苏科版七年级数学下册同步课时作业8.1同底数幂的乘法(2)(含答案)
- 格式:doc
- 大小:39.50 KB
- 文档页数:3
七年级数学下册第八章《幂的运算》单元测试卷-苏科版(含答案)一.选择题(共7小题,满分21分)1.若a•2•23=26,则a等于()A.4B.8C.16D.322.已知a≠0,下列运算中正确的是()A.a2•a3=a6B.a5﹣a3=a2C.(﹣a3)2=a5D.a•a3=a43.若10m=5,10n=3,求102m﹣3n的值()A.B.C.675D.4.若(2x﹣1)0有意义,则x的取值范围是()A.x=﹣2B.x≠0C.x≠D.x=5.若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x取值范围是()A.x≠3B.x≠2C.x≠3且x≠﹣2D.x≠3且x≠2 6.“绿水青山就是金山银山”.某地积极响应党中央号召,大力推进农村厕所革命,已经累计投资1.102×108元资金.数据1.102×108用科学记数法可表示为()A.1102亿B.1.102亿C.110.2亿D.11.02亿7.嫦娥五号返回器携带月球样品安全着陆,标志着中国航天业向前又迈出了一大步.嫦娥五号返回器在接近大气层时,飞行1m大约需要0.0000893s.数据0.0000893s用科学记数法表示为()A.8.93×10﹣5B.893×10﹣4C.8.93×10﹣4D.8.93×10﹣7二.填空题(共7小题,满分21分)8.将2x﹣3y(x+y)﹣1表示成只含有正整数指数幂的形式为.9.新型冠状病毒直径约为100nm,计m(用科学记数法表示).10.若有意义,则x的取值范围是.11.若a2n=2(n为正整数),则(4a3n)2÷4a4n的值为.12.目前全国疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约7.5×105个,则科学记数法数据7.5×105的原数为.13.已知x2n=5,则(3x3n)2﹣4(x2)2n的值为.14.已知m x=2,m y=4,则m x+y=.三.解答题(共6小题,满分58分)15.计算:(1)2+(﹣2)×3+(﹣7)0;(2)×12.16.在数学中,我们经常会运用逆向思考的方法来解决一些问题,例如:“若a m=4,a m+n =20,求a n的值.”这道题我们可以这样思考:逆向运用同底数幂的乘法公式,即a m+n =a m•a n,所以20=4•a n,所以a n=5.(1)若a m=2,a2m+n=24,请你也利用逆向思考的方法求出a n的值.(2)下面是小贤用逆向思考的方法完成的一道作业题,请你参考小贤的方法解答下面的问题:小贤的作业计算:89×(﹣0.125)9.解:89×(﹣0.125)9=(﹣8×0.125)9=(﹣1)9=﹣1.①小贤的求解方法逆用了哪一条幂的运算性质,直接写出该逆向运用的公式:.②计算:52023×(﹣0.2)2022.17.(1)若3×27m÷9m=316,求m的值;(2)已知a x=﹣2,a y=3,求a3x﹣2y的值;(3)若n为正整数,且x2n=4,求(3x2n)2﹣4(x2)2n的值.18.我们知道,同底数幂的乘法法则为a m•a n=a m+n(其中a≠0,m、n为正整数),类似地,我们规定关于任意正整数m、n的一种新运算:f(m)•f(n)=f(m+n)(其中m、n为正整数).例如,若f(3)=2,则f(6)=f(3+3)=f(3)•f(3)=2×2=4.f(9)=f(3+3+3)=f(3)•f(3)•f(3)=2×2×2=8.(1)若f(2)=5,①填空:f(6)=;②当f(2n)=25,求n的值;(2)若f(a)=3,化简:f(a)•f(2a)•f(3a)•…•f(10a).19.如表是某河流今年某一周内的水位变化情况,上周末(星期六)的水位已经达到警戒水位33米.(正号表示水位比前一天上升,负号表示水位比前一天下降).(单位:米)星期日一二三四五六水位变化+0.2+0.8﹣0.4+0.2+0.3﹣0.5﹣0.2(1)本周哪一天河流的水位最高?哪一天河流的水位最低?分别是多少?(2)与上周末相比,本周末河流的水位是上升了还是下降了?本周末的水位是多少?(3)若水位每下降1厘米,就有2.5×102吨水蒸发到大气中,请计算这个星期共有多少吨水蒸发到大气中?20.已知10﹣2α=3,,求106α+2β的值.参考答案一.选择题(共7小题,满分21分)1.解:∵a•2•23=26,∴a=26÷24=22=4.故选:A.2.解:A、原式=a5,故不符合题意;B、a5与a3不是同类项,故不能合并,故不符合题意;C、原式=﹣a6,故不符合题意;D、原式=a4,故符合题意.故选:D.3.解:∵10m=5,10n=3,∴102m﹣3n=102m÷103n=.故选:D.4.解:(2x﹣1)0有意义,则2x﹣1≠0,解得:x≠.故选:C.5.解:若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x﹣3≠0且2x﹣4≠0,解得:x≠3且x≠2.故选:D.6.解:1.102×108=1.102亿.故选:B.7.解:0.0000893=8.93×10﹣5,故选:A.二.填空题(共7小题,满分21分)8.解:原式=•=.故答案为:.9.解:新型冠状病毒的直径约为100nm=100×10﹣9m=1×10﹣7m,故答案为1×10﹣7.10.解:∵有意义,∴0.∴x+2≠0,x﹣2≠0,∴x≠±2.故答案为:x≠±2.11.解:当a2n=2时,(4a3n)2÷4a4n=16(a2n)3÷4(a2n)2=16×23÷(4×22)=16×8÷(4×4)=16×8÷16=8.故答案为:8.12.解:7.5×105=750000,故答案为:750000.13.