高一数学必刷题
- 格式:doc
- 大小:428.00 KB
- 文档页数:13
高一数学必修一必刷题电子版第一章集合与常用逻辑用语 (4)1.1集合的概念 (5)1.2集合间的基本关系 (10)1.3集合的基本运算 (13)阅读与思考集合中元素的个数 (18)1.4充分条件与必要条件 (20)1.5全称量词与存在量词 (27)阅读与思考几何命题与充分条件、必要条件 (34)第二章一员二次函数、方程和不等式 (39)2.1等式性质与不等式性质 (40)2.2基本不等式 (47)2.3二次函数与一元一次方程、不等式 (53)第三章函数的概念与性质 (62)3.1函数的概及其表示 (63)阅读与思考函数概念的发展历程 (78)3.2函数的基本性质 (79)信息技术应用用计算机绘制函数图像 (90)3.3幂函数 (92)探索与发现探索函数y=x+1/x的图象与性质 (95)3.4函数的应用(一) (96)文献阅读与数学写作函数的形成与发展 (100)第四章指数函数与对数函数 (106)4.1指数 (107)4.2指数函数 (114)阅读与思考放射性物质的衰减 (118)信息技术应用探究指数函数的性质 (123)4.3对数 (125)阅读与思考对数的发明 (131)4.4对数函数 (133)探究与发现互为反函数的两个函数图象间的关系 (138)4.5函数的应用(二) (145)阅读与思考中外历史上的方程求解 (150)文献阅读与数学写作对数概念的形成与发展 (160)数学建模建立函数模型解决实际问题 (165)第五章三角函数 (170)5.1任意角和弧度制 (171)5.2三角函数的概念 (180)阅读与思考三角学与天文学 (189)5.3诱导公式 (191)5.4三角函数的图象与性质 (199)探究与发现函数y=Asin(ωx+φ)及函数y=Acos(ωx+φ) (206)探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质 (211)5.5三角恒等变换 (218)信息技术应用利用信息技术制作三角函数表 (227)5.6函数y=Asin(ωx+φ) (234)5.7三角函数的应用 (245)阅读与思考振幅、周期、频率、相位 (253)本书根据《普通高中数学课程标准(2017年版》编写,包括“集合与常用逻辑用语”“一元二次函数、方程和不等式”“函数的概念与性质”“指数丽数与对数函数"“三角函数”五章内容,集合是刻画一类事物的语言和工具,是现代数学的基础;常用逻辑用语是数学语言的重要组成部分,是数学表达和交流的工具.在“集合与常用逻辑用语”的学习中,同学们将学习集合的概念、基本关系和运算,学习用集合语言刻画一类事物的方法;并学习用逻辑用语表达数学对象、进行数学推理,为高中数学学习做准备.相等关系和不等式关系是数学中最基本的数量关系,在“一元二次函数、方程和不等式”的学习中,同学们将类比等式学习不等式,通过梳理初中数学的相关内容,理解一元二次函数、一元二次方程和一元二次不等式之间的联系,从函数观点认识方程与不等式.感悟数学知识之间的关联,完成初高中数学学习的过渡.函数是描述客观世界变化规律的重要数学模型,它的思想方法贯穿了高中数学课程的始终,在“函数的概念与性质”中,同学们将在初中的基础上,进一步学习运用集合与对应的语言刻画函数概念,学习丽数的基本性质,并通过幂函数的学习感受如何研究一个丽数,如研究的内容、思路和方法,进一步感受函数的思想方法和广泛应用.“指数爆炸”“对数增长”是生活中常见的变化现象,在“指数函数与对数函数"中同学们将类比幂函数的研究方法,学习指数函数与对数函数的概念、图象和性质.通过对儿类基本初等函数的变化差异的比较,体会如何根据变化差异选择合适的函数类型构建数学模型,刻画现实问题的变化规律,解决简单的实际问题.三角函数也是一类基本的、重要的函数,它是刻画现实世界中具有周期性变化现象的数学模型,在“三角函数”的学习中,同学们将学习借助单位圆建立一般三角函数的概念,学习三角函数的图象和性质,探索和研究三角函数之间的一些恒等关系,通过建立三角函数模型刻画周期变化现象,进一步体会函数的广泛应用.祝愿同学们通过本册书的学习,不但学到更多的数学知识,而且在数学能力、数学核心素养等方面都有较大的提高,并培养起更高的数学学习兴趣,形成对数学的更加全面的认识.我们知道,方程x-2在有理数范围内无解,但在实数范围内有解.在平面内,所有到定点的距离等于定长的点组成一个圆;而在空间中,所有到定点的距离等于定长的点组成一个球面,因此,明确研究对象、确定研究范围是研究数学问题的基础,为了简洁、准确地表述数学对象及研究范围,我们需要使用集合的语言和工具.事实上,集合的知识是现代数学的基础,也是高中数学的基础,在后面各章的学习中将越来越多地应用它.在本章,我们将学习集合的概念、基本关系和运算,学习用集合语言刻画一类事物的方法.逻辑用语是数学语言的重要组成部分,是数学表达和交流的工具,学习一些常用逻辑用语,可以使我们正确理解数学概念、合理论证数学结论、准确表达数学内容,逻辑用语也是日常交往、学习和工作中必不可少的工具,正确使用逻辑用语是每一位公民应具备的基本素养,本章我们将通过常用逻辑用语的学习理解使用逻辑用语表达数学对象、进行数学推理的方法,体会逻辑用语在表述数学内容和论证数学结论中的作用,学会使用集合和逻辑语言表达和交流数学问题,提升交流的逻辑性和准确性.1.1集合的概念在小学和初中,我们已经接触过一些集合,例如,自然数的集合,同一平面内到一个定点的距离等于定长的点的集合(即圆)等,为了更有效地使用集合语言,我们需要进一步了解集合的有关知识,下面先从集合的含义开始.看下面的例子:(1)1-10之间的所有偶数;(2)立德中学今年入学的全体高一学生;(3)所有的正方形;(4)到直线1的距离等于定长d的所有点(5)方程1-3r+2-0的所有实数根;(6)地球上的四大洋.例(1)中,我们把1~10之间的每一个偶数作为元素,这些元素的全体就是一个集合;同样地,例(2)中,把立德中学今年入学的每一位高一学生作为元素,这些元素的全体也是一个集合.一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集).给定的集合,它的元素必须是确定的,也就是说,给定一个集合,那么一个元素在或不在这个集合中就确定了.例如."1~10之间的所有偶数"构成一个集合,2.4,6.8.10是这个集合的元素,1.3,5,7.9,…不是它的元素;“较小的数”不能构成集合.因为组成它的元素是不确定的.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.我们通常用大写拉丁字母A.B,C,…表示集合,用小写拉丁字母a,b,c,.表示集合中的元素.如果a是集合A的元素,就说a属于(belong to)集合A,记作aEA;如果a不是集合A中的元素,就说a不属于(not belong to)集合A,记作afA.。
[必刷题]2024高一数学下册概率论基础专项专题训练(含答案)试题部分一、选择题:1. 下列哪个事件是随机事件?()A. 太阳从西边升起B. 抛掷一枚硬币,正面朝上C. 1+1=2D. 一个人的年龄不变2. 一个袋子里有5个红球,3个蓝球,2个绿球,从中随机取出一个球,取出红球的概率是多少?()A. 5/10B. 3/10C. 2/10D. 1/103. 下列哪个概率模型是离散型概率模型?()A. 正态分布B. 二项分布C. 均匀分布D. 指数分布4. 抛掷两枚质地均匀的骰子,求两个骰子点数之和为7的概率是多少?()B. 1/12C. 1/18D. 1/365. 某班有男生30人,女生20人,随机选取一名学生,选到女生的概率是多少?()A. 1/2B. 1/3C. 2/3D. 3/46. 从0到9这10个数字中随机选取一个数字,选到偶数的概率是多少?()A. 1/2B. 1/3C. 1/4D. 1/57. 下列关于互斥事件的说法,正确的是?()A. 互斥事件一定是对立事件B. 对立事件一定是互斥事件C. 互斥事件发生的概率之和为1D. 对立事件发生的概率之和为08. 若事件A的概率为0.3,事件B的概率为0.5,且A与B互斥,则P(A∪B)是多少?()A. 0.3C. 0.8D. 0.29. 下列关于独立事件的说法,错误的是?()A. 独立事件同时发生的概率等于各自发生的概率的乘积B. 独立事件不可能同时发生C. 独立事件中,一个事件的发生不影响另一个事件的发生D. 独立事件的概率乘积等于110. 从一副52张的扑克牌中随机抽取一张牌,求抽到红桃的概率是多少?()A. 1/4B. 1/2C. 1/13D. 1/26二、判断题:1. 互斥事件是指两个事件不可能同时发生,但可以同时不发生。
()2. 概率值介于0和1之间,包括0和1。
()3. 事件A的概率为0,意味着事件A一定不会发生。
()4. 在一次随机试验中,某事件发生的概率为1,则该事件必然发生。
高一数学历年真题汇总1. 选择题:若a=2,b=3,求a^2+b^2的值。
A. 11B. 9C. 5D. 132. 填空题:计算下列等式的值:2x+3=7,其中x的值为______。
3. 判断题:若一个数的平方大于该数,则该数一定是正数。
()4. 解答题:已知函数f(x)=2x^2+3x+1,求该函数的顶点坐标。
5. 选择题:若a=2,b=3,求a^3+b^3的值。
A. 11B. 9C. 5D. 136. 填空题:计算下列等式的值:3x-2=5,其中x的值为______。
7. 判断题:若一个数是奇数,则它的平方一定是奇数。
()8. 解答题:已知函数f(x)=3x^2-2x+1,求该函数的导数。
9. 选择题:若a=2,b=3,求a^4+b^4的值。
A. 11B. 9C. 5D. 1310. 填空题:计算下列等式的值:4x+1=9,其中x的值为______。
11. 判断题:若一个数的平方小于该数,则该数一定是负数。
()12. 解答题:已知函数f(x)=4x^2-3x+2,求该函数的极值。
13. 选择题:若a=2,b=3,求a^5+b^5的值。
A. 11B. 9C. 5D. 1314. 填空题:计算下列等式的值:5x-2=8,其中x的值为______。
15. 判断题:若一个数的平方等于该数,则该数一定是0。
()16. 解答题:已知函数f(x)=5x^2-4x+3,求该函数的拐点坐标。
17. 选择题:若a=2,b=3,求a^6+b^6的值。
A. 11B. 9C. 5D. 1318. 填空题:计算下列等式的值:6x+1=10,其中x的值为______。
19. 判断题:若一个数的平方大于0,则该数一定是正数。
