七年级数学《整式的运算》第5周测题
- 格式:doc
- 大小:36.50 KB
- 文档页数:3
一、选择题1.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套.现有28张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需要x 张做盒身,则下列所列方程正确的是( ) A .()182812x x -= B .()1828212x x -=⨯ C .()181412x x -=D .()2182812x x ⨯-=2.下列各等式的变形中,等式的性质运用正确的是( ) A .由02x=,得2x = B .由14x -=,得5x = C .由23a =,得23a = D .由a b =,得a b c c= 3.如果x =2是方程12x +a =﹣1的解,那么a 的值是( ) A .0B .2C .﹣2D .﹣64.如图所示,两人沿着边长为90 m 的正方形,按A →B →C →D →A …的方向行走,甲从A 点以65 m/min 的速度、乙从B 点以75 m/min 的速度行走,当乙第一次追上甲时,将在正方形的( )边上.A .BCB .DC C .ADD .AB5.下列解方程中去分母正确的是( ) A .由,得B .由,得C .由,得D .由,得6.一项工程,甲单独做需10天完成,乙单独做需6天完成.现由甲先做2天,乙再加入合做,完成这项工程共需多少天?若设完成这项工程共需x 天,依题意可得方程( ) A .106x x +=1 B .22106x x +-+=1 C .2106x x -+=1 D .222106x x x --++=17.关于x 的方程2x m3-=1的解为2,则m 的值是( ) A .2.5B .1C .-1D .38.关于y 的方程331y k +=与350y +=的解相同,则k 的值为( ) A .-2B .34C .2D .43-9.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x 人,则下列方程正确的是( ) A .3x ﹣20=24x +25 B .3x +20=4x ﹣25 C .3x ﹣20=4x ﹣25D .3x +20=4x +2510.宜宾某机械厂加工车间有34名工人,平均每名工人每天加工小齿轮20个或大齿轮15个.已知3个小齿轮和2个大齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能使每天生产的齿轮刚好配套?若设加工小齿轮的工人有x 名,则可列方程为( ) A .2015(34)x x =- B .220315(34)x x ⨯=⨯- C .320215(34)x x ⨯=⨯- D .320(34)215x x ⨯-=⨯11.下列方程的变形,符合等式的性质的是( )A .由2x ﹣3=7,得2x=7﹣3B .由3x ﹣2=x+1,得3x ﹣x=1﹣2C .由﹣2x=5,得x=﹣3D .由﹣13x=1,得x=﹣3 12.下列判断错误的是 ( ) A .若,则 B .若,则C .若,则D .若,则二、填空题13.某学校8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队,每两队之间进行一场比赛),胜一场得3分,平一场得1分,负一场得0分,某班共得15分,并以不败成绩获得冠军,那么该班共胜______场比赛.14.已知一个角的补角是这个角的4倍,那么这个角的度数是_________.15.如图所示,天平中放有苹果、香蕉、砝码,且两架天平都平衡,则一个苹果的质量是一个香蕉的质量的________.(填分数)16.某校组织七年级学生参加研学活动,如果单独租用45座车若干辆,则刚好坐满;如果单独租用60座客车,则可少租2辆,并且剩余15座.该校参加研学活动的有_______人. 17.如图,一个酒瓶的容积为500毫升,瓶子内还剩有一些黄酒.当瓶子正放时,瓶内黄酒的高度为12厘米,倒放时,空余部分的高度为8厘米,则瓶子的底面积为______厘米2.(1毫升=1立方厘米)18.要使代数式154t +与15()4t -的值互为相反数,则t 的值是_________. 19.小亮用40元钱买了5千克苹果和2千克香蕉,找回4元.已知每千克香蕉的售价是每千克苹果售价的2倍,则每千克苹果的售价是________元.20.一群学生参加夏令营活动,男生戴白色帽子,女生戴红色帽子,休息时他们坐在一起,大家发现了一个有趣的现象:每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色帽子数量是红色的2倍.根据信息,这群学生共有______人.三、解答题21.解下列方程:(1)(1)2(1)13x x x +--=-; (2)30564x x--=; (3)3 1.4570.50.46x x x --=. 22.关于x 的方程357644m x m x +=-的解比方程4(37)1935x x -=-的解大1,求m 的值.23.解方程:()()3x 7x 132x 3--=-+① ;5x 2x 3132---=②. 24.王叔叔十月份的工资为8000元,超过5000元的部分需要交3%的个人所得税。
一、选择题1.(0分)[ID :68027]如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( ) A .3251x x +-和3933x x --- B .358x x ++和31212x x -+- C .335x x -++和341x x -+- D .3732x x -+-和2x --2.(0分)[ID :68026]有一种密码,将英文26个字母,,,,a b c z (不论大小写)依次对应1,2,3,…,26这26个序号(见表格),当明码对应的序号x 为奇数时,密码对应的序号为|25|2x -,当明码对应的序号x 为偶数时,密码对应的序号为122x +,按照此规定,将明码“love ”译成密码是( )A .loveB .rkwuC .sdriD .rewj3.(0分)[ID :68057]若2312a b x y +与653a bx y -的和是单项式,则+a b =( ) A .3-B .0C .3D .64.(0分)[ID :68055]把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( ) A .﹣7B .﹣1C .5D .115.(0分)[ID :68024]下列式子:222,32,,4,,,22ab x yz ab ca b xy y m x π+---,其中是多项式的有( ) A .2个B .3个C .4个D .5个6.(0分)[ID :68021]1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b cA .1,6,15a b c ===B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c ===7.(0分)[ID :68010]一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1 B .5y 3-3y 2-2y -6 C .5y 3+3y 2-2y -1 D .5y 3-3y 2-2y -1 8.(0分)[ID :68007]已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3 B .﹣3 C .1 D .﹣1 9.(0分)[ID :67998]若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( ) A .2B .﹣2C .3D .﹣310.(0分)[ID :67985]多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( ) A .2和8B .4和8-C .6和8D .2-和8-11.(0分)[ID :67976]代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差 B .2倍的x 与1的差除以3的商 C .x 与1的差的2倍除以3的商 D .x 与1的差除以3的2倍12.(0分)[ID :67975]式子5x x-是( ). A .一次二项式B .二次二项式C .代数式D .都不是13.(0分)[ID :67973]在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个 B .8个 C .4个 D .5个14.(0分)[ID :67966]某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元 A .(115%)(120%)a ++ B .(115%)20%a + C .(115%)(120%)a +- D .(120%)15%a + 15.(0分)[ID :67958]长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( )A .3aB .6a +bC .6aD .10a -b二、填空题16.(0分)[ID :68155]当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项.17.(0分)[ID :68152]在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___.18.(0分)[ID :68148]已知整数a 1,a 2,a 3,a 4…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,…,依此类推,则a 2016的值为_______.19.(0分)[ID :68127]写出一个系数是-2,次数是4的单项式________.20.(0分)[ID :68126]某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A 同学拿出二张扑克牌给B 同学; 第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______. 21.(0分)[ID :68115]有一列数:12,1,54,75,…,依照此规律,则第n 个数表示为____.22.(0分)[ID :68110]如图,在整式化简过程中,第②步依据的是_______.(填运算律)化简:()22253a b ab a b ab +--+解:()22253ab ab a b ab +--+22253a b ab a b ab =++-① 22253a b a b ab ab =++-②()222(53)a b a b ab ab =++-③232a b ab =+.④23.(0分)[ID :68106]单项式20.8a h π-的系数是______.24.(0分)[ID :68072]观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.25.(0分)[ID :68070]已知22211m mn n ++=,26mn n +=,则22m n +的值为______.26.(0分)[ID :68065]随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后,又降价25%,现售价为n 元,那么该电脑的原售价为______. 27.(0分)[ID :68059]如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m +n+p =_________;三、解答题28.(0分)[ID :67845]有一长方体形状的物体,它的长,宽,高分别为a ,b ,c(a>b>c),有三种不同的捆扎方式(如图所示的虚线).哪种方式用绳最少?哪种方式用绳最多?说明理由.29.(0分)[ID :67841]已知31AB x ,且3223A x x ,求代数式B .30.(0分)[ID :67766]若单项式21425m n x y +--与413n mx y +是同类项,求这两个单项式的积【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.C 2.D 3.C4.A5.A6.B7.D8.D9.D10.D11.B12.C13.C14.A15.C二、填空题16.3【分析】先合并同类项然后使xy的项的系数为0即可得出答案【详解】解:=∵多项式不含xy项∴k-3=0解得:k=3故答案为:3【点睛】本题考查了多项式的知识属于基础题解答本题的关键是掌握合并同类项的17.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a118.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+4|=−|−2+4| =−2…所以n是奇数19.答案不唯一例:-2【解析】解:系数为-2次数为4的单项式为:-2x4故答案为-2x4点睛:本题考查了单项式的知识单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数20.7【分析】本题是整式加减法的综合运用设每人有牌x张解答时依题意列出算式求出答案【详解】设每人有牌x张B同学从A同学处拿来二张扑克牌又从C同学处拿来三张扑克牌后则B同学有张牌A同学有张牌那么给A同学后21.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找22.加法交换律【分析】直接利用整式的加减运算法则进而得出答案【详解】解:原式=2a2b+5ab+a2b-3ab=2a2b+a2b+5ab-3ab=(2a2b+a2b)+(5ab-3ab)=3a2b+2a23.【分析】根据单项式系数的定义进行求解即可【详解】单项式的系数是故答案为:【点睛】本题考查了单项式的系数问题掌握单项式系数的定义是解题的关键24.【分析】观察各式的特点找出关于n的式子用2n+1和2n-1表示奇数用2n表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找25.5【分析】观察多项式之间的关系可知将已知两式相减再化简即可得到结果【详解】∵∴∴的值为5【点睛】本题考查整式的加减观察得出整式之间的关系再进行去括号化简是解题的关键26.【分析】根据题意列出代数式解答即可【详解】解:该电脑的原售价故填:【点睛】此题考查了列代数式关键是读懂题意找出题目中的数量关系列出代数式27.4【分析】根据约定的方法求出mnp即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C 解析:C 【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案. 【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意; B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意; C 选项、333541x x x x -++-+-=3724x x -++,符合题意; D 选项、337322724x x x x x -+---=-+-,不符合题意. 故选:C . 【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题.2.D解析:D 【分析】明码“love”中每一个字母所代表的数字分别为12,15,22,5,再根据这四个数字的奇偶性,求得其密码. 【详解】l 对应的序号12为偶数,则密码对应的序号为1212182+=,对应r ; o 对应的序号15为奇数,则密码对应的序号为|1525|52-=,对应e ; v 对应的序号22为偶数,则密码对应的序号为2212232+=,对应w ; e 对应的序号5为奇数,则密码对应的序号为|525|102-=,对应j . 由此可得明码“love ”译成密码是rewj . 故选:D . 【点睛】本题考查了绝对值和求代数式的值.解题的关键是明确字母与数字的相互转化,每一个字母代表一个数字,一一对应关系.3.C解析:C 【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=,解得:3{0a b ==,所以303a b +=+=, 故选:C . 【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.4.A解析:A 【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可. 【详解】解:第1次操作,a 1=|23+4|-10=17; 第2次操作,a 2=|17+4|-10=11; 第3次操作,a 3=|11+4|-10=5; 第4次操作,a 4=|5+4|-10=-1; 第5次操作,a 5=|-1+4|-10=-7; 第6次操作,a 6=|-7+4|-10=-7; 第7次操作,a 7=|-7+4|-10=-7; …第2020次操作,a 2020=|-7+4|-10=-7. 故选:A . 【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.5.A解析:A 【分析】几个单项式的和叫做多项式,结合各式进行判断即可. 【详解】22a b ,3,2ab,4,m -都是单项式; 2x yzx+分母含有字母,不是整式,不是多项式;根据多项式的定义,232ab cxy y π--,是多项式,共有2个.故选:A . 【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.6.B解析:B 【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可. 【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=. 故选:B . 【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键.7.D解析:D 【分析】根据已知和与一个加数,则另一个加数=和-一个加数,然后计算即可. 【详解】解:∵5y 3-4y -6-(3y 2-2y -5)= 5y 3-4y -6-3y 2+2y+5= 5y 3-3y 2-2y -1. 故答案为D . 【点睛】本题考查了整式的加减运算,掌握去括号、合并同类项是解答本题的关键.8.D解析:D 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项, 则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D.【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m,n的值是解题的关键.9.D解析:D【分析】先将多项式合并同类型,由不含x的二次项可列【详解】6x2﹣7x+2mx2+3=(6+2m)x2﹣7x+3,∵关于x的多项式6x2﹣7x+2mx2+3不含x的二次项,∴6+2m=0,解得m=﹣3,故选:D.【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.10.D解析:D【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,以及单项式系数、常数项的定义来解答.【详解】多项式6a-2a3x3y-8+4x5中,最高次项的系数和常数项分别为-2,-8.故选D.【点睛】本题考查了同学们对多项式的项和次数定义的掌握情况.在处理此类题目时,经常用到以下知识:(1)单项式中的数字因数叫做这个单项式的系数;(2)多项式中不含字母的项叫常数项;(3)多项式里次数最高项的次数,叫做这个多项式的次数.11.B解析:B【分析】代数式表示分子与分母的商,分子是2倍的x与1的差,据此即可判断.【详解】代数式213x的含义是2倍的x与1的差除以3的商.故选:B.本题考查了代数式,正确理解代数式表示的意义是关键.12.C解析:C【分析】根据代数式以及整式的定义即可作出判断.【详解】 式子5x x-分母中含有未知数,因而不是整式,故A 、B 错误,是代数式,故C 正确. 故选:C .【点睛】 本题考查了代数式的定义,就是利用运算符号把数或字母连接而成的式子,单独的数或字母都是代数式.13.C解析:C【分析】根据单项式的定义逐一判断即可.【详解】3a中,分母含未知数,是分式,不是单项式, x+1是多项式,不是单项式,-2是单项式,3b -是单项式, 0.72xy 是单项式,2π是单项式, 314x -=3144x -,是多项式, ∴单项式有-2、3b -、0.72xy 、2π,共4个, 故选C.【点睛】本题考查单项式的定义,熟练掌握定义是解题关键. 14.A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.15.C解析:C【解析】【分析】根据长方形的周长公式列出算式后化简合并即可.【详解】∵长方形一边长为2a +b ,另一边为a -b ,∴长方形周长为:2(2a +b +a -b )=6a.故选C.【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.二、填空题16.3【分析】先合并同类项然后使xy 的项的系数为0即可得出答案【详解】解:=∵多项式不含xy 项∴k-3=0解得:k=3故答案为:3【点睛】本题考查了多项式的知识属于基础题解答本题的关键是掌握合并同类项的解析:3【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【详解】解:()221325x k xy y xy +----=()22335x k xy y +---, ∵多项式不含xy 项,∴k-3=0,解得:k=3.故答案为:3.【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则. 17.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a1解析:【分析】首先分别求出n=2、3、4…时的情况,观察它是否具有规律,再把2020代入求解即可.【详解】∵a 1=2,∴a 2111a ==--1;a 32111a 2==-;a 4311a ==-2;…, 发现规律:每3个数一个循环,所以2020÷3=673…1,则a 2020=a 1=2.故答案为:2.【点睛】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.18.