 时,f (x )−k ∣x −1∣=x 2+4x −1−k (1−x )=x 2+(4+k )x −k −1, 当 0<x <1 时,f (x )−k ∣x −1∣=2x −3−k −k (1−x )=(k +2)x −3−2k ,当 x ≥1 时,f (x )−k ∣x −1∣=2x −3−k −k (x −1)=(2−k )x −3,设 g (x )=f (x )−k ∣x −1∣,则 g (x )={x 2+(4+k )x −k −1,x ≤0(k +2)x −3−2k,0<x <1(2−k )x −3,x ≥1,f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解等价于g (x ) 有且仅有 2 个零点, 若 g (x ) 一个零点位于 (0,1),即 0<2k+3k+2<1⇒k ∈(−32,−1),若 g (x ) 一个零点位于 [1,+∞),即 {2−k >0,22−k≥1⇒k ∈[−1,2),可知 g (x ) 在 (0,1),[1,+∞) 内不可能同时存在零点,即当 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点;当 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, ① 当 g (x ) 在 (−∞,0] 上有且仅有一个零点时,(1)当 Δ=(4+k )2+4(k +1)=0 时,k =−2 或 k =−10, 此时 g (x ) 在 (0,+∞) 上无零点, 所以不满足 g (x ) 有两个零点;(2)当 Δ=(4+k )2+4(k +1)>0,即 k <−10 或 k >−2 时, 只需 g (0)=−k −1<0,即 k >−1,所以当 k >−1 时,g (x ) 在 (−∞,0] 上有且仅有一个零点, 因为 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点, 所以 k ∈(−1,2) 时,g (x ) 有且仅有 2 个零点;② 当 g (x ) 在 (−∞,0] 上有两个零点时,只需 {Δ=(4+k )2+4(k +1)>0,−4+k 2<0,g (0)=−k −1≥0⇒k ∈(−2,−1],因为 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, 所以 k ∈(−2,−32] 时,g (x ) 有且仅有 2 个零点, 综上所述:k ∈(−2,−32]∪(−1,2).【知识点】函数的零点分布15. 【答案】 −14或 12; (−14,0)【解析】若 −4a 2=−14,解得 a =−14; 若 a 2−a =−14,解得 a =12,故 a =−14或12;当 x <0 时,f (x )<0;当 x >0 时,f (x )=(x −12)2−14,f (x ) 的最小值是 −14,若方程 f (x )−b =0 有三个不同的实根,则 b =f (x ) 有 3 个交点,故 b ∈(−14,0).【知识点】函数的零点分布、分段函数16. 【答案】 14; (14,12)【解析】函数 f (x )={e x ,x ≤0−x 2+x +14,x >0,则 f [f (0)]=f (e 0)=f (1)=14.x ≤0 时,f (x )≤1;x >0,f (x )=−x 2+x +14,对称轴为 x =12,开口向下;函数的最大值为 f (12)=12,x →0 时,f (0)→14.方程 f (x )=b 有且仅有 3 个不同的实数根,则实数 b 的取值范围是 (14,12).【知识点】函数的零点分布、分段函数三、解答题(共6题) 17. 【答案】(1) 依题意:当 0≤t ≤1 时,重合部分为边长为 2t cm 的直角等腰三角形, 此时:y =12×2t ×2t =2t 2(cm 2),当 1<t <2 时,重合部分为边长为 2 cm 的等腰直角三角形, 此时:y =12×2×2=2(cm 2),当 2≤t ≤3 时,重合部分为边长为 2 的等腰直角三角形, 去掉一个边长为 (2t −4)cm 的等腰直角三角形, 此时:y =12×2×2−12×(2t −4)2=−2t 2+8t −6,综上:y ={2t 2,0≤t ≤12,1<t <2−2t 2+8t −6,2≤t ≤3.(2) 依题意:当 0≤t ≤1 时,重合部分为边长为 2t cm 的直角等腰三角形, 此时:y =12×2t ×2t =2t 2(cm 2),当 1<t <2 时,重合部分为边长为 2 cm 的等腰直角三角形, 此时:y =12×2×2=2(cm 2),当 2≤t ≤3 时,重合部分为边长为 2 的等腰直角三角形, 去掉一个边长为 (2t −4)cm 的等腰直角三角形, 此时:y =12×2×2−12×(2t −4)2=−2t 2+8t −6, 综上:y ={2t 2,0≤t ≤12,1<t <2−2t 2+8t −6,2≤t ≤3.当 0≤t ≤1 时,y max =2×12=2,当 1<t <2 时,y max =2,当 2≤t ≤3 时,对称轴 t 0=2,则 t =2 时,y max =2,综上:y max =2.【知识点】函数模型的综合应用、建立函数表达式模型18. 【答案】(1) f (x )=2x +1.(2) f −1(x )=log 2(x −1)(x >1).【知识点】反函数、指数函数及其性质19. 【答案】(1) 当 x ∈[0,1] 时,g (a x +2)>1 恒成立,即 x ∈[0,1] 时,log a (a x +2)>1 恒成立,因为 a >1,所以 a x +2>a 恒成立,即 a −2<a x 在区间 [0,1] 上恒成立,所以 a −2<1,即 a <3,所以 1<a <3,即 a 的取值范围是 (1,3).(2) 函数 f (x ) 在区间 [1a ,a 2] 上具有性质 P .因为 f (x )=∣g (x )∣ 在 [1,a 2] 上单调递增,在 [1a ,1] 上单调递减,对于 (1a ,a 2) 内的任意一个取数方法 1a =x 0<x 1<x 2<⋯<x n−1<x n =a 2,当存在某一个整数 k ∈{1,2,3,⋯,n −1},使得 x k =1 时,∑∣f (x i )−f (x i−1)∣n i=1=[f (x 0)−f (x 1)]+[f (x 1)−f (x 2)]+⋯+[f (x k−1)−f (x k )]+[f (x k+1)−f (x k )]+[f (x k+2)−f (x k+1)]+⋯+[f (x n )−f (x n−1)]=[f (1a )−f (1)]+[f (a 2)−f (1)]=1+2= 3. 当对于任意的 k ∈{1,2,3,…,n −1},x k ≠1 时,则存在一个实数 k 使得 x k <1<x k+1 时,∑∣f (x i )−f (x i−1)∣n i=1=[f (x 0)−f (x 1)]+[f (x 1)−f (x 2)]+⋯+[f (x k−1)−f (x k )]+[f (x k+1)−f (x k )]+[f (x k+2)−f (x k+1)]+⋯+[f (x n )−f (x n−1)]=[f (x 0)−f (x k )]+∣f (x k )−f (x k+1)∣+f (x n )−f (x k+1). ⋯⋯(∗)当 f (x k )>f (x k+1) 时,(∗)式=f (x n )+f (x 0)−2f (x k+1)=3−2f (x k+1)<3,当 f (x k )<f (x k+1) 时,(∗)式=f (x n )+f (x 0)−2f (x k )=3−2f (x k )<3,当 f (x k )=f (x k+1) 时,(∗)式=f (x n )+f (x 0)−f (x k )−f (x k+1)=3−f (x k )−f (x k+1)<3,综上,对于 (1a ,a 2) 内的任意一个取数方法 1a =x 0<x 1<x 2<⋯<x n−1<x n =a 2,均有 ∑∣m (x i )−m (x i−1)∣n i=1≤3,所以存在常数 M ≥3,使 ∑∣m (x i )−m (x i−1)∣n i=1≤M 恒成立,所以函数 f (x ) 在区间 [1a ,a 2] 上具有性质 P ,此时 M 的最小值为 3.【知识点】函数的单调性、指数函数及其性质、函数的最大(小)值、对数函数及其性质20. 【答案】(1) 因为 a ≠0,所以 g (x ) 的对称轴为 x =1,所以 g (x ) 在 [2,3] 上是单调函数,所以 {g (2)=1,g (3)=4 或 {g (2)=4,g (3)=1,解得 a =1,b =0 或 a =−1,b =3(舍). 所以 a =1,b =0.(2) f (x )=x 2−2x+1x =x +1x −2.令 ∣2x −1∣=t ,显然 t >0, 所以 t +1t −2+k (2t −3)=0 在 (0,1) 上有一解,在 [1,+∞) 上有一解.即 t 2−(2+3k )t +1+2k =0 的两根分别在 (0,1) 和 [1,+∞) 上.令 ℎ(t )=t 2−(2+3k )t +1+2k ,若 ℎ(1)=0,即 1−2−3k +1+2k =0,解得 k =0,则 ℎ(t )=t 2−2t +1=(t −1)2,与 ℎ(t ) 有两解矛盾.所以 {ℎ(0)>0,ℎ(1)<0,即 {1+2k >0,−k <0, 解得 k >0. 所以实数 k 的取值范围是 (0,+∞).【知识点】函数的最大(小)值、函数的零点分布21. 【答案】(1) 由函数 f (x )=x 2−3mx +n 的两个零点分别为 1 和 2,可得 {1−3m +n =0,4−6m +n =0, 解得 {m =1,n =2.(2) 由(1)可得 f (x )=x 2−3x +2,由不等式 f (x )−k >0 在 x ∈[0,5] 上恒成立,可得不等式 f (x )>k 在 x ∈[0,5] 上恒成立,可将 f (x )=x 2−3x +2 化为 f (x )=(x −32)2−14,所以 f (x )=x 2−3x +2 在 x ∈[0,5] 上的最小值为 f (32)=−14,所以 k <−14.【知识点】函数的最大(小)值、函数的零点分布22. 【答案】(1) 由已知得 (12)−a=2,解得 a =1.(2) 由(1)知 f (x )=(12)x,又 g (x )=f (x ),所以 4−x −2=(12)x,即 (14)x −(12)x−2=0,即 [(12)x ]2−(12)x−2=0,令 (12)x=t (t >0),则 t 2−t −2=0,所以 t =−1 或 t =2,又 t >0,所以 t =2,即 (12)x=2,解得 x =−1.【知识点】指数函数及其性质。
