《统计》 单元测试 8
- 格式:doc
- 大小:81.00 KB
- 文档页数:4
四年级下册数学单元测试卷-第八单元平均数与条形统计图-人教版(含答案)一、选择题(共5题,共计20分)1、在制作统计图表前,我们首先要做的工作是()A.收集数据B.整理数据2、三个同学去打靶,小明得了99分,小华得了90分,小龙比小华成绩好,但不超过93分,请估计这三人的平均成绩()。
A.大于等于90分小于等于93分B.在90分以下C.大于93分小于等于94分 D.在94分以上3、四(2)班学生的平均体重是37千克,这个班的学生体重()。
A.一定都是37千克左右B.不可能有20千克的C.也有可能有60千克的4、如果与的平均数是,那么与的平均数是()A. B. C. D.5、下面的统计图中,横线所在的位置能反应这4个数的平均数的图是()A. B. C. D.二、填空题(共8题,共计24分)6、两个连续偶数的平均数是9,这两个偶数分别是________和________。
7、条形统计图分为________和________。
8、体育课上,小明进行1分钟跳绳练习,三次跳的成绩分别是72下、85下、92下,小明跳绳的平均成绩是________。
9、某学校有60名学生参加奥数竞赛,平均分是82分,其中女生平均分是76分,男生平均分是85分,有________名女生参加竞赛.10、李大叔把收获的苹果装在同样大的袋子里,一共装了60袋,称了其中的5袋,结果分别是:31千克,28千克,32千克,30千克,29千克,估计一下,李大叔大约一共收获水果________千克。
11、在制作统计图表前我们要做的工作有:________、________ 。
12、两个自然数的平均数是160,其中一个数是120,另一个数是________。
13、将小美和冬冬6~12周岁的身高制成一个统计图,最好选用________统计图;把小林和小华的各科成绩制成一个统计图,最好选用________统计图。
(填“复式条形”或“复式折线”)三、判断题(共4题,共计8分)14、五年级一班同学们的平均身高为160厘米,那么这个班没有超过160厘米的同学。
2021-2021学年北京版小学四年级数学上册《第八章条形统计图》单元测试题一、单选题(共8题)1下图是部分城市空气质量统计图。
根据上面的信息,下列说法中错误的是()。
A B城市的空气质量最好B D城市的空气质量为良C C城市的污染指数要是再下降16,空气质量就达到优了D 空气质量是轻度污染的有2个城市2第三季度的平均月产量是()。
A 195B 190C 1853()能表示一组男生的跳绳成绩。
A 条形统计图B 折线统计图C 扇形统计图年A、B、C、D、E五种轿车的产量分别为、、、、万辆,下面哪个图更能真实地反映它们产量上的差距?AB5关于选用统计图,下面说法合适的是()A “二孩”后,为统计本区每个月新生儿出生变化情况,选用条形统计图。
B 要统计一袋牛奶里的营养成分所占百分比情况,选用扇形统计图。
C 要了解超市每月销售额和利润额数据,选用折线统计图。
D 以上都合适。
6在下面的统计图中,横线所在位置能反映这4个数的平均数的图是()。
A B C7二年级一班参加运动会项目情况统计图,参加人数最多的项目是()。
A 跳远B 跑步C 跳绳D 拍球8如图表示各种颜色气球的数目:红色、蓝色和白色的气球总共有()个.A 45B 46C 51D 69二、判断题(共5题)9条形统计图纵轴都是每一个格代表1。
()10同一个条形统计图中,每小格表示的数量多少可以不相等。
()11同一个条形统计图中的每一小格代表的数量可以不相等。
()12绘制条形统计图时,要根据统计表所反映的内容,在正上方写上统计图的名称。
()13在制作条形统计图时,一格可以代表一、十、几十,或更多个单位。
()三、填空题(共8题)14小明在统计本校人数时,用长3厘米,宽厘米长方形直条表示三年级学生人数60人,那么六年级共12021应画长________厘米,宽________厘米的长方形直条.15如果要表示各部分数量同总数之间的关系,可以用________统计图表示。
人教版五年级下册《第6章统计》小学数学-有答案-单元测试卷一、填空.(16分)1. 一组数据中,出现次数最多的就是这组数的________.2. 五年级一班第一小组9人的身高如下:(单位:厘米)140145145148145147150145149第一小组的同学的平均身高是________厘米,中位数是________,众数是________.3. 在2、4、3、3、5、3、5、4、3、5、6、5这组数据中,众数是________.4. 在7、5、8、9、11中,中位数是________.5. 在78、83、72、36、91、81、72、86中,中位数是________.6. 学校舞蹈队共有47人,如果采用“一传一”的方法,打电话通知每一位队员进行急训,至少需要________分钟。