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+4|=−|−2+4|=−2…所以n 是奇数解析:﹣1008【解析】a 2=−|a 1+1|=−|0+1|=−1,a 3=−|a 2+2|=−|−1+2|=−1,a 4=−|a 3+3|=−|−1+3|=−2,a 5=−|a 4+4|=−|−2+4|=−2,…,所以n 是奇数时,a n =−12n -;n 是偶数时,a n =−2n ; a 2016=−20162=−1008. 故答案为-1008. 点睛:此题考查数字的变化规律,根据所给出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键. 探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x ,再利用它们之间的关系,设出其它未知数,然后列方程.19.答案不唯一例:-2【解析】解:系数为-2次数为4的单项式为:-2x4故答案为-2x4点睛:本题考查了单项式的知识单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数解析:答案不唯一,例:-24x .【解析】解:系数为-2,次数为4的单项式为:-2x 4.故答案为-2x 4.点睛:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.20.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后 解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.21.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n 个数为故答案为:【点睛】本题考查了数字的变化规律找 解析:211n n -+. 【分析】 根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】 这列数可以写为12,33,54,75, 因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n 个数为211n n -+. 故答案为:211n n -+. 【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键. 22.加法交换律【分析】直接利用整式的加减运算法则进而得出答案【详解】解:原式=2a2b+5ab+a2b-3ab=2a2b+a2b+5ab-3ab=(2a2b+a2b )+(5ab-3ab )=3a2b+2a解析:加法交换律【分析】直接利用整式的加减运算法则进而得出答案.解:原式=2a 2b+5ab+a 2b-3ab=2a 2b+a 2b+5ab-3ab=(2a 2b+a 2b )+(5ab-3ab )=3a 2b+2ab .第②步依据是:加法交换律.故答案为:加法交换律.【点睛】此题主要考查了整式的加减运算,正确掌握相关运算法则是解题关键.23.【分析】根据单项式系数的定义进行求解即可【详解】单项式的系数是故答案为:【点睛】本题考查了单项式的系数问题掌握单项式系数的定义是解题的关键解析:0.8π-【分析】根据单项式系数的定义进行求解即可.【详解】单项式20.8a h π-的系数是0.8π-故答案为:0.8π-.【点睛】本题考查了单项式的系数问题,掌握单项式系数的定义是解题的关键.24.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案.【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的. 25.5【分析】观察多项式之间的关系可知将已知两式相减再化简即可得到结果【详解】∵∴∴的值为5【点睛】本题考查整式的加减观察得出整式之间的关系再进行去括号化简是解题的关键【分析】观察多项式之间的关系可知,将已知两式相减,再化简即可得到结果.【详解】∵22211m mn n ++=,26mn n +=,∴()22222222221165mn m mn n m n n mn nm mn n ---=+++=++=-=+, ∴22m n +的值为5.【点睛】本题考查整式的加减,观察得出整式之间的关系再进行去括号化简是解题的关键. 26.【分析】根据题意列出代数式解答即可【详解】解:该电脑的原售价故填:【点睛】此题考查了列代数式关键是读懂题意找出题目中的数量关系列出代数式 解析:43n m + 【分析】根据题意列出代数式解答即可.【详解】 解:该电脑的原售价4125%3n m n m +=+-, 故填:43n m +. 【点睛】 此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式. 27.4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.三、解答题28.方式甲用绳最少,方式丙用绳最多.【解析】试题分析:根据长方形的对称性分别得到三种方式所需要的绳子的长度,然后将这三个代数式进行作差比较大小.试题方式甲所用绳长为4a +4b +8c ,方式乙所用绳长为4a +6b +6c ,方式丙所用绳长为6a +6b +4c ,因为a>b>c ,所以方式乙比方式甲多用绳(4a +6b +6c)-(4a +4b +8c)=2b -2c ,方式丙比方式乙多用绳(6a +6b +4c)-(4a +6b +6c)=2a -2c.因此,方式甲用绳最少,方式丙用绳最多.29.2322x x -++【分析】将A 代入A-B=x 3+1中计算即可求出B .【详解】解:∵A-B=x 3+1,且A=-2x 3+2x+3,∴B=A-(x 3+1)=-2x 3+2x+3-x 3-1=-3x 3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.30.10453x y - 【分析】根据题意,可得到关于m ,n 的二元一次方程组,求出m ,n 的值,即可求得答案.【详解】∵单项式21425m n x y +--与413n m x y +是同类项, ∴21442m n n m +=+⎧⎨-=⎩, 解得21m n =⎧⎨=⎩,∴21425252441011355533n m m n x y x y x y x y x y ++--⋅-⋅=-= 【点睛】本题主要考查同类项的定义和单项式乘单项式的法则,根据同类项的定义,列出关于m ,n 的二元一次方程组,是解题的关键.。
一、选择题1.下列计算正确的是( ) A .326a a a ⋅= B .()()2122a a a +-=-C .()333ab a b =D .623a a a ÷=2.已知长方形ABCD ,AD AB >,10AD =,将两张边长分别为a 和b (a b >)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S .当213S S b -=时,AB 的值是( )A .7B .8C .9D .103.在括号内填上适当的单项式,使()2144y -+成为完全平方式应填( )A .12yB .24C .24y ±D .124.如图,长为()cm y ,宽为()cm x 的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短的边长是5cm ,下列说法中正确的是( )①小长方形的较长边为15y -;②阴影A 的较短边和阴影B 的较短边之和为5x y -+; ③若x 为定值,则阴影A 和阴影B 的周长和为定值; ④当15x =时,阴影A 和阴影B 的面积和为定值. A .①③④ B .②④ C .①③ D .①④ 5.已知a+2b-2=0,则2a ×4b ( ) A .4B .8C .24D .326.下列运算正确的是( ) A .()23636a =B .()()22356a a a a --=-+ C .842x x x ÷=D .326326x x x ⋅=7.下列运算中,正确的个数是( )①2352x x x +=;②()326x x =;③03215⨯-=;④538--+=A .1个B .2个C .3个D .4个8.如图:用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a ,b 分别表示矩形的长和宽(a b >),则下列关系中不正确的是( )A .12a b +=B .2a b -=C .35ab =D .2284a b +=9.计算()()202020213232-⨯的结果是( )A .32-B .23-C .23D .3210.已知51x =,51y =,则代数式222x xy y ++的值为( ).A .20B .10C .45D .2511.下列各式计算正确的是( ) A .5210a a a =B .()428=a a C .()236a ba b =D .358a a a +=12.下列计算中,错误的有( )①222(2)4x y x y +=+;②222()2x y x xy y --=-+;③2211224x x x ⎛⎫-=-+ ⎪⎝⎭;④22(3)(3)9b a b a a b ---=- A .1个B .2个C .3个D .4个二、填空题13.如图1,在一个大正方形纸板中剪下边长为acm 和边长为bcm 的两个正方形,剩余长方形①和长方形②的面积和为8cm 2.若将剩余的长方形①和②平移进边长为acm 的正方形中(如图2),此时该正方形未被覆盖的面积为6cm 2,则原大正方形的面积为_____.14.计算:20(2)3--⋅=______.15.已知2m a =,5n a =,则2m n a -=___________. 16.设(2a+3b )2=(2a ﹣3b )2+A ,则A =__________17.计算20202019133⎛⎫⨯ ⎪⎝⎭的结果是_18.若9×32m ×33m =322,则m 的值为_____.19.己知()()26M x x =--,()()53N x x =--,则M 与N 的大小关系是____. 20.设23P x xy =-,239Q xy y =-,若P Q =,则xy的值为__________. 三、解答题21.图1是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的边长等于 .(2)观察图2你能写出下列三个代数式(m +n )2,(m ﹣n )2,mn 之间的等量关系 .(3)运用你所得到的公式,计算若mn =﹣2,m ﹣n =4,求: ①(m +n )2的值. ②m 4+n 4的值.(4)用完全平方公式和非负数的性质求代数式x 2+2x +y 2﹣4y +7的最小值. 22.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++请用以上方法解决下列问题:(计算过程要有竖式) (1)计算:()()3223102x x x x +--÷-(2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值.23.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图(1)可以 用来解释()2222a ab b a b ++=+,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.如图(2),将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m 的大正方形,两块是边长都为n 的小正方形,五块是长为m ,宽为n 的全等小长方形,且m n >.(以上长度单位: cm )(1)观察图形,可以发现代数式22252m mn n ++可以分解因式为_________(2)若每块小长方形的面积为210cm ,四个正方形的面积和为258,cm 试求图中所有裁剪线(虚线部分)长之和.24.材料:数学兴趣一小组的同学对完全平方公式进行研究:因2()0a b -≥,将左边展开得到2220a ab b -+≥,移项可得222a b ab +≥.(当且仅当a b =时,取“=”)数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数m ,n ,都存在2m n mn +≥m n =时,取“=”)并进一步发现,两个非负数m ,n 的和一定存在着个最小值. 根据材料,解答下列问题:(1)22(3)(4)x y +≥________(0x >,0y >);221x x ⎛⎫+≥ ⎪⎝⎭________(0x >); (2)求312(0)4x x x+>的最小值; (3)已知2x >,当x 为何值时,代数式43201036x x ++-有最小值?并求出这个最小值. 25.计算 (1)2152224-⨯+÷; (2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭;(3)()2222322xy x y x y xy ⎡⎤---⎣⎦; (4)()()()3323231333x x x x ⎛⎫-+--⋅ ⎪⎝⎭.26.计算(1)()()16231417-+--+-(2)2212924355⎛⎫⎛⎫-⨯-⨯-÷+- ⎪ ⎪⎝⎭⎝⎭ (3)()()222232352xy x x xy x xy -+----⎡⎤⎣⎦(4)()()()2221a a a -++【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分别用同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式来进行判断即可; 【详解】A 、325a a a = ,故该选项错误;B 、()()2212222a a a a a a a +-=-+-=-- ,故该选项错误;C 、()333ab a b = ,故该选项正确; D 、624a a a ÷= ,故该选项错误; 故选:C . 【点睛】本题考查了同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式,正确掌握公式是解题的关键;2.A解析:A 【分析】利用面积的和差分别表示出S 1和S 2,然后利用整式的混合运算计算它们的差,再由S 2-S 1=3b ,AD=10,列出方程求得AB 便可. 【详解】解:S 1=(AB-a )•a+(CD-b )(AD-a )=(AB-a )•a+(AB-b )(AD-a ), S 2=AB (AD-a )+(a-b )(AB-a ),∴S 2-S 1=AB (AD-a )+(a-b )(AB-a )-(AB-a )•a -(AB-b )(AD-a ) =(AD-a )(AB-AB+b )+(AB-a )(a-b-a ) =b•AD -ab-b•AB+ab =b (AD-AB ), ∵S 2-S 1=3b ,AD=10, ∴b (10-AB )=3b , ∴AB=7. 故选:A . 【点睛】本题考查了列代数式,整式的混合运算,整体思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.3.C解析:C 【分析】利用完全平方公式的结构特征判断即可; 【详解】()()()2222412=24144-±+±-±+y y y y ;故答案选C . 【点睛】本题主要考查了完全平方公式,准确判断是解题的关键.4.C解析:C 【分析】①观察图形,由大长方形的长及小长方形的宽,可得出小长方形的长为(y-15)cm ,说法①正确;②由大长方形的宽及小长方形的长、宽,可得出阴影A ,B 的较短边长,将其相加可得出阴影A 的较短边和阴影B 的较短边之和为(2x+5-y )cm ,说法②错误;③由阴影A ,B 的相邻两边的长度,利用长方形的周长计算公式可得出阴影A 和阴影B 的周长之和为2(2x+15),结合x 为定值可得出说法③正确;④由阴影A ,B 的相邻两边的长度,利用长方形的面积计算公式可得出阴影A 和阴影B 的面积之和为(xy-25y+375)cm 2,代入x=15可得出说法④错误. 【详解】解:①∵大长方形的长为ycm ,小长方形的宽为5cm , ∴小长方形的长为y-3×5=(y-15)cm ,说法①正确;②∵大长方形的宽为xcm ,小长方形的长为(y-15)cm ,小长方形的宽为5cm , ∴阴影A 的较短边为x-2×5=(x-10)cm ,阴影B 的较短边为x-(y-15)=(x-y+15)cm , ∴阴影A 的较短边和阴影B 的较短边之和为x-10+x-y+15=(2x+5-y )cm ,说法②错误; ③∵阴影A 的较长边为(y-15)cm ,较短边为(x-10)cm ,阴影B 的较长边为3×5=15cm ,较短边为(x-y+15)cm ,∴阴影A 的周长为2(y-15+x-10)=2(x+y-25),阴影B 的周长为2(15+x-y+15)=2(x-y+30),∴阴影A 和阴影B 的周长之和为2(x+y-25)+2(x-y+30)=2(2x+5), ∴若x 为定值,则阴影A 和阴影B 的周长之和为定值,说法③正确; ④∵阴影A 的较长边为(y-15)cm ,较短边为(x-10)cm ,阴影B 的较长边为3×5=15cm ,较短边为(x-y+15)cm ,∴阴影A 的面积为(y-15)(x-10)=(xy-15x-10y+150)cm 2,阴影B 的面积为15(x-y+15)=(15x-15y+225)cm 2,∴阴影A 和阴影B 的面积之和为xy-15x-10y+150+15x-15y+225=(xy-25y+375)cm 2, 当x=15时,xy-25y+375=(375-10y )cm 2,说法④错误. 综上所述,正确的说法有①③. 故选:C .【点睛】本题考查了列代数式以及整式的混合运算,逐一分析四条说法的正误是解题的关键.5.A解析:A 【分析】把a+2b-2=0变形为a+2b=2,再将2a ×4b 变形为22a b +,然后整体代入求值即可. 【详解】 解:∵a+2b-2=0, ∴a+2b=2, ∴2a ×4b =222=2=4a b + 故选:A . 【点睛】此题主要考查了同底数幂的逆运算,熟练掌握运算法则是解答此题的关键.6.B解析:B 【分析】分别根据同底数幂的除法法则,同底数幂的乘方法则,多项式乘以多项式法则以及单项式乘以单项式法则逐一判断即可. 【详解】 解:A. ()23633a a =,故本选项不符合题意;B .()()22356a a a a --=-+,正确,故本选项符合题意; C .844x x x ÷=,故本选项不合题意; D .325326x x x ⋅=,故本选项不合题意. 故选:B . 【点睛】本题主要考查了整式的乘除运算,熟记相关的运算法则是解答本题的关键.7.A解析:A 【分析】①根据同类项的定义判断计算;②根据幂的乘方公式计算;③利用零指数幂和有理数的混合运算法则计算;④根据同类项的定义判断计算. 【详解】∵2x 与3x 不是同类项,无法合并,∴①是错误的; ∵()326x x =,∴②是正确的;∵032112-1=1⨯-=⨯,∴③是错误的; ∵53-5+3=-2--+=,∴④是错误的; 综上所述,只有一个正确, 故选:A. 【点睛】本题考查了合并同类项,幂的乘方,零指数幂,绝对值,有理数的混合运算,熟练掌握公式及其运算法则是解题的关键.8.D解析:D 【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别求解,根据4个矩形的面积和等于两个正方形的面积的式求解即可. 【详解】解:A 、根据大正方形的面积求得该正方形的边长是12,则12a b +=,故A 选项不符合题意;B 、根据小正方形的面积可以求得该正方形的边长是2,则2a b -=,故B 选项不符合题意;C 、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即41444140ab ,35ab =,故 C 选项不符合题意;D 、222()2144a b a b ab +=++=,所以 221442351447074a b ,故 D 选项符合题意. 故选:D . 【点睛】本题考查了代数式和图形的面积公式正确运算,熟悉相关性质是解题的关键.9.D解析:D 【分析】利用积的乘方的逆运算解答. 【详解】()()202020213232-⨯=20202020233322⎛⎫⎛⎫-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2020233322⎛⎫-⨯⨯ ⎪⎝⎭=32. 故选:D . 【点睛】此题考查积的乘方的逆运算,掌握积的乘方的计算公式是解题的关键.10.A解析:A 【分析】利用完全平方公式计算即可得到答案. 【详解】∵1x =,1y =,∴x+y= ∴222x xy y ++ =2()x y +=2 =20, 故选:A . 【点睛】此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.11.B解析:B 【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断. 【详解】解:A 、a 5•a 2=a 7,此选项计算错误,故不符合题意; B 、(a 2)4=a 8,此选项计算正确,符合题意; C 、(a 3b )2=a 6b 2,此选项计算错误,故不符合题意; D 、a 3与a 5不能合并,此选项计算错误,故不符合题意. 故选:B . 【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则.12.C【分析】直接利用完全平方公式和平方差公式分别计算,判断各式得出答案即可.【详解】解:①(2x+y )2=4x 2+4xy+y 2,错误;②2222()()2x y x y x xy y --=+=++,错误; ③221124x x x ⎛⎫-=-+ ⎪⎝⎭,错误; ④()()()()2233339b a b a a b a b a b ---=-+--=-,正确; 故选:C .【点睛】此题主要考查了完全平方公式和平方差公式,正确掌握公式的基本形式是解题关键.二、填空题13.22cm2【分析】由题意根据图1可知2ab =8cm2根据图2可知(a ﹣b )2=6cm2依此求出(a+b )2的值即可求解【详解】解:根据图1可知2ab =8cm2根据图2可知(a ﹣b )2=6cm2则(a解析:22cm 2.【分析】由题意根据图1可知2ab =8cm 2,根据图2可知(a ﹣b )2=6cm 2,依此求出(a +b )2的值即可求解.【详解】解:根据图1可知2ab =8cm 2,根据图2可知(a ﹣b )2=6cm 2,则(a +b )2=(a ﹣b )2+4ab =6+2×8=22(cm 2).故原大正方形的面积为22cm 2.故答案为:22cm 2.【点睛】本题考查的图形面积与完全平方公式的关系,掌握利用完全平方公式的变形求解图形面积是解题的关键.14.【分析】根据0指数和负指数的意义计算即可【详解】解:故答案为:【点睛】本题考查了0指数和负指数的运算解题关键是熟悉0指数和负指数的意义 解析:14【分析】根据0指数和负指数的意义计算即可.解:22011(2)31(2)4--⋅=⨯=-, 故答案为:14. 