人教A 版(2019)高一数学第二章《一元二次函数、方程和不等式》练习题(含答案)一、单选题1.设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( )A .4B .8C .16D .32 2.已知a ,b ∈R ,0a b >>,则下列不等式中一定成立的是( )A .11a a b b ->- B .11a b b >- C .11a a b b +>+ D .11a b b a->- 3.已知不等式组121x m mx n +<⎧⎨->⎩的解集为(2,3),则( ) A .23m n <⎧⎨>⎩B .23m n =⎧⎨=⎩C .23m n >⎧⎨<⎩D .23m n =⎧⎨=⎩4.设a b c d ,,,为实数,且0a b c d >>>>,则下列不等式正确的是( ) A .2c cd >B .a d b c +<+C .ad bc <D .2211a b > 5.下列不等式中成立的是( )A .若0a b >>,则22ac bc >B .若0a b >>,则22a b >C .若0a b <<,则22a ab b <<D .若0a b <<,则11a b < 6.已知,,a b c 为正数,则“222a b c +>”是“a b c +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知a ,b >0,且a +2b =1,则12a b+的最小值为( ) A .6 B .8 C .9 D .10 8.若1x >,则函数221x y x x +=+-的最小值为( )A .4B .5C .7D .9二、多选题 9.若a ,b ,c ∈R ,则下列命题正确的是( )A .若0ab ≠且a b <,则11a b> B .若01a <<,则2a a < C .若0a b >>且0c >,则b c b a c a +>+ D .222(1)a b a b +≥+- 10.已知a ,b ,c ,d 均为实数,则下列命题正确的是( )A .若a >b ,c >d ,则a -d >b -cB .若a >b ,c >d 则ac >bdC .若ab >0,bc -ad >0,则c d a b> D .若a >b ,c >d >0,则a b d c > 11.下列四个命题中,正确的是( )A .若,a b c d >>,则a c b d ->-B .若a b >,且11a b >,则0ab <C .若0,0a b c >>>,则b c b a c a +>+D .若0a b <<,则2a ab <12.已知0a >,0b >,且1a b +=,则( )A .2728a b +≥B .114a b +≤C .14ab ≤D ≤三、填空题13.在各项均为正数的等比数列{}n a 中,若74a =,则678a a a ++的最小值为______.14.已知正数a ,b 满足5a b +=,则2112a b++的最小值为___________. 15.已知21a b +=(a ,0b >),则41a b b ++的最小值为________. 16.已知正数x 、y 满足341x y +=,则xy 的最大值为_________.四、解答题17.已知函数()218=++f x ax bx ,()0f x >的解集为()3,2-.(1)求()f x 的解析式;(2)当0x >时,求()21f x y x-=的最大值.18.已知函数()()24,f x ax x c a c R =-+∈,满足()29f = ,()f c a < ,且函数()f x 的值域为[)0,+∞ .(Ⅰ)求函数()f x 的解析式;(Ⅱ)设函数()()()3f x kx g x k R x+-=∈,对任意[]1,2x ∈ ,存在[]01,1x ∈- ,使得()()0g x f x < 求k 的取值范围.19.已知正实数x ,y 满足441x y +=.(1)求xy 的最大值;(2)若不等式2415a a x y+≥+恒成立,求实数a 的取值范围.20.某居民小区欲在一块空地上建一面积为21200m 的矩形停车场,停车场的四周留有人行通道,设计要求停车场外侧南北的人行通道宽3m ,东西的人行通道宽4m ,如图所示(图中单位:m ),问如何设计停车场的边长,才能使人行通道占地面积最小?最小面积是多少?21.若关于x 的不等式240x mx m -+<的解集为()12,x x .(1)当1m =时,求121144x x +--的值; (2)若120,0x x >>,求1211x x +的值及124x x +的最小值.22.已知集合{24}A x x =<<,集合2{1}B x m x m =-<<.(1)若A B =∅;求实数m 的取值范围;(2)命题:p x A ∈,命题:q x B ∈,若p 是q 的充分条件,求实数m 的取值集合.23.在ABC 中,内角A ,B ,C 对边分别为a ,b ,c ,已知2cos 2a B c b =-. (1)求角A 的值;(2)若5b =,5AC CB ⋅=-,求ABC 的周长;(3)若2sin 2sin b B c C bc +=+,求ABC 面积的最大值参考答案1.B2.C3.B4.C5.B6.A7.C8.C9.BCD10.AC11.BC12.ACD13.1214.34##0.75 15.916.14817.(1)解:因为函数()218=++f x ax bx ,()0f x >的解集为()3,2-,那么方程2180ax bx ++=的两个根是3-,2,且0a <,由韦达定理有321318332b a a b a ⎧-+=-=-⎪=-⎧⎪⇒⎨⎨=-⎩⎪-⨯=⎪⎩所以()23318f x x x =--+.(2)解:()221333133f x x x y x x x x ----⎛⎫===-+- ⎪⎝⎭,由0x >,所以12x x +≥=,当且仅当1x x =,即1x =时取等号,所以1339x x ⎛⎫-+-≤- ⎪⎝⎭,当1x =时取等号,∴当1x =时,max 9y =-.18.(Ⅰ)根据()29f =,可得417a c += .由函数()f x 的值域为[)0,+∞ 知,方程240ax x c -+=,判别式0∆= ,即4ac = . 又()f c a < ,24ac c c a ∴-+< ,即c a < ,解得:4,1a c ==,()2441f x x x ∴=-+ .(Ⅱ)由(Ⅰ)可得f(x)的对称轴为1x 2=,则当=-1x 时,()f x 取得最大值为9, 若对任意[]1,2x ∈,存在[]01,1x ∈-,使得()()0g x f x < ,即()244139x x kx g x x-++-=<, 即()241320x k x +--< 对任意[]1,2x ∈恒成立.设()()24132h x x k x =+-- ,则()()1020h h ⎧<⎪⎨<⎪⎩,即116k k <⎧⎨<⎩,解得k 6< . k ∴的取值范围是(),6-∞19.(1)441x y +=,所以14x y =+≥164xy ≤, 当且仅当18x y ==取等号,∴xy 的最大值为164.(2)()414116444202036y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当16x =,112y =取等号, ∴2536a a +≤,解得94a -≤≤.即a 的取值范围是[]9,4-.20.设矩形停车场南北侧边长为()m 0x x >,则其东西侧边长为1200xm , 人行通道占地面积为()212007200681200848m S x x x x ⎛⎫=++-=++ ⎪⎝⎭,由均值不等式,得27200848482244896m S x x =++≥=⨯+=, 当且仅当72008x x =,即30m x =时,2min 96m S =,此时120040m x =. 所以,设计矩形停车场南北侧边长为30m ,则其东西侧边长为40m ,人行通道占地面积最小528m 2.21.(1)由题可知关于x 的方程2410x x -+=有两个根12,x x ,所以1212Δ1640,4,1,x x x x =->⎧⎨+==⎩ 故()12121212811444441611616x x x x x x x x +--+===----++-+. (2)由题意关于x 的方程240x mx m -+=有两个正根,所以有212121212Δ>01640,040,00,m m x x x x m x x x x m ⎧⎧->⎪⎪+>⇒+=>⎨⎨⎪⎪>=>⎩⎩解得14m >; 同时12124x x x x +=,由120,0x x >>得12114x x +=, 所以()211212121241111441444x x x x x x x x x x ⎛⎫⎛⎫+=++=+++ ⎪ ⎪⎝⎭⎝⎭, 由于2112,0x x x x >,所以211244x x x x +≥, 当且仅当21124x x x x =,即122x x =,且12124x x x x +=,解得1233,48x x ==时取得“=”, 此时实数91324m =>符合条件, 故12944x x +≥,且当932m =时,取得最小值94. 22.(1) ∵A B =∅,∴当B =∅时,m -1≥m 2,解得:m ∈∅.当B ≠∅时,m -1≥4或m 2≤2,∴m ≤5m ≥.(2)∵x ∈A 是x ∈B 的充分条件,∴A ⊆B ,∴2124m m -≤⎧⎨≥⎩,解得:m ≤-2或2≤m ≤3. 所以实数m 的取值集合为{2m m ≤-或}23m ≤≤23.(1)2cos 22sin cos 2sin sin a B c b A B C B =-⇒⋅=-,∴2sin cos 2sin()sin 2(sin cos cos sin )sin A B A B B A B A B B ⋅=⋅+-=⋅+⋅-,∴1cos 2A =, 0A π<<,3A π∴=;(2)2()AC CB AC AB AC AC AB AC ⋅=⋅-=⋅-255cos 5255832c c c π=⋅⋅-=-=-⇒=, 在ABC 中利用余弦定理得:2222212cos 58258492a b c b c A =+-⋅⋅=+-⋅⋅⋅=, 7a ∴=,∴ABC ∆的周长为:58720++=;(3)sin sin b c s A a inB C ====∴sin B =sin C =,∴22b c b c bc a a+=,)2221cos 222a abc a abc A +-=⇒=⇒=⇒a =)222233b c b c bc +-=⇒+=+,323bc bc bc ∴+⇒,等号成立当且仅当b c =, ABC面积的最大值为1sin 2maxbc A ⎛⎫ ⎪⎝⎭.。