解:∵x2n=5,∴(3x3n)2﹣4(x2)2n=9x6n﹣4x4n=9(x2n)3﹣4(x2n)2=9×53﹣4×52=1125﹣100=1025.故答案为:1025.14.解:∵m x=2,m y=4,∴m x+y=m x•m y=8,故答案为:8.三.解答题(共6小题,满分58分)15.解:(1)原式=2﹣6+1=﹣3;(2)原式=×12+=5+8﹣1616.解:(1)∵a m=2,∴a2m+n=24,∴a2m×a n=24,(a m)2×a n=24,22×a n=24,∴4a n=24,∴a n=6;(2)①逆用积的乘方,其公式为:a n•b n=(ab)n,故答案为:a n•b n=(ab)n;②52023×(﹣0.2)2022=5×52022×(﹣0.2)2022=5×(﹣0.2×5)2022=5×(﹣1)2022=5×1=5.17.解:(1)∵3×27m÷9m=316,∴3×33m÷32m=316,∴33m+1﹣2m=316,∴3m﹣2m+1=16,解得m=15;(2)∵a x=﹣2,a y=3,∴a3x=﹣8,a2y=9,∴a3x﹣2y=a3x÷a2y=(﹣8)÷9=﹣;(3)∵x2n=4,∴(3x2n)2﹣4(x2)2n=(3x2n)2﹣4(x2n)2=(3×4)2﹣4×42=122﹣4×16=144﹣64=80.18.解:(1)①∵f(2)=5,∴f(6)=f(2+2+2)=f(2)•f(2)•f(2)=125;故答案为:125;②∵25=5×5=f(2)•f(2)=f(2+2),f(2n)=25,∴f(2n)=f(2+2),∴2n=4,∴n=2;(2)∵f(2a)=f(a+a)=f(a)•f(a)=3×3=31+1=32,f(3a)=f(a+a+a)=f(a)•f(a)•f(a)=3×3×3=31+1+1=33,…,f(10a)=310,∴f(a)•f(2a)•f(3a)•…•f(10a)=3×32×33×…×310=31+2+3+…+10=355.19.解:(1)周日:33+0.2=33.2(米),周一:33.2+0.8=34(米),周二:34﹣0.4=33.6(米),周三:33.6+0.2=33.8(米),周四:33.8+0.3=34.1(米),周五:34.1﹣0.5=33.6(米),周六:33.6﹣0.2=33.4(米).答:周四水位最高,最高水位是34.1米,周日水位最低,最低水位是33.2米;(2)33.4﹣33=0.4>0,答:与上周末相比,本周末河流的水位上升了,水位是33.4米;(3)100×(0.4+0.5+0.2)×2.5×102吨=2.75×104(吨),答:这个星期共有2.75×104吨水蒸发到大气中.20.解:∵10﹣2α==3,10﹣β==﹣,∴102α=,10β=﹣5,∴106α+2β=(102α)3•(10β)2,=()3×(﹣5)2,=×25,=.。
8.1同底数幂的乘法课时提优一.选择题1.计算a•a2的结果是()A.a3B.a2C.3a D.2a2 2.若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.3.计算下列代数式,结果为x5的是()A.x2+x3B.x•x5C.x6﹣x D.2x5﹣x5 4.代数式3x2可以表示为()A.x2+x2+x2B.x2•x2•x2C.x+x+x D.x•x•x 5.下列计算正确的是()A.a3•a2=a6B.b4+b4=b8C.23=6D.27÷2=26 6.若整数n满足2n•2n•2n=8,则n的值为()A.1B.2C.3D.67.已知x+y﹣3=0,则2x•2y的值是()A.6B.﹣6C.D.88.计算(﹣a)3•a3的正确结果是()A.a5B.a6C.﹣a5D.﹣a6二.填空题9.计算:a2•a3=.10.若2x=3,2y=5,则2x+y=.11.计算:(﹣m)3•m4=.12.计算x•x3+x4的结果等于.13.若a3•a m=a9,则m=.14.(﹣p)2•(﹣p)3=.15.已知,15a=25和15b=9,a=﹣b﹣c,则15c=.16.计算:105×(﹣10)4×106=.三.解答题17.已知x a+b=6,x b=3,求x a的值.18.先阅读下列材料,再解答后面的问题.材料:一般地,n个相同因数相乘,记为a n,如23=8,此时3叫做以2为底8的对数,记为(即)一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为(即).如34=81,4叫做以3为底81的对数,记为.问题(Ⅰ)计算以下各对数的值:=;=;=.(2)观察(Ⅰ)中三数4、16、64之间满足怎样的关系?、、之间又满足怎样的关系?(3)由(2)的结果,你能归纳出一个一般性的结论吗?+=(a>0,且a≠1,M>0,N>0)根据幂的运算法则a m•a n=a m+n以及对数的含义证明上述结论.19.阅读下面的文字,回答后面的问题:求5+52+53+…+5100的值.解:令S=5+52+53+…+5100(1),将等式两边同时乘以5得到:5S=52+53+54+…+5101(2),(2)﹣(1)得:4S=5101﹣5,∴问题:(1)求2+22+23+…+2100的值;(2)求4+12+36+…+4×340的值.20.我们规定:a⊗b=10a×10b,例如3⊗4=103×104=107,请解决以下问题:(1)试求7⊗8的值.(2)想一想(a+b)⊗c与a⊗(b+c)相等吗?请明理由.答案与解析一.选择题1.计算a•a2的结果是()A.a3B.a2C.3a D.2a2【分析】根据同底数幂的乘法,底数不变指数相加,可得答案.【解答】解:原式=a1+2=a3.故选:A.【点评】本题考查了同底数幂的乘法,注意底数不变指数相加.2.若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.