【点睛】 本题考查了0指数和负指数的运算,解题关键是熟悉0指数和负指数的意义.15.【分析】根据幂的乘方与同底数幂的除法法则解答即可【详解】∵(am )2÷an =22÷5=4÷5=故答案为:【点睛】本题主要考查了幂的乘方与同底数幂的除法熟记幂的运算法则是解答本题的关键 解析:45【分析】根据幂的乘方与同底数幂的除法法则解答即可.【详解】∵2m a =,5n a =,2m n a -=(a m )2÷a n =22÷5=4÷5=45. 故答案为:45. 【点睛】 本题主要考查了幂的乘方与同底数幂的除法,熟记幂的运算法则是解答本题的关键. 16.24ab 【分析】由完全平方公式(a±b )2=a2±2ab+b2得到(a+b )2=(a ﹣b )2+4ab 据此可以作出判断【详解】解:∵(2a+3b )2=(2a ﹣3b )2+4×2a×3b =(2a ﹣3b )2解析:24ab【分析】由完全平方公式(a ±b )2=a 2±2ab +b 2,得到(a +b )2=(a ﹣b )2+4ab ,据此可以作出判断.【详解】解:∵(2a +3b )2=(2a ﹣3b )2+4×2a ×3b =(2a ﹣3b )2+24ab ,(2a +3b )2=(2a ﹣3b )2+A ,∴A =24ab .故答案为:24ab .【点睛】本题考查了完全平方公式.关键是要了解(a ﹣b )2与(a +b )2展开式中区别就在于2ab 项的符号上,通过加上或者减去4ab 可相互变形得到.17.【分析】逆用同底数幂乘法公式把化为再根据积的乘方运算即可【详解】解:故答案为:【点睛】本题考查了同底数幂的乘法积的乘方等知识能逆用同底数幂的乘法公式是解题关键 解析:13【分析】 逆用同底数幂乘法公式把202013⎛⎫ ⎪⎝⎭化为20191133⎛⎫⨯ ⎪⎝⎭,再根据积的乘方运算即可. 【详解】 解:20202019201920192019201911111113=3=3=1=3333333⎛⎫⎛⎫⎛⎫⨯⨯⨯⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故答案为:13【点睛】 本题考查了同底数幂的乘法,积的乘方等知识,能逆用同底数幂的乘法公式是解题关键. 18.4【分析】先变形9=32再利用同底数幂的乘法运算法则运算然后指数相等列等式求解即可【详解】∵9×32m×33m=32×32m×33m =32+2m+3m=322∴2+2m+3m=22即5m=20解得:解析:4【分析】先变形9=32,再利用同底数幂的乘法运算法则运算,然后指数相等列等式求解即可.【详解】∵9×32m ×33m =32×32m ×33m =32+2m+3m =322∴2+2m+3m=22,即5m=20,解得:m=4,故答案为:4.【点睛】本题考查了同底数幂的乘法、等式的性质,灵活运用同底数幂的乘法运算法则是解答的关键.19.【分析】利用作差法再根据整式的混合运算法则运算即可作出判断【详解】∵=﹣==﹣3﹤0∴故答案为:【点睛】本题考查整式的混合运算熟练掌握整式的混合运算法则运用作差法比较大小是解答的关键解析:M N <【分析】利用作差法,再根据整式的混合运算法则运算即可作出判断.【详解】∵M N -=()()26x x --﹣()()53x x --=2226123515x x x x x x --+-++-=﹣3﹤0,∴M N <,故答案为:M N <.【点睛】本题考查整式的混合运算,熟练掌握整式的混合运算法则,运用作差法比较大小是解答的关键.20.3【分析】根据P=Q 得出x=3y 求解即可【详解】解:∵∴即=0∴x=3y ∴=3故答案为:3【点睛】本题考查了完全平方公式关键是能根据已知条件变形 解析:3【分析】根据P=Q ,得出x=3y 求解即可.【详解】解:∵P Q =,23P x xy =-,239Q xy y =-,∴22339x xy xy y -=-,即2226(3)9x xy y x y =--+=0,∴x=3y ∴x y=3. 故答案为:3【点睛】本题考查了完全平方公式,关键是能根据已知条件变形.三、解答题21.(1)m ﹣n ;(2)(m ﹣n )2=(m +n )2﹣4mn ;(3)①8;②136(4)2【分析】(1)根据阴影部分正方形的边长等于小长方形的长减去宽解答即可;(2)根据大正方形的面积减去四个长方形的面积等于阴影部分小正方形的面积解答即可; (3)把数据代入(3)的数量关系计算即可得解;(4)根据完全平方公式配方,再根据非负数的性质即可得解.【详解】解:(1)由图可知,阴影部分小正方形的边长为:m ﹣n ;故答案为:m ﹣n ;(2)根据正方形的面积公式,阴影部分的面积为(m ﹣n )2,还可以表示为(m +n )2﹣4mn ,∴(m ﹣n )2=(m +n )2﹣4mn ,故答案为:(m ﹣n )2=(m +n )2﹣4mn ;(3)①∵mn =﹣2,m ﹣n =4,∴(m +n )2=(m ﹣n )2+4mn =42+4×(﹣2)=16﹣8=8,②m 2+n 2=(m ﹣n)2+2mn=42+2×(﹣2)=16﹣4=12,∴m 4+n 4=(m 2+n 2)2﹣2 m 2·n 2=122﹣2×(﹣2)2=136;(4)x 2+2x +y 2﹣4y +7,=x 2+2x +1+y 2﹣4y +4+2,=(x +1)2+(y ﹣2)2+2,∵(x +1)2≥0,(y ﹣2)2≥0,∴(x +1)2+(y ﹣2)2≥0,∴当x =﹣1,y =2时,代数式x 2+2x +y 2﹣4y +7的最小值是2.【点睛】本题考查了完全平方公式的几何意义、平方数的非负性,准确识图,能用两种不同的方式表示阴影的面积,灵活运用完全平方公式解决问题是解答的关键.22.(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.23.(1)()()22m n m n ++;(2)42cm .【分析】(1)根据图形的面积直接可以得到;(2)根据222258m n +=,10mn =,可得2229m n +=,可求得7m n +=,根据图形可知,图中所有裁剪线(虚线部分)长之和是66m n +,据此求解即可.【详解】(1)根据图形,依题意可得:2225222m mn n m n m n(2)依题意得222258m n +=,10mn =2229m n ∴+=2222m n m mn n2292049m n0m n +>7m n ∴+=,根据图形可知,图中所有裁剪线(虚线部分)长之和是:6666742m n m n ∴图中所有裁剪线(虚线部分)长之和为42cm .【点睛】本题考查完全平方公式和因式分解的应用,理解题意,从题目中获取信息,列出正确的代数式,再由图形的特点求解是解题的关键.24.(1)24xy ,2;(2)6;(3)83x =,最小值为2020【分析】(1)根据阅读材料可得结论;(2)根据阅读材料介绍的方法即可得出结论;(3)把已知代数式变形为4(36)201636x x -++-,再利用阅读材料介绍的方法即可得出结论.【详解】解:(1)∵0x >,0y >∴22(3)(4)x y +≥23424x y xy ⨯⨯=∵0x > ∴221x x ⎛⎫+≥ ⎪⎝⎭122x x ⨯⨯= 故答案为:24xy ,2(2)∵0x >时,12x ,34x 均为正数,∴31264x x +≥= ∴3124x x+的最小值是6 (3)当2x >时,3x ,36x -,436x -均为正数 ∴43201036x x ++-4(36)2016201636x x =-++≥-2016=2020= 当43636x x -=-时,即8433x =或(舍去)时,有最小值, ∴当83x =时,代数式43201036x x ++-的最小值是2020. 【点睛】此题主要考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.25.(1)5;(2)-42;(3)222xy x y +;(4)67x .【分析】(1)根据有理数混合运算法则计算即可;(2)根据负指数整数幂、零指数幂、绝对值的意义及乘方,计算即可;(3)去括号,然后合并同类项即可;(4)根据积的乘方、幂的乘方运算法则计算即可.【详解】解:(1)2152224-⨯+÷ =115522-+=; (2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭=271161-⨯-+=2716142--+=-;(3)()2222322xy x y x y xy ⎡⎤---⎣⎦ =22223242xy x y x y xy +--=222xy x y +;(4)()()()3323231333xx x x ⎛⎫-+--⋅ ⎪⎝⎭ =6633192727x x x x -+-⋅=67x .【点睛】 本题主要考查有理数的混合运算、整式的混合运算,解题的关键是熟练运用运算法则. 26.(1)4;(2)1;(3)2-610x xy +;(4)32284a a a +--.【分析】(1)先写成省略括号和的形式,再同号相加计算,最后异号相加计算即可;(2)先算乘方,乘方同时除变乘,去绝对值,再算乘法,最后加减法计算即可; (3)先去小括号,再去中括号,合并同类项即可;(4)先利用平方差公式计算,再利用多项式乘以多项式法则乘开即可.【详解】(1)()()16231417-+--+-,=1623+1417-+-,=()23+1417+16-,=3733-,=4;(2)2212924355⎛⎫⎛⎫-⨯-⨯-÷+- ⎪ ⎪⎝⎭⎝⎭,=4259+4952-⨯⨯+, =4+14-+,=1; (3)()()222232352xy x x xy x xy -+----⎡⎤⎣⎦,=222622156xy x x xy x xy -+--+-⎡⎤⎣⎦, =222622156xy x x xy x xy -+-+-+,=2-610x xy +;(4)()()()2221a a a -++,=()()2421a a -+, =32284a a a +--.【点睛】本题考查有理数的混合运算与整式的加减乘混合远算,掌握有理数的混合运算法则,整式加减乘的运算法则,以及乘法公式是解题关键.。
北师⼤版七年级下册第1章《整式的乘除》培优拔尖习题训练(带答案)北师⼤版第1章《整式的乘除》培优拔尖习题训练⼀.选择题(共10⼩题)1.下⾯计算正确的是()A.a2?a3=a5B.3a2﹣a2=2C.4a6÷2a3=2a2D.(a2)3=a52.化简(x+4)(x﹣1)+(x﹣4)(x+1)的结果是()A.2x2﹣8B.2x2﹣x﹣4C.2x2+8D.2x2+6x3.若要使4x2+mx+成为⼀个两数差的完全平⽅式,则m的值应为()A.B.C.D.4.下列计算错误的是()A.(﹣2a3)3=﹣8a9B.(ab2)3?(a2b)2=a7b8C.(xy2)2?(9x2y)=x6y6D.(5×105)×(4×104)=2×10105.已知长⽅形ABCD可以按图⽰⽅式分成九部分,在a,b变化的过程中,下⾯说法正确的有()①图中存在三部分的周长之和恰好等于长⽅形ABCD的周长②长⽅形ABCD的长宽之⽐可能为2③当长⽅形ABCD为正⽅形时,九部分都为正⽅形④当长⽅形ABCD的周长为60时,它的⾯积可能为100.A.①②B.①③C.②③④D.①③④6.若(x2+x+b)?(2x+c)=2x3+7x2﹣x+a,则a,b,c的值分别为()A.a=﹣15,b=﹣3,c=5B.a=﹣15,b=3,c =﹣5C.a=15,b=3,c=5D.a=15,b=﹣3,c=﹣57.如图1,在边长为a的正⽅形中剪去⼀个边长为b的⼩正⽅形(a>b),把剩下部分沿图1中的虚线剪开后重新拼成⼀个梯形(如图2),利⽤这两幅图形⾯积,可以验证的乘法公式是()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a(a+b)=a2+ab D.(a+b)(a﹣b)=a2﹣b28.若(a﹣c+b)2=21,(a+c+b)2=2019,则a2+b2+c2+2ab的值是()A.1020B.1998C.2019D.20409.我们知道,同底数幂的乘法法则为a m?a n=a m+n(其中a≠0,m、n为正整数),类似地我们规定关于任意正整数m、n的⼀种新运算:h(m+n)=h(m)?h(n);⽐如h(2)=3,则h(4)=h(2+2)=3×3=9,若h(2)=k(k≠0),那么h(2n)?h(2020)的结果是()A.2k+2020B.2k+1010C.k n+1010D.1022k10.观察下列各式:(x2﹣1)÷(x﹣1)=x+1.(x3﹣1)÷(x﹣1)=x2+x+1,(x4﹣1)÷(x﹣1)=x3+x2+x+1,(x5﹣1)÷(x﹣1)=x4+x3+x2+x+1,根据上述规律计算2+22+23+…+262+263的值为()A.264﹣1B.264﹣2C.264+1D.264+2⼆.填空题(共8⼩题)11.2015年诺贝尔⽣理学或医学奖得主中国科学家屠呦呦,发现了⼀种长度约为0.000000456毫⽶的病毒,把0.000000456⽤科学记数法表⽰为.12.已知x2﹣2(m+3)x+9是⼀个完全平⽅式,则m=.13.计算:(16x3﹣8x2+4x)÷(﹣2x)=.14.若计算(x﹣2)(3x+m)的结果中不含关于字母x的⼀次项,则m的值为.15.若(x﹣2)x=1,则x=.16.如图所⽰,如图,边长分别为a和b的两个正⽅形拼接在⼀起,则图中阴影部分的⾯积为.17.在我们所学的课本中,多项式与多项式相称可以⽤⼏何图形的⾯积来表⽰,例如:(2a+b)(a+b)=2a2+3ab+b2就可以⽤下⾯图中的图①来表⽰.请你根据此⽅法写出图②中图形的⾯积所表⽰的代数恒等式:18.观察下列各等式:x﹣2=x﹣2(x﹣2)(x+2)=x2﹣22(x﹣2)(x2+2x+4)=x3﹣23(x﹣2)(x3+2x2+4x+8)=x4﹣24……请你猜想:若A?(x+y)=x5+y5,则代数式A=.19.先化简,再求值:(m﹣2)2﹣(n+2)(n﹣2)﹣m(m﹣1),其中2m2+12m+18+|2n﹣3|=0.20.计算:(1)(﹣4x2)﹣(1+2x)(8x﹣2)(2)(﹣2x﹣y)(y﹣2x)﹣(2x+y)2(3)先化简再求值:(12x3y2+x2y﹣x2y3)÷(﹣2x2y)﹣[2(x﹣y)]2,其中x=﹣,y=321.阅读材料:(1)1的任何次幂都为1:(2)﹣1的奇数次幂为﹣1:(3)﹣1的偶数次幂为1:(4)任何不等于零的数的零次幂为1.请问当x为何值时,代数式(2x+3)x+2020的值为1.22.(1)先化简,再求值已知:[(x﹣2y)2﹣4y2+2xy]÷2x,其中x=1,y=2.(2)先化简,再求值:(﹣3ab)2(a2+ab+b2)﹣3ab(3a3b+3a2b2﹣ab3),其中a=﹣,b=23.(1)计算:(a﹣2)(a2+2a+4)=.(2x﹣y)(4x2+2xy+y2)=.(2)上⾯的整式乘法计算结果很简洁,你⼜发现⼀个新的乘法公式(请⽤含a,b的字母表⽰).(3)下列各式能⽤你发现的乘法公式计算的是.A.(a﹣3)(a2﹣3a+9)B.(2m﹣n)(2m2+2mn+n2)C.(4﹣x)(16+4x+x2)D.(m﹣n)(m2+2mn+n2)24.如图1,在⼀个边长为a的正⽅形⽊板上锯掉⼀个边长为b的正⽅形,并把余下的部分沿虚线剪开拼成图2的形状.(1)请⽤两种⽅法表⽰阴影部分的⾯积:图1得:;图2得;(2)由图1与图2⾯积关系,可以得到⼀个等式:;(3)利⽤(2)中的等式,已知a2﹣b2=16,且a+b=8,则a﹣b=.参考答案1.【解答】解:A、结果是a5,故本选项符合题意;B、结果是2a2,故本选项不符合题意;C、结果是2a3,故本选项不符合题意;D、结果是a6,故本选项不符合题意;故选:A.2.【解答】解:(x+4)(x﹣1)+(x﹣4)(x+1)=x2+3x﹣4+x2﹣3x﹣4=2x2﹣8,故选:A.3.【解答】解:∵(2x﹣)2=4x2﹣x+,或[2x﹣(﹣)]2=4x2+x+,∴m=﹣或.故选:A.4.【解答】解:A、(﹣2a3)3=﹣8a9,正确;B、(ab2)3?(a2b)2=a7b8,正确;C、(xy2)2?(9x2y)=x4y5,错误;D、(5×105)×(4×104)=2×1010,正确;故选:C.5.【解答】解:①四边形AEFG、FHKM、SKWC的周长之和等于长⽅形ABCD的周长;②长⽅形的长为a+2b,宽为2a+b,若该长⽅形的长宽之⽐为2,则a+2b=2(2a+b)解得a=0.这与题意不符,故②的说法不正确;③当长⽅形ABCD为正⽅形时,2a+b=a+2b所以a=b,所以九部分都为正⽅形,故③的说法正确;④当长⽅形ABCD的周长为60时,即2(2a+b+a+2b)=60整理,得a+b=10所以四边形GHWD的⾯积为100.故当长⽅形ABCD的周长为60时,它的⾯积不可能为100,故④的说法不正确.综上正确的是①③.故选:B.6.【解答】解:∵(x2+x+b)?(2x+c)=2x3+7x2﹣x+a,2x3+2x2+2bx+cx2+cx+bc=2x3+7x2﹣x+a,2x3+(2+c)x2+(2b+c)x+bc∴2+c=7,2b+c=﹣1,bc=a.解得c=5,b=﹣3,a=﹣15.故选:A.7.【解答】解:图1阴影部分的⾯积等于a2﹣b2,图2梯形的⾯积是(2a+2b)(a﹣b)=(a+b)(a﹣b)根据两者阴影部分⾯积相等,可知(a+b)(a﹣b)=a2﹣b2⽐较各选项,只有D符合题意故选:D.8.【解答】解:(a﹣c+b)2=a2+b2+c2﹣2ac﹣2bc+2ab=21①,(a+c+b)2=a2+b2+c2+2ac+2bc+2ab=2019②,①+②,得2(a2+b2+c2)+4ab=2040,a2+b2+c2+2ab=1020.故选:A.9.【解答】解:∵h(2)=k(k≠0),h(m+n)=h(m)?h(n),∴h(2n)?h(2020)=h()?h()=?=k n?k1010=k n+1010,故选:C.10.【解答】解:有上述规律可知:(x64﹣1)÷(x﹣1)=x63+x62+…+x2+x+1当x=2时,即(264﹣1)÷(2﹣1)=1+2+22+…+262+263∴2+22+23+…+262+263=264﹣2.故选:B.⼆.填空题(共8⼩题)11.【解答】解:把0.000000456⽤科学记数法表⽰为4.56×10﹣7,故答案为:4.56×10﹣7.12.【解答】解:∵x2﹣2(m+3)x+9是⼀个完全平⽅式,∴m+3=±3,解得:m=﹣6或m=0,故答案为:﹣6或013.【解答】解:(16x3﹣8x2+4x)÷(﹣2x)=﹣8x2+4x﹣2.故答案为:﹣8x2+4x﹣2.14.【解答】解:原式=3x2+(m﹣6)x﹣2m,由结果不含x的⼀次项,得到m﹣6=0,解得:m=6,故答案为:615.【解答】解:∵(x﹣2)x=1,∴x=0时,(0﹣2)0=1,当x=3时,(3﹣2)3=1,则x=0或3.故答案为:0或3.16.【解答】解:∵去掉△DEF,则剩余部分为⼀个直⾓梯形∴图中阴影部分的⾯积为:(a+a+b)b﹣(b﹣a)a﹣(a+b)a=ab+b2﹣ab+a2﹣a2﹣ab=b2故答案为:.17.【解答】解:根据图形列得:(a+2b)(2a+b)=2a2+5ab+2b2.故答案为:(a+2b)(2a+b)=2a2+5ab+2b2.18.【解答】解:(x4﹣x3y+x2y2﹣xy3+y4)(x+y)=x5+y5,故答案为:x4﹣x3y+x2y2﹣xy3+y4.三.解答题(共6⼩题)19.【解答】解:(m﹣2)2﹣(n+2)(n﹣2)﹣m(m﹣1)=m2﹣4m+4﹣n2+4﹣m2+m=﹣n2﹣3m+8,∵2m2+12m+18+|2n﹣3|=0,∴2(m+3)2+|2n﹣3|=0,∴m+3=0,2n﹣3=0,∴m=﹣3,n=1.5,当m=﹣3,n=1.5时,原式=﹣1.52﹣3×(﹣3)+8=﹣3.20.【解答】解:(1)(﹣4x2)﹣(1+2x)(8x﹣2)=﹣4x2﹣8x+2﹣16x2+4x=﹣20x2﹣4x+2;(2)(﹣2x﹣y)(y﹣2x)﹣(2x+y)2=4x2﹣y2﹣4x2﹣4xy﹣y2=﹣2y2﹣4xy;(3)(12x3y2+x2y﹣x2y3)÷(﹣2x2y)﹣[2(x﹣y)]2=﹣6xy+y2﹣4x2+8xy﹣4y2=2xy﹣4x2﹣y2﹣,当,y=3时,原式=2×(﹣)×3﹣4×(﹣)2﹣×32﹣=﹣36.21.【解答】解:①由2x+3=1,得x=﹣1,当x=﹣1时,代数式(2x+3)x+2020=12019=1;②由2x+3=﹣1,得x=﹣2,当x=﹣2时,代数式(2x+3)x+2020=(﹣1)2018=1;③由x+2020=0,得x=﹣2020,当x=﹣2020时,2x+3=﹣4037≠0所以(2x+3)x+2020=(﹣4037)0=1.当x=﹣2020时,代数式(2x+3)x+2020的值为1.答:当x为﹣1、﹣2、﹣2020时,代数式(2x+3)x+2020的值为1.22.【解答】解:(1)[(x﹣2y)2﹣4y2+2xy]÷2x=[x2﹣4xy+4y2﹣4y2+2xy]÷2x=[x2﹣2xy]÷2x=,当x=1,y=2时,原式=;(2)(﹣3ab)2(a2+ab+b2)﹣3ab(3a3b+3a2b2﹣ab3)=9a2b2(a2+ab+b2)﹣(9a4b2+9a3b3﹣3a2b4)=9a4b2+9a3b3+9a2b4﹣9a4b2﹣9a3b3+3a2b4=12a2b4,当a=,b=时,原式=.23.【解答】解:(1)原式=a3﹣8;原式=8x3﹣y3;(2)(a﹣b)(a2+ab+b2)=a3﹣b3;(3)能⽤发现的乘法公式计算的是(4﹣x)(16+4x+x2).故答案为:(1)a3﹣8;8x3﹣y3;(2)(a﹣b)(a2+ab+b2)=a3﹣b3;(3)C.24.【解答】解:(1)图1中阴影部分的⾯积为:a2﹣b2,图2中阴影部分的⾯积为:(2b+2a)(a﹣b),即(a+b)(a﹣b);故答案为:a2﹣b2,(a+b)(a﹣b);(2)由图1与图2⾯积关系,可以得到⼀个等式:a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b);(3)∵a2﹣b2=16,且a+b=8,∴(a+b)(a﹣b)=16,即8(a﹣b)=16,∴a﹣b=2.故答案为:2.。
七年级数学下册第二章《整式加减》综合测试卷-人教版(含答案)( 时间:90分钟 总分:100分)一、选择题:(本大题共12小题,每小题2分,共计24分)1.下列说法中,正确的是( )A. 单项式b 的次数是0B. 是一次单项式C. 24x 3是7次单项式D. -5是单项式2.对于单项式-的系数和次数分别是( )A. -2,2B. -2,3C. -,2D. -,33.下列单项式中,书写规范的是( )A. 1aB. x ·2C. 0.5xD. 1mn4.若21213n x y --是7次单项式,则n =( ) A. 1 B. 2 C. 3 D. 45.下列说法正确的是( )A. -x +3x 三次二项式B. x -1二次二项式C. x 2-2x +34是二次三项式D. -5x 5+2x 4y 2-1是八次三项式6.一个n 次多项式(n 为正整数),它的每一项的次数是( )A. 都等于nB. 都小于nC. 都不小于nD. 都不大于n7.设M ,N 都是关于x 的五次多项式,则M +N 是( )A.十次多项式B.五次多项式C.次数不大于5的多项式D.次数不大于5的整式8.-3x 4与3y 是同类项,则mn 的值为( )A. 6B. 8C. 2D. 19.化简:ab-(2ab-3ab2)结果是()A.3a2b+3abB.-3ab2-abC.3ab2-abD.-3ab2+3ab10.若x 是两位数,y是一位数,如果把y 置于x左边所得的三位数是()A.100y+xB. 100y+10xC.10y+xD. yx11.减去2-3x等于6x2-3x-8的代数式是()A.6x2-6x-10B.6x2-10C.6x2-6D.6x2-6x-612.若a2b+4=0,则代数式3a2b-(a2b-3a2b)的值为()A. 20B. -20C. 4D. -4二、填空题:(本大题共8小题,每小题2分,共16分)13.用式子表示“数a的3倍与3的差的一半”是.14.把多项式6+2x4-3x2+7x3按各项的次数从高到低重新排列为.15.某项工程。