第三章单元测试卷一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中只有一个是符合题目要求的)1.函数f(x)=x -1x -2的定义域为( ) A .(1,+∞) B .[1,+∞) C .[1,2) D .[1,2)∪(2,+∞)2.德国数学家狄利克雷在数学上做出了名垂史册的重大贡献,函数D(x)=⎩⎪⎨⎪⎧0,x ∉Q 1,x∈Q是以他名字命名的函数,则D(D(π))=( )A .1B .0C .πD .-13.已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=2x 2-2x +1,则f(-1)=( )A .3B .-3C .2D .-24.若函数y =f(x)的定义域是[0,2],则函数g(x)=f ⎝ ⎛⎭⎪⎫-x 2x +1的定义域是( )A .[-4,0]B .[-4,0)C .[-4,-1)∪(-1,0]D .(-4,0)5.若幂函数y =(m 2-3m +3)xm -2的图象不过原点,则m 的取值X 围为( )A .1≤m≤2B .m =1或m =2C .m =2D .m =16.已知函数f(x)是定义在R 上的偶函数,x ≥0时,f (x )=x 2-2x ,则函数f (x )在R 上的解析式是( )A .f (x )=-x (x -2)B .f (x )=x (|x |-2)C .f (x )=|x |(x -2)D .f (x )=|x |(|x |-2)7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤0,1,x >0,若f (x -4)>f (2x -3),则实数x 的取值X 围是( )A .(-1,+∞) B.(-∞,-1)C .(-1,4)D .(-∞,1)8.甲、乙二人从A 地沿同一方向去B 地,途中都使用两种不同的速度v 1与v 2(v 1<v 2),甲前一半的路程使用速度v 1,后一半的路程使用速度v 2;乙前一半的时间使用速度v 1,后一半的时间使用速度v 2,关于甲、乙二人从A 地到达B 地的路程与时间的函数图象及关系,有如图所示的四个不同的图示分析(其中横轴t 表示时间,纵轴s 表示路程,C 是AB 的中点),则其中可能正确的图示分析为( )二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.关于函数f (x )=-x 2+2x +3的结论正确的是( )A .定义域、值域分别是[-1,3],[0,+∞) B.单调增区间是(-∞,1] C .定义域、值域分别是[-1,3],[0,2] D .单调增区间是[-1,1] 10.已知f (2x -1)=4x 2,则下列结论正确的是( ) A .f (3)=9 B .f (-3)=4 C .f (x )=x 2D .f (x )=(x +1)211.关于定义在R 上的函数f (x ),下列命题正确的是( ) A .若f (x )满足f (2 018)>f (2 017),则f (x )在R 上不是减函数 B .若f (x )满足f (-2)=f (2),则函数f (x )不是奇函数C .若f (x )在区间(-∞,0)上是减函数,在区间[0,+∞)也是减函数,则f (x )在R 上是减函数D .若f (x )满足f (-2 018)≠f (2 018),则函数f (x )不是偶函数12.定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),当x <0时,f (x )>0,则函数f (x )满足( )A .f (0)=0B .y =f (x )是奇函数C .f (x )在[m ,n ]上有最大值f (n )D .f (x -1)>0的解集为(-∞,1)三、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.14.长为4,宽为3的矩形,当长增加x ,宽减少x2时,面积达到最大,此时x 的值为________.15.定义在R 上的奇函数f (x )满足:当x ≥0,f (x )=x 2-2x +a ,则a =________,f (-3)=________.(本题第一空2分,第二空3分)16.已知f (x )=⎩⎪⎨⎪⎧x 2-2x +a ,x >1,3-2a x -1,x ≤1是R 上的单调递增函数,则实数a 的取值X围为________.四、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知函数f (x )=2x -1x +1,x ∈[3,5].(1)判断f (x )在区间[3,5]上的单调性并证明; (2)求f (x )的最大值和最小值.18.(本小题满分12分)已知函数f (x )=⎩⎪⎨⎪⎧1+1x,x >1,x 2+1,-1≤x ≤1,2x +3,x <-1.(1)求f (f (-2))的值; (2)若f (a )=32,求a .19.(本小题满分12分)已知幂函数f (x )=x -2m 2-m +3,其中m ∈{x |-2<x <2,x ∈Z }满足:(1)在区间(0,+∞)上是增函数; (2)对任意的x ∈R ,都有f (-x )+f (x )=0.求同时满足条件(1)(2)的幂函数f (x )的解析式,并求当x ∈[0,3]时,f (x )的值域.20.(本小题满分12分)设f(x)为定义在R上的偶函数,当x≥0时,f(x)=-(x-2)2+2.(1)求函数f(x)在R上的解析式;(2)在直角坐标系中画出函数f(x)的图象;(3)若方程f(x)-k=0有四个解,某某数k的取值X围.21.(本小题满分12分)如图所示,A、B两城相距100 km,某天然气公司计划在两地之间建一天然气站D给A、B两城供气.已知D地距A城x km,为保证城市安全,天然气站距两城市的距离均不得少于10 km.已知建设费用y(万元)与A、B两地的供气距离(km)的平方和成正比,当天然气站D距A城的距离为40 km时,建设费用为1300万元.(供气距离指天然气站到城市的距离)(1)把建设费用y(万元)表示成供气距离x(km)的函数,并求定义域;(2)天然气供气站建在距A城多远,才能使建设费用最小,最小费用是多少?22.(本小题满分12分)已知f(x)的定义域为(0,+∞),且满足f(2)=1,f(xy)=f(x)+f(y),又当x2>x1>0时,f(x2)>f(x1).(1)求f(1),f(4),f(8)的值;(2)若有f(x)+f(x-2)≤3成立,求x的取值X围.第三章单元测试卷1.解析:根据题意有⎩⎪⎨⎪⎧x -1≥0,x -2≠0,解得x ≥1且x ≠2.答案:D2.解析:∵函数D (x )=⎩⎪⎨⎪⎧0,x ∉Q 1,x ∈Q,∴D (π)=0,D (D (π))=D (0)=1.故选A.答案:A3.解析:令x =1,得f (1)+g (1)=1,令x =-1,得f (-1)+g (-1)=5,两式相加得:f (1)+f (-1)+g (1)+g (-1)=6.又∵f (x )是偶函数,g (x )是奇函数,∴f (-1)=f (1),g (-1)=-g (1).∴2f (-1)=6, ∴f (-1)=3,故选A. 答案:A4.解析:∵y =f (x )的定义域是[0,2],∴要使g (x )=f ⎝ ⎛⎭⎪⎫-x 2x +1有意义,需⎩⎪⎨⎪⎧0≤-x2≤2,x +1≠0,∴-4≤x ≤0且x ≠-1.∴g (x )=f ⎝ ⎛⎭⎪⎫-x 2x +1的定义域为[-4,-1)∪(-1,0].答案:C5.解析:由题意得⎩⎪⎨⎪⎧m -2≤0,m 2-3m +3=1,解得⎩⎪⎨⎪⎧m ≤2,m =1或m =2,∴m =1或m =2.答案:B6.解析:设x <0,则-x >0,f (x )=f (-x )=x 2-2(-x )=x 2+2x .故f (x )=|x |(|x |-2).答案:D 7.解析:f (x )的图象如图.由图知, 若f (x -4)>f (2x -3), 则⎩⎪⎨⎪⎧x -4<0,x -4<2x -3,解得-1<x <4.故实数x 的取值X 围是(-1,4). 答案:C8.解析:由题意可知,开始时,甲、乙速度均为v 1,所以图象是重合的线段,由此排除C ,D.再根据v 1<v 2可知两人的运动情况均是先慢后快,图象是折线且前“缓”后“陡”,故图示A 分析正确.答案:A9.解析:f (x )=-x 2+2x +3则定义域满足:-x 2+2x +3≥0解得:-1≤x ≤3 即定义域为[-1,3]考虑函数y =-x 2+2x +3=-(x -1)2+4在-1≤x ≤3上有最大值4,最小值0. 在[-1,1]上单调递增,在(1,3]上单调递减.故f (x )=-x 2+2x +3的定义域为[-1,3],值域为[0,2],在[-1,1]上单调递增,在(1,3]上单调递减.故选CD. 答案:CD10.解析:f (2x -1)=(2x -1)2+2(2x -1)+1,故f (x )=x 2+2x +1,故选项C 错误,选项D 正确;f (3)=16,f (-3)=4,故选项A 错误,选项B 正确.故选BD.答案:BD11.解析:由题意,对于A 中,由2 018>2 017,而f (2 018)>f (2 017),由减函数定义可知,f (x )在R 上一定不是减函数,所以A 正确;对于B 中,若f (x )=0,定义域关于原点对称,则f (-2)=f (2)=-f (2),则函数f (x )可以是奇函数,所以B 错误;对于C 中,由分段函数的单调性的判定方法,可得选项C 不正确;对于D 中,若f (x )是偶函数,必有f (-2 018)=f ( 2018),所以D 正确.故选AD.答案:AD12.