()20. 解答题:已知函数f(x)=6x^2-5x+4,求该函数的对称轴。
21. 选择题:若a=2,b=3,求a^7+b^7的值。
A. 11B. 9C. 522. 填空题:计算下列等式的值:7x-2=11,其中x的值为______。
【必考题】高一数学上期中试题(及答案)一、选择题1.已知函数()1ln 1xf x x -=+,则不等式()()130f x f x +-≥的解集为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .11,32⎛⎤ ⎥⎝⎦C .12,43⎡⎫⎪⎢⎣⎭D .12,23⎡⎫⎪⎢⎣⎭2.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-⋃+∞,, B .(1)(01)-∞-⋃,, C .(1)(1)-∞-⋃+∞,, D .(10)(01)-⋃,, 3.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④ D .①③4.1()xf x e x=-的零点所在的区间是( ) A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)25.设集合{1,2,3},{2,3,4}A B ==,则A B =A .{}123,4,,B .{}123,,C .{}234,,D .{}134,, 6.设x ∈R ,若函数f (x )为单调递增函数,且对任意实数x ,都有f (f (x )-e x )=e +1(e 是自然对数的底数),则f (ln1.5)的值等于( ) A .5.5B .4.5C .3.5D .2.57.已知函数2()log (23)(01)a f x x x a a =--+>≠,,若(0)0f <,则此函数的单调减区间是() A .(,1]-∞-B .[1)-+∞,C .[1,1)-D .(3,1]--8.定义在R 上的奇函数()f x 满足()1(2)f x f x +=-,且在()0,1上()3xf x =,则()3log 54f =( )A .32B .23-C .23D .32-9.函数()2log ,0,2,0,x x x f x x ⎧>=⎨≤⎩则函数()()()2384g x f x f x =-+的零点个数是( )A .5B .4C .3D .610.已知()()2,11,1x x f x f x x ⎧<⎪=⎨-≥⎪⎩,则()2log 7f =( )A .7B .72C .74D .7811.函数2y 34x x =--+的定义域为( )A .(41)--,B .(41)-,C .(11)-,D .(11]-, 12.已知函数()()()ln 1ln 1f x x x =+--,若实数a 满足()()120f a f a +->,则a 的取值范围是( ) A .()1,1-B .()0,1C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭二、填空题13.已知函数2()121()f x ax x ax a R =+++-∈的最小值为0,则实数a =_________.14.1232e 2(){log (1)2x x f x x x ,,-<=-≥,则f (f (2))的值为____________.15.已知1240x x a ++⋅>对一切(],1x ∞∈-上恒成立,则实数a 的取值范围是______. 16.已知()f x 是定义在[)(]2,00,2-⋃上的奇函数,当0x >,()f x 的图象如图所示,那么()f x 的值域是______.17.非空有限数集S 满足:若,a b S ∈,则必有ab S ∈.请写出一个..满足条件的二元数集S =________.18.已知函数42()(0)f x x ax bx c c =+++<,若函数是偶函数,且4((0))f f c c =+,则函数()f x 的零点共有________个.19.函数2()log 1f x x =-________.20.已知函数()266,34,x x f x x ⎧-+=⎨+⎩0x x ≥<,若互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是__________. 三、解答题21.已知函数f (x )是定义域为R 的奇函数,当x <0时,()111f x x =+-. (1)求f (2)的值;(2)用定义法判断y =f (x )在区间(-∞,0)上的单调性. (3)求0()x f x >时,的解析式 22.已知2256x ≤且21log 2x ≥,求函数22()log log 22x xf x =⋅的最大值和最小值. 23.已知函数()f x 对任意的实数m ,n 都有()()()1f m n f m f n +=+-,且当0x >时,有()1f x >.(1)求()0f ;(2)求证:()f x 在R 上为增函数;(3)若()12f =,且关于x 的不等式()()223f ax f x x -+-<对任意的[)1,x ∈+∞恒成立,求实数a 的取值范围. 24.计算下列各式的值:(Ⅰ)322log 3lg25lg4log (log 16)++- (Ⅱ)2102329273()( 6.9)()()482-----+25.函数是奇函数.求的解析式;当时,恒成立,求m 的取值范围.26.有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数301log lg 2100xv x =-,单位是min km ,其中x 表示候鸟每分钟耗氧量的单位数,0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:lg 20.30=, 1.23 3.74=, 1.43 4.66=)(1)若02x =,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少min km ? (2)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(3)若雄鸟的飞行速度为2.5min km ,雌鸟的飞行速度为1.5min km ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】 【分析】根据题意可得函数()f x 的奇偶性以及单调性,据此原不等式转化为()()31f x f x ≥-,求解可得x 的取值范围,即可得出结论. 【详解】根据题意,函数()1ln 1xf x x-=+, 则有101xx->+,解可得11x -<<, 即函数的定义域为()1,1-,关于原点对称, 又由()()11lnln 11x xf x f x x x+--==-=--+, 即函数()f x 为奇函数, 设11xt x -=+,则y lnt =, 12111x t x x -==-++,在()1,1-上为减函数, 而y lnt =在()0,∞+上为增函数, 故()1ln1xf x x-=+在区间()1,1-上为减函数, ()()()()13013f x f x f x f x +-≥⇒≥-- ()()3131111311x x f x f x x x ≤-⎧⎪⇒≥-⇒-<<⎨⎪-<-<⎩,解可得:1223x ≤<,即不等式的解集为12,23⎡⎫⎪⎢⎣⎭; 故选:D . 【点睛】本题考查函数的奇偶性与单调性的综合应用,解题时不要忽略函数的定义域,属于中档题.2.D解析:D 【解析】由f (x )为奇函数可知,()()f x f x x--=()2f x x<0.而f (1)=0,则f (-1)=-f (1)=0. 当x >0时,f (x )<0=f (1); 当x <0时,f (x )>0=f (-1). 又∵f (x )在(0,+∞)上为增函数, ∴奇函数f (x )在(-∞,0)上为增函数. 所以0<x <1,或-1<x <0. 选D点睛:解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内3.C解析:C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .4.B解析:B 【解析】函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.5.A解析:A 【解析】 由题意{1,2,3,4}AB ,故选A.点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.6.D解析:D 【解析】 【分析】利用换元法 将函数转化为f (t )=e+1,根据函数的对应关系求出t 的值,即可求出函数f (x )的表达式,即可得到结论 【详解】 设t=f (x )-e x ,则f (x )=e x +t ,则条件等价为f (t )=e+1, 令x=t ,则f (t )=e t +t=e+1, ∵函数f (x )为单调递增函数, ∴t=1, ∴f (x )=e x +1,即f (ln5)=e ln1.5+1=1.5+1=2.5, 故选:D . 【点睛】本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键.7.D解析:D 【解析】 【分析】求得函数()f x 的定义域为(3,1)-,根据二次函数的性质,求得()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,再由(0)0f <,得到01a <<,利用复合函数的单调性,即可求解. 【详解】由题意,函数2()log (23)a f x x x =--+满足2230x x --+>,解得31x -<<,即函数()f x 的定义域为(3,1)-,又由函数()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,因为(0)0f <,即(0)log 30a f =<,所以01a <<,根据复合函数的单调性可得,函数()f x 的单调递减区间为(3,1]--, 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及复合函数的单调性的判定,着重考查了推理与运算能力,属于基础题.8.D解析:D 【解析】 【分析】由题意结合函数的性质整理计算即可求得最终结果. 