一、选择题1.(0分)[ID:68038]如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A—B—C为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为 ( )A.5次B.6次C.7次D.8次2.(0分)[ID:68026]有一种密码,将英文26个字母,,,,a b c z(不论大小写)依次对应1,2,3,…,26这26个序号(见表格),当明码对应的序号x为奇数时,密码对应的序号为|25|2x-,当明码对应的序号x为偶数时,密码对应的序号为122x+,按照此规定,将明码“love”译成密码是()字母a b c d e f g h i j k l m 序号12345678910111213字母n o p q r s t u v w x y z 序号14151617181920212223242526A.love B.rkwu C.sdri D.rewj3.(0分)[ID:68053]如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+14.(0分)[ID:68049]已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是()A.2x2﹣5x﹣1 B.﹣2x2+5x+1 C.8x2﹣5x+1 D.8x2+13x﹣15.(0分)[ID :68048]已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( ) A .2 B .3 C .4D .6 6.(0分)[ID :68045]若 3x m y 3 与﹣2x 2y n 是同类项,则( )A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=27.(0分)[ID :68024]下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个B .3个C .4个D .5个8.(0分)[ID :68021]1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b cA .1,6,15a b c ===B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c ===9.(0分)[ID :68014]如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .2+6nB .8+6nC .4+4nD .8n10.(0分)[ID :68012]大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .5511.(0分)[ID :68000]下列说法正确的是( ) A .单项式34xy -的系数是﹣3 B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6 12.(0分)[ID :67987]下列各式中,去括号正确的是( )A .2(1)21x y x y +-=+-B .2(1)22x y x y --=++C .2(1)22x y x y --=-+D .2(1)22x y x y --=--13.(0分)[ID :67982]若252A x x =-+,256B x x =--,则A 与B 的大小关系是( ) A .A B >B .A B =C .A B <D .无法确定14.(0分)[ID :67967]下列各对单项式中,属于同类项的是( ) A .ab -与4abcB .213x y 与212xy C .0与3-D .3与a15.(0分)[ID :67958]长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( ) A .3aB .6a +bC .6aD .10a -b二、填空题16.(0分)[ID :68154]如果多项式32242(176)x x kx x +-+-中不含2x 的项,则k 的值为__.17.(0分)[ID :68151]如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子.18.(0分)[ID :68137]化简:226334x x x x_________.19.(0分)[ID :68131]m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________. 20.(0分)[ID :68125]如图,是由一些点组成的图形,按此规律,在第n 个图形中,点的个数为_____.21.(0分)[ID :68123]已知轮船在静水中的速度为(a +b )千米/时,逆流速度为(2a -b )千米/时,则顺流速度为_____千米/时22.(0分)[ID :68117]礼堂第一排有 a 个座位,后面每排都比第一排多 1 个座位,则第 n 排座位有________________.23.(0分)[ID :68099]计算7a 2b ﹣5ba 2=_____. 24.(0分)[ID :68078]“a 的3倍与b 的34的和”用代数式表示为______. 25.(0分)[ID :68074]用棋子按下列方式摆图形,依照此规律,第n 个图形比第()1n -个图形多______枚棋子.…第1个 第2个 第3个26.(0分)[ID :68066]在整式:32x y -,98b -,336b y-,0.2,57mn n --,26a b +-中,有_____个单项式,_____个多项式,多项式分别是_______.27.(0分)[ID :68058]请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________三、解答题28.(0分)[ID :67837]小丽暑假期间参加社会实践活动,从某批发市场以批发价每个m 元的价格购进100个手机充电宝,然后每个加价n 元到市场出售.(1)求售出100个手机充电宝的总售价为多少元(结果用含m ,n 的式子表示)? (2)由于开学临近,小丽在成功售出60个充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完. ①她的总销售额是多少元?②相比不采取降价销售,她将比实际销售多盈利多少元(结果用含m 、n 的式子表示)? ③若m=2n ,小丽实际销售完这批充电宝的利润率为 (利润率=利润÷进价×100%) 29.(0分)[ID :67819]历史上的数学巨人欧拉最先把关于x 的多项式用记号f (x )的形式来表示,把x 等于某数a 时的多项式的值用f (a )来表示,例如x=﹣1时,多项式f (x )=x 2+3x ﹣5的值记为f (﹣1),则f (﹣1)=﹣7.已知f (x )=ax 5+bx 3+3x+c ,且f (0)=﹣1 (1)c=_____.(2)若f (1)=2,求a+b 的值; (3)若f (2)=9,求f (﹣2)的值.30.(0分)[ID :67797]已知一个多项式加上223x y xy -得222x y xy -,求这个多项式. 佳佳的解题过程如下:解:222223x y xy x y xy ---①224x y xy =-②请问佳佳的解题过程是从哪一步开始出错的?并写出正确的解题过程.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.C2.D3.B4.A5.C6.B7.A8.B9.A10.C11.C12.C13.A14.C15.C二、填空题16.2【分析】先去括号再根据不含的项列出式子求解即可得【详解】由题意得:解得故答案是:2【点睛】本题考查了去括号多项式中的无关型问题熟练掌握去括号法则是解题关键17.(4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n个上字需用(4n+2)枚棋子故答18.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键19.0【解析】由题意m+n=0所以(3m-2n)-(2m-3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同20.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(221.3b【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整22.【分析】有第1排的座位数看第n排的座位数是在第1排座位数的基础上增加几个1即可【详解】解:∵第一排有个座位∴第2排的座位为a+1第3排的座位数为a+2…第n排座位有(a+n-1)个故答案为:(a+n23.2a2b【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型24.【分析】a的3倍表示为3ab的表示为b然后把它们相加即可【详解】根据题意得3a +b;故答案为:3a+b【点睛】本题考查了列代数式:把问题中与数量有关的词语用含有数字字母和运算符号的式子表示出来就是列25.【分析】归纳总结找出第n个图形与第(n-1)个图形中的棋子数相减即可得到结果【详解】解:第1个图形棋子的个数:1;第2个图形1+4;第3个图形1+4+7;第4个图形1+4+7+10;…第n个图形1+26.4【分析】根据单项式与多项式的概念即可求出答案【详解】解:单项式有2个:02多项式有4个:【点睛】本题考查单项式与多项式的概念解题的关键是正确理解单项式与多项式之间的联系本题属于基础题型27.-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【分析】首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为-5,终点为9,即可得出它需要跳的次数.【详解】解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳9(5)72--=次.故选C.此题考查数字的规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般.2.D解析:D【分析】明码“love”中每一个字母所代表的数字分别为12,15,22,5,再根据这四个数字的奇偶性,求得其密码.【详解】l对应的序号12为偶数,则密码对应的序号为1212182+=,对应r;o对应的序号15为奇数,则密码对应的序号为|1525|52-=,对应e;v对应的序号22为偶数,则密码对应的序号为2212232+=,对应w;e对应的序号5为奇数,则密码对应的序号为|525|102-=,对应j.由此可得明码“love”译成密码是rewj.故选:D.【点睛】本题考查了绝对值和求代数式的值.解题的关键是明确字母与数字的相互转化,每一个字母代表一个数字,一一对应关系.3.B解析:B∵观察可知:左边三角形的数字规律为:1,2,…,n , 右边三角形的数字规律为:2,22,…,2n , 下边三角形的数字规律为:1+2,222+,…,2n n +, ∴最后一个三角形中y 与n 之间的关系式是y=2n +n. 故选B . 【点睛】考点:规律型:数字的变化类.4.A解析:A 【分析】根据由题意可得被减式为5x 2+4x-1,减式为3x 2+9x ,求出差值即是答案. 【详解】由题意得:5x 2+4x−1−(3x 2+9x), =5x 2+4x−1−3x 2−9x , =2x 2−5x−1. 故答案选A. 【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.5.C解析:C 【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可. 【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩,故224m n +=+=; 故选:C . 【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细.6.B解析:B 【分析】根据同类项是字母相同且相同字母的指数也相,可得答案. 【详解】33m x y 和22n x y ﹣是同类项,得m=2,n=3,所以B 选项是正确的.本题考查了同类项,利用了同类项的定义.7.A解析:A 【分析】几个单项式的和叫做多项式,结合各式进行判断即可. 【详解】22a b ,3,2ab,4,m -都是单项式; 2x yzx+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab cxy y π--,是多项式,共有2个.故选:A . 【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.8.B解析:B 【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可. 【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=. 故选:B . 【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键.9.A解析:A 【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答. 【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8; 第二个“金鱼”需用火柴棒的根数为6×2+2=14; 第三个“金鱼”需用火柴棒的根数为6×3+2=20; ……;第n 个“金鱼”需用火柴棒的根数为6n +2.【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键.10.C解析:C【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数2019的是从3开始的第1008个数,然后确定出1008所在的范围即可得解.【详解】∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=()()212m m+-,∵2n+1=2019,n=1009,∴奇数2019是从3开始的第1009个奇数,当m=44时,()() 4424419892+-=,当m=45时,()() 4524511342+-=,∴第1009个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选:C.【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.11.C解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A、单项式34xy-的系数是34-,此选项错误;B、单项式2πa3的次数是3,此选项错误;C、多项式x2y2﹣2x2+3是四次三项式,此选项正确;D、多项式x2﹣2x+6的项分别是x2、﹣2x、6,此选项错误;故选:C .【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.12.C解析:C【分析】各式去括号得到结果,即可作出判断.【详解】解:2(1)22x y x y +-=+-,故A 错误;2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C .【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.13.A解析:A【分析】作差进行比较即可.【详解】解:因为A -B =(x 2-5x +2)-( x 2-5x -6)=x 2-5x +2- x 2+5x +6=8>0,所以A >B .故选A .【点睛】本题考查了整式的加减和作差比较法,若A -B >0,则A >B ,若A -B <0,则A <B ,若A -B =0,则A =B .14.C解析:C【分析】根据同类项的定义逐个判断即可.【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项;D .3与a 不是同类项.故选C .【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.15.C解析:C【解析】【分析】根据长方形的周长公式列出算式后化简合并即可.【详解】∵长方形一边长为2a +b ,另一边为a -b ,∴长方形周长为:2(2a +b +a -b )=6a.故选C.【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.二、填空题16.2【分析】先去括号再根据不含的项列出式子求解即可得【详解】由题意得:解得故答案是:2【点睛】本题考查了去括号多项式中的无关型问题熟练掌握去括号法则是解题关键 解析:2【分析】先去括号,再根据“不含2x 的项”列出式子求解即可得.【详解】3223242(176)4(2)176x x kx x x k x x +-+-=+--+,由题意得:20k -=,解得2k =,故答案是:2.【点睛】本题考查了去括号、多项式中的无关型问题,熟练掌握去括号法则是解题关键. 17.(4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答解析:(4n+2).【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答.【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子.故答案为:(4n+2).【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.18.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键解析:2106x x -+【分析】先去括号,再根据合并同类项法则进行计算即可.【详解】解:226334x x x x 226334xx x x 2(64)(33)x x=2106x x -+,故答案为:2106x x -+.【点睛】此题考查整式的加减运算、去括号法则、合并同类项法则,正确去括号是解题的关键. 19.0【解析】由题意m+n=0所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0【解析】由题意m+n=0,所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.20.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n 个图形中小圆的个数为3+3+5+7+…+(2解析:n 2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n 个图形中小圆的个数为3+3+5+7+…+(2n ﹣1)=n 2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.21.3b【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整解析:3b【分析】顺流速度=静水速度+(静水速度-逆流速度),依此列出代数式a b a b a b+++--计算即可求解.()[()(2)]【详解】解:依题意有+++--()[()(2)]a b a b a b=+++-+[2]a b a b a b=+++-+a b a b a b2=(千米/时).3b故顺流速度为3b千米/时.故答案为:3b.【点睛】本题主要考查了整式加减的应用,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.22.【分析】有第1排的座位数看第n排的座位数是在第1排座位数的基础上增加几个1即可【详解】解:∵第一排有个座位∴第2排的座位为a+1第3排的座位数为a+2…第n排座位有(a+n-1)个故答案为:(a+n+-解析:a n1【分析】有第1排的座位数,看第n排的座位数是在第1排座位数的基础上增加几个1即可.【详解】解:∵第一排有a个座位,∴第2排的座位为a+1,第3排的座位数为a+2,…第n排座位有(a+n-1)个.故答案为:(a+n-1).【点睛】考查列代数式;得到第n排的座位数与第1排座位数的关系式的规律是解决本题的关键.23.2a2b【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型解析:2a2b【分析】根据合并同类项法则化简即可.【详解】()22227a b5ba=75a b=2a b﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.24.【分析】a的3倍表示为3ab的表示为b然后把它们相加即可【详解】根据题意得3a+b;故答案为:3a+b【点睛】本题考查了列代数式:把问题中与数量有关的词语用含有数字字母和运算符号的式子表示出来就是列解析:3 34 a b+【分析】a的3倍表示为3a,b的34表示为34b,然后把它们相加即可.【详解】根据题意,得3a+34 b;故答案为:3a+34 b.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;再分清数量关系;规范地书写.25.【分析】归纳总结找出第n个图形与第(n-1)个图形中的棋子数相减即可得到结果【详解】解:第1个图形棋子的个数:1;第2个图形1+4;第3个图形1+4+7;第4个图形1+4+7+10;…第n个图形1+解析:32n-【分析】归纳总结找出第n个图形与第(n-1)个图形中的棋子数,相减即可得到结果.【详解】解:第1个图形棋子的个数:1;第2个图形,1+4;第3个图形,1+4+7;第4个图形,1+4+7+10;…第n 个图形,1+4+7+…+(3n -2);则第n 个图形比第(n-1)个图形多(3n-2)枚棋子.故答案为:3n-2【点睛】此题主要考查了图形的变化类问题,同时还考查了学生通过特例分析从而归纳总结出一般结论的能力.26.4【分析】根据单项式与多项式的概念即可求出答案【详解】解:单项式有2个:02多项式有4个:【点睛】本题考查单项式与多项式的概念解题的关键是正确理解单项式与多项式之间的联系本题属于基础题型解析:4 32x y -、336b y -、57mn n --、26a b +- 【分析】根据单项式与多项式的概念即可求出答案.【详解】解:单项式有2个:98b -,0.2,,多项式有4个:32x y -,336b y -,57mn n --26a b +- 【点睛】本题考查单项式与多项式的概念,解题的关键是正确理解单项式与多项式之间的联系,本题属于基础题型. 27.-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.三、解答题28.(1)售出100个手机充电宝的总售价为:100(m+n)元;(2)①实际总销售额为:92(m+n)元;②实际盈利为92n﹣8m元;③38%.【分析】(1)先求出每个充电宝的售价,再乘以100,即可得出答案;(2)①先算出60个按售价出售的充电宝的销售额,再计算剩下40个按售价8折出售的充电宝的销售额,相加即可得出答案;②计算100个按售价出售的充电宝的销售额,跟①求出来的销售额比较,即可得出答案;③将m=2n代入实际利润92n-8m中,再根据利润率=利润÷进价×100%,即可得出答案.【详解】解:(1)∵每个充电宝的售价为:m+n元,∴售出100个手机充电宝的总售价为:100(m+n)元.(2)①实际总销售额为:60(m+n)+40×0.8(m+n)=92(m+n)元,②实际盈利为92(m+n)﹣100m=92n﹣8m元,∵100n﹣(92n﹣8m)=8(m+n),∴相比不采取降价销售,他将比实际销售多盈利8(m+n)元.③当m=2n时,张明实际销售完这批充电宝的利润为92n﹣8m=38m元,利润率为38100mm×100%=38%.故答案为38%.【点睛】本题考查的是列代数式,解题的关键是要看懂题目意思,理清字母之间的数量关系. 29.(1)-1;(2)0;(3)-11.【解析】分析:(1)把x=0,代入f(x)=ax5+bx3+3x+c,即可解决问题;(2)把x=1,代入f(x)=ax5+bx3+3x+c,即可解决问题;(3)把x=2,代入f(x)=ax5+bx3+3x+c,利用整体代入的思想即可解决问题;详解:(1)∵f(x)=ax5+bx3+3x+c,且f(0)=-1,∴c=-1,故答案为-1.(2)∵f(1)=2,c=-1∴a+b+3-1=2,∴a+b=0(3)∵f(2)=9,c=-1,∴32a+8b+6-1=9,∴32a+8b=4,∴f (-2)=-32a-8b-6-1=-4-6-1=-11.点睛:本题考查的多项式代数式求值,解题的关键是理解题意,灵活运用所学知识解决问题.30.是从第①步开始出错的,见解析【分析】根据多项式的加减运算法则进行运算即可求解.【详解】解:佳佳是从第①步开始出错的,正确的解题过程如下:根据题意,得:()()222223x y xy x y xy ---222223x y xy x y xy =--+222x y xy =+,∴这个多项式为222x y xy +.故答案为222x y xy +.【点睛】本题考查了多项式的加减混合运算,注意:只有同类项才能进行加减运算.。