解析:令x =y =0,则f (0)=f (0)+f (0),所以f (0)=0,故A 正确;再令y =-x ,代入原式得f (0)=f (x )+f (-x )=0,所以f (-x )=-f (x ),故该函数为奇函数,故B 正确;由f (x +y )=f (x )+f (y )得f (x +y )-f (x )=f (y ),令x 1<x 2,再令x 1=x +y ,x 2=x ,则y =x 1-x 2<0,结合x <0时,f (x )>0,所以f (x 1)-f (x 2)=f (x 1-x 2)>0,所以f (x 1)>f (x 2),所以原函数在定义域内是减函数,所以函数f (x )在[m ,n ]上递减,故f (n )是最小值,f (m )是最大值,故C 错误;又f (x -1)>0,即f (x -1)>f (0),结合原函数在定义域内是减函数可得,x -1<0,解得x <1,故D 正确.故选ABD.答案:ABD13.解析:若a >0,则2a +2=0,得a =-1,与a >0矛盾,舍去;若a ≤0,则a +1+2=0,得a =-3,所以实数a 的值等于-3.答案:-314.解析:由题意,S =(4+x )⎝ ⎛⎭⎪⎫3-x 2,即S =-12x 2+x +12,∴当x =1时,S 最大. 答案:115.解析:由定义在R 上的奇函数f (x )满足:当x ≥0,f (x )=x 2-2x +a , 可得f (0)=a =0,当x ≥0,f (x )=x 2-2x , 则f (-3)=-f (3)=-(32-2×3)=-3. 答案:0 -316.解析:f (x )=⎩⎪⎨⎪⎧x -12+a -1,x >1,3-2ax -1,x ≤1显然函数f (x )在(1,+∞)上单调递增.故由已知可得⎩⎪⎨⎪⎧3-2a >0,a -1≥3-2a ×1-1,解得1≤a <32.答案:⎣⎢⎡⎭⎪⎫1,32 17.解析:(1)函数f (x )在[3,5]上为增函数,证明如下: 设x 1,x 2是[3,5]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=2x 1-1x 1+1-2x 2-1x 2+1=3x 1-x 2x 1+1x 2+1.∵3≤x 1≤x 2≤5,∴x 1-x 2<0,x 1+1>0,x 2+1>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴函数f (x )在[3,5]上为增函数. (2)由(1)知函数f (x )在[3,5]单调递增,所以 函数f (x )的最小值为f (x )min =f (3)=2×3-13+1=54,函数f (x )的最大值为f (x )max =f (5)=2×5-15+1=32.18.解析:(1)因为-2<-1,所以f (-2)=2×(-2)+3=-1, 所以f (f (-2))=f (-1)=2.(2)当a >1时,f (a )=1+1a =32,所以a =2>1;当-1≤a ≤1时,f (a )=a 2+1=32,所以a =±22∈[-1,1]; 当a <-1时,f (a )=2a +3=32,所以a =-34>-1(舍去).综上,a =2或a =±22. 19.解析:因为m ∈{x |-2<x <2,x ∈Z }, 所以m =-1,0,1.因为对任意的x ∈R ,都有f (-x )+f (x )=0, 即f (-x )=-f (x ),所以f (x )是奇函数.当m =-1时,f (x )=x 2只满足条件(1)而不满足条件(2); 当m =1时,f (x )=x 0,条件(1)(2)都不满足; 当m =0时,f (x )=x 3,条件(1)(2)都满足. 因此m =0,且f (x )=x 3在区间[0,3]上是增函数, 所以0≤f (x )≤27,故f (x )的值域为[0,27]. 20.解析:(1)若x <0,则-x >0,f (x )=f (-x ) =-(-x -2)2+2=-(x +2)2+2,则f (x )=⎩⎪⎨⎪⎧-x -22+2,x ≥0,-x +22+2,x <0.(2)图象如图所示,(3)由于方程f (x )-k =0的解就是函数y =f (x )的图象与直线y =k 的交点的横坐标,观察函数y =f (x )图象与直线y =k 的交点情况可知,当-2<k <2时,函数y =f (x )图象与直线y =k 有四个交点,即方程f (x )-k =0有四个解.21.解析:(1)由题意知D 地距B 城(100-x )km ,则⎩⎪⎨⎪⎧100-x ≥10,x ≥10,∴10≤x ≤90.设比例系数为k ,则y =k [x 2+(100-x )2](10≤x ≤90). 又x =40时,y =1 300,所以1 300=k (402+602),即k =14,所以y =14[x 2+(100-x )2]=12(x 2-100x +5 000)(10≤x ≤90).(2)由于y =12(x 2-100x +5 000)=12(x -50)2+1 250,所以当x =50时,y 有最小值为1 250万元.所以当供气站建在距A 城50 km 时,能使建设费用最小,最小费用是1 250万元. 22.解析:(1)f (1)=f (1)+f (1),所以f (1)=0,f (4)=f (2)+f (2)=1+1=2,f (8)=f (2)+f (4)=1+2=3.(2)因为f (x )+f (x -2)≤3, 所以f [x (x -2)]≤f (8),又因为对于函数f (x ),当x 2>x 1>0时,f (x 2)>f (x 1),所以f (x )在(0,+∞)上为增函数,所以⎩⎪⎨⎪⎧x >0,x -2>0,x x -2≤8,解得2<x ≤4.故x 的取值X 围为(2,4].。
人教A 版高一数学必修第一册《函数的概念与性质》单元练习题卷(共22题)一、选择题(共10题)1. 设 D 是含数 1 的有限实数集,f (x ) 是定义在 D 上的函数.若 f (x ) 的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1) 的可能取值只能是 ( ) A . √3B .√32C .√33D . 02. 如果函数 f (x )=12(m −2)x 2+(n −8)x +1(m ≥0,n ≥0) 在区间 [12,2] 上单调递减,那么 mn 的最大值为 ( ) A .16 B .18 C .25D .8123. 定义“函数 y =f (x ) 是 D 上的 a 级类周期函数”如下:函数 y =f (x ),x ∈D ,对于给定的非零常数 a ,总存在非零常数 T ,使得定义域 D 内的任意实数 x 都有 af (x )=f (x +T ) 恒成立,此时 T 为 f (x ) 的周期.若 y =f (x ) 是 [1,+∞) 上的 a 级类周期函数,且 T =1,当 x ∈[1,2) 时,f (x )=2x +1,且 y =f (x ) 是 [1,+∞) 上的单调递增函数,则实数 a 的取值范围为 ( ) A . [56,+∞)B . [2,+∞)C . [53,+∞)D . [10,+∞)4. 下列函数中,既是偶函数又在 (0,+∞) 上单调递增的函数是 ( ) A . y =cosxB . y =x 3C . y =log 12xD . y =e x +e −x5. 若函数 f (x )(x ∈R ) 为奇函数,f (1)=12,f (x +2)=f (x )+f (2),则 f (5)= ( )A . 0B . 1C . 52D . 56. 设函数 f (x )={x 2+1,x ≤12x ,x >1,则 f(f (3)) 等于 ( )A . 15B . 3C . 23D .1397. 已知函数 f (x )={x 2−2ax +2a,x ≤12x −alnx,x >1.若关于 x 的不等式 f (x )≥a 2 在 R 上恒成立,则实数 a 的取值范围为 ( ) A . (−∞,2√e] B . [0,32] C . [0,2]D . [0,2√e]8. 函数 f (x )=2x 2+2x x+1是 ( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数9. 已知函数 f (x )={2x −2−x ,x ≥02−x −2x ,x <0,若对任意的 x ∈R ,都有 f (2x +1)≥f (x −a ) 成立,则实数 a 的值为 ( ) A . −12B . 12C . −1D . 110. 如图,在四边形 ABCD 中,AB ∥CD ,AB ⊥BC ,AD =DC =2,CB =√2,动点 P 从 A 点出发,按照 A →D →C →B 路径沿边运动,设 P 点运动的路程为 x ,△APB 的面积为 y ,则函数 y =f (x ) 的图象大致是 ( )A .B .C .D .二、填空题(共6题)11. 记 t =x +y −a(x +2√2xy),x >0,y >0.已知对任意的 x >0,y >0,恒有 t ≥0,则实数 a 的取值范围为 .12. 若函数 f (x )=√1−log 2x 的反函数为 f −1(x ),则 f −1(x ) 的值域为 .13. 已知函数 f (x )={x 2,x ≤0−x 2,x >0,则 f [f (−2)]= .14. 已知函数 f (x )=sinx +tanx .项数为 27 的等差数列 {a n } 满足 a n ∈(−π2,π2),且公差 d ≠0,若 f (a 1)+f (a 2)+⋯+f (a 27)=0,则当 k = 时,f (a k )=0.15. 试写出一个与函数 y =x 2 定义域和值域都相同的函数 .16. 已知 f (x ) 是定义在 R 上的奇函数.当 x >0 时,f (x )=x 2−4x ,则不等式 f (x )>x 的解集用区间表示为 .三、解答题(共6题)17. 某工厂有一段旧墙长 14 m ,现准备利用这段旧墙为一面建造平面图形为矩形,面积为 126 m 2 的厂房,工程条件是:(1)建 1 m 新墙的费用为 a 元; (2)修 1 m 旧墙的费用为 a4 元;(3)拆去 1 m 的旧墙,用可得的建材建 1 m 的新墙的费用为 a2 元. 经讨论有两种方案:①利用旧墙一段 x m (0<x <14) 为矩形一边; ②矩形厂房利用旧墙的一面边长 x ≥14. 试写出两种方案中总费用关于 x 的函数关系.18. 定义在 R 上的严格减函数 y =f (x ) 满足:当且仅当 x ∈M ⊆R + 时,函数值 f (x ) 的集合为[0,2] 且 f (12)=1;对 M 中的任意 x 1,x 2 都有 f (x 1⋅x 2)=f (x 1)+f (x 2).