【详解】由题意可得:()354f log =()3log 23f +, 则()354f log =()31log 21f -+,且()()331log 21log 21f f +=--, 由于()3log 211,0-∈-,故()()31log 2333log 211log 232f f --=--=-=-,据此可得:()()3312log 21log 213f f +=-=-,()354f log =32-.本题选择D 选项. 【点睛】本题主要考查函数的奇偶性,函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.9.A解析:A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数.【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0x x x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A . 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.10.C解析:C 【解析】 【分析】根据函数的周期性以及分段函数的表达式,结合对数的运算法则,代入即可得到结论. 【详解】2222log 4log 7log 83=<<=,20log 721∴<-<,()()2log 72227log 7log 7224f f -∴=-==. 故选:C . 【点睛】本题主要考查函数值的计算,根据分段函数的表达式以及函数的周期性进行转化是解决本题的关键.11.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<<故选C12.B解析:B 【解析】 【分析】求出函数()y f x =的定义域,分析函数()y f x =的单调性与奇偶性,将所求不等式变形为()()21f a f a >-,然后利用函数()y f x =的单调性与定义域可得出关于实数a 的不等式组,即可解得实数a 的取值范围. 【详解】对于函数()()()ln 1ln 1f x x x =+--,有1010x x +>⎧⎨->⎩,解得11x -<<, 则函数()y f x =的定义域为()1,1-,定义域关于原点对称,()()()()ln 1ln 1f x x x f x -=--+=-,所以,函数()y f x =为奇函数,由于函数()1ln 1y x =+在区间()1,1-上为增函数,函数()2ln 1y x =-在区间()1,1-上为减函数,所以,函数()()()ln 1ln 1f x x x =+--在()1,1-上为增函数, 由()()120f a f a +->得()()()1221f a f a f a >--=-,所以,11112121a a a a -<<⎧⎪-<-<⎨⎪>-⎩,解得01a <<.因此,实数a 的取值范围是()0,1. 故选:B. 【点睛】本题考查函数不等式的求解,解答的关键就是分析函数的单调性和奇偶性,考查计算能力,属于中等题.二、填空题13.【解析】【分析】设计算可得再结合图象即可求出答案【详解】解:设则则由于函数的最小值为0作出函数的大致图象结合图象得所以故答案为:【点睛】本题主要考查分段函数的图象与性质考查转化思想考查数形结合思想属解析:±1. 【解析】【分析】 设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,计算可得2(),()()()2(),()()g x g x h x f x h x g x h x ≥⎧=⎨<⎩,再结合图象即可求出答案. 【详解】解:设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,则22()()1g x x ax h x x ⎧=+⎨=-⎩, 则()()()()()f x g x h x g x h x =++-2(),()()2(),()()g x g x h x h x g x h x ≥⎧=⎨<⎩, 由于函数()f x 的最小值为0,作出函数()g x ,()h x 的大致图象,结合图象,210x -=,得1x =±, 所以1a =±, 故答案为:±1. 【点睛】本题主要考查分段函数的图象与性质,考查转化思想,考查数形结合思想,属于中档题.14.2【解析】【分析】先求f (2)再根据f (2)值所在区间求f (f (2))【详解】由题意f (2)=log3(22–1)=1故f (f (2))=f (1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数解析:2 【解析】 【分析】先求f (2),再根据f (2)值所在区间求f (f (2)). 【详解】由题意,f (2)=log 3(22–1)=1,故f (f (2))=f (1)=2×e 1–1=2,故答案为:2. 【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.15.【解析】【分析】根据题意分离出参数a 后转化为求函数的最值即可通过换元后利用二次函数的性质可求得最大值【详解】可化为令由得则在上递减当时取得最大值为所以故答案为【点睛】本题考查二次函数的性质函数恒成立解析:3,4∞⎛⎫-+ ⎪⎝⎭【解析】 【分析】根据题意分离出参数a 后转化为求函数的最值即可,通过换元后利用二次函数的性质可求得最大值. 【详解】1240xxa ++⋅>可化为212224xx x x a --+>-=--,令2x t -=,由(],1x ∈-∞,得1,2t ⎡⎫∈+∞⎪⎢⎣⎭, 则2a t t >--,2213()24t t t --=-++在1,2⎡⎫+∞⎪⎢⎣⎭上递减,当12t =时2t t --取得最大值为34-,所以34a >-. 故答案为3,4⎛⎫-+∞ ⎪⎝⎭.【点睛】本题考查二次函数的性质、函数恒成立问题,考查转化思想,考查学生解决问题的能力.属中档题.16.【解析】【分析】先根据函数的奇偶性作出函数在y 轴左侧的图象欲求的值域分两类讨论:;结合图象即可解决问题【详解】是定义在上的奇函数作出图象关于原点对称作出其在y 轴左侧的图象如图由图可知:的值域是故答案 解析:][()2,33,2⋃--【解析】 【分析】先根据函数的奇偶性作出函数在y 轴左侧的图象,欲求()f x 的值域,分两类讨论:0x >①;0.x <②结合图象即可解决问题.【详解】()f x 是定义在(][2,00,2-⋃上的奇函数,∴作出图象关于原点对称作出其在y 轴左侧的图象,如图.由图可知:()f x 的值域是][()2,33,2⋃--. 故答案为][()2,33,2⋃--. 【点睛】本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力.17.{01}或{-11}【解析】【分析】因中有两个元素故可利用中的元素对乘法封闭求出这两个元素【详解】设根据题意有所以必有两个相等元素若则故又或所以(舎)或或此时若则此时故此时若则此时故此时综上或填或【解析:{0,1}或{-1,1}, 【解析】 【分析】因S 中有两个元素,故可利用S 中的元素对乘法封闭求出这两个元素. 【详解】设{}(),S a b a b =<,根据题意有22,,a ab b S ∈,所以22,,a b ab 必有两个相等元素.若22a b =,则=-a b ,故2ab a =-,又2a a =或2a b a ==-,所以0a =(舎)或1a =或1a =-,此时{}1,1S =-.若 2a ab =,则0a =,此时2b b =,故1b = ,此时{}0,1S =. 若2b ab =,则0b =,此时2a a =,故1a =,此时{}0,1S =. 综上,{}0,1S =或{}1,1S =-,填{}0,1或{}1,1-. 【点睛】集合中元素除了确定性、互异性、无序性外,还有若干运算的封闭性,比如整数集,对加法、减法和乘法运算封闭,但对除法运算不封闭(两个整数的商不一定是整数),又如有理数集,对加法、减法、乘法和除法运算封闭,但对开方运算不封闭.一般地,若知道集合对某种运算封闭,我们可利用该运算探究集合中的若干元素.18.2【解析】因为是偶函数则解得又所以故令所以故有2个零点点睛:本题涉及函数零点方程图像等概念和知识综合性较强属于中档题一般讨论函数零点个数问题都要转化为方程根的个数问题或两个函数图像交点的个数问题本题解析:2 【解析】因为()42(0)f x x ax bx c c =+++<是偶函数,则()()f x f x -=,解得0b =,又()()4240()f f f c c ac c c c ==++=+,所以0a =,故4()f x x c =+,令4()0f x x c =+=,40x c =->,所以x =2个零点.点睛:本题涉及函数零点,方程,图像等概念和知识,综合性较强,属于中档题.一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑方程来解决,转化为方程根的个数,同时注意偶函数性质在本题中的应用.19.2+∞)【解析】分析:根据偶次根式下被开方数非负列不等式解对数不等式得函数定义域详解:要使函数有意义则解得即函数的定义域为点睛:求给定函数的定义域往往需转化为解不等式(组)的问题解析:[2,+∞) 【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[2,)+∞.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.20.【解析】【分析】画出分段函数的图像由图像结合对称性即可得出【详解】函数的图像如下图所示不妨设则关于直线对称所以且满足则故的取值范围是【点睛】解决本题的关键是要会画分段函数的图像由图像结合对称性经过计解析:11(,6)3【解析】 【分析】画出分段函数的图像,由图像结合对称性即可得出。
高一数学必刷题第一部分:集合1. 集合的定义和表示集合是由确定的、互不相同的元素组成的整体。
集合中的元素可以是数字、符号、图形等。
集合通常用大括号{}表示,例如:{1, 2, 3}表示包含元素1、2、3的集合。
2. 集合的基本操作并集:将两个集合合并为一个集合,包含所有元素。
例如:{1, 2, 3} ∪ {3, 4, 5} = {1, 2, 3, 4, 5}。
交集:找出两个集合中共有的元素。
例如:{1, 2, 3} ∩ {3, 4, 5} = {3}。
补集:在全集的范围内,找出不属于某个集合的元素。
例如:如果全集是{1, 2, 3, 4, 5},那么{1, 2, 3}的补集是{4, 5}。
3. 集合的性质封闭性:集合中的元素必须是确定的,不能是模糊的或无限的。