一、选择题1.一串数字的排列规律是:第一个数是2,从第二个数起每一个数与前一个数的倒数之和为1,则第2020个数是( ) A .12-B .1-C .2-D .22.对于多项式534ax bx ++,当1x =时,它的值等于5,那么当1x =-时,它的值为( ) A .5-B .5C .3-D .33.若a 是最大的负整数,b 是绝对值最小的有理数,c 是倒数等于它本身的自然数,则代数式201520172016a b c ++的值为( ) A .2014B .2016C .2-或0D .04.若关于x ,y 的多项式()()222232x xy yxnxy y +---+中不含xy 项,则n 值是( ) A .3-B .3C .32-D .325.如图,一个大正方形的四个角落分别放置了四张大小不同的正方形纸片,其中①,②两张正方形纸片既不重叠也无空隙.已知①号正方形边长为a ,②号正方形边长为b ,则阴影部分的周长是( )A .22a b +B .42a b +C .24a b +D .33a b +6.下列各式的计算,正确的是( )A .235a b ab +=B .2222y y -=C .1055t t t-+=-D .2232m n mn mn -=7.如图所示,直线,AB CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为1,2,3,4,5,6---….那么标记为“2021”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上 8.下列计算正确的是( )A .3a +2a =5a 2B .﹣2ab +2ab =0C .2a 3+3a 2=5a 5D .3a ﹣a =39.已知:)(2320b a ++-=,则a b 的值为( ) A .-6B .6C .9D .-910.若代数式()()2226231x ax bx x ++---(,a b 为常数)的值与字母x 的取值无关,则代数式2+a b 的值为( ) A .0B .1-C .2或2-D .611.如图,平面内有公共端点的六条射线OA 、OB 、OC ,OD 、OE 、OF ,从射线OA 开始按逆时针方向依次在射线上写出数字1、2、3、4、5、6、7、…,则数字“2020”在射线( )A .OB 上 B .OC 上 C .OD 上 D .OE 上12.图①②③④……是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第100个“广”字中的棋子个数是( )A .105B .205C .305D .405二、填空题13.当1x =-时,多项式31mx nx ++的值等于2,那么当1x =时,则该多项式的值为________.14.观察后面的一列单项式:23446;810;,;x x x x --…根据你发现的规律,第10个单项式为___________.15.按如图所示的程序计算,若开始输入的x 的值为16,我们发现第1次得到的结果为8,第2次得到的结果为4,……,请你探索第2021次得到的结果为________.16.将正整数按如图所示的规律排列下去,若用有序数对(n ,m)表示第n 排、第m 个数,比如(4,2)表示的数是8,则若(25,6)表示的数是______.17.观察下列一组数:123451361015,,=,, (3591733)a a a a a ====它们是按一定规律排列的,请利用其中规律,写出第10个数10a = _________.18.如图,将一个正三角形纸片剪成四个完全相同的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,剪的次数记为n ,得到的正三角形的个数记为a n ,则a 2020=_____.19.下列图形都是由同样大小的黑色正方形纸片组成,其中图①有3张黑色正方形纸片,图②有5张黑色正方形纸片,图③有7张黑色正方形纸片,……按此规律排列下去,图n 中黑色正方形纸片的张数为________.(用含有n 的代数式表示)20.若241x x -=,则2(2)x -=__________.三、解答题21.先化简,再求值:(1)()()2345n n n -+--+,其中54n =-; (2)()2222323522a ab b a ab b ⎛⎫----- ⎪⎝⎭,其中7a =,17b =-.22.观察下面的三行单项式 x ,2x 2,4x 3,8x 4,16x 5…① 2x ,﹣4x 2,8x 3,﹣16x 4,32x 5…② 3x ,5x 2,9x 3,17x 4,33x 5…③ 根据你发现的规律,完成以下各题:(1)第①行第7个单项式为 ;第②行第7个单项式为 . (2)第③行第n 个单项式为 .(3)取每行的第10个单项式,令这三个单项式的和为A .计算当x =12时,256[3A ﹣2(A+14)]的值. 23.整体思想就是在解决数学问题时把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理.请利用你对整体思想的理解解决下列问题. (1)若235x y +=,则代数式463x y ++=________;(直接填入答案) (2)若8a b +=,4ab =-,求代数式(432)(6)a b ab a b ab -----的值; (3)若23a ab +=,2238b ab +=,求代数式22106a ab b ++的值.24.若21202x y ⎛⎫++-= ⎪⎝⎭,求323211223533x x y x x y ⎛⎫---+ ⎪⎝⎭的值. 25.已知多项式22172589x y xy xy ---+的次数为a ,常数项为b . (1)直接写出:a =________,b =_________.(2)若22325M b a ab =-+,2242N ab b a =--,求34M N -的值. 26.先化简,再求值:2222552282x y xy xy x y xy ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦,其中3x =,13y =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据要求写出符合要求的数并找到数字变化的规律,利用规律求解即可.【详解】解:∵第一个数是2,第二个数是12,第三个数是-1,第四个数是2,…∴每三个数按照2,12,-1循环,∵2020÷3=673 (1)∴第2020个数和第1个数一致,即:2.故选:D.【点睛】本题主要考查数字的变化规律,解决此类问题时通常需要确定数列与序数的关系或者数列的循环周期等,此题得出这列数每3个数为一周期循环是解题的关键.2.D解析:D【分析】把x=1代入多项式ax5+bx3+4=5,得a+b=1,把x=-1代入ax5+bx3+4得原式=-a-b+4=-(a+b)+4,根据前面的结果即可求出最后的值.【详解】解:把x=1代入多项式ax5+bx3+4=5,得a+b+4=5,即a+b=1,把x=-1代入ax5+bx3+4得,原式=-a-b+4=-(a+b)+4=3.∴多项式ax5+bx3+4当x=-1时的值为3.故选:D.【点睛】本题考查了代数式的求值,解题时要利用x的值是1或-1的特点,代入原式,将(a+b)作为一个整体来看待.3.D解析:D【分析】确定a、b、c的值,再代入计算即可.【详解】解:∵a是最大的负整数,∴1a=-,∵b是绝对值最小的有理数,∴0b =,∵c 是倒数等于它本身的自然数, ∴1c =,2015220011572017(1)20160021610a b c =-+⨯++=+,故选:D . 【点睛】本题考查了与有理数有关负整数、绝对值和倒数,解题关键是确定a 、b 、c 的值.4.C解析:C 【分析】先合并同类项,令xy 的系数为0即可得出n 的值. 【详解】()()222232x xy y x nxy y +---+ =()()22223222x xy y x nxy y +---+=22223222x xy y x nxy y +--+- =22(32)3x n xy y -++-, ∵多项式()()222232x xy y xnxy y +---+中不含xy 项,∴320n +=,∴n=32-, 故选C . 【点睛】本题考查了合并同类项法则及对多项式“项”的概念的理解,关键是掌握合并同类项与去括号法则.5.B解析:B 【分析】根据题意,得外层最大正方形的边长为(a+b ),利用平移思想,把阴影的周长表示为2AC+2(AB-b ),化简即可. 【详解】 根据题意,得阴影的周长表示为2AC+2(AB-b )=4AC-2b, ∵AC=a+b ,∴阴影部分的周长是=4a+4b-2b=4a+2b , 故选B. 【点睛】本题考查了用代数式表示图形的周长,熟练用字母表示正方形的边长和周长,运用平移思想表示图形的周长是解题的关键.6.C解析:C【分析】根据整式的加减法,即可解答.【详解】解:A、2a+3b≠5ab,故错误;B、2y2−y2=y2,故错误;C、−10t+5t=−5t,故正确;D、3m2n−2mn2≠mn,故错误;故选:C.【点睛】本题考查了整式的加减法,解决本题的关键是熟记整式的加减法法则.7.A解析:A【分析】由图可观察出奇数项在OA或OB射线上,根据每四条射线为一组,即可得出答案.【详解】解:观察图形的变化可知:奇数项:1、3、5、7,…,2n-1(n为正整数),偶数项:-2、-4、-6、-8,…,-2n(n为正整数),∵2021是奇数项,∴2n-1=2021,∴n=1011,∵每四条射线为一组,始边为OC,∴1011÷4=252...3,∴标记为“2021”的点在射线OA上,故选:A.【点睛】本题考查了规律型图形的变化类,解决本题的关键是观察图形的变化寻找规律.8.B解析:B【分析】先分析是否为同类项,再计算判断.【详解】A、3a+2a=5a,故该选项不符合题意;B、-2ab+2ab=0,故该项符合题意;C、2a3与3a2不是同类项,不能合并,故该项不符合题意;D、3a-a=2a,故该项不符合题意;故选:B . 【点睛】此题考查同类项的定义及合并同类项法则,熟记同类项定义是解题的关键.9.C解析:C 【分析】先根据偶次方的非负性、绝对值的非负性可得a 、b 的值,再代入计算有理数的乘方即可得. 【详解】由偶次方的非负性、绝对值的非负性得:30,20b a +=-=, 解得2,3a b ==-, 则()239a b =-=, 故选:C . 【点睛】本题考查了偶次方的非负性、绝对值的非负性、代数式求值,熟练掌握偶次方与绝对值的非负性是解题关键.10.B解析:B 【分析】利用去括号、合并同类项法则化简代数式,得到()()22237b x a x -+++,根据代数式()()2226231xax bx x ++---(,a b 为常数)的值与字母x 的取值无关可得220b -=,30a +=,求出a 和b 的值即可. 【详解】解:()()2226231x ax bx x ++---2226231x ax bx x ++-++= ()()22237b x a x -+++=,∵代数式()()2226231x ax bx x ++---(,a b 为常数)的值与字母x 的取值无关, ∴220b -=,30a +=, ∴1b =,3a =-, ∴2321a b +=-+=-, 故选:B . 【点睛】本题考查整式的加减—字母无关型,掌握去括号、合并同类项法则是解题的关键.11.C解析:C 【分析】由题意知,6个数字循环一次,则可求2020与4在一条射线上; 【详解】由题意可知,6个数字循环一次, ∵20206=3364÷,∴2020与4在一条射线上, ∴“2020”在射线OD 上; 故答案选C . 【点睛】本题主要考查了规律型数字变化类,准确分析判断是解题的关键.12.B解析:B 【分析】首先观察每个广字横有几个原点,然后观察撇有几个原点,找到规律后即可解答. 【详解】解:由题目得,第1个“广”字中的棋子个数是7; 第2个“广”字中的棋子个数是9; 第3个“广”字中的棋子个数是11; 4个“广”字中的棋子个数是13; 发现第5个“广”字中的棋子个数是15…进一步发现规律:第n 个“广”字中的棋子个数是(2n+5). 所以第100个“广”字中的棋子个数为2×100+5=205, 故选:B . 【点睛】本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.0【分析】把代入多项式得出关于mn 的等式再代入计算即可;【详解】把代入中得解得:当时=;故答案是0【点睛】本题主要考查了代数式求值准确计算是解题的关键解析:0 【分析】把1x =-代入多项式得出关于m ,n 的等式,再代入1x =计算即可; 【详解】把1x =-代入31mx nx ++中得,12--+=m n ,解得:1m n +=-, 当1x =时,31mx nx ++=1m n ++110=-+=; 故答案是0. 【点睛】本题主要考查了代数式求值,准确计算是解题的关键.14.【分析】把单项式的系数的绝对值系数的符号指数分别与单项式出现的序号建立起联系寻找出其中的规律即可【详解】仔细观察发现奇数项为正偶数项为负可用表示;系数的绝对值依次为4=2×(1+1)6=2×(2+1解析:1022x -. 【分析】把单项式的系数的绝对值,系数的符号,指数分别与单项式出现的序号建立起联系,寻找出其中的规律即可. 【详解】仔细观察,发现奇数项为正,偶数项为负,可用n 1(-1)+表示;系数的绝对值依次为4=2×(1+1),6=2×(2+1),8=2×(3+1),10=2×(4+1),第n 个单项式的系数为2×(n+1);指数依次为1,2,3,4,第n 个单项式的指数为n ; 所以第n 个单项式为n 1(-1)+×2×(n+1)n x ,所以当n=10时,单项式为n 1(-1)+×2×1110x =1022x -.故答案为:1022x -. 【点睛】本题考查了单项式中的规律探究,熟练将单项式的系数,指数与单项式的序号建立起正确的关系是解题的关键.15.6【分析】把x =16代入程序中计算以此类推得到一般性规律求出第2021次得到的结果即可【详解】解:第1次得到的结果为16×=8第2次得到的结果为8×=4第3次得到的结果为4×=2第4次得到的结果为2解析:6 【分析】把x =16代入程序中计算,以此类推得到一般性规律,求出第2021次得到的结果即可. 【详解】解:第1次得到的结果为16×12=8, 第2次得到的结果为8×12=4,第3次得到的结果为4×12=2,第4次得到的结果为2×12=1,第5次得到的结果为1+5=6,第6次得到的结果为6×12=3,第7次得到的结果为3+5=8,第8次得到的结果为8×12=4,第9次得到的结果为4×12=2,第10次得到的结果为2×12=1,第11次的到的结果为1+5=6,第12次得到的结果为6×12=3,……∴结果是8,4,2,1,6,3六个为周期循环,∵2021÷6=335…5,∴第2021次得到的结果为6,故答案为:6.【点睛】此题考查了数字的变化规律、代数式求值,由题意得出规律是解本题的关键.16.306【分析】据(42)表示整数8对图中给出的有序数对进行分析可以发现:对所有数对(nm)(n≥m)有:(nm)=(1+2+3+…+n−1)+m=+m 【详解】解:有序数对(nm)表示第n排第m个数对解析:306【分析】据(4,2)表示整数8,对图中给出的有序数对进行分析,可以发现:对所有数对(n,m)(n≥m)有:(n,m)=(1+2+3+…+n−1)+m=()12n n-+m.【详解】解:有序数对(n,m)表示第n排、第m个数,对如图中给出的有序数对和(4,2)表示整数8可得,(4,2)=()4412-+2=8;(3,1)=()3312-+1=4;…,由此可以发现,对所有数对(n ,m )(n≥m)有:(n ,m )=(1+2+3+…+n−1)+m =()12n n -+m . 所以,(25,6)=()252512-+6=300+6=306. 故答案为:306.【点睛】此题考查对数字变化类知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形、数值、数列等已知条件,认真分析,找出规律,解决问题. 17.【分析】分子的规律是:11+21+2+3第n 个数的分子为第1个分母为1+2第2个分母为1+第3个分母为1+第n 个分母为1+这样就可以确定第n 个分数让n=10即可得到答案【详解】∵分子的规律是:11+ 解析:11205【分析】 分子的规律是:1,1+2,1+2+3,第n 个数的分子为(1)2n n +, 第1个分母为1+2,第2个分母为1+22,第3个分母为1+32,第n 个分母为1+2n , 这样就可以确定第n 个分数,让n=10即可得到答案.【详解】∵分子的规律是:1,1+2,1+2+3,第n 个数的分子为(1)2n n +, 第1个分母为1+2,第2个分母为1+22,第3个分母为1+32,第n 个分母为1+2n ,∴第n 个分数为(1)212nn n ++, 当n=10时,10a =10101155112121025205⨯==+. 故答案为:11205. 【点睛】本题考查了有理数的规律探索,分别确定分子与分数序号,分母与分数序号之间的关系是解题的关键.18.6061【分析】根据规律得出数据不难发现:多剪一次多3个三角形即剪n 次时共有4+3(n-1)=3n+1【详解】解:所剪次数1次正三角形个数为4个所剪次数2次正三角形个数为7个所剪次数3次正三角形个数解析:6061【分析】根据规律得出数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.【详解】解:所剪次数1次,正三角形个数为4个,所剪次数2次,正三角形个数为7个,所剪次数3次,正三角形个数为10个,…剪n次时,共有4+3(n-1)=3n+1,把n=2020代入3n+1=6061,故答案为:6061.【点睛】此类题考查图形的规律,从数据中,很容易发现规律,再分析整理,得出结论.19.【分析】设图n中有an(n为正整数)张黑色正方形纸片观察图形根据各图形中黑色正方形纸片张数的变化可找出变化规律an=2n+1(n为正整数)此题得解【详解】解:设图n中有an(n为正整数)张黑色正方形n解析:21【分析】设图n中有a n(n为正整数)张黑色正方形纸片,观察图形,根据各图形中黑色正方形纸片张数的变化可找出变化规律“a n=2n+1(n为正整数)”,此题得解.【详解】解:设图n中有a n(n为正整数)张黑色正方形纸片,观察图形,可知:a1=3=2×1+1,a2=5=2×2+1,a3=7=2×3+1,a4=9=2×4+1,…,∴a n=2n+1(n为正整数).故答案是:2n+1.【点睛】本题考查了规律型:图形的变化类,根据图形中黑色正方形纸片张数的变化,找出变化规律“a n=2n+1(n为正整数)”是解题的关键.20.【分析】根据等式左边利用完全平方公式展开求出x2-4x+4的值即可【详解】解:因为x2-4x=1所以(x-2)²=x2-4x+4=1+4=5;故答案为:5【点睛】本题考查了代数式求值利用了整体代入的解析:5【分析】根据等式左边利用完全平方公式展开求出x2-4x+4的值即可.【详解】解:因为x2-4x=1,所以(x-2)²=x2-4x+4=1+4=5;故答案为:5.【点睛】本题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解题的关键.三、解答题21.(1)413n -,18-;(2)22a ab -,99【分析】(1)先去括号合并同类项化简,再将n 的值代入计算即可;(2)先去括号合并同类项化简,再将a 和b 的值代入计算即可.