(1) 求证;14∈M ,18∉M ;(2) 求证:y =f (x ) 在 M 上的反函数 f −1(x ) 满足 f −1(x 1)⋅f −1(x 2)=f −1(x 1+x 2); (3) 设 x ∈[0,2],解不等式 f −1(x 2+x )⋅f −1(x +2)≤14.19. 已知函数 f (x ) 对一切实数 x ,y 都有 f (x +y )=f (x )+f (y ).(1) 求证:f (x ) 是奇函数;(2) 若 f (−3)=a ,试用 a 表示 f (12).20. 判断函数 f (x )={x 2−2x +3,x >0,0,x =0,−x 2−2x −3,x <0. 的奇偶性.21. 设函数 y =f (x ) 的表达式为 f (x )=x 2+∣x −a ∣,其中 a 为实常数.(1) 判断函数 y =f (x ) 的奇偶性,并说明理由; (2) 设 a >0,函数 g (x )=f (x )x在区间 (0,a ] 上为严格减函数,求实数 a 的最大值.22. 已知 f (x ) 是定义在 R 上的奇函数,且 f (1)=1,对于任意的 x 1,x 2∈R (x 1≠x 2),都有f (x 1)−f (x 2)x 1−x 2>0.(1) 解关于 x 的不等式 f (x 2−3ax )+f (2a 2)<0;(2) 若 f (x )≤m 2−2am +1 对所有 x ∈[−1,1],a ∈[−1,1] 恒成立,求实数 m 的取值范围.答案一、选择题(共10题) 1. 【答案】B【知识点】抽象函数2. 【答案】B【解析】当 m =2 时,f (x )=(n −8)x +1,要使其在区间 [12,2] 上单调递减,则 n −8<0⇒n <8,于是 mn <16,则 mn 无最大值.当 m ∈[0,2) 时,f (x ) 的图象开口向下,要使 f (x ) 在区间 [12,2] 上单调递减,需 −n−8m−2≤12,即 2n +m ≤18,又 n ≥0,则 mn ≤m (9−m2)=−12m 2+9m . 而 g (m )=−12m 2+9m 在 [0,2) 上为增函数,所以 m ∈[0,2) 时,g (m )<g (2)=16,故 m ∈[0,2) 时,mn 无最大值. 当 m >2 时,f (x ) 的图象开口向上,要使 f (x ) 在区间 [12,2] 上单调递减,需 −n−8m−2≥2,即2m +n ≤12,而 2m +n ≥2√2m ⋅n ,所以 mn ≤18,当且仅当 {2m +n =12,2m =n. 即 {m =3,n =6. 时,取“=”,此时满足 m >2. 故 (mn )max =18.【知识点】二次函数的性质与图像、函数的最大(小)值、函数的单调性3. 【答案】C【解析】 f (n +1)=af (n )=a (2n +1)≥2(n +1)+1,a ≥1+22n+1 对 n ≥1,n ∈N ∗ 恒成立, 所以 a ≥(1+22n+1)max=1+23=53.【知识点】函数的最大(小)值4. 【答案】D【解析】 y =cosx 是偶函数,但在 (0,+∞) 不是单调递增,y =x 3 和 y =log 12x 2 不是偶函数,所以只有 y =e x +e −x 满足题意. 【知识点】函数的奇偶性、函数的单调性5. 【答案】C【解析】因为 f (x ) 为奇函数,所以 f (−1)=−f (1), 又 f (x +2)=f (x )+f (2),令 x =−1,得 f (1)=f (−1)+f (2), 于是 f (2)=2f (1)=1;令 x =1,得 f (3)=f (1)+f (2)=32,于是 f (5)=f (3)+f (2)=52. 故选C .【知识点】函数的奇偶性、抽象函数6. 【答案】D【解析】因为 f (3)=23≤1,所以 f(f (3))=(23)2+1=139.【知识点】分段函数7. 【答案】C【知识点】分段函数、恒成立问题8. 【答案】D【解析】因为 f (x )=2x 2+2x x+1的定义域为 {x∣ x ≠−1},定义域不关于原点对称,所以 f (x ) 既不是奇函数也不是偶函数. 【知识点】函数的奇偶性9. 【答案】A【解析】函数 f (x )={2x −2−x ,x ≥02−x −2x ,x <0,所以当 x ≥0 时,f (x )=2x −2−x , −x <0,即 f (−x )=2x −2−x , 所以 f (x )=f (−x ),同理当 x <0 时,f (x )=2−x −2x , 则 −x >0,则 f (−x )=2−x −2x , 即 f (x )=−f (−x ),综上可知,函数 f (x )={2x −2−x ,x ≥02−x −2x ,x <0 为偶函数,当 x ≥0 时,f (x )=2x −2−x ,此时 f (x ) 单调递增, 所以由偶函数对称性可知当 x <0 时 f (x ) 单调递减,若对任意的 x ∈R ,都有 f (2x +1)≥f (x −a ) 成立,则需 ∣2x +1∣≥∣x −a ∣,两边同时平方,移项化简可得3x2+(2a+4)x+1−a2≥0,由二次函数性质,可得Δ=(2a+4)2−4×3×(1−a2)≤0,化简可得(2a+1)2≤0,由平方数性质可知(2a+1)2≥0,所以只能是(2a+1)2=0,解得a=−12.【知识点】函数的奇偶性、函数的单调性、分段函数10. 【答案】A【解析】当x∈[0,2]时,y=f(x)=√2+12,x,y与x成正比,故排除C,D;当x∈(2,4]时,y=f(x)=1+√2,△APB的面积保持不变,排除B.故选A.【知识点】函数图象、函数的表示方法二、填空题(共6题)11. 【答案】{a∣ a≤12}【解析】由t≥0,得x+y≥a(x+2√2xy).因为x>0,y>0,所以a≤x+2√2xy.因为2√2xy≤x+2y,所以x+2√2xy ≥x+yx+(x+2y)=12,当且仅当x=2y>0时,等号成立,因为a≤12,所以实数a的取值范围是{a∣ a≤12}.【知识点】均值不等式的应用12. 【答案】(0,2]【解析】求原函数定义域即解不等式1−log2x>0.【知识点】函数的值域的概念与求法13. 【答案】−16【解析】f[f(−2)]=f(4)=−16.【知识点】分段函数14. 【答案】14【解析】提示:函数 f (x )=sinx +tanx 为奇函数,a 1+a 27=a 2+a 26=⋯=2a 14=0 时,满足题意.又因为此函数在 (−π2,π2) 上为增函数,所以 k 只能等于 14. 【知识点】函数的奇偶性、等差数列15. 【答案】 y =(x +1)2(答案不唯一)【知识点】函数的相关概念16. 【答案】 (−5,0)∪(5,+∞)【解析】因为 f (x ) 是定义在 R 上的奇函数,所以 f (0)=0, 又当 x <0 时,−x >0,所以 f (−x )=x 2+4x . 又 f (x ) 为奇函数,所以 f (−x )=−f (x ), 所以 f (x )=−x 2−4x (x <0), 所以 f (x )={x 2−4x,x >00,x =0−x 2−4x,x <0①当 x >0 时,由 f (x )>x 得 x 2−4x >x ,解得 x >5; ②当 x =0 时,f (x )>x 无解;③当 x <0 时,由 f (x )>x 得 −x 2−4x >x ,解得 −5<x <0. 综上,不等式 f (x )>x 的解集用区间表示为 (−5,0)∪(5,+∞). 【知识点】函数的奇偶性、二次不等式的解法三、解答题(共6题)17. 【答案】方案①:修旧墙费用为 x ⋅a4 元,拆旧墙造新墙费用为 (14−x )⋅a2 元,其余建新墙费用为 (2x +2×126x−14)a 元,∴ 总费用 y =7a (x4+36x−1)(0<x <14).方案②:利用旧墙费用为 14⋅a 4=7a 2(元),建新墙费用为 (2x +252x−14)a (元),总费用 y =2a (x +126x)−212a (x ≥14).【知识点】建立函数表达式模型18. 【答案】(1) 因为 12∈M ,又 14=12×12,f (12)=1, 所以 f (14)=f (12×12)=f (12)+f (12)=2∈[0,2],所以 14∈M ,又因为 f (18)=f (14×12)=f (14)+f (12)=3∉[0,2], 所以 18∉M .(2) 因为 y =f (x ) 在 M 上是严格减函数,所以 y =f (x ) 在 M 上有反函数 y =f −1(x ),x ∈[0,2].任取 x 1,x 2∈[0,2],设 y 1=f −1(x 1),y 2=f −1(x 2), 所以 x 1=f (y 1),x 2=f (y 2)(y 1,y 2∈M ). 因为 x 1+x 2=f (y 1)+f (y 2)=f (y 1y 2), 所以 y 1y 2=f −1(x 1+x 2).又 y 1y 2=f −1(x 1)f −1(x 2),所以 f −1(x 1)⋅f −1(x 2)=f −1(x 1+x 2). (3) 因为 y =f (x ) 在 M 上是严格减函数, 所以 f −1(x ) 在区间 [0,2] 上也是严格减函数.f −1(x 2−x )⋅f −1(x +2)≤14 等价于 f −1(x 2−x +x +2)≤f −1(2).转化为 {0≤x 2−x ≤2,0≤x +2≤2,x 2+2≥2,解得 {−1≤x ≤0或1≤x ≤2,−2≤x ≤0,x ∈R. 即 −1≤x ≤0.所以,不等式的解集为 [−1,0].【知识点】函数的单调性、抽象函数、反函数19. 【答案】(1) 由已知 f (x +y )=f (x )+f (y ), 令 y =−x 得 f (0)=f (x )+f (−x ), 令 x =y =0 得 f (0)=2f (0), 所以 f (0)=0, 所以 f (x )+f (−x )=0, 即 f (−x )=−f (x ), 故 f (x ) 是奇函数.(2) 由(1)知 f (x ) 为奇函数. 所以 f (−3)=−f (3)=a , 所以 f (3)=−a .又 f (12)=f (6)+f (6)=2f (3)+2f (3)=4f (3), 所以 f (12)=−4a .【知识点】函数的奇偶性20. 