互异性:集合中的元素必须是互不相同的。
无序性:集合中的元素没有顺序之分。
第二部分:函数1. 函数的定义函数是一种特殊的映射关系,它将一个集合(定义域)中的每个元素唯一地对应到另一个集合(值域)中的元素。
函数通常用f(x)表示,其中x是自变量,f(x)是因变量。
2. 函数的性质单调性:函数在整个定义域内保持单调递增或单调递减。
奇偶性:函数关于y轴对称(偶函数)或原点对称(奇函数)。
周期性:函数值在一定周期内重复出现。
3. 函数的图像函数的图像是函数值在坐标系中的表示。
通过观察图像,可以直观地了解函数的性质和行为。
第三部分:三角函数1. 三角函数的定义三角函数是描述角度与边长关系的函数,包括正弦、余弦、正切等。
三角函数通常用sin(x), cos(x), tan(x)等表示,其中x是角度。
2. 三角函数的性质周期性:三角函数具有周期性,例如正弦函数和余弦函数的周期都是2π。
奇偶性:正弦函数是奇函数,余弦函数是偶函数。
增减性:三角函数在不同的区间内具有不同的增减性。
3. 三角函数的应用三角函数在物理学、工程学、天文学等领域有广泛的应用,例如描述波动、周期性运动等。
数学题高一试题及答案一、选择题1. 若函数f(x) = 2x^2 - 4x + 3,求f(2)的值。
A. 1B. 3C. 5D. 7答案:B2. 已知等差数列{an}的前三项分别为a1 = 1,d = 2,求a3的值。
A. 5B. 6C. 7D. 8答案:A3. 函数y = x^3 - 3x^2 + 2x + 1的极值点个数是:A. 0B. 1C. 2D. 3答案:C二、填空题4. 计算复数(1 + 2i)(3 - 4i)的结果为______。
答案:11 - 10i5. 已知圆的方程为x^2 + y^2 - 6x + 8y - 24 = 0,求该圆的半径。
答案:5三、解答题6. 已知函数f(x) = x^3 - 3x^2 + 2,求证f(x)在x = 2处取得极小值。
证明:首先求导数f'(x) = 3x^2 - 6x。
令f'(x) = 0,解得x = 0 或x = 2。
验证f''(x) = 6x - 6,代入x = 2,得到f''(2) = 6 > 0,因此f(x)在x = 2处取得极小值。
7. 解不等式:x^2 - 4x + 4 > 0。
解:将不等式转化为(x - 2)^2 > 0,由于平方项总是非负的,所以不等式成立当x ≠ 2。
因此,解集为{x|x ≠ 2}。
四、计算题8. 计算定积分∫(0到1) (2x + 3) dx。
解:首先求被积函数(2x + 3)的原函数F(x) = x^2 + 3x。
计算定积分,得到F(1) - F(0) = (1^2 + 3*1) - (0^2 + 3*0) = 4。
答案:49. 已知函数f(x) = √x,求f(x)在区间[1, 4]上的平均变化率。
解:平均变化率定义为(f(b) - f(a)) / (b - a),代入f(x) = √x,得到平均变化率= (√4 - √1) / (4 - 1) = (2 - 1) / 3 = 1/3。
【必刷题】2024高一数学上册集合运算规律专项专题训练(含答案)试题部分一、选择题:1. 设集合A={x|x²3x+2=0},则A中元素的个数为()A. 0个B. 1个C. 2个D. 3个2. 若集合M={1, 2, 3},N={x|x=2a, a∈M},则集合N中的元素个数为()A. 1个B. 2个C. 3个D. 4个3. 已知集合P={x|2<x≤3},Q={x|1≤x<4},则P∩Q为()A. {x|2<x<1}B. {x|1<x≤3}C. {x|2<x<4}D. {x|1≤x≤3}4. 若集合A={x|x²x6=0},B={x|x²4x+3=0},则A∪B的结果为()A. {1, 2, 3}B. {1, 3, 4}C. {1, 2, 3, 4}D. {2, 3}5. 设集合C={x|x²+x=0},D={x|x²5x+6=0},则C∩D的结果为()A. ∅B. {0}C. {0, 1}D. {0, 2}6. 若集合E={x|x²6x+8=0},F={x|x²7x+12=0},则E∩F的结果为()A. {2, 3}B. {2, 4}C. {3, 4}D. {2, 3, 4}7. 已知集合G={x|x²5x+6=0},H={x|x²3x+2=0},则G∪H的结果为()A. {2, 3}B. {2, 3, 4}C. {1, 2, 3}D. {1, 2, 3, 4}8. 若集合I={x|x²4x+3=0},J={x|x²2x3=0},则I∩J的结果为()A. ∅B. {1}C. {2}D. {3}9. 设集合K={x|x²3x+2=0},L={x|x²4=0},则K∪L的结果为()A. {1, 2}B. {1, 2, 3}C. {1, 2, 2}D. {1, 2, 2, 2}10. 若集合M={x|x²x6=0},N={x|x²2x3=0},则M∩N的结果为()A. {2}B. {3}C. {2, 3}D. ∅二、判断题:1. 集合A={x|x²x6=0}与集合B={x|x²4x+3=0}的交集为空集。
高一数学必考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)答案:C2. 若函数f(x) = 2x + 1在区间[-1, 2]上是增函数,则下列说法正确的是:A. f(x)在[-1, 2]上单调递减B. f(x)在[-1, 2]上单调递增C. f(x)在[-1, 2]上先增后减D. f(x)在[-1, 2]上先减后增答案:B3. 已知集合A={1, 2, 3},集合B={2, 3, 4},则A∩B的元素个数为:A. 0B. 1C. 2D. 3答案:C4. 函数y = 3x - 2的图像不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:B5. 已知等差数列{an}的前三项分别为1, 4, 7,则其第10项为:A. 26B. 27C. 28D. 29答案:A6. 圆的方程为x^2 + y^2 - 6x + 8y - 24 = 0,其圆心坐标为:A. (3, -4)B. (-3, 4)C. (3, 4)D. (-3, -4)答案:A7. 函数f(x) = x^2 - 6x + 8的最小值是:A. -1B. 0C. 1D. 2答案:B8. 直线y = 2x + 3与x轴的交点坐标为:A. (-3/2, 0)B. (3/2, 0)C. (0, 3)D. (0, -3)答案:B9. 已知三角形ABC中,∠A = 60°,∠B = 45°,则∠C的大小为:A. 45°B. 60°C. 75°D. 30°答案:D10. 函数f(x) = |x - 2| + |x + 3|的最小值是:A. 5B. 1C. 0D. 2答案:A二、填空题(每题4分,共20分)1. 已知函数f(x) = x^2 - 4x + 3,其顶点坐标为______。
高一数学练习题带答案高一数学是高中数学学习的重要基础阶段,涵盖了代数、几何、函数等多个领域。
以下是一些高一数学练习题及答案,供同学们练习和参考。
练习题一:代数基础1. 解不等式:\( 2x - 5 < 3x + 1 \)2. 化简表达式:\( \frac{3x^2 - 7x + 2}{x - 1} \)3. 求多项式\( 4x^3 - 3x^2 + 2x - 1 \)的因式分解。
答案一:1. 解不等式:首先将不等式两边的\( x \)项合并,得到\( -x < 6 \),然后两边同时除以-1,注意不等号方向要改变,得到\( x > -6 \)。
2. 化简表达式:通过长除法或多项式除法,可以得到\( 3x - 5 \)。
3. 因式分解:首先提取公因式\( x - 1 \),得到\( x - 1 (4x^2 - 4x + 2) \),然后对余下的二次多项式继续分解,得到\( x - 1 (2x - 1)(2x - 2) \)。
练习题二:几何问题1. 在直角三角形ABC中,角C为直角,已知AB=5,AC=3,求BC的长度。
2. 已知圆的半径为7,求圆的面积。
3. 已知点P(1,2),求点P到直线\( x - 2y + 3 = 0 \)的距离。
答案二:1. 根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和,即\( BC^2 = AB^2 - AC^2 = 5^2 - 3^2 = 25 - 9 = 16 \),所以BC=4。
2. 圆的面积公式为\( A = \pi r^2 \),代入半径r=7,得到\( A =49\pi \)。
3. 点到直线的距离公式为\( d = \frac{|Ax + By + C|}{\sqrt{A^2+ B^2}} \),代入点P(1,2)和直线方程\( x - 2y + 3 = 0 \),得到\( d = \frac{|1 - 4 + 3|}{\sqrt{1^2 + (-2)^2}} =\frac{0}{\sqrt{5}} = 0 \)。
高一数学必刷题一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是满足题目要求的1.(5分)设全集U是实数集R,集合M={x|x2>2x},N={x|log2(x﹣1)≤0},则(∁U M)∩N为()A.{x|1<x<2} B.{x|1≤x≤2} C.{x|1<x≤2} D.{x|1≤x<2}考点:交、并、补集的混合运算.专题:集合.分析:分别求出M与N中不等式的解集,确定出M与N,根据全集U=R,求出M的补集,找出M补集与N的交集即可.解答:解:由M中的不等式变形得:x2﹣2x>0,即x(x﹣2)>0,解得:x>2或x<0,∴M={x|x>2或x<0},∵全集U=R,∴∁U M={x|0≤x≤2},由N中的不等式变形得:log2(x﹣1)≤0=log21,得到0<x﹣1≤1,解得:1<x≤2,即N={x|1<x≤2},则(∁U M)∩N={x|1<x≤2}.故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(5分)若且,则sin(π﹣α)()A.B.C.D.考点:诱导公式的作用;同角三角函数间的基本关系.专题:计算题.分析:已知等式利用诱导公式化简求出cosα的值,由α的范围,利用同角三角函数间的基本关系求出sinα的值,所求式子利用诱导公式化简后,将sinα的值代入计算即可求出值.解答:解:∵cos(2π﹣α)=cosα=,α∈(﹣,0),∴sinα=﹣=﹣,则sin(π﹣α)=sinα=﹣.