【详解】解:(1)()()2345n n n -+--+=685n n n -+---=413n -, 当54n =-时, 原式=54134⎛⎫⨯-- ⎪⎝⎭=51318--=-; (2)()2222323522a ab b a ab b ⎛⎫----- ⎪⎝⎭ =222236252a ab b a ab b ---++=22a ab -,当7a =,17b =-时, 原式=212777⎛⎫⨯-⨯- ⎪⎝⎭=()2491⨯--=98199+=. 【点睛】本题主要考查了整式的加减-化简求值,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握法则是解决本题的关键.22.(1)26x 7,27x 7;(2)(2n +1)x n ;(3)14 【分析】(1)观察所给的①与②式子可得①的特点,第n 个数是2n ﹣1x n ,②的特点,第n 个数是(﹣1)n ﹣1(2x )n ;(2)观察③式子的特点,可得第n 个数是(2n +1)x n ,即可求出解;(3)先求出A =29x 10﹣210x 10+(210+1)x 10,再将x =12代入求出A ,最后再求256[3A ﹣2(A+14)]即可. 【详解】解:(1)①的特点,第n 个数是2n ﹣1x n ,∴第7个单项式是26x 7;②的特点,第n 个数是(﹣1)n ﹣1(2x )n ,∴第7个单项式是27x 7;故答案为:26x 7,27x 7;(2)③的特点,第n 个数是(2n +1)x n ,故答案为:(2n +1)x n ;(3)①的第10个单项式是29x 10,②的第10个单项式是﹣210x 10,③的第10个单项式是(210+1)x 10,∴A =29x 10﹣210x 10+(210+1)x 10=(29+1)x 10,当x =12时,A =(29+1)×(12)10, ∴256[3A ﹣2(A+14)]=256(A ﹣12)=256×[(29+1)×(12)10﹣12]=28×(12)10=14. 【点睛】本题考查数字的变化规律,能够通过所给例子,找到式子的规律,列出每行第n 个式子的代数式是解题的关键.23.(1)13;(2)28;(3)27【分析】(1)把原式化为2(2x+3y)+3,再把235x y +=代入即可;(2)把原式化为3()a b ab +-,再把8a b +=,4ab =-代入即可;(3)把原式化为()()22323a ab b ab +++,再把23a ab +=,2238b ab +=代入即可.【详解】解:(1)463x y ++=2(2x+3y)+3=2×5+3=13(2)(432)(6)a b ab a b ab ----- 4326a b ab a b ab =---++33a b ab =+-3()a b ab =+-.∵8a b +=,4ab =-,∴原式38(4)24428=⨯--=+=.(3)22106a ab b ++2296a ab ab b =+++()()22323a ab b ab =+++.∵23a ab +=,2238b ab +=,∴原式33827=+⨯=.【点睛】本题考查了代数式求值,解题的关键是注意整体代入思想的运用.24.32+25x x y +;1【分析】整式的加减运算,先去括号,合并同类项化简,然后根据绝对值和偶次幂的非负性确定x 和y 的值,从而代入求值即可.【详解】 解:323211223533x x y x x y ⎛⎫---+ ⎪⎝⎭ =3232124++6533x x y x x y -+ =32+25x x y + 又∵21202x y ⎛⎫++-= ⎪⎝⎭且2120,02x y ⎛⎫+≥-≥ ⎪⎝⎭ ∴20x +=且2102y ⎛⎫-= ⎪⎝⎭,解得:2x =-,1=2y 当2x =-,1=2y 时,原式=()()3212+22584512-⨯-⨯+=-++=. 【点睛】本题考查整式的加减运算,掌握运算顺序和计算法则正确计算是解题关键.25.(1)3,5;(2)392.【分析】(1)根据多项式的次数,常数项的定义确定即可;(2)先化简,后代入求值.【详解】 (1)∵22172589x y xy xy ---+的最高次数为3,常数项为5, ∴a=3,b=5,故答案为:3,5; (2)∵22325M b a ab =-+,2242N ab b a =--,∴()()2222343325442M N b a ab ab b a-=-+---=222296151684b a ab ab b a -+-++ 22172b a ab =--,当a=3,b=5时,原式221752335392=⨯-⨯-⨯=.【点睛】本题考查了多项式的次数与常数项,多项式的化简求值,熟练化简方法是解题的关键.26.226xy xy +,0【分析】根据整式加减法的性质计算,即可完成化简;结合3x =,13y =-,根据代数式、含乘方的有理数混合运算性质计算,即可得到答案.【详解】 2222552282x y xy xy x y xy ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦ 222252258x y xy xy x y xy ⎡⎤=--++⎣⎦222252258x y xy xy x y xy =-+-+226xy xy =+∵3x =,13y =-∴2222552282x y xy xy x y xy ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦226xy xy =+ 21123+6333⎛⎫⎛⎫=⨯⨯-⨯⨯- ⎪ ⎪⎝⎭⎝⎭2+2=-0=.【点睛】本题考查了整式加减、代数式、有理数运算的知识;解题的关键是熟练掌握整式加减、代数式、含乘方的有理数混合运算的性质,从而完成求解.。
人教版七年级数学上册第二章《整式的加减》测试题(含答案)(考试时间:90分钟,赋分:100分)姓名:________ 班级:________ 分数:________一、选择题(本大题共10小题,每小题3分,满分30分)1.下列四个式子:①3π;②a +b 2;③2x ;④15.其中不是整式的是 A .①B .②C .③D .④2.下列语句错误的是A.数字0是单项式B.单项式-a 的系数与次数都是1C.12xy 是二次单项式 D.-2ab 3的系数是-233.下列运算正确的是 A.3a 2b -3ba 2=0 B.5a 2-3a 2=2 C.3a 3+2a 3=5a 6D.3a +2b =5ab4.若单项式x m y 3与4x 2y n 的和仍是单项式,则m -n 的值是 A .5B .1C .0D .-15.有一个数值转换器,其原理如图所示.若开始输入的x 值是5,发现第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是4,……依次继续下去,第101次输出的结果是A .2B .1C .4D .86.【合肥高新区期末】若整式3x 2-4x +6的值为9,则x 2-43x +6的值为 A .5B .6C .7D .87.一个多项式A 减去多项式2x 2+5x -3,某同学将减号抄成了加号,运算结果为-x 2+3x -5,那么正确的运算结果是 A .-3x 2-2x -4B .-x 2+3x -7C .-5x 2-7x +1D .无法确定8.若多项式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为 A .2B .-2C .-1D .09.如图,点A ,B 表示的数分别是a ,b ,点A 在数轴上0和1两点(不包括这两点)之间移动,点B 在数轴上-3和-2两点之间移动.下列四个代数式的值可能比2 021大的是A.a 6b 6B.b 6+a 6C.a 12bD.ab 1210.一个含有多个字母的整式,如果把其中任意两个字母互换位置,所得的结果与原式相同,那么称此整式是对称整式.例如,x 2+y 2+z 2是对称整式,x 2-2y 2+3z 2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式; ②一个多项式是对称整式,那么该多项式中各项的次数必相同; ③单项式不可能是对称整式;④若某对称整式只含字母x ,y ,z ,且其中有一项为x 2y ,则该多项式的项数至少为3. 以上结论中错误的个数是 A.4B.3C.2D.1二、填空题(本大题共6小题,每小题3分,满分18分)11.如果在数轴上表示a ,b 两个实数的点的位置如图所示,那么|a -b |+|a +b |化简的结果为 .12.七年级(1)班有学生a 人,七年级(2)班的人数比七年级(1)班的人数的一半多25人,那么七年级(2)班有 人.13.把四张形状、大小完全相同的小长方形卡片(如图1,卡片长为x 、宽为y ,且x >y )不重叠地放在一个底面为长方形(长为a 、宽为b )的盒子底部(如图2),盒底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分周长的和是 .(用只含b 的代数式表示)14.已知有理数a ,b ,c 在数轴上的位置如图所示,化简||a +b -||b -2-||c -a -||2-c = .15.现规定一种运算a *b =ab +a -b ,其中a ,b 为实数,则a *b +(b -a )*b = . 16.已知代数式ax 4+bx 3+cx 2+dx +3.当x =2时,代数式的值为20;当x =-2时,代数式的值为16,则当x =2时,代数式ax 4+cx 2+3的值为 .三、解答题(第21题12分,其余每题10分,共52分) 17.已知M =2x 2-2xy +y 2,N =3x 2+xy -2y 2,求2M -3N 的值.18.一根绳长a 米(a >6),第一次用掉了全长的13多1米,第二次用掉了余下的23少2米,最后还剩多少米?19.已知多项式-5x2y m+1+xy2-3x3-6是六次四项式,且单项式3x2n y5-m的次数与此多项式的次数相同.(1)求m,n的值;(2)求该多项式的常数项以及各项的系数和.20.观察下列等式:13+23=1×22×32;4×32×42;13+23+33=14×42×52;13+23+33+43=14…根据上述规律,解决下列问题:(1)若n为正整数,猜想:13+23+33+…+n3=;(2)利用(1)的结论,比较13+23+33+…+1003与50552的大小.21.将7张完全相同的小长方形纸片(如图1)按图2所示的方式不重叠地放在长方形ABCD内,未被覆盖的部分恰好被分割成两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a、宽为b,且a>b.(1)当a=9,b=3,AD=30时,长方形ABCD的面积是,S2-S1的值为;(2)当AD=40时,请用含a,b的式子表示S2-S1的值;(3)若AB的长度为定值,AD变长,将这7张小长方形纸片还按照同样的方式放在新的长方形ABCD内,而S2-S1的值总保持不变,求a,b满足的关系.参考答案一、选择题(本大题共10小题,每小题3分,满分30分)题 号 1 2345678910答 案 CBADBCCADB1.下列四个式子:①3π;②a +b 2;③2x ;④15.其中不是整式的是 A .①B .②C .③D .④2.下列语句错误的是A.数字0是单项式B.单项式-a 的系数与次数都是1C.12xy 是二次单项式 D.-2ab 3的系数是-233.下列运算正确的是 A.3a 2b -3ba 2=0 B.5a 2-3a 2=2 C.3a 3+2a 3=5a 6D.3a +2b =5ab4.若单项式x m y 3与4x 2y n 的和仍是单项式,则m -n 的值是 A .5B .1C .0D .-15.有一个数值转换器,其原理如图所示.若开始输入的x 值是5,发现第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是4,……依次继续下去,第101次输出的结果是A .2B .1C .4D .86.【合肥高新区期末】若整式3x 2-4x +6的值为9,则x 2-43x +6的值为 A .5B .6C .7D .87.一个多项式A 减去多项式2x 2+5x -3,某同学将减号抄成了加号,运算结果为-x 2+3x -5,那么正确的运算结果是 A .-3x 2-2x -4B .-x 2+3x -7C .-5x 2-7x +1D .无法确定8.若多项式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为 A .2B .-2C .-1D .09.如图,点A ,B 表示的数分别是a ,b ,点A 在数轴上0和1两点(不包括这两点)之间移动,点B 在数轴上-3和-2两点之间移动.下列四个代数式的值可能比2 021大的是A.a 6b 6B.b 6+a 6C.a 12bD.ab 1210.一个含有多个字母的整式,如果把其中任意两个字母互换位置,所得的结果与原式相同,那么称此整式是对称整式.例如,x 2+y 2+z 2是对称整式,x 2-2y 2+3z 2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式; ②一个多项式是对称整式,那么该多项式中各项的次数必相同;③单项式不可能是对称整式;④若某对称整式只含字母x ,y ,z ,且其中有一项为x 2y ,则该多项式的项数至少为3. 以上结论中错误的个数是 A.4B.3C.2D.1二、填空题(本大题共6小题,每小题3分,满分18分)11.如果在数轴上表示a ,b 两个实数的点的位置如图所示,那么|a -b |+|a +b |化简的结果为 -2a .12.七年级(1)班有学生a 人,七年级(2)班的人数比七年级(1)班的人数的一半多25人,那么七年级(2)班有 (12a +25) 人.13.把四张形状、大小完全相同的小长方形卡片(如图1,卡片长为x 、宽为y ,且x >y )不重叠地放在一个底面为长方形(长为a 、宽为b )的盒子底部(如图2),盒底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分周长的和是 4b .(用只含b 的代数式表示)14.已知有理数a ,b ,c 在数轴上的位置如图所示,化简||a +b -||b -2-||c -a -||2-c = -4 .15.现规定一种运算a *b =ab +a -b ,其中a ,b 为实数,则a *b +(b -a )*b = b 2-b . 16.已知代数式ax 4+bx 3+cx 2+dx +3.当x =2时,代数式的值为20;当x =-2时,代数式的值为16,则当x =2时,代数式ax 4+cx 2+3的值为 18 .三、解答题(第21题12分,其余每题10分,共52分) 17.已知M =2x 2-2xy +y 2,N =3x 2+xy -2y 2,求2M -3N 的值. 解:原式=2(2x 2-2xy +y 2)-3(3x 2+xy -2y 2) =4x 2-4xy +2y 2-9x 2-3xy +6y 2 =-5x 2-7xy +8y 2.18.一根绳长a 米(a >6),第一次用掉了全长的13多1米,第二次用掉了余下的23少2米,最后还剩多少米?解:由题可知a -(13a+1)-{23[a -(13a+1)]-2}=a -13a -1-[23(23a -1)-2]=a -13a -1-49a +23+2=(29a+53)米.答:最后还剩(29a+53)米.19.已知多项式-5x2y m+1+xy2-3x3-6是六次四项式,且单项式3x2n y5-m的次数与此多项式的次数相同.(1)求m,n的值;(2)求该多项式的常数项以及各项的系数和.解:(1)因为该多项式为六次四项式,所以2+m+1=6,所以m=3.因为单项式3x2n y5-m的次数也是6,所以2n+5-m=6,所以n=2.(2)该多项式为-5x2y4+xy2-3x3-6,常数项为-6,各项系数为-5,1,-3,-6,故系数和为-5+1-3-6=-13.20.观察下列等式:×22×32;13+23=1413+23+33=1×32×42;4×42×52;13+23+33+43=14…根据上述规律,解决下列问题:(1)若n为正整数,猜想:13+23+33+…+n3=1n2(n+1)2;4(2)利用(1)的结论,比较13+23+33+…+1003与50552的大小.×1002×1012=502×1012=50502.解:(2)根据(1)可知13+23+33+…+1003=14因为50502<50552,所以13+23+33+…+1003<50552.21.将7张完全相同的小长方形纸片(如图1)按图2所示的方式不重叠地放在长方形ABCD内,未被覆盖的部分恰好被分割成两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a、宽为b,且a>b.(1)当a=9,b=3,AD=30时,长方形ABCD的面积是630,S2-S1的值为-63;(2)当AD=40时,请用含a,b的式子表示S2-S1的值;(3)若AB的长度为定值,AD变长,将这7张小长方形纸片还按照同样的方式放在新的长方形ABCD内,而S2-S1的值总保持不变,求a,b满足的关系.解:(2)因为S1=4b(40-a),S2=a(40-3b),所以S2-S1=a(40-3b)-4b(40-a)=40a-160b+ab.(3)S2-S1=a(AD-3b)-4b(AD-a),整理,得S2-S1=(a-4b)AD+ab.因为若AB的长度不变,AD变长,而S2-S1的值总保持不变, 所以a-4b=0,即a=4b,所以a,b满足的关系是a=4b.。
一、选择题1.(0分)[ID :68031]下面用数学语言叙述代数式1a﹣b ,其中表达正确的是( ) A .a 与b 差的倒数 B .b 与a 的倒数的差 C .a 的倒数与b 的差 D .1除以a 与b 的差2.(0分)[ID :68057]若2312a b x y +与653a bx y -的和是单项式,则+a b =( ) A .3-B .0C .3D .63.(0分)[ID :68046]已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( ) A .36 B .40C .44D .464.(0分)[ID :68041]化简2a -[3b -5a -(2a -7b )]的值为( )A .9a -10bB .5a +4bC .-a -4bD .-7a +10b5.(0分)[ID :68017]我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数 6.(0分)[ID :68014]如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .2+6nB .8+6nC .4+4nD .8n7.(0分)[ID :68005]下列变形中,正确的是( ) A .()x z y x z y --=-- B .如果22x y -=-,那么x y = C .()x y z x y z -+=+-D .如果||||x y =,那么x y =8.(0分)[ID :68000]下列说法正确的是( ) A .单项式34xy -的系数是﹣3 B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、69.(0分)[ID :67988]已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( ) A .mB .nC .m n +D .m ,n 中较大者10.(0分)[ID :67979]若23,33M N x M x +=-=-,则N =( )A .236x x +-B .23x x -+C .236x x -- D .23x x -11.(0分)[ID :67976]代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差 B .2倍的x 与1的差除以3的商 C .x 与1的差的2倍除以3的商 D .x 与1的差除以3的2倍12.(0分)[ID :67975]式子5x x-是( ). A .一次二项式B .二次二项式C .代数式D .都不是13.(0分)[ID :67970]张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b+元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元 C .赚了(5a-5b )元D .亏了(5a-5b )元14.(0分)[ID :67962]多项式33x y xy +-是( ) A .三次三项式 B .四次二项式 C .三次二项式 D .四次三项式15.(0分)[ID :67959]如果m ,n 都是正整数,那么多项式的次数是( ) A .B .mC .D .m ,n 中的较大数二、填空题16.(0分)[ID :68128]为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.17.(0分)[ID :68124]一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________. 18.(0分)[ID :68121]将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____. 19.(0分)[ID :68119]观察下列一组图形中点的个数,其中第1个图中共有 4 个点,第2个图中共有 10 个点,第3个图中共有 19 个点, 按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.20.(0分)[ID :68092]已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a 、b 、c 、d .若|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,则|b ﹣c |=___.21.(0分)[ID :68090]由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n 个图形中有白色正方形__________个 (用含n 的代数式表示).22.(0分)[ID :68086]在迎新春活动中,三位同学玩抢2018游戏,甲、乙、丙围成一圈依序报数,规定:甲、乙、丙首次报的数依次为1、2、3,接着甲报4、乙报5…按此规律,后一位同学报的数比前一位同学报的数大1,当报的数是2018时,报数结束;按此规则,最后能抢到2018的同学是______.23.(0分)[ID :68085]如图:矩形花园ABCD 中,,AB a AD b ==,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK .若LM RS c ==,则花园中可绿化部分的面积为______.24.(0分)[ID :68081]为了鼓励节约用电,某地对用户用电收费标准作如下规定:如果每户用电不超过50度,那么每度电按a 元收费,如果超过50度,那么超过部分按每度()0.5a +元收费,某居民在一个月内用电98度,他这个月应缴纳电费______元.25.