【分析】利用乘法的意义得到4•2n=2,则2•2n=1,根据同底数幂的乘法得到21+n=1,然后根据零指数幂的意义得到1+n=0,从而解关于n的方程即可.【解答】解:∵2n+2n+2n+2n=2,∴4•2n=2,∴2•2n=1,∴21+n=1,∴1+n=0,∴n=﹣1.故选:A.【点评】本题考查了同底数幂的乘法:同底数幂相乘,底数不变,指数相加,即a m•a n =a m+n(m,n是正整数).3.计算下列代数式,结果为x5的是()A.x2+x3B.x•x5C.x6﹣x D.2x5﹣x5【分析】根据合并同类项的法则以及同底数幂的乘法法则解答即可.【解答】解:A、x2与x3不是同类项,故不能合并同类项,故选项A不合题意;B、x•x5=x6,故选项B不合题意;C、x6与x不是同类项,故不能合并同类项,故选项C不合题意;D、2x5﹣x5=x5,故选项D符合题意.故选:D.【点评】本题主要考查了合并同类项的法则:系数下降减,字母以及其指数不变.4.代数式3x2可以表示为()A.x2+x2+x2B.x2•x2•x2C.x+x+x D.x•x•x【分析】根据幂的意义解答即可.【解答】解:3x2可以表示为x2+x2+x2,故选项A符合题意;x2•x2•x2=x6,故选项B不合题意;x+x+x=3x,故选项C不合题意;x•x•x=x3,故选项D不合题意.故选:A.【点评】本题主要考查了幂的乘方的意义,熟练掌握幂的运算法则是解答本题的关键.5.下列计算正确的是()A.a3•a2=a6B.b4+b4=b8C.23=6D.27÷2=26【分析】分别根据同底数幂的乘法法则,合并同类项的法则,幂的乘方的定义以及同底数幂的除法法则逐一判断即可.【解答】解:a3•a2=a5,故选项A不合题意;b4+b4=2b4,故选项B不合题意;23=8,故选项C不合题意;27÷2=26,正确,故选项D符合题意.故选:D.【点评】本题主要考查了幂的运算、有理数的乘方以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.6.若整数n满足2n•2n•2n=8,则n的值为()A.1B.2C.3D.6【分析】根据同底数幂的法则有:2n•2n•2n=2n+n+n=23n=8,即可求解;【解答】解:2n•2n•2n=2n+n+n=23n=8,∴3n=3,∴n=1;故选:A.【点评】本题考查同底数幂的乘法;熟练掌握同底数幂的乘法法则是解题的关键.7.已知x+y﹣3=0,则2x•2y的值是()A.6B.﹣6C.D.8【分析】根据x+y﹣3=0,可得:x+y=3,据此求出2x•2y的值是多少即可.【解答】解:∵x+y﹣3=0,∴x+y=3,∴2x•2y=2x+y=23=8.故选:D.【点评】此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.8.计算(﹣a)3•a3的正确结果是()A.a5B.a6C.﹣a5D.﹣a6【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:(﹣a)3•a3=﹣a6.故选:D.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.二.填空题9.计算:a2•a3=a5.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2•a3=a2+3=a5.故答案为:a5.【点评】熟练掌握同底数的幂的乘法的运算法则是解题的关键.10.若2x=3,2y=5,则2x+y=15.【分析】由2x=3,2y=5,根据同底数幂的乘法可得2x+y=2x•2y,继而可求得答案.【解答】解:∵2x=3,2y=5,∴2x+y=2x•2y=3×5=15.故答案为:15.【点评】此题考查了同底数幂的乘法.此题比较简单,注意掌握公式的逆运算.11.计算:(﹣m)3•m4=﹣m7.【分析】根据同底数幂的乘法解答即可.【解答】解:(﹣m)3•m4=﹣m7,故答案为:﹣m7【点评】此题考查同底数幂的乘法,关键是根据同底数幂的乘法的法则解答.12.计算x•x3+x4的结果等于2x4.【分析】根据同底数幂的乘法,即可解答.【解答】解:x•x3+x4=2x4,故答案为:2x4【点评】此题考查同底数幂的乘法,关键是根据法则计算.13.若a3•a m=a9,则m=6.【分析】根据同底数幂的运算即可求出答案.【解答】解:由题意可知:3+m=9,∴m=6,故答案为:6【点评】本题考查同底数幂的乘除法,解题的关键是正确理解同底数幂的乘法运算,本题属于基础题型.14.(﹣p)2•(﹣p)3=﹣p5.【分析】同底数幂的乘法:底数不变,指数相加.【解答】解:(﹣p)2•(﹣p)3=(﹣p)2+3=(﹣p)5=﹣p5;故答案是:﹣p5.【点评】本题考查了同底数幂的乘法.同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.15.已知,15a=25和15b=9,a=﹣b﹣c,则15c=.【分析】利用幂的乘方公式和同底数幂公式计算即可【解答】解:∵a=﹣b﹣c,∴c=﹣a﹣b15c=15﹣a﹣b=15﹣a•15﹣b=(15a)﹣1•(15b)﹣1=25﹣1•9﹣1==【点评】本题考查了幂的运算,熟练运用幂的乘方公式和同底数幂公式计算是解题的关键.16.计算:105×(﹣10)4×106=1015.【分析】直接利用同底数幂的乘法运算法则化简得出答案.【解答】解:原式=105×104×106=1015.故答案为:1015.【点评】此题主要考查了同底数幂的乘法运算,正确掌握相关运算法则是解题关键.三.解答题17.已知x a+b=6,x b=3,求x a的值.【分析】根据同底数幂的乘法法则求解.【解答】解:x a=x a+b÷x b=6÷3=2.【点评】本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则.18.