故选B点评:此题考查了诱导公式的作用,以及同角三角函数间的基本关系,熟练掌握诱导公式是解本题的关键.3.(5分)对于任意x∈R,同时满足条件f(x)=f(﹣x)和f(x﹣π)=f(x)的函数是()A.f(x)=sinx B.f(x)=sinxcosxC.f(x)=cosx D.f(x)=cos2x﹣sin2x考点:抽象函数及其应用.专题:函数的性质及应用;三角函数的图像与性质.分析:直接利用已知条件,判断函数的奇偶性,以及函数的周期性,然后判断选项即可.解答:解:对于任意x∈R,满足条件f(x)=f(﹣x),说明函数是偶函数,满足f(x﹣π)=f(x)的函数是周期为π的函数.对于A,不是偶函数,不正确;对于B,也不是偶函数,不正确;对于C,是偶函数,但是周期不是π,不正确;对于D,f(x)=cos2x﹣sin2x=cos2x,是偶函数,周期为:π,正确.故选:D.点评:本题考查抽象函数的奇偶性函数的周期性的应用,基本知识的考查.4.(5分)设,则()A.a>b>c B.c>a>b C.b>a>c D.b>c>a考点:不等式比较大小.专题:函数的性质及应用.分析:利用指数函数和对数函数的性质分别判断取值范围,然后比较大小即可.解答:解:0<logπ31,,所以0<a<1,b>1,c<0,所以c<a<b,即b>a>c.故选C.点评:本题主要考查利用指数函数和对数函数的性质比较数的大小,比较基础.5.(5分)函数f(x)=2sinx+tanx+m,有零点,则m的取值范围是()A.B.C.(﹣∞,2)∪(2,+∞)D.考点:根的存在性及根的个数判断.专题:计算题;函数的性质及应用.分析:易知函数f(x)=2sinx+tanx+m在[﹣,]上是增函数,从而可得f(﹣)•f()≤0,从而解得.解答:解:易知函数f(x)=2sinx+tanx+m在[﹣,]上是增函数,则只需使f(﹣)•f()≤0,即(2×(﹣)+(﹣)+m)(2×++m)≤0,故m∈;故选:D.点评:本题考查了函数的单调性的判断与函数零点的判定定理的应用,属于基础题.6.(5分)若函数f(x)=ka x﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函数又是增函数,则函数g(x)=log a(x+k)的图象是()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:由函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则由复合函数的性质,我们可得k=1,a>1,由此不难判断函数的图象.解答:解:∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是奇函数则f(﹣x)+f(x)=0即(k﹣1)(a x﹣a﹣x)=0则k=1又∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是增函数则a>1则g(x)=log a(x+k)=log a(x+1)函数图象必过原点,且为增函数故选C点评:若函数在其定义域为为奇函数,则f(﹣x)+f(x)=0,若函数在其定义域为为偶函数,则f(﹣x)﹣f(x)=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数﹣减函数=增函数也是解决本题的关键.7.(5分)设满足,则f(n+4)=()A.2B.﹣2 C.1D.﹣1考点:分段函数的解析式求法及其图象的作法.专题:计算题.分析:结合题意,分别就当n>6时,当n≤6时,代入,然后由f(n)=﹣可求n,进而可求f(n+4)解答:解:当n>6时,f(n)=﹣log3(n+1)=﹣∴n=不满足题意,舍去当n≤6时,f(n)=∴n﹣6=﹣2即n=4∴f(n+4)=f(8)=﹣log39=﹣2故选B点评:本题主要考查了分段函数的函数值的求解,解题的关键是根据不同的自变量的范围确定相应的函数解析式8.(5分)已知,则等于()A.B.C.D.考点:同角三角函数基本关系的运用.分析:先将sin()用两角和正弦公式化开,然后与sinα合并后用辅角公式化成一个三角函数,最后再由三角函数的诱导公式可得答案.解答:解:∵sin()+sinα=sinα++sinα==﹣∴∴sin()=﹣∵cos(α+)=cos()=﹣sin()=故选D.点评:本题主要考查两角和的正弦公式和三角函数的诱导公式.三角函数部分公式比较多,容易记混,对公式一定要强化记忆.9.(5分)若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)﹣g(x)=e x,则有()A.f(2)<f(3)<g(0)B.g(0)<f(3)<f(2)C.f(2)<g(0)<f(3)D.g(0)<f(2)<f(3)考点:函数奇偶性的性质;奇偶性与单调性的综合.专题:压轴题.分析:因为函数f(x),g(x)分别是R上的奇函数、偶函数,所以f(﹣x)=﹣f(x),g(﹣x)=g(x).用﹣x代换x得:f(﹣x)﹣g(﹣x)=﹣f(x)﹣g(x)=e﹣x,又由f(x)﹣g(x)=e x联立方程组,可求出f(x),g(x)的解析式进而得到答案.解答:解:用﹣x代换x得:f(﹣x)﹣g(﹣x)=e﹣x,即f(x)+g(x)=﹣e﹣x,又∵f(x)﹣g(x)=e x∴解得:,,分析选项可得:对于A:f(2)>0,f(3)>0,g(0)=﹣1,故A错误;对于B:f(x)单调递增,则f(3)>f(2),故B错误;对于C:f(2)>0,f(3)>0,g(0)=﹣1,故C错误;对于D:f(x)单调递增,则f(3)>f(2),且f(3)>f(2)>0,而g(0)=﹣1<0,D正确;故选D.点评:本题考查函数的奇偶性性质的应用.另外还考查了指数函数的单调性.10.(5分)在△ABC中,内角A,B,C所对边的长分别为a,b,c,且acosC,bcosB,ccosA满足2bcosB=acosC+ccosA,若b=,则a+c的最大值为()A.B.3C.2D.9考点:正弦定理.专题:计算题;解三角形.分析:利用正弦定理化边为角,可求导cosB,由此可得B,由余弦定理可得:3=a2+c2﹣ac,由基本不等式可得:ac≤3,代入:3=(a+c)2﹣3ac可得a+c的最大值.解答:解:2bcosB=ccosA+acosC,由正弦定理,得2sinBcosB=sinCcosA+sinAcosC,∴2sinBcosB=sinB,又sinB≠0,∴cosB=,∴B=.∵由余弦定理可得:3=a2+c2﹣ac,∴可得:3≥2ac﹣ac=a c2﹣3ac可得:(a+c)2=3+3ac≤12∴a+c的最大值为2.故选:C.点评:该题考查正弦定理、余弦定理及其应用,基本不等式的应用,考查学生运用知识解决问题的能力,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)(理)已知cos(﹣x)=a,且0,则的值用a表示为2a.考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:由x的范围求出﹣x的范围,根据cos(﹣x)的值,利用同角三角函数间的基本关系求出sin(﹣x)的值,利用诱导公式求出所求式子分母的值,将cosx=cos[﹣(﹣x)],求出cosx的值,进而确定出cos2x的值,代入计算即可求出值.解答:解:∵0<x<,∴0<﹣x<,∵cos(﹣x)=a,∴sin(﹣x)=,∴cos(+x)=cos[﹣(﹣x)]=sin(﹣x)=,cosx=cos[﹣(﹣x)]=×a+×=(a+),即cos2x=2cos2x﹣1=2×(a+)2﹣1=a2+1﹣a2+2a﹣1=2a,则原式==2a.故答案为:2a点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.12.(5分)在平面直角坐标系xOy中,已知A(1,0),B(0,1),点C在第一象限内,,且|OC|=2,若,则λ+μ的值是.考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:由题意可得点C的坐标,进而可得向量的坐标,由向量相等可得,可得答案.解答:解:∵点C在第一象限内,∠AOC=,且|OC|=2,∴点C的横坐标为x C=2cos=,纵坐标y C=2sin=1,故=(,1),而=(1,0),=(0,1),则λ+μ=(λ,μ)由=+⇒,∴λ+μ=1+故答案为:+1.点评:本题考查平面向量的坐标运算,以及相等向量.13.(5分)已知△ABC的三个内角A,B,C的对边依次为a,b,c,外接圆半径为1,且满足,则△ABC面积的最大值为.考点:正弦定理;余弦定理.专题:计算题;解三角形.分析:利用同角三角函数间的基本关系化简已知等式的左边,利用正弦定理化简已知的等式右边,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0,可得出cosA的值,然后利用余弦定理表示出cosA,根据cosA的值,得出bc=b2+c2﹣a2,再利用正弦定理表示出a,利用特殊角的三角函数值化简后,再利用基本不等式可得出bc的最大值,进而由sinA的值及bc的最大值,利用三角形的面积公式即可求出三角形ABC面积的最大值.解答:解:由r=1,利用正弦定理可得:c=2rsinC=2sinC,b=2rsinB=2sinB,∵tanA=,tanB=,∴===,∴sinAcosB=cosA(2sinC﹣sinB)=2sinCcosA﹣sinBcosA,即sinAcosB+cosAsinB=sin(A+B)=sinC=2sinCcosA,∵sinC≠0,∴cosA=,即A=,∴cosA==,∴bc=b2+c2﹣a2=b2+c2﹣(2rsinA)2=b2+c2﹣3≥2bc﹣3,∴bc≤3(当且仅当b=c时,取等号),∴△ABC面积为S=bcsinA≤×3×=,则△ABC面积的最大值为:.故答案为:.点评:此题考查了正弦、余弦定理,同角三角函数间的基本关系,两角和与差的正弦函数公式,诱导公式,三角形的面积公式,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键,属于中档题.14.(5分)如图,A是半径为5的圆O上的一个定点,单位向量在A点处与圆O相切,点P是圆O 上的一个动点,且点P与点A不重合,则•的取值范围是[﹣5,5].考点:平面向量数量积的运算.分析:如图所示:设∠PAB=θ,作OM⊥AP,则∠AOM=θ,求得AP=2AM=10sinθ,可得=10sinθ×1×cosθ=5sin2θ,由此求得•的取值范围.