(0分)[ID :68074]用棋子按下列方式摆图形,依照此规律,第n 个图形比第()1n -个图形多______枚棋子.…第1个 第2个 第3个26.(0分)[ID :68072]观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______. 27.(0分)[ID :68071]如果13k x y 与213x y -是同类项,则k =______,21133k x y x y ⎛⎫+-= ⎪⎝⎭______. 三、解答题28.(0分)[ID :67803]观察下列等式. 第1个等式:a 1=113⨯=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=135⨯=12×1135⎛⎫- ⎪⎝⎭; 第3个等式:a 3=157⨯=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=179⨯=12×1179⎛⎫- ⎪⎝⎭; …请解答下列问题.(1)按以上规律列出第5个等式:a 5=____=____; (2)求a 1+a 2+a 3+a 4+…+a 100的值.29.(0分)[ID :67798]已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值.30.(0分)[ID :67793]有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.C3.A4.A5.D6.A7.B8.C9.D10.D11.B12.C13.C14.D15.D二、填空题16.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n个图形有6n+2根火柴棒17.【解析】根据题意要求写一个关于字母x的二次三项式其中二次项是x2一次项是-x常数项是1所以再相加可得此二次三项式为18.﹣2b3+3ab2+4a2b+a3【分析】找出a的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本19.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个20.7【分析】根据数轴和题目中的式子可以求得c﹣b的值从而可以求得|b﹣c|的值【详解】∵|a﹣c|=10|a﹣d|=12|b﹣d|=9∴c﹣a=10d﹣a=12d﹣b=9∴(c﹣a)﹣(d﹣a)+(d21.【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n个图形中白色正方形的个数为:(3n-1)个22.乙【分析】由题意可得甲乙丙报的数字顺序规律为从1起三个数字为一个循环即丙报的数字规律为3的倍数将2018除以3余数为2即2018为一个循环的第2个数字即可判断为乙报的数字【详解】解:∵2018÷3=23.【分析】由长方形的面积减去PQLM与RKTS的面积再加上重叠部分面积即可得到结果【详解】S矩形ABCD=AB•AD=abS道路面积=ca+cb-c2所以可绿化面积=S矩形ABCD-S道路面积=ab-24.【分析】98度超过了50度应分两段进行计费第一段50每度收费a元第二段(98-50)度每度收费(a+05)元据此计算即可【详解】解:由题意可得:(元)故答案为:(98a+24)【点睛】本题考查了列代25.【分析】归纳总结找出第n个图形与第(n-1)个图形中的棋子数相减即可得到结果【详解】解:第1个图形棋子的个数:1;第2个图形1+4;第3个图形1+4+7;第4个图形1+4+7+10;…第n个图形1+26.【分析】观察各式的特点找出关于n的式子用2n+1和2n-1表示奇数用2n表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找27.0【分析】根据同类项的定义先得到k的值再代入代数式中计算即可【详解】解:与是同类项k=2∴故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项比较基础三、解答题28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【分析】根据代数式的意义,可得答案. 【详解】用数学语言叙述代数式1a﹣b 为a 的倒数与b 的差, 故选:C . 【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.2.C解析:C 【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值. 【详解】解:根据题意可得:26{3a b a b +=-=,解得:3{0a b ==, 所以303a b +=+=, 故选:C . 【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.A解析:A【分析】原式去括号整理后,将已知等式代入计算即可求出值.【详解】∵a+b=5,ab=4,∴原式=3ab+5a+8b+3a−4ab=8(a+b)−ab=40−4=36,故选A.【点睛】本题考查的是代数式的求值,熟练掌握先化简再求值是解题的关键.4.A解析:A【解析】2a-[3b-5a-(2a-7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b,故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.5.D解析:D【分析】根据单价×数量=总价,等边三角形周长=边长×3,售价=进价+利润,两位数的表示=十位数字×10+个位数字进行分析即可.【详解】A、根据“单价×数量=总价”可知3a表示买a kg葡萄的金额,此选项不符合题意;B、由等边三角形周长公式可得3a表示这个等边三角形的周长,此选项不符合题意;C、由“售价=进价+利润”得售价为1.5a元,则2×1.5a=3a(元),此选项不符合题意;D、由题可知,这个两位数用字母表示为10×3+a=30+a,此选项符合题意.故选:D.【点睛】本题主要考查了列代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.6.A解析:A【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答.【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8;第二个“金鱼”需用火柴棒的根数为6×2+2=14; 第三个“金鱼”需用火柴棒的根数为6×3+2=20; ……;第n 个“金鱼”需用火柴棒的根数为6n +2. 故选:A . 【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键.7.B解析:B 【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可. 【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误; 故选:B. 【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.8.C解析:C 【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可. 【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误; 故选:C . 【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.9.D解析:D【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项. 【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,mnx x 中指数大的,即m ,n 中较大的,故答案选D. 【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项.10.D解析:D 【分析】根据N=M+N-M 列式即可解决此题. 【详解】依题意得,N=M+N-M=222(3)(33)3333x x x x x x ---=--+=-;故选D. 【点睛】此题考查的是整式的加减,列式是关键,注意括号的运用.11.B解析:B 【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断. 【详解】代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B . 【点睛】本题考查了代数式,正确理解代数式表示的意义是关键.12.C解析:C 【分析】根据代数式以及整式的定义即可作出判断. 【详解】式子5x x -分母中含有未知数,因而不是整式,故A 、B 错误,是代数式,故C 正确. 故选:C . 【点睛】本题考查了代数式的定义,就是利用运算符号把数或字母连接而成的式子,单独的数或字母都是代数式.13.C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-2 3020302222a b a b a b a a b aa b++++ -+-=⨯+⨯)()=10(b-a)+15(a-b)=10b-10a+15a-15b=5a-5b,则这次买卖中,张师傅赚5(a-b)元.故选C.【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.14.D解析:D【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D.【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关15.D解析:D【解析】【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式的次数是m,n中的较大数是该多项式的次数.【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式中次数最高的多项式的次数,即m,n中的较大数是该多项式的次数.故选D.【点睛】此题考查多项式,解题关键在于掌握其定义.二、填空题16.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n 个图形有6n+2根火柴棒解析:6n+2.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第2个图形有14=6×1+8根火柴棒,第3个图形有20=6×2+8根火柴棒,……,第n 个图形有6n+2根火柴棒.17.【解析】根据题意要求写一个关于字母x 的二次三项式其中二次项是x2一次项是-x 常数项是1所以再相加可得此二次三项式为 解析:21122x x -+-【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 18.﹣2b3+3ab2+4a2b+a3【分析】找出a 的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b 3+3ab 2+4a 2b+a 3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.19.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12 631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…, 即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+3×209=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律. 20.7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值从而可以求得|b ﹣c|的值【详解】∵|a ﹣c|=10|a ﹣d|=12|b ﹣d|=9∴c ﹣a=10d ﹣a=12d ﹣b=9∴(c ﹣a )﹣(d ﹣a )+(d解析:7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值,从而可以求得|b ﹣c |的值.【详解】∵|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,∴c ﹣a =10,d ﹣a =12,d ﹣b =9,∴(c ﹣a )﹣(d ﹣a )+(d ﹣b )=c ﹣a ﹣d +a +d ﹣b=c ﹣b=10﹣12+9=7.∵|b ﹣c |=c ﹣b ,∴|b ﹣c |=7.故答案为:7.【点睛】本题考查了数轴、绝对值以及整式的加减,解答本题的关键是明确数轴的特点,可以将绝对值符号去掉,求出相应的式子的值.21.【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个解析:()31-n【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案.【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个,∴得到规律:第n个图形中白色正方形的个数为:(3n-1)个,故答案为:(3n-1).【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键. 22.乙【分析】由题意可得甲乙丙报的数字顺序规律为从1起三个数字为一个循环即丙报的数字规律为3的倍数将2018除以3余数为2即2018为一个循环的第2个数字即可判断为乙报的数字【详解】解:∵2018÷3=解析:乙【分析】由题意可得甲、乙、丙报的数字顺序规律为,从1起三个数字为一个循环,即丙报的数字规律为3的倍数,将2018除以3余数为2,即2018为一个循环的第2个数字,即可判断为乙报的数字.【详解】解:∵2018÷3=672 (2)∴最后能抢到2018的同学是乙.故答案为:乙【点睛】本题考查数字规律,读懂题意,找到数字循环规律是解答此题的关键.23.【分析】由长方形的面积减去PQLM与RKTS的面积再加上重叠部分面积即可得到结果【详解】S矩形ABCD=AB•AD=abS道路面积=ca+cb-c2所以可绿化面积=S矩形ABCD-S道路面积=ab-解析:2--+ab bc ac c【分析】由长方形的面积减去PQLM与RKTS的面积,再加上重叠部分面积即可得到结果.【详解】S矩形ABCD=AB•AD=ab,S道路面积=ca+cb-c2,所以可绿化面积=S矩形ABCD-S道路面积=ab-(ca+cb-c2),=ab-ca-cb+c2.故答案为:ab-bc-ac+c2.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.24.【分析】98度超过了50度应分两段进行计费第一段50每度收费a 元第二段(98-50)度每度收费(a+05)元据此计算即可【详解】解:由题意可得:(元)故答案为:(98a+24)【点睛】本题考查了列代解析:()9824a +【分析】98度超过了50度,应分两段进行计费,第一段50,每度收费a 元,第二段(98-50)度,每度收费(a +0.5)元,据此计算即可.【详解】解:由题意可得:()()5098500.59824a a a +-+=+(元).故答案为:(98a +24).【点睛】本题考查了列代数式,根据题意,列出代数式是解决此题的关键.25.【分析】归纳总结找出第n 个图形与第(n-1)个图形中的棋子数相减即可得到结果【详解】解:第1个图形棋子的个数:1;第2个图形1+4;第3个图形1+4+7;第4个图形1+4+7+10;…第n 个图形1+解析:32n -【分析】归纳总结找出第n 个图形与第(n-1)个图形中的棋子数,相减即可得到结果.【详解】解:第1个图形棋子的个数:1;第2个图形,1+4;第3个图形,1+4+7;第4个图形,1+4+7+10;…第n 个图形,1+4+7+…+(3n -2);则第n 个图形比第(n-1)个图形多(3n-2)枚棋子.故答案为:3n-2【点睛】此题主要考查了图形的变化类问题,同时还考查了学生通过特例分析从而归纳总结出一般结论的能力.26.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案.【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的. 27.0【分析】根据同类项的定义先得到k 的值再代入代数式中计算即可【详解】解:与是同类项k=2∴故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项比较基础解析:0【分析】根据同类项的定义先得到k 的值,再代入代数式中计算即可.【详解】 解:13k x y 与213x y -是同类项, ∴k=2,∴222111103333k x y x y x y x y ⎛⎫⎛⎫+-=+-= ⎪ ⎪⎝⎭⎝⎭故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项,比较基础.三、解答题28.(1)1911⨯;12×11911⎛⎫- ⎪⎝⎭;(2)100201. 【分析】(1)根据连续奇数乘积的倒数等于这两个奇数的倒数差的一半列式可得; (2)根据以上所得规律列式111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再进一步计算可得. 【详解】(1)由观察知, 左边:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1,右边:这两个奇数的倒数差的一半,∴第5个式子是:()()111115215219112911⎛⎫==⨯- ⎪⨯-⨯-⨯⎝⎭; 故答案为:1911⨯;12×11911⎛⎫- ⎪⎝⎭; (2)a 1+a 2+a 3+a 4+…+a 100111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111111233557199201⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111111111233557199201⎛⎫=⨯-+-+-++- ⎪⎝⎭1112201⎛⎫=⨯- ⎪⎝⎭ 12002201=⨯ 100201=. 【点睛】 本题主要考查了数字的变化规律,解题的关键是根据已知等式得出规律:连续奇数乘积的倒数等于这两个奇数的倒数差的一半.29.12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --,当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键. 30.3a b c --+【分析】首先判断出a c -,b b a b a -+,,的正负,再去掉绝对值符号,然后合并同类项即可.【详解】由题意可知0a c -<,0b >,0b a ->,0b a +<,||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+.故答案为:3a b c --+.【点睛】本题主要考查了整式的化简求值,数轴,绝对值,熟练掌握运算法则以及数轴上右边的数总比左边的数大是解答本题的关键.。