先阅读下列材料,再解答后面的问题.材料:一般地,n个相同因数相乘,记为a n,如23=8,此时3叫做以2为底8的对数,记为(即)一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为(即).如34=81,4叫做以3为底81的对数,记为.问题(Ⅰ)计算以下各对数的值:=2;=4;=6.(2)观察(Ⅰ)中三数4、16、64之间满足怎样的关系?、、之间又满足怎样的关系?(3)由(2)的结果,你能归纳出一个一般性的结论吗?+=log a MN(a>0,且a≠1,M>0,N>0)根据幂的运算法则a m•a n=a m+n以及对数的含义证明上述结论.【分析】(1)根据对数的定义,把求对数的数写成底数数的幂即可求解;(2)根据(1)的计算结果即可写出结论;(3)利用对数的定义以及幂的运算法则a m•a n=a m+n即可证明.【解答】解:(1)∵4=22,16=24,64=26,∴=2;=4;=6.(2)4×16=64,+=;(3)log a N+log a M=log a MN.证明:log a M=m,log a N=n,则M=a m,N=a n,∴MN=a m•a n=a m+n,∴log a MN=log a a m+n=m+n,故log a N+log a M=log a MN.故答案是:2,4,6.【点评】本题考查了同底数的幂的乘法,正确理解题意,理解对数的定义是关键.19.阅读下面的文字,回答后面的问题:求5+52+53+…+5100的值.解:令S=5+52+53+…+5100(1),将等式两边同时乘以5得到:5S=52+53+54+…+5101(2),(2)﹣(1)得:4S=5101﹣5,∴问题:(1)求2+22+23+…+2100的值;(2)求4+12+36+…+4×340的值.【分析】(1)由题意可S=2+22+23+…+2100①,将等式两边同时乘以2得到:2S=22+23+…+2101②,由②﹣①即可求得答案;(2)由4+12+36+…+4×340=4×(1+3+32+33+…+340),然后令S=4×(1+3+32+33+…+340)①,将等式两边同时乘以3得到:3S=4×(3+32+33+…+341)②,由②﹣①即可求得答案.【解答】解:(1)令S=2+22+23+…+2100①,将等式两边同时乘以2得到:2S=22+23+…+2101②,②﹣①得:S=2101﹣2;(2)∵4+12+36+…+4×340=4×(1+3+32+33+…+340),令S=4×(1+3+32+33+…+340)①,∴将等式两边同时乘以3得到:3S=4×(3+32+33+…+341)②,②﹣①得:2S=4×(341﹣1),∴S=2×(341﹣1).【点评】此题考查了同底数幂的乘法的应用.此题难度适中,注意理解题意,掌握解题方法.20.我们规定:a⊗b=10a×10b,例如3⊗4=103×104=107,请解决以下问题:(1)试求7⊗8的值.(2)想一想(a+b)⊗c与a⊗(b+c)相等吗?请明理由.【分析】(1)根据a⊗b=10a×10b代入数据即可;(2)根据所给例子对应代入即可得到答案.【解答】解:(1)7⊗8=107×108=1015;(2)(a+b)⊗c=10a+b×10c=10a+b+c,a⊗(b+c)=10a×10b+c=10a+b+c,∴(a+b)⊗c与a⊗(b+c)相等.【点评】此题主要考查了同底数幂的乘法,关键是掌握同底数幂相乘,底数不变,指数相加.。
第八章幂的运算课题:幂的运算的小结与思考教学目标:1、能说出幂的运算的性质;2、会运用幂的运算性质进行计算,并能说出每一步的依据;3、能说出零指数幂、负整数指数幂的意义,能用熟悉的事物描述一些较小的正数,并能用科学记数法表示绝对值小于1的数;4、通过具体例子体会本章学习中体现的从具体到抽象、特殊到一般的思考问题的方法,渗透转化、归纳等思想方法,发展合情推理能力和演绎推理能力。
教学重点:运用幂的运算性质进行计算教学难点:运用幂的运算性质进行证明规律教学方法:引导发现,合作交流,充分体现学生的主体地位一、系统梳理知识:幂的运算:1、同底数幂的乘法2、幂的乘方3、积的乘方4、同底数幂的除法:(1)零指数幂(2)负整数指数幂请你用字母表示以上运算法则。
你认为本章的学习中应该注意哪些问题?二、例题精讲:例1 判断下列等式是否成立:①(-x)2=-x2,②(-x3)=-(-x)3,③(x-y)2=(y-x)2,④(x-y)3=(y-x)3,⑤x-a-b=x-(a+b),⑥x+a-b=x-(b-a).解:③⑤⑥成立.例2 已知10m=4,10n=5,求103m+2n的值.解:因为103m=(10m)3=43 =64,102n=(10n)2=52=25.所以103m+2n=103m×102n=64×25=1680例3 若x=2m+1,y=3+4m,则用x的代数式表示y为______.解:∵2m=x-1,∴y=3+4m=3+22m.=3+(2m)2=3+(x-1)2=x2-2x+4.例4设<n>表示正整数n的个位数,例如<3>=3,<21>=1,<13×24>=2,则<210>=______.解210=(24)2·22=162·4,∴ <210>=<6×4>=4例5 1993+9319的个位数字是( )A.2 B.4C.6 D.8解1993+9319的个位数字等于993+319的个位数字.∵ 993=(92)46·9=8146·9.319=(34)4·33=814·27.∴993+319的个位数字等于9+7的个位数字.则 1993+9319的个位数字是6.三、随堂练习:1、已知a=355,b=444,c=533,则有()A.a<b<c B.c<b<aC.c<a<b D.a<c<b2、已知3x=a,3y =b,则32x-y等于 ( )3、试比较355,444,533的大小.4、已知a=-0.32,b=-3-2,c=(-1/3)-2d=(-1/3)0,比较a、b、c、d的大小并用“,〈”号连接起来。