解答:解:如图所示:设∠PAB=θ,作OM⊥AP,则∠AOM=θ,∴sinθ=,AM=5sinθ,AP=2AM=10sinθ.∴=10sinθ×1×cosθ=5sin2θ∈[﹣5,5],故答案为:[﹣5,5].点评:本题主要考查了向量的数量积的定义,弦切角定理及三角函数的定义的综合应用,试题具有一定的灵活性,属于中档题.15.(5分)已知函数f(x)=|cosx|•sinx给出下列五个说法:①f()=﹣;②若|f(x1)=|f(x2)|,则x1=x2+kπ(k∈Z);③f(x)在区间[﹣,]上单调递增;④函数f(x)的周期为π;⑤f(x)的图象关于点(﹣,0)成中心对称.其中正确说法的序号是①③.考点:二倍角的正弦.专题:探究型;三角函数的图像与性质.分析:①f()=|cos|•sin==﹣;②若|f(x1)=|f(x2)|,即|sin2x1|=|sin2x2|,列举反例x1=0,x2=时也成立;③在区间[﹣,]上,f(x)=|cosx|•sinx=sin2x,单调递增;④由f(x+π)≠f(x),可得函数f(x)的周期不是π;⑤由函数f(x)=|cosx|•sinx,可得函数是奇函数.解答:解:①f()=|cos|•sin==﹣,正确;②若|f(x1)=|f(x2)|,即|sin2x1|=|sin2x2|,则x1=0,x2=时也成立,故②不正确;③在区间[﹣,]上,f(x)=|cosx|•sinx=sin2x,单调递增,正确;④∵f(x+π)≠f(x),∴函数f(x)的周期为π,不正确;⑤∵函数f(x)=|cosx|•sinx,∴函数是奇函数,∴f(x)的图象关于点(0,0)成中心对称,点(﹣,0)不是函数的对称中心,故不正确.故答案为:①③.点评:解决此类问题的关键是熟练掌握二倍角公式,以及三角函数的有关性质(单调性,周期性,奇偶性,对称性等).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤16.(12分)已知A、B、C为△ABC的三内角,且其对边分别为a、b、c,若cosBcosC﹣sinBsinC=.(Ⅰ)求A;(Ⅱ)若a=2,b+c=4,求△ABC的面积.考点:解三角形;三角函数的恒等变换及化简求值.专题:综合题.分析:(Ⅰ)根据两角和的余弦函数公式化简已知的等式,得到cos(B+C)的值,由B+C的范围,利用特殊角的三角函数值即可求出B+C的度数,然后由三角形的内角和定理求出A的度数;(Ⅱ)根据余弦定理表示出a的平方,配方变形后,把a,b+c及cosA的值代入即可求出bc的值,然后由bc及sinA的值,利用三角形的面积公式即可求出三角形ABC的面积.解答:解:(Ⅰ)∵,∴又∵0<B+C<π,∴,∵A+B+C=π,∴.(Ⅱ)由余弦定理a2=b2+c2﹣2bc•cosA得即:,∴bc=4,∴.点评:此题考查了三角函数的恒等变换及化简求值,余弦定理及三角形的面积公式,熟练掌握公式及定理是解本题的关键.17.(12分)设集合A为函数y=ln(﹣x2﹣2x+8)的定义域,集合B为函数的值域,集合C为不等式的解集.(1)求A∩B;(2)若C⊆∁R A,求a的取值范围.考点:集合的包含关系判断及应用;交集及其运算;补集及其运算;函数的值域;对数函数的定义域.专题:常规题型;计算题.分析:(1)分别计算出几何A,B,再计算A∩B即可;(2)根据条件再由(1)容易计算.解答:解:(1)∵﹣x2﹣2x+8>0,∴解得A=(﹣4,2).∵,∴B=(﹣∞,﹣3]∪ [1,+∞);所以A∩B=(﹣4,﹣3]∪ [1,2);(2)∵ C R A=(﹣∞,﹣4]∪[2,+∞),C⊆C R A,若a<0,则不等式的解集只能是(﹣∞,﹣4]∪[,+∞),故定有≥2得解得﹣≤a<0若a>0,则不等式的解集只能是∅∴a的范围为<0.点评:本题主要考查了集合的交并补混合运算,较为简单,关键是将各集合的元素计算出来.18.(12分)已知向量=(2cosx,sinx),=(cosx,﹣2cosx)设函数f(x)=•(1)求f(x)的单调增区间;(2)若tanα=,求f(α)的值.考点:两角和与差的正弦函数;平面向量数量积的坐标表示、模、夹角.专题:三角函数的图像与性质.分析:(1)求出f(x)的表达式,然后化简为一个角的一个三角函数的形式,结合余弦函数的单调性,求出函数f(x)的单调递增区间;(2)先表示出f(α),然后分子分母同时除以coa2α,并将tanα的值代入即可.解答:解:f(x)=•=2cos2x﹣2sinxcosx=1+cos2x﹣sin2x=1+2cos(2x+)…(3分)(1)当2kπ﹣π≤2x+≤2kπ时,f(x)单调递增,解得:kπ﹣≤x≤kπ﹣k∈Z∴f(x)的单调递增区间为[kπ﹣,kπ﹣]k∈Z …(7分)(2)f(α)=2cos2α﹣2sinαcosα===…(12分)点评:本题考查平面向量的数量积,三角函数的单调性,三角函数的值,考查学生计算能力,是中档题.19.(12分)已知向量=(cosx,cosx),=(0,sinx),=(sinx,cosx)=(sinx,sinx).(1)当x=时,求向量与的夹角θ;(2)当x∈[0,]时,求•的最大值;(3)设函数f(x)=(﹣)(+),将函数f(x)的图象向右平移s个长度单位,向上平移t个长度单位(s,t>0)后得到函数g(x)的图象,且g(x)=2sin2x+1,令=(s,t),求||的最小值.考点:两角和与差的正弦函数;平面向量数量积的运算;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的求值;三角函数的图像与性质;平面向量及应用.分析:(1)当x=时,利用cosθ=,即可求向量与的夹角θ;(2)当x∈[0,]时,化简•的表达式,通过相位的范围,利用正弦函数的值域求解其最大值;(3)通过三角变换求出函数g(x)的表达式,与g(x)=2sin2x+1对照比较,得到=(s,t),即可求||的最小值.解答:解:(1)当x=时,向量=(cosx,cosx)=(),=(0,sinx)=(0,),•==,,,﹣﹣﹣﹣(2分)cosθ===,∴θ=﹣﹣﹣﹣(4分).(2)•=(sinx,cosx)•(sinx,sinx)=sin2x+sinxcosx===.﹣﹣﹣﹣(6分)∵x∈[0,],∴2x﹣,∴﹣﹣﹣﹣(8分).函数f(x)=(﹣)(+)=(cosx,cosx﹣sinx)•(2sinx,cosx+sinx)=.=2sin(2x+),(3)将函数f(x)的图象向右平移s个长度单位,向上平移t个长度单位(s,t>0)后得到函数g(x)的图象,且g(x)=2sin2x+1,∴2sin2x+1=2sin(2x+﹣2s)+t,t=1,s=+kπ,k∈Z.=(s,t),||=≤=.点评:本题考查向量的数量积,两角和与差的三角函数,三角函数图象的平移变换,向量的模等知识,考查分析问题解决问题的能力.20.(13分)利用已学知识证明:(1)sinθ+sinφ=2sin cos;(2)已知△ABC的外接圆的半径为2,内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,求△ABC的面积.考点:三角函数恒等式的证明;三角函数的和差化积公式.专题:三角函数的求值;解三角形.分析:(1)由于θ=(+),φ=(﹣)即可证明;(2)化简可得,由已知△ABC的外接圆的半径为2,即可求△ABC的面积.解答:解:(1)…(4分)(2)∵∴由(1)可得∴…(10分)∵已知△ABC的外接圆的半径为2∴…(12分)点评:本题主要考察了三角函数的和差化积公式的应用,三角函数恒等式的证明,属于中档题.21.(14分)已知函数f(x)=x2+2x,(Ⅰ)若x∈[﹣2,a],求f(x)的值域;(Ⅱ)若存在实数t,当x∈[1,m],f(x+t)≤3x恒成立,求实数m的取值范围.考点:二次函数在闭区间上的最值;函数恒成立问题.专题:分类讨论;函数的性质及应用.分析:(Ⅰ)由f(x)的图象与性质,讨论a的取值,从而确定f(x)在[﹣2,a]上的增减性,求出f(x)的值域.(Ⅱ)把f(x+t)≤3x转化为(x+t)2+2(x+t)≤3x,即u(x)=x2+(2t﹣1)x+t2+2t,在x∈[1,m]恒小于0问题,考查u(x)的图象与性质,求出m的取值范围.解答:解:(Ⅰ)∵f(x)=x2+2x的图象是抛物线,开口向上,对称轴是x=﹣1,∴当﹣2<a≤﹣1时,f(x)在[﹣2,a]上是减函数,,∴此时f(x)的值域为:[a2+2a,0];当﹣1<a≤0时,f(x)在[﹣2,a]上先减后增,f(x)max=f(﹣2)=0,f(x)min=f(﹣1)=﹣1,∴此时f(x)的值域为:[﹣1,0];当a>0时,f(x)在[﹣2,a]上先减后增,,∴此时f(x)的值域为:[﹣1,a2+2a].(Ⅱ)若存在实数t,当x∈[1,m],f(x+t)≤3x恒成立,即(x+t)2+2(x+t)≤3x,∴x2+(2t﹣1)x+t2+2t≤0;设u(x)=x2+(2t﹣1)x+t2+2t,其中x∈[1,m]∵u(x)的图象是抛物线,开口向上,∴u(x)max=max{u(1),u(m)};由u(x)≤0恒成立知;化简得;令g(t)=t2+2(1+m)t+m2﹣m,则原题转化为存在t∈[﹣4,0],使得g(t)≤0;即当t∈[﹣4,0]时,g(t)min≤0;∵m>1时,g(t)的对称轴是t=﹣1﹣m<﹣2,①当﹣1﹣m<﹣4,即m>3时,g(t)min=g(﹣4),∴,解得3<m≤8;②当﹣4≤﹣1﹣m<﹣2,即1<≤3时,g(t)min=g(﹣1﹣m)=﹣1﹣3m,∴,解得1<m≤3;综上,m的取值范围是(1,8].解法二,由,∴m≤,即=8,1<m≤8;即得m的取值范围(1,8].点评:本题考查了二次函数在闭区间上的最值问题的应用,解题时应讨论对称轴在区间内?在区间左侧?区间右侧?从而确定函数的最值.。