【答案】若 x >0,则 −x <0,f (−x )=−(−x )2−2(−x )−3=−x 2+2x −3=−f (x ); 若 x =0,则 −x =0,f (−x )=f (0)=0=−f (0);若 x <0,则 −x >0,f (−x )=(−x )2−2(−x )+3=x 2+2x +3=−f (x ). 综上所述 f (−x )={−x 2+2x −3,x >0,0,x =0,x 2+2x +3,x <0.所以 f (−x )=−f (x ),所以 f (x ) 是奇函数.【知识点】函数的奇偶性21. 【答案】(1) 当 a =0 时,y =f (x ) 为偶函数;当 a ≠0 时,y =f (x ) 为非奇非偶函数;(2) a ∈(0,1].【知识点】函数的单调性、函数的最大(小)值22. 【答案】(1) 因为对于任意 x 1,x 2∈[−1,1],x 1≠x 2,总有 f (x 1)−f (x 2)x 1−x 2>0,所以函数 f (x ) 在 [−1,1] 上是递增的奇函数.不等式 f (x 2−3ax )+f (2a 2)<0 变形为不等式 f (x 2−3ax )<−f (2a 2)=f (−2a 2), 所以 x 2−3ax +2a 2<0⇒(x −2a )(x −a )<0. ①当 a >0 时,不等式解集为 {x∣ a <x <2a }; ②当 a =0 时,不等式解集为 ⌀;③当 a <0 时,不等式解集为 {x∣ 2a <x <a }.(2) 所以函数 f (x ) 在 [−1,1] 上是增函数,且 f (x )max =f (1)=1.所以问题转化为 t 2−2αt −1≥f (x )max =f (1)=1 对任意的 α∈[−1,1] 恒成立. 令 g (α)=m 2−2αm +1,α∈[−1,1],只需 {g (1)=m 2−2m +1≥1,g (−1)=m 2+2m +1≥1, 解得 m =0 或 m ≥2 或 m ≤−2.所以实数 m 的取值范围为 {m∣ m =0 或 m ≥2 或 m ≤−2}. 【知识点】函数的单调性、函数的奇偶性。
人教A版高一数学必修第一册《一元二次函数、方程和不等式》章末练习题卷(共22题)一、选择题(共10题)1.当a<0,−1<b<0时,则下列各式正确的是( )A.a>ab>ab2B.ab>a>ab2C.ab2>ab>a D.ab>ab2>a2.已知m>1,a=√m+1−√m,b=√m−√m−1,则以下结论正确的是( )A.a>b B.a=bC.a<b D.a,b的大小不确定3.关于x的不等式x2−(a+1)x+a<0的解集中恰有两个正整数,则实数a的取值范围是( )A.[2,4)B.[3,4]C.(3,4]D.(3,4)4.下列不等式一定成立的是( )A.x+y≥2√xy B.∣x∣+∣y∣≥2√xyC.∣x∣+∣y∣≥2∣√xy∣D.∣x∣+∣y∣≥2√∣xy∣5.若不等式ax2+bx+c>0的解集为{x∣ −2<x<1},则不等式ax2+(a+b)x+c−a<0的解集为( )A.{x∣ x<−√3或x>√3}B.{x∣ −3<x<1}C.{x∣ −1<x<3}D.{x∣ x<−3或x>1}6.设非零实数a,b,则“a2+b2≥2ab”是“ab +ba≥2”成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知x>0,y>0,且x+y=10,则xy有( )A.最大值25B.最大值50C.最小值25D.最小值508.下列不等式中,正确的是( )A.若ac2>bc2,则a>b B.若a>b,则a+c<b+cC.若a>b,c>d,则ac>bd D.若a>b,c>d,则ac >bd9.设集合P={m∣ −1<m<0},Q={m∈R∣ mx2+4mx−4<0对任意实数x恒成立},则下列关系式中成立的是( )A.P⫋Q B.Q⫋P C.P=Q D.P∩Q=∅10.下列关于实数a,b的不等式中,不恒成立的是( )A.a2+b2≥2ab B.a2+b2≥−2abC.(a+b2)2≥ab D.(a+b2)2≥−ab二、填空题(共6题)11.设不等式x2−2ax+a+2≤0的解集为A,若A⊆{x∣ 1≤x≤3},则a的取值范围为.12.设x>0,则2xx2+1的最大值为.13.设实数a,b满足b<a<0,则1a 1b.(填“>”“<”或“=”)14.已知x>0,y>0,且x+2y=xy,若x+2y>m2+2m恒成立,则xy的最小值为,实数m的取值范围为.15.已知关于x的不等式(a2−4)x2+(a+2)x−1≥0的解集为空集,则实数a的取值范围是.16.已知正实数x,y满足12x+y +42x+3y=1,则x+y的最小值为.三、解答题(共6题)17.某居民小区欲在一块空地上建一面积为1200m2的矩形停车场,停车场的四周留有人行通道,设计要求停车场外侧南北的人行通道宽3m,东西的人行通道宽4m,如图所示(图中单位:m),问如何设计停车场的边长,才能使人行通道占地面积最小?最小面积是多少?18.已知p:x2−2x−35≤0,q:x2−3mx+(2m−1)(m+1)≤0(其中实数m>2).(1) 分别求出p,q中关于x的不等式的解集M和N;(2) 若p是q的必要不充分条件,求实数m的取值范围.19.已知关于x的不等式x2−2x−1>a(a∈R).(1) 若a=1,求不等式的解集;(2) 若不等式的解集为R,求实数a的范围.<1”.20.设a,b均为实数,且a≠0.求证:“a(a−b)>0”的充要条件是“ba21.求证:无论实数m取何值,关于x的方程x2−2mx+m−2=0总有两个不相等的实数根.22.某大学要修建一个面积为216m2的长方形景观水池,并且在景观水池四周要修建出宽为2m和3m的小路(如图).问:如何设计景观水池的边长,能使总占地面积最小?并求出总占地面积的最小值.答案一、选择题(共10题)1. 【答案】D【解析】因为a<0,−1<b<0,所以ab>0,1−b>0,b2−1<0,所以ab−ab2=ab(1−b)>0,所以ab>ab2,又ab2−a=a(b2−1)>0,所以ab2>a,所以ab>ab2>a.故选D.【知识点】不等式的性质2. 【答案】C【知识点】不等式的性质3. 【答案】C【解析】由题意得x2−(a+1)x+a<0可化为(x−a)(x−1)<0的解集有两个正整数,则这两个解为2,3.【知识点】二次不等式的解法4. 【答案】D【知识点】均值不等式的应用5. 【答案】D【解析】由已知得方程ax2+bx+c=0的两根分别为x1=−2,x2=1,且a<0,所以ba =1,ca=−2.所以不等式ax2+(a+b)x+c−a<0可化为x2+(1+ba )x+ca−1>0,即x2+2x−3>0,解得x<−3或x>1.【知识点】二次不等式的解法6. 【答案】B【解析】因为a,b∈R时,都有a2+b2−2ab=(a−b)2≥0,即a2+b2≥2ab,而ab +ba≥2⇔ab>0,所以“a2+b2≥2ab”是“ab +ba≥2”的必要不充分条件.【知识点】均值不等式的应用7. 【答案】A【解析】因为 x >0,y >0,x +y =10, 所以 x +y ≥2√xy , 所以 xy ≤(x+y 2)2=25,当且仅当 x =y =5 时,等号成立.所以 xy 有最大值 25. 【知识点】均值不等式的应用8. 【答案】A【解析】若 a >b ,则 a +c >b +c ,故B 错; 设 a =3,b =1,c =−1,d =−2, 则 ac <bd ,ac<bd ,所以C ,D 错.【知识点】不等式的性质9. 【答案】A【解析】当 m =0 时,−4<0 对任意实数 x ∈R 恒成立;当 m ≠0 时,由 mx 2+4mx −4<0 对任意实数 x ∈R 恒成立可得 {m <0,Δ=16m 2+16m <0,解得 −1<m <0,综上所述,Q ={m∣ −1<m ≤0}, 所以 P ⫋Q .【知识点】二次不等式的解法10. 【答案】D【解析】根据不等式的性质,选项A ,B ,C 都是成立的,选项D 中当 a =−1,b =1 时,等式不成立,故答案选D . 【知识点】不等式的性质二、填空题(共6题) 11. 【答案】 −1<a ≤115【知识点】二次不等式的解法12. 【答案】 1【知识点】均值不等式的应用13. 【答案】 <【知识点】不等式的性质14. 【答案】 8 ; (−4,2)【解析】因为 x >0,y >0,x +2y =xy , 所以 2x +1y =1,所以 1=2x +1y ≥2√2x ⋅1y ,所以 xy ≤8,当且仅当 x =4,y =2 时取等号, 所以 x +2y ≥2√2xy ≥8(当 x =2y 时,等号成立), 所以 m 2+2m <8,解得 −4<m <2, 故答案为:8;(−4,2). 【知识点】均值不等式的应用15. 【答案】[−2,65)【解析】当 a =−2 时,原不等式可化为 0⋅x 2+0⋅x −1≥0,解集为空集,符合题意. 当 a =2 时,原不等式可化为 0⋅x 2+4x −1≥0,解集不能为空集. 当 {a 2−4<0,Δ=(a +2)2+4(a 2−4)<0. 不等式的解集为空集.所以 −2<a <65,综上 −2≤a <65.【知识点】二次不等式的解法16. 【答案】 94【解析】因为 x >0,y >0,所以 2x +y >0,2x +3y >0,x +y >0, 根据题意,12x+y +42x+3y =1,由于 x +y =14[(2x +y )+(2x +3y )],故x +y =(x +y )×1=14[(2x +y )+(2x +3y )]×(12x+y +42x+3y )=14(1+4(2x+y )2x+3y +4+2x+3y2x+y )=54+2x+y2x+3y +2x+3y4(2x+y ),因为 2x+y2x+3y +2x+3y4(2x+y )≥2√14=1,当且仅当 2x =y =32 时取等号, 所以 x +y ≥54+1=94,故 x +y 的最小值为 94. 【知识点】均值不等式的应用三、解答题(共6题)17. 【答案】设矩形停车场南北侧边长为x m,则其东西侧边长为1200xm,人行通道占地面积为S=(x+6)(1200x +8)−1200=8x+7200x+48(m2),由平均值不等式,得S=8x+7200x +48≥2√8x⋅7200x+48=2×24+48=96,当且仅当8x=7200x,即x=30(m)时,S min=96(m2),此时1200x=40(m).所以,设计矩形停车场南北侧边长为30m,则其东西侧边长为40m,人行通道占地面积最小,最小面积是528m2【知识点】均值不等式的实际应用问题18. 