章节测试题1.【题文】已知,求的值.【答案】36或0【分析】先把已知条件转化成以3为底数的幂,求出a、b的值,再代入代数式计算即可.【解答】解:由条件得,所以,.当,时,,当,时,,所以或.2.【题文】()如果,求的值.()已知,求的值.【答案】()8;()16.【分析】(1)由,可求得,又由,即可求出答案;(2)利用幂的乘方的逆运算把化为,把已知代入即可求解.【解答】解:()因为,所以,所以.()因为,所以.3.【题文】计算:().().().().【答案】();();();().【分析】(1)先进行幂的乘方运算,再利用同底数幂的乘法法则计算即可;(2)先进行幂的乘方运算,再利用同底数幂的乘法法则计算即可;(3)先进行幂的乘方运算,再利用同底数幂的乘法法则计算即可;(4)将原式各项利用积的乘法及幂的乘方运算法则化简,合并同类项后即可得到结果.【解答】解:()原式.()原式.()原式.()原式.4.【题文】(1)已知2×8x×16=223,求x的值;(2)已知3m+2×92m-1×27m=98,求m的值.【答案】(1)6(2)2【分析】(1)利用积的乘方的逆运算可得结果;(2)由同底数幂的乘法得出3m+2×92m-1×27m=38m=98得出8m=16即可求解.【解答】解:(1)因为2×8x×16=223,所以23x+5=223,所以3x+5=23,所以x=6.(2)因为3m+2×92m-1×27m=3m+2×34m-2×33m=38m=98,所以38m=316.所以8m=16.所以m=2.5.【题文】已知2x=a,4y=b,8z=ab,试猜想x,y,z之间的数量关系,并说明理由.【答案】x+2y=3z【分析】观察等式2x=a,4y=b,8z=ab,易得前两个等式相乘右边可得ab,与第三个等式右边相等,可得等式“2x·4y=8z”,对等式进一步变形;可得2x+2y=23z,即得出含x、y、z的幂的等式,从而得出结果.【解答】解:猜想x+2y=3z.理由:因为2x·4y=ab,8z=ab,所以2x·4y=8z,即2x+2y=23z.所以x+2y=3z.6.【题文】已知2x+5y-9=0,求4x·32y的值.【答案】512【分析】根据幂的乘方,同底数幂的乘法,化要求的式子为已知条件,把已知代入即可得出结果.【解答】解:4x·32y=22x·25y=22x+5y.因为2x+5y-9=0,所以2x+5y=9.所以原式=29=512.7.【题文】已知x+4y=5,求4x·162y的值.【答案】1024【分析】根据积的乘方的逆用,把4x·162y化为4x+4y,代入即可.【解答】解:∵x+4y=5, ∴4x·162y=4x·44y=4x+4y=45=1 0248.【题文】已知(2x)n=22n(n为正整数),求正数x的值.【答案】2【分析】根据幂的乘方运算法则可得;再根据相等幂的指数相同,则底数也相等得关于x的方程,求解即可.【解答】解:由题意知(2x)n=22n=4n.又因为x为正数,所以2x=4,即x=2.9.【题文】计算: (x-y)3·(y-x)2·(x-y)4.【答案】(x-y)9【分析】按照同底数幂的运算法则进行运算即可.【解答】解:10.【题文】若x m=2,求x4m的值【答案】16【分析】根据幂的乘方法则可完成此题.【解答】解::x m =2,∵x4m=(x m)4,∴x4m的值为16.11.【题文】a3表示3个a相乘,(a3)4表示4个_____相乘,•因此(a3)4•=•____=____,由此推得(a m)n=______,其中m,n都是正整数,并利用你发现的规律计算:(1)(a4)5;(2)[(a+b)4] 5.12.【题文】阅读下列解题过程:试比较2100与375的大小.解:∵2100=(24)25=1625375=(33)25=2725而16<27,∴2100<375.请根据上述解答过程解答:比较255、344、433的大小.【答案】255<433<344【分析】根据题目中所给的方法,由幂的乘方的逆运算,把各数化为指数相同、底数不同的形式,再根据底数的大小比较即可.【解答】解:∵,且32<64<81,∴.13.【题文】若n为正整数,且x2n=4,求(3x3n)2-4(-x2)2n的值.【答案】512【分析】【解答】解:原式=9x6n-4x4n=9(x2n)3-4(x2n)2.∵x2n=4,∴原式=9×43-4×42=512.14.【答题】计算(﹣x3)2所得结果是()A. x5B. ﹣x5C. x6D. ﹣x6【答案】C【分析】根据幂的乘方法则计算即可.【解答】(﹣x3)2=x6,选C.15.【答题】下列运算中,正确的个数是()①;②;③;④;⑤A. 1个B. 2个C. 3个D. 4个【答案】A【分析】根据幂的乘方法则和有理数的运算计算即可.【解答】①不是同类项,不能够合并;②根据幂的乘方的运算法则可得原式=;③原式=1×2-1=2-1=1;④原式=-5+3=-2;⑤原式=;正确的只有②,选A.16.【答题】若5x=125y,3y=9z,则x:y:z等于()A. 1:2:3B. 3:2:1C. 1:3:6D. 6:2:1【答案】D【分析】根据幂的乘方法则计算即可.【解答】∵5x=(53)y=53y,3y=(32)z=32z,∴x=3y,y=2z,即x=3y=6z;设z=k,则y=2k,x=6k;(k≠0)∴x:y:z=6k:2k:k=6:2:1选D.17.【答题】下列运算正确的是()A. x2+x3=x5B. (﹣a3)•a3=a6C. (﹣x3)2=x6D. 4a2﹣(2a)2=2a2【答案】C【分析】根据整式的加减和幂的乘方法则计算即可.【解答】A选项: x2和x3不是同类项,不能直接相加,故是错误的;B选项: (﹣a3)•a3=-a6,故是错误的;C选项: (﹣x3)2=x6,计算正确;D选项: 4a2﹣(2a)2=0;选C.18.【答题】对于等式:(1);(2)判断正确的是()A. (1)正确B. (2)正确C. 都正确D. 无法判断【答案】B【分析】根据幂的乘方法则计算即可.【解答】解:(1)若n为奇数、m为偶数,则而故(1)错误;(2)由故(2)正确;选B.19.【答题】计算,正确结果是()A.B.C.D.【答案】B【分析】根据幂的乘方法则计算即可.【解答】解:=a6.选B.20.【答题】已知,,则可以表示为().A.B.C.D.【答案】A【分析】根据幂的乘方法则计算即可. 【解答】解:∵,,∴.故选.。