高一数学必刷题一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是满足题目要求的1.(5分)设全集U是实数集R,集合M={x|x2>2x},N={x|log2(x﹣1)≤0},则(∁U M)∩N为()A.{x|1<x<2} B.{x|1≤x≤2} C.{x|1<x≤2} D.{x|1≤x<2}考点:交、并、补集的混合运算.专题:集合.分析:分别求出M与N中不等式的解集,确定出M与N,根据全集U=R,求出M的补集,找出M补集与N的交集即可.解答:解:由M中的不等式变形得:x2﹣2x>0,即x(x﹣2)>0,解得:x>2或x<0,∴M={x|x>2或x<0},∵全集U=R,∴∁U M={x|0≤x≤2},由N中的不等式变形得:log2(x﹣1)≤0=log21,得到0<x﹣1≤1,解得:1<x≤2,即N={x|1<x≤2},则(∁U M)∩N={x|1<x≤2}.故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(5分)若且,则sin(π﹣α)()A.B.C.D.考点:诱导公式的作用;同角三角函数间的基本关系.专题:计算题.分析:已知等式利用诱导公式化简求出cosα的值,由α的范围,利用同角三角函数间的基本关系求出sinα的值,所求式子利用诱导公式化简后,将sinα的值代入计算即可求出值.解答:解:∵cos(2π﹣α)=cosα=,α∈(﹣,0),∴sinα=﹣=﹣,则sin(π﹣α)=sinα=﹣.故选B点评:此题考查了诱导公式的作用,以及同角三角函数间的基本关系,熟练掌握诱导公式是解本题的关键.3.(5分)对于任意x∈R,同时满足条件f(x)=f(﹣x)和f(x﹣π)=f(x)的函数是()A.f(x)=sinx B.f(x)=sinxcosxC.f(x)=cosx D.f(x)=cos2x﹣sin2x考点:抽象函数及其应用.专题:函数的性质及应用;三角函数的图像与性质.分析:直接利用已知条件,判断函数的奇偶性,以及函数的周期性,然后判断选项即可.解答:解:对于任意x∈R,满足条件f(x)=f(﹣x),说明函数是偶函数,满足f(x﹣π)=f(x)的函数是周期为π的函数.对于A,不是偶函数,不正确;对于B,也不是偶函数,不正确;对于C,是偶函数,但是周期不是π,不正确;对于D,f(x)=cos2x﹣sin2x=cos2x,是偶函数,周期为:π,正确.故选:D.点评:本题考查抽象函数的奇偶性函数的周期性的应用,基本知识的考查.4.(5分)设,则()A.a>b>c B.c>a>b C.b>a>c D.b>c>a考点:不等式比较大小.专题:函数的性质及应用.分析:利用指数函数和对数函数的性质分别判断取值范围,然后比较大小即可.解答:解:0<logπ31,,所以0<a<1,b>1,c<0,所以c<a<b,即b>a>c.故选C.点评:本题主要考查利用指数函数和对数函数的性质比较数的大小,比较基础.5.(5分)函数f(x)=2sinx+tanx+m,有零点,则m的取值范围是()A.B.C.(﹣∞,2)∪(2,+∞)D.考点:根的存在性及根的个数判断.专题:计算题;函数的性质及应用.分析:易知函数f(x)=2sinx+tanx+m在[﹣,]上是增函数,从而可得f(﹣)•f()≤0,从而解得.解答:解:易知函数f(x)=2sinx+tanx+m在[﹣,]上是增函数,则只需使f(﹣)•f()≤0,即(2×(﹣)+(﹣)+m)(2×++m)≤0,故m∈;故选:D.点评:本题考查了函数的单调性的判断与函数零点的判定定理的应用,属于基础题.6.(5分)若函数f(x)=ka x﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函数又是增函数,则函数g(x)=log a(x+k)的图象是()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:由函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则由复合函数的性质,我们可得k=1,a>1,由此不难判断函数的图象.解答:解:∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是奇函数则f(﹣x)+f(x)=0即(k﹣1)(a x﹣a﹣x)=0则k=1又∵函数f(x)=ka x﹣a﹣x,(a>0,a≠1)在(﹣∞,+∞)上是增函数则a>1则g(x)=log a(x+k)=log a(x+1)函数图象必过原点,且为增函数故选C点评:若函数在其定义域为为奇函数,则f(﹣x)+f(x)=0,若函数在其定义域为为偶函数,则f(﹣x)﹣f(x)=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数﹣减函数=增函数也是解决本题的关键.7.(5分)设满足,则f(n+4)=()A.2B.﹣2 C.1D.﹣1考点:分段函数的解析式求法及其图象的作法.专题:计算题.分析:结合题意,分别就当n>6时,当n≤6时,代入,然后由f(n)=﹣可求n,进而可求f(n+4)解答:解:当n>6时,f(n)=﹣log3(n+1)=﹣∴n=不满足题意,舍去当n≤6时,f(n)=∴n﹣6=﹣2即n=4∴f(n+4)=f(8)=﹣log39=﹣2故选B点评:本题主要考查了分段函数的函数值的求解,解题的关键是根据不同的自变量的范围确定相应的函数解析式8.(5分)已知,则等于()A.B.C.D.考点:同角三角函数基本关系的运用.分析:先将sin()用两角和正弦公式化开,然后与sinα合并后用辅角公式化成一个三角函数,最后再由三角函数的诱导公式可得答案.解答:解:∵sin()+sinα=sinα++sinα==﹣∴∴sin()=﹣∵cos(α+)=cos()=﹣sin()=故选D.点评:本题主要考查两角和的正弦公式和三角函数的诱导公式.三角函数部分公式比较多,容易记混,对公式一定要强化记忆.9.(5分)若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)﹣g(x)=e x,则有()A.f(2)<f(3)<g(0)B.g(0)<f(3)<f(2)C.f(2)<g(0)<f(3)D.g(0)<f(2)<f(3)考点:函数奇偶性的性质;奇偶性与单调性的综合.专题:压轴题.分析:因为函数f(x),g(x)分别是R上的奇函数、偶函数,所以f(﹣x)=﹣f(x),g(﹣x)=g(x).用﹣x代换x得:f(﹣x)﹣g(﹣x)=﹣f(x)﹣g(x)=e﹣x,又由f(x)﹣g(x)=e x联立方程组,可求出f(x),g(x)的解析式进而得到答案.解答:解:用﹣x代换x得:f(﹣x)﹣g(﹣x)=e﹣x,即f(x)+g(x)=﹣e﹣x,又∵f(x)﹣g(x)=e x∴解得:,,分析选项可得:对于A:f(2)>0,f(3)>0,g(0)=﹣1,故A错误;对于B:f(x)单调递增,则f(3)>f(2),故B错误;对于C:f(2)>0,f(3)>0,g(0)=﹣1,故C错误;对于D:f(x)单调递增,则f(3)>f(2),且f(3)>f(2)>0,而g(0)=﹣1<0,D正确;故选D.点评:本题考查函数的奇偶性性质的应用.另外还考查了指数函数的单调性.10.(5分)在△ABC中,内角A,B,C所对边的长分别为a,b,c,且acosC,bcosB,ccosA满足2bcosB=acosC+ccosA,若b=,则a+c的最大值为()A.B.3C.2D.9考点:正弦定理.专题:计算题;解三角形.分析:利用正弦定理化边为角,可求导cosB,由此可得B,由余弦定理可得:3=a2+c2﹣ac,由基本不等式可得:ac≤3,代入:3=(a+c)2﹣3ac可得a+c的最大值.解答:解:2bcosB=ccosA+acosC,由正弦定理,得2sinBcosB=sinCcosA+sinAcosC,∴2sinBcosB=sinB,又sinB≠0,∴cosB=,∴B=.∵由余弦定理可得:3=a2+c2﹣ac,∴可得:3≥2ac﹣ac=a c∴即有:ac≤3,代入:3=(a+c)2﹣3ac可得:(a+c)2=3+3ac≤12∴a+c的最大值为2.故选:C.点评:该题考查正弦定理、余弦定理及其应用,基本不等式的应用,考查学生运用知识解决问题的能力,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)(理)已知cos(﹣x)=a,且0,则的值用a表示为2a.考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:由x的范围求出﹣x的范围,根据cos(﹣x)的值,利用同角三角函数间的基本关系求出sin(﹣x)的值,利用诱导公式求出所求式子分母的值,将cosx=cos[﹣(﹣x)],求出cosx的值,进而确定出cos2x的值,代入计算即可求出值.解答:解:∵0<x<,∴0<﹣x<,∵cos(﹣x)=a,∴sin(﹣x)=,∴cos(+x)=cos[﹣(﹣x)]=sin(﹣x)=,cosx=cos[﹣(﹣x)]=×a+×=(a+),即cos2x=2cos2x﹣1=2×(a+)2﹣1=a2+1﹣a2+2a﹣1=2a,则原式==2a.故答案为:2a点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.12.(5分)在平面直角坐标系xOy中,已知A(1,0),B(0,1),点C在第一象限内,,且|OC|=2,若,则λ+μ的值是.考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:由题意可得点C的坐标,进而可得向量的坐标,由向量相等可得,可得答案.解答:解:∵点C在第一象限内,∠AOC=,且|OC|=2,∴点C的横坐标为x C=2cos=,纵坐标y C=2sin=1,故=(,1),而=(1,0),=(0,1),则λ+μ=(λ,μ)由=+⇒,∴λ+μ=1+故答案为:+1.点评:本题考查平面向量的坐标运算,以及相等向量.13.(5分)已知△ABC的三个内角A,B,C的对边依次为a,b,c,外接圆半径为1,且满足,则△ABC面积的最大值为.考点:正弦定理;余弦定理.专题:计算题;解三角形.分析:利用同角三角函数间的基本关系化简已知等式的左边,利用正弦定理化简已知的等式右边,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0,可得出cosA的值,然后利用余弦定理表示出cosA,根据cosA的值,得出bc=b2+c2﹣a2,再利用正弦定理表示出a,利用特殊角的三角函数值化简后,再利用基本不等式可得出bc的最大值,进而由sinA的值及bc的最大值,利用三角形的面积公式即可求出三角形ABC面积的最大值.解答:解:由r=1,利用正弦定理可得:c=2rsinC=2sinC,b=2rsinB=2sinB,∵tanA=,tanB=,∴===,∴sinAcosB=cosA(2sinC﹣sinB)=2sinCcosA﹣sinBcosA,即sinAcosB+cosAsinB=sin(A+B)=sinC=2sinCcosA,∵sinC≠0,∴cosA=,即A=,∴cosA==,∴bc=b2+c2﹣a2=b2+c2﹣(2rsinA)2=b2+c2﹣3≥2bc﹣3,∴bc≤3(当且仅当b=c时,取等号),∴△ABC面积为S=bcsinA≤×3×=,则△ABC面积的最大值为:.