一、选择题1.如图,观察表1,寻找规律,表1、表2、表3分别是从表1中截取的一部分,其中m 为整数且1m ,则a b c ++=( )A .244m m -+B .246m m ++C .246m m -+D .244m m ++ 2.若x 2+kx +16能写成一个多项式的平方形式,则k 的值为( )A .±8B .8C .±4D .43.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007毫米2,0.0000007这个数用科学记数法表示为( ) A .7710-⨯ B .6710-⨯ C .60.710-⨯ D .70.710-⨯ 4.23ab a ⋅的计算结果是( )A .3abB .6abC .32a bD .33a b5.已知:2m a =,2n b =,则232m n +用a ,b 可以表示为( ) A .6abB .23a b +C .23a b +D .23a b6.下列式子中,计算正确的是( ) A .235a a a +=B .236a a a ⋅=C .)(235a a -= D .)(326a a -=-7.下列计算正确的是( ) A .2232a a -= B .236a a a ⋅=C .()326a a =D .()22224a b a b -=-8.下列计算正确的是( ) A .236236x x x ⋅=B .330x x ÷=C .()33326xy x y =D .()32nn n x x x ÷=9.下列计算正确的是( ) A .248a a a •=B .352()a a =C .236()ab ab =D .624a a a ÷=10.如果单项式223a b a b m n -+-与38b m n 是同类项,那么这两个单项式的积是( ) A .6163m n - B .6323m n -C .383m n -D .6169m n -11.计算()3222()m m m -÷⋅的结果是( )A .2m -B .22mC .28m -D .8m -12.如图,两个正方形边长分别为a ,b ,如果a+b =10,ab =18,则阴影部分的面积为( )A .21B .22C .23D .24二、填空题13.已知18mx =,16n x =,则2m n x +的值为________. 14.已知25m =,2245m n +=,则2n =_______. 15.已知31x =+,31y =-,22x y -=_____.16.计算:201×199-1982=____________________.17.一个底面是正方形的长方体,高为8cm ,底面正方形边长为7cm .如果正方形的边长增加了acm ,那么它的体积增加了_______3cm . 18.计算:20202019122⎛⎫⨯= ⎪⎝⎭_______.19.设23P x xy =-,239Q xy y =-,若P Q =,则xy的值为__________. 20.若0a >,且2x a =,3y a =,则x y a +的值等于________.三、解答题21.在数学中,有许多关系都是在不经意间被发现的,当然,没有敏锐的观察力是做不到的.认真观察图形,解答下列问题:()1如图l ,用两种不同方法表示两个阴影图形的面积的和,可以得到的等式为_ ;()2如图2,是由4个长为,a 宽为b 的长方形卡片围成的正方形,试利用面积关系写出一个代数恒等式;()3如图3,是由边长分别为(),a b a b >的两个正方形拼成的图形,已知10a b +=,24,ab =利用()1中得到的等式,求出图3中阴影部分的面积.22.如图1是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a 、b 、c ,其中a 、b 是直角边,两个小正方形的边长分别是a 、b .(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图2).用两种不同的方法列代数式表示图2中的大正方形面积: 方法一:________________;方法二:________________;(直接把答案填写在答题卡的横线上)(2)观察图2,试写出()2a b +,2a ,2ab ,2b 这四个代数式之间的等量关系:________________.(直接把答案填写在答题卡的横线上)(3)请利用(2)中等量关系解决问题:若图1中一个三角形面积是6,图2的大正方形面积是64,求22a b +的值. 23.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++请用以上方法解决下列问题:(计算过程要有竖式) (1)计算:()()3223102x x x x +--÷-(2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值.24.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图(1)可以 用来解释()2222a ab b a b ++=+,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.如图(2),将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m 的大正方形,两块是边长都为n 的小正方形,五块是长为m ,宽为n 的全等小长方形,且m n >.(以上长度单位: cm )(1)观察图形,可以发现代数式22252m mn n ++可以分解因式为_________(2)若每块小长方形的面积为210cm ,四个正方形的面积和为258,cm 试求图中所有裁剪线(虚线部分)长之和.25.图1是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)请写出图2中阴影部分的面积:________________;(2)观察图2,你能写出下列三个式子:2()m n +,2()m n -,mn 之间的等量关系吗?(3)根据(2)中的等量关系,已知:21a a -=求:2a a+的值. 26.图1是一个长为2a 、宽为2b 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于________.(2)观察图2,请你写出下列三个代数式2()a b +,2()a b -,ab 之间的等量关系为________.(3)运用你所得到的公式,计算:若m 、n 为实数,且3=-mn ,4m n -=,试求m n +的值.(4)如图3,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设8AB =,两正方形的面积和1226S S+=,求图中阴影部分面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】从图表中找出规律,并根据规律计算求解.【详解】解:由表1可知,第x行,第y列的数为xy,(x,y均为正整数),由表2可知,第一列数依次为12=3×4,15=3×5,则a在第3行第6列,即a=3×6=18,由表3可知,2m在第m行第m列,则2m上一行的数b在第(m-1)行第m列,所以2(1)b m m m m=-=-,由表4可知,设18在第x行第y列,则18=xy,35在第(x+2)行第(y+1)列,则(2)(1)35x y++=,x,y均为整数,则x=3,y=6,c在第(x+1)行,第(y+1)列,(1)(1)4728c x y=++=⨯=,∴22182846a b c m m m m++=+-+=-+,故选:C.【点睛】本题考查探索与表达规律.规律就在表一中,所以学生平时要锻炼自己的总结能力,及逻辑能力.2.A解析:A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【详解】解:∵x2+kx+16=x2+kx+42,x2+kx+16能写成一个多项式的平方形式,∴kx=±2•x•4,解得k=±8.故选:A.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.3.A解析:A【分析】根据科学记数法表示即可;科学记数法就是将一个数字表示成(a×10的n 次幂的形式),其中1≤|a|<10,n 表示整数. 【详解】解:0.000 000 7=7×10-7. 故选:A . 【点睛】本题考查了用科学记数法表示绝对值小于1的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.D解析:D 【分析】直接利用单项式乘单项式计算得出答案. 【详解】 解:3ab•a 2=3a 3b . 故选:D . 【点睛】本题主要考查了单项式乘单项式,正确掌握相关运算法则是解题的关键.5.D解析:D 【分析】根据同底数幂的乘法和幂的乘方计算即可; 【详解】()()23232322222+=⨯=⨯m n m n m n ,∵2m a =,2n b =, ∴原式23a b =; 故答案选D . 【点睛】本题主要考查了幂的运算,准确计算是解题的关键.6.D解析:D 【分析】分别运用合并同类项法则,同底数幂乘法法则以及幂的乘方法则计算出各选项的结果再进行判断即可. 【详解】解:A 、235a a a +≠,故此选项不符合题意; B 、235a a a ⋅=,故此选项不符合题意;C 、)(236aa -=,故此选项不符合题意; D 、)(326a a -=-计算正确,符合题意;故选:D . 【点睛】此题主要考查了合并同类项、同底数幂的乘法以及幂的乘方,熟练掌握运算法则是解答此题的关键.7.C解析:C 【分析】依次利用合并同类项法则、同底数幂的乘法、幂的乘方、完全平方公式知识点计算,依次判断即可. 【详解】A. 22232a a a -=,故此项错误;B. 235a a a ⋅=,故此项错误;C. ()326a a =,故此项正确;D. ()222244a b a ab b -=-+,故此项错误; 故选C 【点睛】本题考查合并同类项法则、同底数幂的乘法、幂的乘方、完全平方公式,解答本题的关键是明确它们各自的计算方法.8.D解析:D 【分析】根据单项式乘以单项式、同底数幂的除法、积的乘方与幂的乘方运算法则分别计算可得. 【详解】解:A 、235236x x x ⋅=,此选项计算错误,故不符合题意; B 、331x x ÷=,此选项计算错误,故不符合题意; C 、()33328xy x y =,此选项计算错误,故不符合题意; D 、()3232nn n n n x x x x x ÷=÷=,此选项计算正确,符合题意;故选:D . 【点睛】本题主要考查幂的运算,解题的关键是掌握单项式乘以单项式、同底数幂的除法、积的乘方与幂的乘方的运算法则.9.D解析:D【分析】分别根据同底数幂的乘法,幂的乘方,积的乘方法则以及同底数幂的除法法则逐一计算判断即可. 【详解】解:A 、a 2∙a 4=a 6,故选项A 不合题意; B 、(a 2)3=a 6,故选项不B 符合题意; C 、(ab 2)3=a 3b 6,故选项C 不符合题意; D 、a 6÷a 2=a 4,故选项D 符合题意. 故选:D . 【点睛】本题主要考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.10.B解析:B 【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可求出a 和b ,再利用单项式乘以单项式计算结果即可. 【详解】 解:由题意可得:2328a b a b b -=⎧⎨+=⎩, 解得:72a b ==,,则这两个单项式分别为:3163m n -,316m n , ∴它们的积为:3163166323?3m n m n m n -=-, 故选:B . 【点睛】本题主要考察同类项的概念、单项式乘以单项式,掌握同类项的概念是解题的关键.11.C解析:C 【分析】先分别计算积的乘方运算,再利用单项式除以单项式法则计算即可. 【详解】 解:()3222()m m m -÷⋅=()468mm -÷ =()468m m -÷=28m -, 故选:C . 【点睛】本题考查单项式除以单项式,积的乘方运算.在做本题时需注意运算顺序,先计算积的乘方,再算除法.12.C解析:C 【分析】表示出空白三角形的面积,用总面积减去两个空白三角形的面积即可,再将得到的等式变形后,利用整体代入求值即可. 【详解】解:如图,大正方形的边长是a,三角形①的两条直角边长都为a ,三角形②的一条直角边为a -b ,另一条直角边为b , 因此S 大正方形=a 2,S △②=12(a ﹣b )b =12ab ﹣12b 2,S △①=12a 2, ∴S 阴影部分=S 大正方形﹣S △①﹣S △②, =12a 2﹣12ab+12b 2, =12[(a+b )2﹣3ab], =12(100﹣54) =23, 故选:C .【点睛】考查完全平方公式的意义,适当的变形是解决问题的关键.二、填空题13.【分析】根据同底数幂的乘法可得再根据幂的乘方可得然后再代入求值即可【详解】解:故答案为【点睛】此题主要考查了同底数幂的乘法和幂的乘方关键是掌握同底数幂的乘法法则:同底数幂相乘底数不变指数相加;幂的乘解析:14【分析】根据同底数幂的乘法可得22m n m n x x x +=⋅,再根据幂的乘方可得()22mm x x =,然后再代入18mx =,16n x =求值即可.【详解】解:()2222111684m n m n m n x x x xx +⎛⎫=⋅=⋅=⨯= ⎪⎝⎭ , 故答案为14. 【点睛】此题主要考查了同底数幂的乘法和幂的乘方,关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘. 14.【分析】将变形整体代入即可求解【详解】解:∵=∴故答案为:【点睛】本题主要考察了同底数幂的乘法幂的乘方解题的关键是熟练掌握同底数幂的乘法幂的乘方的逆运算 解析:95. 【分析】 将2245m n +=变形()222=22222m n n n m m+⋅=⋅,整体代入即可求解. 【详解】解:∵()222=22222m n n n m m+⋅=⋅=25245n ⋅= ∴9245255n =÷=. 故答案为:95. 【点睛】本题主要考察了同底数幂的乘法、幂的乘方,解题的关键是熟练掌握同底数幂的乘法、幂的乘方的逆运算. 15.;【分析】根据平方差公式化简代入求值即可;【详解】∵∴原式;故答案是【点睛】本题主要考查了代数式求值准确利用平方差公式是解题的关键解析:【分析】根据平方差公式化简,代入求值即可;【详解】()()22x y x y x y -=+-,∵1x =,1y =,∴原式))1111=++-+-+=故答案是【点睛】本题主要考查了代数式求值,准确利用平方差公式是解题的关键.16.795【分析】把原式化为(200+1)(200−1)利用平方差公式后再次利用平方差公式进行计算即可【详解】解:原式=(200+1)(200−1)-1982=−1-1982=(200+198)(200解析:795【分析】把原式化为(200+1)(200−1)利用平方差公式后,再次利用平方差公式进行计算即可.【详解】解:原式=(200+1)(200−1)-1982200−1-1982=2=(200+198)(200-198)-1=398×2-1=796-1=795,故答案为:795.【点睛】本题主要考察了平方差公式的应用,将式子适当变形是解题的关键.17.8a2+112a【分析】长方体变化后的高为8cm底面边长为(3+a)cm然后根据长方体的体积公式列式求解即可【详解】解:(7+a)2×8-7×7×8=8(7+a)2-72=8(7+a-7)(7+a+解析:8a2+112a【分析】长方体变化后的高为8cm,底面边长为(3+a)cm,然后根据长方体的体积公式列式求解即可.【详解】解:(7+a)2×8-7×7×8=8[(7+a)2-72]=8(7+a-7)(7+a+7)=8a(14+a)=8a2+112a故答案为8a2+112a.【点睛】本题主要考查了平方差公式的应用,掌握长方体的体积求法和平方差公式是解答本题的关键.18.【分析】原式把变形为然后逆运用积的乘方进行运算即可得到答案【详解】解:=====故答案为:【点睛】此题主要考查了幂的运算熟练掌握积的乘方运算法则是解答此题的关键解析:12【分析】 原式把202012⎛⎫ ⎪⎝⎭变形为20191122⎛⎫ ⎪⨯⎝⎭,然后逆运用积的乘方进行运算即可得到答案. 【详解】 解:20202019122⎛⎫⨯ ⎪⎝⎭=20192⨯20191122⎛⎫ ⎪⨯⎝⎭=201911222⎛⎫⨯ ⎪⎝⎭⨯ =2019112⨯ =112⨯=12. 故答案为:12. 【点睛】此题主要考查了幂的运算,熟练掌握积的乘方运算法则是解答此题的关键.19.3【分析】根据P=Q 得出x=3y 求解即可【详解】解:∵∴即=0∴x=3y ∴=3故答案为:3【点睛】本题考查了完全平方公式关键是能根据已知条件变形 解析:3【分析】根据P=Q ,得出x=3y 求解即可.【详解】解:∵P Q =,23P x xy =-,239Q xy y =-,∴22339x xy xy y -=-,即2226(3)9x xy y x y =--+=0,∴x=3y ∴x y=3. 故答案为:3【点睛】本题考查了完全平方公式,关键是能根据已知条件变形.20.6【分析】根据同底数幂的乘法法则求解【详解】故答案为:6【点睛】本题考查了同底数幂的乘法解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘底数不变指数相加解析:6【分析】根据同底数幂的乘法法则求解.【详解】·236x y x y a a a +==⨯= .故答案为:6.【点睛】本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.三、解答题21.(1)222(a )2a b b ab +=+-或222()2a b ab a b +-=+;(2)22()()4a b a b ab +=-+或22()()4a b a b ab -=+-或224()()ab a b a b =+--;()314.【分析】(1)和的完全平方公式的变形;(2)两种完全平方公式的恒等关系;(3)根据公式计算即可.【详解】(1)∵外部是一个边长为(a+b )的正方形,∴正方形的面积为2()a b +,∵白色长方形的长为a ,宽为b ,∴两个白色长方形的面积和为2ab ,∴阴影部分的面积为222(a )2a b b ab +=+-或222()2a b ab a b +-=+;(2)∵外部是一个边长为(a+b )的正方形,∴正方形的面积为2()a b +,∵白色长方形的长为a ,宽为b ,∴四个白色长方形的面积和为4ab ,∵内部小正方形的边长为(a-b ),∴正方形的面积为2()a b -,∴22()()4a b a b ab +=-+或22()()4a b a b ab -=+-或224()()ab a b a b =+--; (3)根据图3可得,()222221*********S a b a a b b a b ab =+--+=+-阴影()()22113222212a b ab ab a b ab ⎡⎤+--=+-⎣=⎦, 当10a b +=,24ab =时,原式=213102422⨯-⨯=14. 【点睛】本题考查了以图形面积解释完全平方公式,公式的变形,熟练掌握面积的计算,准确进行公式变形是解题的关键.22.(1)()2a b +;222a b ab ++;(2)()2222a b a b ab +=++;(3)40【分析】(1)利用两种方法表示出大正方形面积即可;(2)写出四个代数式之间的等量关系即可;(3)由直角三角形的面积是6,得到ab =12,大正方形②的面积是(a +b )2=64,把(2)变形后,整体代入可直接求值;【详解】解:(1)方法一:()2a b +;方法二:222a b ab ++;故答案为:(a +b )2;a 2+2ab +b 2;(2)()2222a b a b ab +=++;(3)∵162ab =,()264a b +=, ∴224ab =, ∴()222240a b a b ab +=+-=.【点睛】此题考查了完全平方公式的几何背景,代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.23.(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.24.(1)()()22m n m n ++;(2)42cm .【分析】(1)根据图形的面积直接可以得到;(2)根据222258m n +=,10mn =,可得2229m n +=,可求得7m n +=,根据图形可知,图中所有裁剪线(虚线部分)长之和是66m n +,据此求解即可.【详解】(1)根据图形,依题意可得:2225222m mn n m n m n(2)依题意得222258m n +=,10mn =2229m n ∴+=2222m n m mn n2292049m n0m n +>7m n ∴+=,根据图形可知,图中所有裁剪线(虚线部分)长之和是:6666742m n m n ∴图中所有裁剪线(虚线部分)长之和为42cm .【点睛】本题考查完全平方公式和因式分解的应用,理解题意,从题目中获取信息,列出正确的代数式,再由图形的特点求解是解题的关键.25.(1)2()m n -或2()4m n mn +-;(2)22()()4m n m n mn -=+-;(3)±3.【分析】(1)一种方法是先表示出大正方形面积和四个长方形的面积,用大正方形面积减去四个长方形的面积表示出阴影部分面积;另一种方法是先用m 、n 表示出阴影部分边长,再用正方形面积公式表示之;(2)22(),(),m n m n mn +-分别表示大正方形,小正方形和长方形面积,由图知大正方形面积-四个长方形面积=小正方形面积,可得它们之间的关系;(3)直接把(2)中得到的关系式用(a+b )、ab 的值对应替换即可.【详解】解:(1)由图知:图2中阴影部分的面积:2()m n -或2()4m n mn +-;(2)22()()4m n m n mn -=+-; (3)因为22228189a a a a ⎛⎫⎛⎫+=-+=+= ⎪ ⎪⎝⎭⎝⎭, 所以23a a+=±. 【点睛】 本题考查完全平方差公式和完全平方和公式的联系.会用代数式表示图形面积是解决问题的关键;两数的完全平方和比它们的完全平方差多了两数积的4倍,该结论经常用到. 26.(1)44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)2或2-;(4)192. 【分析】(1)直接写出边长:长边减短边=a-b ,进而可得周长; (2)根据阴影正方形的面积=大正方形的面积-4个长方形的面积解答,或利用大正方形的面积=阴影方形的面积+4个长方形的面积解答,或利用4个长方形的面积=大正方形的面积-阴影方形的面积解答;(3)根据22()()4a b a b ab +=-+求解即可;(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,然后把8x y +=的两边平方求解即可.【详解】解:(1)由图可知,阴影部分正方形的边长为:a-b ,∴阴影部分的正方形的周长等于44a b -或者4()a b -,故答案为:44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或(22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)∵3=-mn ,4m n -=,∴222()()444(3)16124m n m n mn +=-+=+⨯-=-=,∴2m n +=±,∴m n +的值为2或2-.(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,而8x y AB +==, 而12S xy =阴影部分, ∵8x y +=,∴22264x xy y ++=,又∴2226x y +=,∴238xy =, ∴13819242S xy ===阴影部分, 即,阴影部分的面积为192. 【点睛】本题主要考查完全平方公式的几何背景,利用图形的面积是解决此题的关键,利用数形结合的思想,注意观察图形.。
七年级数学《整式的运算》第5周测题
班级 姓名
一.填空题(每题5分)
1、_______2332=⋅a a 。
_______35=÷a a
2、如果(x+3)(x-5)=x 2
-mx+n ,则m= ,n= ;
3、如果()922+-+x m x 是一个完全平方公式,则m= 。
4、如果a 2-b 2
=12,a+b=4,则a-b= 。
5、(3x-2y )( )=9x 2-4y 2。
6、如果x 2+y 2-2x+6y+10=0,则x+y= 。
二.选择题(每题5分)
7、下列各式的计算中,正确的是( )。
A 、(x 3)3= x 6 B 、(x 2)5= x 10 C 、-(-x 2)4=x 8 D 、(x 2)3=x 5
8、下列各式中计算错误的是( )。
A 、(a+b)2=a 2 +2ab+b 2 B 、(a-b)2=a 2 -2ab+b 2
C 、(-a+b)2=a 2+b 2-2ab
D 、(b-a)2= -(a-b)2
9、下列各式中能用平方差公式计算的是( )。
A 、(a+b)(b-a) B 、(1-5m)(5m-1)
C 、(3x-5y)(-3x+5y)
D 、(-x+2y)(x-2y)
10、如果4x 2-mxy+9y 2
是一个完全平方式,则m 的值是( )。
A 、72
B 、36
C 、-12
D 、±12
11、下列计算正确的是()。
A、(a+b)2=a2+b2
B、(a-b)2=a2+2ab-b2
C、(-a+b)2=a2-2ab+b2
D、(-a-b)2=a2-2ab+b2
12、若m,n是整数,那么(m+n)2-(m-n)2的值一定是()。
A、正数
B、负数
C、非负数
D、4的倍数
三.计算题(每题5分)
13、
5
2
2
3)
(a
a
a÷
⋅ 14、()()23
3
210
3
10
2⨯
⨯
⨯
15、(x+2)(x-5)-x(x-3) 16、(x+y)(x-y)-(x-y)2 17、(a+2)(a-2)(a2+4)+16 18、(2a+3)2-(2a-3)2
19、)4()816(222332y x z y x y x -÷-
四.解答题(5分)
20、已知两个两位数的平方差是220,且它们的十位上的数相同,一个数的个位数是6,另一个数的个位数是4,求这两个数。