(打一次电话用1分钟)二、画图填空.(45分)东风纸厂2008年各季度新闻纸产量如下:第一季度350吨,第二季度400吨,第三季度450吨,第四季度550吨,根据以上数据,制成折线统计图。
(1)第________季度的产量最高,是________吨。
(2)四个季度总产量是________吨,平均每个季度产量是________吨。
(3)第________季度到第________季度的增长幅度最大。
两辆汽车行驶时间与路程的关系如下表,观察其中的规律,填完下表。
根据上表的数据,在下图中绘制复式折线统计图。
一家鞋店近期销售了一款新鞋40双,其中各种尺码的鞋销售量如下表:(1)这款新鞋的尺码的众数是________.(2)你认为众数在鞋店进货时有什么意义?三、判断.正确的在题后的横线里打“√”,错的打“×”.(8分)折线统计图分为单式折线统计图和复式折线统计图。
…________.在一组数据中,众数可能不止一个,也可能没有众数。
________.(判断对错)众数不能够反映一组数据的集中情况。
…________.为了清楚地展示彩电全年的变化趋势,用折线统计图更合适。
(必考题)小学数学三年级下册第三单元《复式统计表》单元测试题(答案解析)(8)一、填空题1.下面分别是三(1)班和三(2)班图书角课外书的统计情况。
三(1)班图书角统计情况三(2)班图书角统计情况(1)请你根据上面的信息完成下表:(2)三(1)班图书角________书最多,三(2)班图书角________书最少。
(3)两个班一共有________本科技书。
2.一块菜地种了4种蔬菜,分布情况如下表。
菜地的总面积是600平方米。
蔬菜种类芹菜西红柿油菜黄瓜占总面积的百分比15%35%20%面积(平方米)(2)根据统计表,你打算选择________统计图表示出各种蔬菜的数量。
3.统计表可分为________和________统计表。
4.用统计表表示的数量,还可以用________来表示。
5.常见的统计表有________和________。
6.三(1)班同学最喜欢吃的水果(每人选一项)情况统计表。
请根据统计表回答问题。
喜欢吃________的人最多,有________人。
7.天秀小学二年级课外活动统计表,美术组一共________人。
8.请你根据三年级、四年级和五年级各一个班的视力测试情况来回答问题。
5.0以上4.9~4.74.6~4.34.2以下三年级一班291152四年级一班271263五年级一班18 2055五年级一班5.0以上有________人;三年级一班________的人数最多。
9.5月份一共有________天,其中有________天下雨。
10.9月份阴天比5月份少________天,5月份晴天比9月份多________天。
11.三年级同学在二月到六月份做好事的件数如下:二月20件;三月40件;四月30件;五月25件;六月35件。
平均每月做好事________件。
12.某地区5月份和9月份天气情况统计表如下:①5月份________天数最少。
②9月份一共有________天,其中多云有________天。
四年级下册数学单元测试卷-第八单元平均数与条形统计图-人教版(含答案)一、选择题(共5题,共计20分)1、右边条形图是从曙光中学800名学生中帮助四川地震失学儿童捐款金额的部分抽样调查数据,扇形图是该校各年级人数比例分布图.那么该校七年级同学捐款的总数大约为()A.870元B.4200元C.5010元D.250560元2、如图是张璐某一周内每天30秒跳绳成绩.如图中能表示张瑞这一周内每天30秒跳绳平均成绩的虚线是()A.①B.②C.③D.④3、在下面的统计图中,横线所在位置能反映这4个数的平均数的图是()。
A. B. C.4、四(2)班男生的平均体重是26千克,刘强是班级男生中最重的,他的体重可能是()千克。
A.35B.26C.235、下面说法正确的是()。
A.把一条线段的一端延长100米,就得到一条射线。
B.上午10时30分,钟面上分钟和时针所夹的角是钝角。
C.北山小学教职工的平均年龄是31岁,张老师今年58岁,他不可能是这个学校的教职工。