故答案为:.点评:此题考查了正弦、余弦定理,同角三角函数间的基本关系,两角和与差的正弦函数公式,诱导公式,三角形的面积公式,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键,属于中档题.14.(5分)如图,A是半径为5的圆O上的一个定点,单位向量在A点处与圆O相切,点P是圆O 上的一个动点,且点P与点A不重合,则•的取值范围是[﹣5,5].考点:平面向量数量积的运算.分析:如图所示:设∠PAB=θ,作OM⊥AP,则∠AOM=θ,求得AP=2AM=10sinθ,可得=10sinθ×1×cosθ=5sin2θ,由此求得•的取值范围.解答:解:如图所示:设∠PAB=θ,作OM⊥AP,则∠AOM=θ,∴sinθ=,AM=5sinθ,AP=2AM=10sinθ.∴=10sinθ×1×cosθ=5sin2θ∈[﹣5,5],故答案为:[﹣5,5].点评:本题主要考查了向量的数量积的定义,弦切角定理及三角函数的定义的综合应用,试题具有一定的灵活性,属于中档题.15.(5分)已知函数f(x)=|cosx|•sinx给出下列五个说法:①f()=﹣;②若|f(x1)=|f(x2)|,则x1=x2+kπ(k∈Z);③f(x)在区间[﹣,]上单调递增;④函数f(x)的周期为π;⑤f(x)的图象关于点(﹣,0)成中心对称.其中正确说法的序号是①③.考点:二倍角的正弦.专题:探究型;三角函数的图像与性质.分析:①f()=|cos|•sin==﹣;②若|f(x1)=|f(x2)|,即|sin2x1|=|sin2x2|,列举反例x1=0,x2=时也成立;③在区间[﹣,]上,f(x)=|cosx|•sinx=sin2x,单调递增;④由f(x+π)≠f(x),可得函数f(x)的周期不是π;⑤由函数f(x)=|cosx|•sinx,可得函数是奇函数.解答:解:①f()=|cos|•sin==﹣,正确;②若|f(x1)=|f(x2)|,即|sin2x1|=|sin2x2|,则x1=0,x2=时也成立,故②不正确;③在区间[﹣,]上,f(x)=|cosx|•sinx=sin2x,单调递增,正确;④∵f(x+π)≠f(x),∴函数f(x)的周期为π,不正确;⑤∵函数f(x)=|cosx|•sinx,∴函数是奇函数,∴f(x)的图象关于点(0,0)成中心对称,点(﹣,0)不是函数的对称中心,故不正确.故答案为:①③.点评:解决此类问题的关键是熟练掌握二倍角公式,以及三角函数的有关性质(单调性,周期性,奇偶性,对称性等).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤16.(12分)已知A、B、C为△ABC的三内角,且其对边分别为a、b、c,若cosBcosC﹣sinBsinC=.(Ⅰ)求A;(Ⅱ)若a=2,b+c=4,求△ABC的面积.考点:解三角形;三角函数的恒等变换及化简求值.专题:综合题.分析:(Ⅰ)根据两角和的余弦函数公式化简已知的等式,得到cos(B+C)的值,由B+C的范围,利用特殊角的三角函数值即可求出B+C的度数,然后由三角形的内角和定理求出A的度数;(Ⅱ)根据余弦定理表示出a的平方,配方变形后,把a,b+c及cosA的值代入即可求出bc的值,然后由bc及sinA的值,利用三角形的面积公式即可求出三角形ABC的面积.解答:解:(Ⅰ)∵,∴又∵0<B+C<π,∴,∵A+B+C=π,∴.(Ⅱ)由余弦定理a2=b2+c2﹣2bc•cosA得即:,∴bc=4,∴.点评:此题考查了三角函数的恒等变换及化简求值,余弦定理及三角形的面积公式,熟练掌握公式及定理是解本题的关键.17.(12分)设集合A为函数y=ln(﹣x2﹣2x+8)的定义域,集合B为函数的值域,集合C为不等式的解集.(1)求A∩B;(2)若C⊆∁R A,求a的取值范围.考点:集合的包含关系判断及应用;交集及其运算;补集及其运算;函数的值域;对数函数的定义域.专题:常规题型;计算题.分析:(1)分别计算出几何A,B,再计算A∩B即可;(2)根据条件再由(1)容易计算.解答:解:(1)∵﹣x2﹣2x+8>0,∴解得A=(﹣4,2).∵,∴B=(﹣∞,﹣3]∪ [1,+∞);所以A∩B=(﹣4,﹣3]∪ [1,2);(2)∵ C R A=(﹣∞,﹣4]∪[2,+∞),C⊆C R A,若a<0,则不等式的解集只能是(﹣∞,﹣4]∪[,+∞),故定有≥2得解得﹣≤a<0若a>0,则不等式的解集只能是∅∴a的范围为<0.点评:本题主要考查了集合的交并补混合运算,较为简单,关键是将各集合的元素计算出来.18.(12分)已知向量=(2cosx,sinx),=(cosx,﹣2cosx)设函数f(x)=•(1)求f(x)的单调增区间;(2)若tanα=,求f(α)的值.考点:两角和与差的正弦函数;平面向量数量积的坐标表示、模、夹角.专题:三角函数的图像与性质.分析:(1)求出f(x)的表达式,然后化简为一个角的一个三角函数的形式,结合余弦函数的单调性,求出函数f(x)的单调递增区间;(2)先表示出f(α),然后分子分母同时除以coa2α,并将tanα的值代入即可.解答:解:f(x)=•=2cos2x﹣2sinxcosx=1+cos2x﹣sin2x=1+2cos(2x+)…(3分)(1)当2kπ﹣π≤2x+≤2kπ时,f(x)单调递增,解得:kπ﹣≤x≤kπ﹣k∈Z∴f(x)的单调递增区间为[kπ﹣,kπ﹣]k∈Z …(7分)(2)f(α)=2cos2α﹣2sinαcosα===…(12分)点评:本题考查平面向量的数量积,三角函数的单调性,三角函数的值,考查学生计算能力,是中档题.19.(12分)已知向量=(cosx,cosx),=(0,sinx),=(sinx,cosx)=(sinx,sinx).(1)当x=时,求向量与的夹角θ;(2)当x∈[0,]时,求•的最大值;(3)设函数f(x)=(﹣)(+),将函数f(x)的图象向右平移s个长度单位,向上平移t个长度单位(s,t>0)后得到函数g(x)的图象,且g(x)=2sin2x+1,令=(s,t),求||的最小值.考点:两角和与差的正弦函数;平面向量数量积的运算;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的求值;三角函数的图像与性质;平面向量及应用.分析:(1)当x=时,利用cosθ=,即可求向量与的夹角θ;(2)当x∈[0,]时,化简•的表达式,通过相位的范围,利用正弦函数的值域求解其最大值;(3)通过三角变换求出函数g(x)的表达式,与g(x)=2sin2x+1对照比较,得到=(s,t),即可求||的最小值.解答:解:(1)当x=时,向量=(cosx,cosx)=(),=(0,sinx)=(0,),•==,,,﹣﹣﹣﹣(2分)cosθ===,∴θ=﹣﹣﹣﹣(4分).(2)•=(sinx,cosx)•(sinx,sinx)=sin2x+sinxcosx===.﹣﹣﹣﹣(6分)∵x∈[0,],∴2x﹣,∴﹣﹣﹣﹣(8分).函数f(x)=(﹣)(+)=(cosx,cosx﹣sinx)•(2sinx,cosx+sinx)=.=2sin(2x+),(3)将函数f(x)的图象向右平移s个长度单位,向上平移t个长度单位(s,t>0)后得到函数g(x)的图象,且g(x)=2sin2x+1,∴2sin2x+1=2sin(2x+﹣2s)+t,t=1,s=+kπ,k∈Z.=(s,t),||=≤=.点评:本题考查向量的数量积,两角和与差的三角函数,三角函数图象的平移变换,向量的模等知识,考查分析问题解决问题的能力.20.(13分)利用已学知识证明:(1)sinθ+sinφ=2sin cos;(2)已知△ABC的外接圆的半径为2,内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,求△ABC的面积.考点:三角函数恒等式的证明;三角函数的和差化积公式.专题:三角函数的求值;解三角形.分析:(1)由于θ=(+),φ=(﹣)即可证明;(2)化简可得,由已知△ABC的外接圆的半径为2,即可求△ABC的面积.解答:解:(1)…(4分)(2)∵∴由(1)可得∴…(10分)∵已知△ABC的外接圆的半径为2∴…(12分)点评:本题主要考察了三角函数的和差化积公式的应用,三角函数恒等式的证明,属于中档题.21.(14分)已知函数f(x)=x2+2x,(Ⅰ)若x∈[﹣2,a],求f(x)的值域;(Ⅱ)若存在实数t,当x∈[1,m],f(x+t)≤3x恒成立,求实数m的取值范围.考点:二次函数在闭区间上的最值;函数恒成立问题.专题:分类讨论;函数的性质及应用.分析:(Ⅰ)由f(x)的图象与性质,讨论a的取值,从而确定f(x)在[﹣2,a]上的增减性,求出f (x)的值域.(Ⅱ)把f(x+t)≤3x转化为(x+t)2+2(x+t)≤3x,即u(x)=x2+(2t﹣1)x+t2+2t,在x∈[1,m]恒小于0问题,考查u(x)的图象与性质,求出m的取值范围.解答:解:(Ⅰ)∵f(x)=x2+2x的图象是抛物线,开口向上,对称轴是x=﹣1,∴当﹣2<a≤﹣1时,f(x)在[﹣2,a]上是减函数,,∴此时f(x)的值域为:[a2+2a,0];当﹣1<a≤0时,f(x)在[﹣2,a]上先减后增,f(x)max=f(﹣2)=0,f(x)min=f(﹣1)=﹣1,∴此时f(x)的值域为:[﹣1,0];当a>0时,f(x)在[﹣2,a]上先减后增,,∴此时f(x)的值域为:[﹣1,a2+2a].(Ⅱ)若存在实数t,当x∈[1,m],f(x+t)≤3x恒成立,即(x+t)2+2(x+t)≤3x,∴x2+(2t﹣1)x+t2+2t≤0;设u(x)=x2+(2t﹣1)x+t2+2t,其中x∈[1,m]∵u(x)的图象是抛物线,开口向上,∴u(x)max=max{u(1),u(m)};由u(x)≤0恒成立知;化简得;令g(t)=t2+2(1+m)t+m2﹣m,则原题转化为存在t∈[﹣4,0],使得g(t)≤0;即当t∈[﹣4,0]时,g(t)min≤0;∵m>1时,g(t)的对称轴是t=﹣1﹣m<﹣2,①当﹣1﹣m<﹣4,即m>3时,g(t)min=g(﹣4),∴,解得3<m≤8;②当﹣4≤﹣1﹣m<﹣2,即1<≤3时,g(t)min=g(﹣1﹣m)=﹣1﹣3m,∴,解得1<m≤3;综上,m的取值范围是(1,8].解法二,由,∴m≤,即=8,1<m≤8;即得m的取值范围(1,8].点评:本题考查了二次函数在闭区间上的最值问题的应用,解题时应讨论对称轴在区间内?在区间左侧?区间右侧?从而确定函数的最值.。