【答案】(1) 由x2−2x−35=(x−7)(x+5)≤0,得M=[−5,7];x2−3mx+(2m−1)(m+1)=[x−(2m−1)][x−(m+1)]≤0,因为m>2,所以2m−1>m+1,所以N=[m+1,2m−1].(2) 因为p是q的必要不充分条件,所以N⫋M,所以{−5<m+1,7≥2m−1或{−5≤m+1,7>2m−1,解得−6≤m≤4,又m>2,所以2<x≤4.【知识点】二次不等式的解法、充分条件与必要条件19. 【答案】(1) a=1时,原不等式为x2−2x−1>1,整理,得x2−2x−2>0,对于方程x2−2x−2=0,因为Δ=12>0,所以它有两个不等的实数根,解得x1=1−√3,x2=1+√3,结合函数y=x2−2x−2的图象得不等式的解集为{x∣ x<1−√3或x>1+√3}.(2) 原不等式可化为x2−2x−1−a>0,由于不等式解集为R,结合函数y=x2−2x−1−a图象可知,方程x2−2x−1−a=0无实数根,所以Δ=4+4(1+a)=8+4a<0,所以a的范围是{a∣ a<−2}.【知识点】二次不等式的解法20. 【答案】显然 a ≠0,从而 a (a −b )>0⇔a (a−b )a 2>0⇔a−b a>0⇔1>ba .【知识点】不等式的性质、充分条件与必要条件21. 【答案】因为 Δ=4m 2−4m +8=4(m −12)2+7>0,所以方程总有两个不相等的实数根. 【知识点】不等式的性质22. 【答案】设水池一边长 x m ,则另一边为216xm ,总占地面积为 (x +4)(216x+6).(x +4)(216x+6)=240+6x +864x≥240+144=384,当且仅当 6x =864x,即 x =12 时,取得等号.因此,水池一边长为 12 m ,另一边长为 18 m 时,总占地面积为最小,最小为 384 m 2. 【知识点】均值不等式的实际应用问题。
人教A 版高一数学必修第一册《一元二次函数、方程和不等式》单元练习题卷(共22题)一、选择题(共10题)1. 已知关于 x 的不等式 (a 2−1)x 2−(a −1)x −1<0 的解集是 R ,则实数 a 的取值范围是 ( ) A . (−∞,−35)∪(1,+∞)B . (−35,1)C . [−35,1]D . (−35,1]2. 若不等式 ax 2−bx +c >0 的解集是 (−2,3),则不等式 bx 2+ax +c <0 的解集是 ( ) A . (−3,2)B . (−2,3)C . (−∞,−2)∪(3,+∞)D . (−∞,−3)∪(2,+∞)3. 已知 a >0,b >0,a +b =2,则 1a +4b 的最小值为 ( ) A . 72B . 4C . 92D . 54. 若 2x +2y =1,则 x +y 的取值范围是 ( ) A . [0,2] B . [−2,0] C . [−2,+∞)D . (−∞,−2]5. 若不等式x 2+mx +1>0的解集为R ,则m 的取值范围是( ) A .RB .(−2,2)C .(−∞,−2)∪(2,+∞)D .[−2,2]6. 不等式 x 2−ax −12a 2<0(其中a <0) 的解集为 ( ) A .(−3a,4a ) B .(4a,−3a ) C .(−3,4) D .(2a,6a )7. 气象学院用 32 万元购置了一台天文观测仪,已知这台观测仪从启动的第 1 天开始连续使用,第 n 天的维修保养费为 4n +46(n ∈N ∗) 元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器平均每天耗资最少)为止,则一共要使用 ( ) A . 300 天 B . 400 天 C . 600 天 D . 800 天8. 已知 x >0,y >0,x +2y +2xy =8,则 x +2y 的最小值是 A . 3 B . 4C . 92D .1129.若m2x−1mx+1<0(m≠0)对一切x≥4恒成立,则实数m的取值范围是( )A.{m∣ m<3}B.{m∣∣ m<−12}C.{m∣ m>2}D.{m∣ −2<m<3}10.已知集合A={x∣ x2−3x+2<0},B={x∣ x(x−m)>0},若A∩B=∅,则实数m的取值范围是( )A.{m∣ m≤0}B.{m∣ 0≤m≤2}C.{m∣ m≥2}D.{m∣ 0≤m≤1}二、填空题(共6题)11.不等式x2−x+1<0的解集为.12.设正实数x,y,z满足x2−xy+4y2−z=0,则当zxy 取得最小值时,2x+3y−6z的最大值为.13.二次函数y=x2−x−6的零点是.14.定义区间[a,b](a<b)的长度为b−a,若关于x的不等式x2−4x+m≤0的解集区间长度为2,则实数m的值为.15.已知集合A={x∣ x2−x−12<0},集合B={x∣ x2+2x−8>0},集合C={x∣ x2−4ax+3a2<0,a≠0},若C⊇(A∩B),则实数a的取值范围是.16.若不等式ax2+1x2+1≥2−3a3(a>0)恒成立,则实数a的取值范围是.三、解答题(共6题)17.求下列不等式的解集:(1) 13−4x2>0;(2) (x−3)(x−7)<0;(3) x2−3x−10>0;(4) −3x2+5x−4>0.18.已知a>0,b>0.(1) 求证:a3+b3≥a2b+ab2;(2) 若 a +b =3,求 1a +4b 的最小值.19. 已知 f (x )=(a −2)x 2+2(a −2)x −4(a ∈R ).(1) 当 x ∈R 时,恒有 f (x )<0,求 a 的取值范围;(2) 当 x ∈(1,3) 时,不等式 f (x )<mx −7(m ∈R ) 恰好成立,求 a ,m 的值.20. 阅读:已知 a,b ∈(0,+∞),a +b =1,求 y =1a+2b 的最小值.解法如下:y =1a +2b =(1a +2b )(a +b )=b a +2a b+3≥3+2√2,当且仅当 ba =2a b,即 a =√2−1,b =2−√2 时取到等号,则 y =1a+2b 的最小值为 3+2√2. 应用上述解法,求解下列问题:(1) 已知 a,b,c ∈(0,+∞),a +b +c =1,求 y =1a+1b+1c的最小值;(2) 已知 x ∈(0,12),求函数 y =1x +81−2x 的最小值;(3) 已知正数 a 1,a 2,a 3,⋯,a n ,a 1+a 2+a 3+⋯+a n =1,求证:S =a 12a1+a 2+a 22a2+a 3+a 32a 3+a 4+⋯+a n2an +a 1≥12.21. 请回答下列问题:(1) 已知 x >0,y >0,xy =4,求 2x +1y 的最小值; (2) 已知 x >0,y >0,x +2y =2,求 2x +1y 的最小值.22. 不等式性质(1) 如果 a >b >0,那么 a n >b n (n ∈N ∗,且 n >1).本性质根据 n 为奇数或偶数时,可以怎样的推广? (2) 如果 a >b >0,那么 (n ∈N ∗,且 n >1). (3) 如果 a >b 且 ab >0,那么 1a 1b . (4) 如何理解上述性质?答案一、选择题(共10题) 1. 【答案】D【解析】当 a =1 时,不等式为 −1<0,恒成立,满足题意; 当 a =−1 时,不等式为 2x −1<0,解得 x <12,不满足题意;当 a ≠±1 时,由 (a 2−1)x 2−(a −1)x −1<0 的解集为 R , 可知 {a 2−1<0,[−(a −1)]2+4(a 2−1)<0,解得 −35<a <1. 综上,−35<a ≤1. 【知识点】二次不等式的解法2. 【答案】D【解析】不等式 ax 2−bx +c >0 的解集是 (−2,3), 所以方程 ax 2−bx +c =0 的解是 −2 和 3,且 a <0; 即 {−2+3=ba ,−2×3=c a ,解得 b =a ,c =−6a ;所以不等式 bx 2+ax +c <0 化为 ax 2+ax −6a <0, 即 x 2+x −6>0, 解得 x <−3 或 x >2,所以所求不等式的解集是 (−∞,−3)∪(2,+∞). 【知识点】二次不等式的解法3. 【答案】C【知识点】均值不等式的应用4. 【答案】D【解析】因为 2x +2y ≥2√2x ⋅2y =2√2x+y (当且仅当 2x =2y 时等号成立), 所以 √2x+y ≤12,所以 2x+y ≤14,得 x +y ≤−2. 【知识点】均值不等式的应用5. 【答案】B【解析】【分析】利用一元二次不等式的解法即可得出.【解析】解:∵不等式x2+mx+1>0的解集为R,∴△=m2−4<0,解得−2<m<2.∴m的取值范围是(−2,2).故选:B.【点评】熟练掌握一元二次不等式的解法是解题的关键.6. 【答案】B【知识点】二次不等式的解法7. 【答案】B【解析】使用n天的平均耗资为320000+(50+4n+46)n2n=320000n+2n+48(元),当且仅当320000n=2n时取得最小值,此时n=400.【知识点】均值不等式的应用8. 【答案】B【知识点】均值不等式的应用9. 【答案】B【解析】依题意,对任意的x≥4,有y=(mx+1)⋅(m2x−1)<0恒成立,结合图象(图略)分析可知{m<0,−1m<4,1m2<4,由此解得m<−12,即实数m的取值范围是{m∣∣ m<−12}.【知识点】恒成立问题10. 【答案】C【解析】集合A={x∣ 1<x<2},若m<0,则集合B={x∣ x<m或x>0},不满足A∩B=∅,舍去;若m=0,则B={x∣ x≠0},不满足A∩B=∅,舍去;若m>0,则B= {x∣ x<0或x>m},要使A∩B=∅,则m≥2,综上可得m的取值范围是{m∣ m≥2},故选C.【知识点】二次不等式的解法、交、并、补集运算二、填空题(共6题)11. 【答案】∅【知识点】二次不等式的解法12. 【答案】4【解析】由已知z=x2−xy+4y2,得zxy =x2−xy+4y2xy=xy+4yx−1≥2√xy⋅4yx−1=3,当且仅当xy =4yx,即x=2y时等号成立,则z=6y2,2x +3y−6z=22y+3y−66y2=4y−(1y)2,当1y=2时,取最大值4.【知识点】均值不等式的应用13. 【答案】−2,3【解析】方法一:令x2−x−6=0.因为Δ=(−1)2−4×1×(−6)=25>0,所以方程x2−x−6=0有两个不相等的实数根,x1=−2,x2=3.所以函数y=x2−x−6的零点是x1=−2,x2=3.