苏科新版七年级下册《第8章幂的运算》2024年单元测试卷(4)一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.某款手机芯片的面积大约仅有,将用科学记数法表示正确的是()A.B.C.D.2.下列运算正确的是()A. B. C.D.3.将,,这三个数按从小到大的顺序排列,为()A. B. C.D.4.计算,则括号内应填入的式子为()A. B. C.D.5.计算等于()A. B.C.1D.6.若,则n 的值为() A.B.C.0D.17.a 与b 互为相反数,且都不等于0,n 为正整数,则下列各组中一定互为相反数的是()A.与B.与C.与D.与8.王老师有一个实际容量为的U 盘,内有三个文件夹,已知课件文件夹占用了的内存,照片文件夹内有32张大小都是的旅行照片,音乐文件夹内有若干首大小都是的音乐,若该U 盘内存恰好用完,则此时文件夹内有音乐首.()A.28B.30C.32D.34二、填空题:本题共11小题,每小题3分,共33分。
9.计算:______.10.比较与的大小,我们可以采用从“特殊到一般”的思想方法:通过计算比较下列各式中两数的大小:填“>”“<”或“=”①______;②______;③______;④______由可以猜测与正整数的大小关系:当n ______时,;当n______时,根据上面的猜想,则有______填“>”“<”或“=”11.根据数值转换机的示意图,输出的值为,则输入的x值为______.12.计算:______.13.把的结果用科学记数法表示为______.14.若,则______.15.,则______.16.若,则______.17.已知,则______.18.若,,则用x的代数式表示y为______.19.一质点P从距原点1个单位的M点处向原点方向跳动,第一次跳动到OM的中点处,第二次从跳到的中点处,第三次从点跳到的中点处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为______.三、解答题:本题共6小题,共48分。
绝密★启用前2018-2019学年度???学校2月月考卷试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、单选题1.[(x2)3]7等于()A.-x7B.x12C.x9D.x422.a·a2m+2等于()A.a3m B.2a2m+2C.a2m+3D.a m+a2m3.下列各式中,运算正确的是A.B.C.D.4.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A.1B.2C.3D.45.计算a3•a2的结果是()A.a5B.a6C.a3+a2D.3a26.下列运算中,正确的是()A.x3•x2=x5B.2x﹣x=2C.x+y=xy D.(x3)2=x97.计算的结果是()A.B.C.D.8.下列各式成立的是( )A.(x-y)2=-(y-x)2B.(x-y)n=-(y-x)n(n为正整数)C.(x-y)2(y-x)2=-(x-y)4D.(x-y)3(y-x)3=-(x-y)69.下列运算正确的是()A.(a3)2=a5B.a2•a3=a5C.a6÷a2=a3D.3a2﹣2a2=1A.2x2B.﹣2x2C.﹣2x2+2D.﹣2第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题11.计算: ()22a a -÷=_______(2xy)2 = __________ 12.如果1121236x x x ++-⋅=,则x 的值为__________. 13.若x +3y ﹣3=0,则2x·8y=_____. 14.若a·a 3·a m =a 8,则m= . 15.计算:_______.16.计算(a 3)2÷(a 2)3的结果等于________ 17.,求=___.18.计算:(-a 2)3+(-a 3)2-a 2·a 4+2a 9÷a 3=__________. 19.计算(6×103)·(8×105)的结果是________.20.已知,, 则=_______三、解答题21.已知2139273m m ⨯⨯=,求(-m 2)3÷(m 3.m 2)的值.22.已知a=2-555, b=3-444, c=6-222,请用“>”把它们按从大到小的顺序连接起来,并说明理由. 23.计算: (1); (2).24.计算(1)若(2x +a )(x ﹣1)的结果中不含x 的一次项,求a 的值. (2)已知xy=﹣3,x +y=﹣4,求:①x 2+y 2②(x ﹣y )2 (3)已知2x +5y=3,求4x •32y 的值.25.已知2x =3,4y =5,求23x-4y 的值. 26.(x -y )2(y -x )3(x -y )2a (a 为正整数)27.计算:(1)8m 4.(-12m 3n 5)÷(-2mn )4; (2)(3x+2y)(2x-3y)-3x(3x-2y).t是一种分裂速度很快的细菌,它每15分钟分裂一次,如果现在盘子里有1000个E.coli. Array(1)30分钟后盘子里有多少个E.coli?(2)3小时后E.coli的数量是1小时后的多少倍?参考答案1.D【解析】试题解析: ()73242x x ⎡⎤=⎢⎥⎣⎦,故D 项正确.故选D. 2.C【解析】根据同底数幂的乘法法则可得,a.a 2m +2=a 2m +3 ,故选C. 3.D 【解析】 【分析】根据合并同类项法则、同底数幂除法法则、幂的乘方的运算法则逐项进行判断即可得. 【详解】 A 、,故A 选项错误;B 、、不是同类项,不能合并,故B 选项错误;C 、,故C 选项错误;D 、,故D 选项正确,故选D . 【点睛】本题考查了合并同类项、同底数幂除法、幂的乘方等,熟练掌握各运算的运算法则是解题的关键. 4.B 【解析】分析:根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可. 详解:①a 2•a 3=a 5,故原题计算错误; ②(a 3)2=a 6,故原题计算正确; ③a 5÷a 5=1,故原题计算错误; ④(ab )3=a 3b 3,故原题计算正确;正确的共2个, 故选B .点睛:此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法则. 5.A【解析】根据同底数幂的乘法法则可得,原式= a 5,故选A. 6.A【解析】试题解析:A, 23235.x x x x +⋅==正确. 故选A.点睛:同底数幂相乘,底数不变,指数相加. 7.B 【解析】 【分析】根据同底数幂的运算法则进行直接运算. 【详解】×(-2)×(-4)x 1+2+4=-4x 7.故选B.【点睛】本题考查了同底数幂的运算,掌握同底数幂的运算法则是解决此题的关键. 8.D【解析】试题解析:A 、(x-y )2=(y-x )2,故本选项错误; B 、(x-y )n =-(y-x )n (n 为奇数),故本选项错误; C 、(x-y )2(y-x )2=(x-y )4,故本选项错误; D 、(x-y )3(y-x )3=-(x-y )6,故本选项正确. 故选D . 9.B【解析】分析:根据同底数幂的乘法、底数幂除法法则、幂乘方的运算法则,合并同类项法则一一判断即可.详解:A .(a 3)2=a 6.故A 错误.B .a 2•a 3=a 5.故B 正确.C .a 6÷a 2=a 4.故C 错误.D .3a 2﹣2a 2=a 2.故D 错误. 故选B .点睛:本题考查了同底数幂的乘法、底数幂除法法则、幂的乘方的运算法则,合并同类项法则,解题的关键是记住同底数幂的乘法、除法法则、幂的乘方的运算法则,合并同类项法则. 10.B 【解析】 【分析】先利用整式的除法运算法则计算,再合并同类项即可得出答案. 【详解】(4x 3﹣2x )÷(﹣2x )-1=﹣2x 2+1-1=﹣2x 2. 故选B . 【点睛】本题考查了整式的除法运算,正确掌握运算法则是解题的关键. 11. 4a 224x y【解析】()22a a -÷=4a 2÷a=4a , (2xy)2 = 22x 2y 2=4x 2y 2, 故答案为:4a ,4x 2y 2. 12.2 【解析】∵1123x x ++⋅=()121236x x +-⨯=,即+12x-16=6x ,∴x+1=2x-1, ∴x=2,故答案为:2.13.8【解析】试题解析:∵x+3y ﹣3=0, ∴x+3y=3,∴2x ·8y =2x ·23y =2x+3y =23=8. 故答案为:8. 14.4【解析】∵a·a 3·a m =a 4+m =a 8, ∴4+m=8,解得m=4.点睛:本题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加. 15.x4y2【解析】试题分析:幂的乘方法则,底数不变,指数相乘;积的乘方等于乘方的积.则原式x y.=4216.1【解析】【分析】根据幂的乘方, 底数不变, 指数相乘; 同底数幂的除法, 底数不变, 指数相减进行计算即可.【详解】解:原式=【点睛】本题主要考查幂的乘方和同底数幂的除法,熟记法则是解决本题的关键, 在计算中不要与其他法则相混淆. 幂的乘方, 底数不变,指数相乘; 同底数幂的除法, 底数不变, 指数相减. 17.2【解析】【分析】把等号左边的数都能整理成以2为底数的幂相乘,再根据同底数幂相乘,底数不变指数相加计算,然后根据指数相等列式求解即可.【详解】解:4n•8n•16n,=22n×23n×24n,=29n,∵4n•8n•16n=218,∴9n=18,解得n=2.故答案为:2.【点睛】本题主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.18.a 6【解析】分析:根据整式乘除法的相关运算法则进行计算即可. 详解: 原式=.故答案为:.点睛:熟记“幂的乘方、同底数幂的乘法和同底数幂的除法的运算法则”是正确解答本题的关键. 19.94.810⨯【解析】试题解析:(6×103)•(8×105), =48×108, =4.8×109;故答案为: 94.810.⨯ 20.-27【解析】分析:分别利用同底数幂的乘法运算法则以及积的乘方运算法则分别化简求出即可.详解:∵2m =3,,∴,∴m +2n =-2, ∴==-27.故答案为:-27.点睛:本题主要考查了同底数幂的除法等知识,正确掌握运算法则是解题的关键. 21.-m ,-4【解析】试题分析:首先根据同底数幂的计算法则得出m 的值,然后根据同底数幂的乘方、乘法和除法法则将幂进行化简,从而得出答案.试题解析:∵12m 3m21392733m m ++⨯⨯== ∴4m =, ∵()()3232•m mm m -÷=- ∴原式的值为-4.22.a >c >b【解析】试题分析:首先根据幂的乘方法则将a、b、c转化为同指数,然后比较底数的大小,底数越大则幂就越大.试题解析:∵a=2﹣555=(2﹣5)111=()111,b=3﹣444=(3﹣4)111=()111,c=6﹣222=(6﹣2)111=()111,∵>,∴()111>()111>()111即a>c>b.