方法二:由x2−x−6=(x−3)(x+2)=0,得x1=−2,x2=3.所以函数y=x2−x−6的零点是x1=−2,x2=3.方法三:作出函数y=x2−x−6的图象,如图所示.因为函数的图象是一条开口向上的抛物线,且f(0)=−6<0,所以函数y=x2−x−6的图象与x轴有两个交点A(−2,0),B(3,0),故y=x2−x−6的零点是x1=−2,x2=3.【知识点】函数零点的概念与意义14. 【答案】3【知识点】二次不等式的解法15. 【答案】43≤a≤2【知识点】交、并、补集运算16. 【答案】{a∣ a≥19}【知识点】均值不等式的应用三、解答题(共6题)17. 【答案】(1) {x∣∣∣−√132<x<√132}.(2) {x∣ 3<x<7}.(3) {x∣ x<−2或x>5}.(4) ∅.【知识点】二次不等式的解法18. 【答案】(1) 因为a>0,b>0,所以a3+b3−a2b−ab2=a2(a−b)+b2(b−a)=(a2−b2)(a−b)=(a−b)2(a+b)≥0,所以a3+b3≥a2b+ab2.(2) 因为a>0,b>0,a+b=3,所以1 a +4b=13(a+b)(1a+4b)=13(5+ba+4ab)≥13(5+2√ba⋅4ab) =3,当且仅当ba =4ab,即a=1,b=2时取等号,所以1a +4b的最小值为3.【知识点】均值不等式的应用、不等式的性质19. 【答案】(1) a∈(−2,2].(2) 将原不等式整理变形,可得(a−2)x2+(2a−4−m)x+3<0,则该不等式在1<x<3时恰好成立.不妨设g(x)=(a−2)x2+(2a−4−m)x+3,可知{a>2,g(1)=0, g(3)=0.所以 a =3,m =6.【知识点】二次函数的性质与图像、二次不等式的解法20. 【答案】(1)y =1a +1b +1c=(1a +1b +1c )(a +b +c )=3+(ba +ab +ca +ac +cb +bc),而 ba +ab +ca +ac +cb +bc ≥6,当且仅当 a =b =c =13 时取到等号,则 y ≥9, 即 y =1a+1b+1c的最小值为 9.(2)y =22x +81−2x=(22x +81−2x )⋅(2x +1−2x )=10+2⋅1−2x 2x+8⋅2x1−2x ,而 x ∈(0,12),2⋅1−2x 2x+8⋅2x1−2x ≥2√16=8,当且仅当 2⋅1−2x 2x =8⋅2x1−2x ,即 x =16∈(0,12) 时取到等号,则 y ≥18,所以函数 y =1x+81−2x的最小值为 18.(3) 2S=(a 12a1+a 2+a 22a2+a 3+⋯+a n2an +a 1)[(a 1+a 2)+(a 2+a 3)+⋯+(a n +a 1)]=(a 12+a 22+⋯+a n 2)+a 12a1+a 2⋅(a 2+a 3)+a 22a2+a 3⋅(a 1+a 2)+⋯+a n2an +a 1⋅(a 1+a 2)+a 12a1+a 2⋅(a n +a 1)≥(a 12+a 22+⋯+a n 2)+(2a 1a 2+2a 2a 3+⋯+2a n a 1)=(a 1+a 2+⋯+a n )2=1.当且仅当 a 1=a 2=⋯=a n =1n时取到等号,则 S ≥12.【知识点】均值不等式的应用21. 【答案】(1) 因为 xy =4,且 x >0,y >0, 所以 2x +1y ≥2√2xy =2√12=√2, 当且仅当 x =2√2,y =√2 时取等号,即 2x+1y的最小值为 √2.(2) 因为 x >0,y >0,x +2y =2, 所以 2(2x +1y )=(x +2y )(2x +1y )=4+4y x+xy ≥4+4=8,所以 2x +1y ≥4, 当且仅当4y x=xy ,即 x =2y =1 时取等号,即 2x +1y 的最小值为 4. 【知识点】均值不等式的应用22. 【答案】(1) 当 n 为奇数时,如果 a >b ,那么 a n >b n (n ∈N ∗,n 为奇数);当 n 为偶数时,如果 a >b >0,那么 a n >b n ,如果 0>a >b ,那么 a n <b n (n ∈N ,n 为偶数). (2) √a n>√b n(3) <(4) 上述性质称为倒数的性质,注意 ab <0 时,此性质不成立(此时 1a >1b ). 【知识点】不等式的性质。
高一数学 函数练习题 新人教A 版
一、选择题: 1
、若()f x =
(3)f = ( )
A 、2
B 、4 C
、、10 2、对于函数()y f x =,以下说法正确的有 ( )
①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。
A 、1个
B 、2个
C 、3个
D 、4个
3、下列各组函数是同一函数的是 ( )
①()f x =
与()g x =;②()f x x =
与2
()g x =
;③0
()f x x =与
01()g x x
=
;④2()21f x x x =--与2
()21g t t t =--。
A 、①② B 、①③ C 、③④ D 、①④
4、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 5
、函数y =的值域为 ( )
A 、[]0,2
B 、[]0,4
C 、(],4-∞
D 、[)0,+∞ 6、下列四个图像中,是函数图像的是 ( )
A 、(1)
B 、(1)、(3)、(4)
C 、(1)、(2)、(3)
D 、(3)、(4) 7、若:f A B →能构成映射,下列说法正确的有 ( )
(1)A 中的任一元素在B 中必须有像且唯一;(2)B 中的多个元素可以在A 中有相同的原像;(3)B 中的元素可以在A 中无原像;(4)像的集合就是集合B 。
A 、4个
B 、3个
C 、2个
D 、1个 8、)(x f 是定义在R 上的奇函数,下列结论中,不正确...
的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -≤ D 、
()
1()
f x f x =-- 9、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( )
A 、3a -≤
B 、3a -≥
C 、a ≤5
D 、a ≥5 10、设函数()(21)f x a x b =-+是R 上的减函数,则有 ( )
A 、12a >
B 、12a <
C 、12a ≥
D 、12
a ≤ 11、定义在R 上的函数()f x 对任意两个不相等实数,a
b ,总有()()
0f a f b a b
->-成立,则必有( )
A 、函数()f x 是先增加后减少
B 、函数()f x 是先减少后增加
C 、()f x 在R 上是增函数
D 、()f x 在R 上是减函数
12、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )
(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
A 、(1)(2)(4)
B 、(4)(2)(3)
C 、(4)(1)(3)
D 、(4)(1)(2)
二、填空题:
(1)
(2)
(3)
(4)
(1)
(2)
(3)
(4)
13、已知(0)1,()(1)()f f n nf n n N +==-∈,则(4)f = 。
14、将二次函数22y x =-的顶点移到(3,2)-后,得到的函数的解析式为 。
15、已知()y f x =在定义域(1,1)-上是减函数,且(1)(21)f a f a -<-,则a 的取值范围是 。
16、设2
2 (1)() (12)2 (2)x x f x x x x x +-⎧⎪=-<<⎨⎪⎩
≤≥,若()3f x =,则x = 。
17.设有两个命题:①关于x 的方程9(4)340x x a ++⋅+=有解;②函数22()log a a f x x -=是减函数。
当①与②至少有一个真命题时,实数a 的取值范围是__
18.方程0422
=+-ax x 的两根均大于1,则实数a 的取值范围是_____。
三、解答题:
19、已知(,)x y 在映射f 的作用下的像是(,)x y xy +,求(2,3)-在f 作用下的像和(2,3)-在f 作用下的原像。
20、证明:函数2()1f x x =+是偶函数,且在[)0,+∞上是增加的。
21、对于二次函数2
483y x x =-+-,
(1)指出图像的开口方向、对称轴方程、顶点坐标;
(2)画出它的图像,并说明其图像由24y x =-的图像经过怎样平移得来; (3)求函数的最大值或最小值; (4)分析函数的单调性。
22、设函数)(x f y =是定义在R +
上的减函数,并且满足)()()(y f x f xy f +=,131=⎪⎭
⎫ ⎝⎛f , (1)求)1(f 的值, (2)如果2)2()(<-+x f x f ,求x 的取值范围。
答案
一、选择题:
ABCDA BCDAB CD
二、填空题:
13、24 14、222(3)221216y x x x =-++=---
15、2
03
a << 16
17、(]11,8,0,122⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭ 18、52,2⎡⎫
⎪⎢⎣⎭
三、解答题:
19、(2,3)-在f 作用下的像是(1,6)-;(2,3)-在f 作用下的原像是(3,1)(1,3)--或 20、略
21、(1)开口向下;对称轴为1x =;顶点坐标为(1,1);
(2)其图像由2
4y x =-的图像向右平移一个单位,再向上平移一个单位得到; (3)函数的最大值为1;
(4)函数在(,1)-∞上是增加的,在(1,)+∞上是减少的。
22、解:(1)令1==y x ,则)1()1()1(f f f +=,∴0)1(=f
(2)∵131=⎪⎭⎫ ⎝⎛f ∴23131)3
131(91=⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⨯=⎪⎭
⎫ ⎝⎛f f f f
∴()()[]⎪⎭
⎫ ⎝⎛<-=-+91)2(2f x x f x f x f ,又由)(x f y =是定义在R +
上的减函数,得:
()⎪⎪⎩
⎪⎪⎨⎧
>->>-0
209
12x x x x 解之得:⎪⎪⎭⎫ ⎝⎛+-∈3221,3221x 。