故答案为a>c>b.点睛:本题主要考查的就是幂的大小比较的方法,属于中等难度的题目.对于幂的大小比较的题目,我们可以将幂全部化成同指数,然后比较底数的大小;也可以将幂全部化成同底数,然后比较指数的大小;对于不能直接化同底数或同指数的时候,我们还可以借助公式将其进行转化,然后比较大小.23.(1)+5;(2)−17.【解析】【分析】此题考察积的乘方,等于把积中的每个因式分别乘方;幂的乘方,底数不变,指数相乘;同底数幂相乘,底数不变,指数相加.【详解】(1)原式=++4=+5.(2)原式=−8+9⋅⋅=−8−9=−17.【点睛】掌握积的乘方,幂的乘方等相关运算法则是解答本题的关键.24.(1)a=2;(2)①22;②28;(3)8.【解析】试题分析:(1)原式利用多项式乘以多项式法则计算,根据结果中不含x的一次项即可确定出a的值;(2)①根据完全平方公式得到原式=(x+y)2﹣2xy,然后利用整体代入的方法计算;②根据完全平方公式得到原式=(x+y)2﹣4xy,然后利用整体代入的方法计算;(3)根据同底数幂相乘和幂的乘方的逆运算计算.试题解析:解:(1)(2x+a)(x﹣1)=2x2+(a﹣2)x﹣a,由结果中不含x的一次项,得到a﹣2=0,即a=2;(2)①原式=(x+y)2﹣2xy当xy=﹣3,x+y=﹣4,原式=(﹣4)2﹣2×(﹣3)=22.②原式=(x+y)2﹣4xy当xy=﹣3,x+y=﹣4,原式=(﹣4)2﹣4×(﹣3)=28.(3)∵2x+5y=3,∴4x•32y=22x•25y=22x+5y=23=8.25.【解析】【分析】观察题目,根据幂的乘方的运算法则,把4y=5化为22y=5;然后逆用同底数幂的除法法则,可以把2x-2y化为2x÷22y;接下来将2x和22y的值整体代入化简后的待求式,即可求出结果.【详解】解:∵2x=3,4y=5,∴23x﹣4y=(2x)3÷(4y)2=33÷52=.【点睛】将已知条件化成可用条件,并且学会整体代入的方法是解答本题的关键.26.(y-x)5+2a【解析】试题分析:由题可知(x-y)2=(y-x)2,(x-y)2a=(y-x)2a(a为正整数),再根据同底数幂的乘法法则计算即可.试题解析:(x-y)2(y-x)3(x-y)2a=(y-x)2+3+2a=(y-x)5+2a·点睛:本题主要考查了同底数幂的乘法,同底数幂相乘,底数不变,指数相加.27.(1)﹣6m3n;(2)﹣3x2+xy﹣6y2.【解析】【分析】(1)先算乘法,再算除法;(2)先算乘法,再合并同类项即可;【详解】(1)原式=8m4•(﹣12m3n5)÷(16m4n4)=-96 m7n5÷(16m4n4)=﹣6m3n;(2)原式=6x2﹣9xy+4xy﹣6y2﹣9x2+6xy=﹣3x2+xy﹣6y2.【点睛】本题考查整式的运算,解题的关键是熟练掌握整式的运算顺序和运算法则及幂的运算法则.28.256【解析】试题分析:(1)根据分裂的速度乘以分裂的时间,可得答案;(2)根据3小时后的除以1小时的个数,可得答案.试题解析:(1)1000×22=4000(个)(2)3×60÷15=12(次),1×60÷15=4(次),(1000×212)÷(1000×24)=256.。
同底数幂的乘法【课题】苏科版七年级下册第八章第一节同底数幂的乘法【教材分析】同底数幂的乘法是在学习了有理数的乘方和整式的加减之后,为了进一步学习整式的乘法而学习的一个关于幂的运算性质,这又是幂的三个性质中最基本的一个性质,学好了同底数幂的乘法,其它两个性质和整式乘法的学习便容易了。
因此,同底数幂的乘法法则既是有理数幂的乘法的推广,又是整式乘法的重要基础,在本章的学习中具有举足轻重的地位和作用。
【教学目标】1.能说出同底数幂乘法的运算性质,并会用符号表示.2.会正确地运用同底数幂乘法的运算性质进行运算,并能说出每一步运算的依据.3.经历探索同底数幂乘法的运算性质的过程,从中感受从具体到抽象.从特殊到一般的思考方法,发展数感和归纳的能力.【教学重点】1.同底数幂的乘法运算法则的推导过程。
2.会用同底数幂的乘法运算法则进行有关计算。
【教学难点】在导出同底数幂的乘法运算法则的过程中,培养学生的归纳能力和化归思想。
【教学方法】讲练结合、探索交流【教具】投影仪【教学实录】一、情境创设教师:在a n这个表达式中,a是什么?n是什么?当a n作为运算结果时,又读作什么?学生:a是底数,n是指数,a n又读作a的n次幂。
教师:现在请同学们阅读、观察P46章前图、文,你有什么想法?(学生阅读、观察、思考着)教师:上图是“太阳光照射到地面球表面”图,下面数据的含义:光的速度约是3×108m/s,太阳光照射到地面表面所需时间约是5×102s,那么(3×108)×(5×102)表示什么?学生:表示太阳到地球表面的距离。
教师:下图表示银河系示意图,现代天文学家认为银河系是一个由1000多亿颗大大小小的恒星和大量气体及尘埃组成的巨大盘状系统,中间厚、四周薄,就象一块“铁饼”,“铁饼”的直径达10光年,1光年是光在空气中1年传播的距离,那么请你算算:1光年约是多少千米?,银河系的直到约多少千米?(学生自己先列式计算或相互讨论,然后回答,若有回答不全的,其他学生或教师补充)教师:由上可以看出,数的世界充满着神奇,幂的运算方便了“大”数的处理,本章将学习同底数幂的乘法、除法以及幂的乘方、积的乘方.二、探索活动(一)自主建构教师:(投影仪依次出P48做一做)用学过的知识做下面的习题,在做题的过程中,认真观察,积极思考,互相研究,看看能发现什么?1.计算下列各式:10×104;104×105;103×105;(学生开始做题,互相研究、讨论,教师巡视、指点,待学生充分讨论有所发现的,提问有何发现)学生1:根据乘方的意义,可以得到:10×104 =105;104×105=109;103×105=108;教师:刚才1同学说出了根据乘方的意义计算上面各题所得结果,计算是否准确?学生:计算准确。