二、填空题(共8题,共计24分)6、学校田径队有男生6人,平均体重45千克;女生4人,平均体重是40千克,学校田径队的平均体重是________千克。
7、小刚的体重是31千克,小强的体重是35千克,小东的体重是39千克,他们三人的平均体重是________千克。
8、有5名同学参加作文竞赛,其中4名同学的平均成绩是79分,加上小明的分数后,平均成绩为81分,小明得了________分。
9、下图中“○”内分别有五个数A、B、C、D、E;“□”内的数表示与它相连的所有“○”中的数的平均数,那么C等于________.10、下面是二(2)班两个小组同学的体重统计表:(单位:千克)第________个小组同学的平均体重大,大________。
11、在读书比赛中,小朱读了6本,小明读了4本,小华读了3本,小军读了7本,平均每人读________本课外书。
12、甲小组有8人,他们的数学考试成绩为98、95、88、63、52、87、88和80,这个小组的平均成绩为________.13、4个数的平均数是6,6个数的平均数是11,这10个数的平均数是________。
第八单元测试卷一、填空题(共8题,共17分)1 (1分) 学校举行向灾区小朋友捐书活动,小明捐8本,小亮捐6本,王晓捐9本,马丽捐8本,小东捐14本,这5位同学平均每人捐了________本书.2 (2分) 下面是某学校五(1)班学生拥有课外读物情况,五(1)班共有学生________人,平均每人拥有课外读物________本.3 (1分) 某商场第一季度销售电视机399台,第二季度销售电视机207台,上半年平均每月销售电视机________台.4 (1分) 一筐萝卜需要2只小白兔一起抬.4只小兔要把这筐萝卜送到离家400米的地方去,平均每只小兔要抬________米.5 (1分) 五个连续偶数中最大数是248,那么这五个数的平均数是________.6 (1分) 已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是________.7 (5分) 如图是花园小学三、四年级师生向希望小学捐书情况统计图,根据统计结果填空.(1)捐故事书最多的是________年级,________类图书捐的最多. (2)________年级比________年级捐的书多,多捐书________本.8 (5分) 某学校开展了主题为“垃圾分类、绿色生活新时尚”的宣传活动.李老师为了解五年级学生对于垃圾分类知识的掌握情况,组织五年级两个班的全体学生进行了垃圾分类知识竞赛,将他们的成绩进行统计,绘制了下面的统计图.数量/本种类工具书科技书童话书故事书0四年级三年级6038353245454540102030405060性别 人数 平均每人拥有课外读物/本 男生 16 25 女生 2430(1)五年级两个班的学生人数相等,五年级一共有学生________人. (2)请把统计图补充完整.(3)在这次垃圾分类知识竞赛中,五年级有________人成绩优秀,有________人成绩不合格.二、判断题(每小题1分,共5题,共5分)9 余彬4次跳绳的总成绩是500下,付峰3次跳绳的总成绩是390下,余彬的跳绳成绩好.( )10 小高的身高是1.56m ,他趟过平均水深1.2m 的小河,不会有任何危险.( ) 11 复式条形统计图可以竖着画,也可以横着画.( )12 小青5次跳远的总成绩是10m ,她其中一次的成绩肯定是2m .( ) 13 张珊三次射击成绩分别是7,8,9环,平均成绩是8环.( )三、选择题(每小题2分,共6题,共12分)14 育才中学篮球队队员的平均身高是176.5cm .王明是其中一员,他的身高( )是185cm . A.一定 B.不可能 C.可能15 六年级一班第1小组同学最高的是1.70米,最矮的是1.52米.下面的数据中,可能是这组同学的平均身高的是( ) A.1.50米 B.1.52米 C.1.65米 D.1.70米 16 一本书有170页,已看了80页,余下的要3天看完,平均每天要看( )页. A.28 B.30 C.33 D.3517 小虎、小明、小力和小军4名同学进行投沙包比赛,每人投3次,结果如图所示.这四名同学中,投沙包的平均成绩大约为9米的是( )A.小力B.小明C.小军D.小虎 18 春游时,旅游汽车以每小时100千米的速度从盐城到荷兰花海风景区,又以每小时60千米的速度返回,这辆汽车的往返平均速度是每小时( )千米. A.80 B.75 C.70 D.9019 一次数学考试,5名同学的成绩从低到高依次排列是76分、82分、a 分、88分、92分,他们的平均分可能是( ) A.75B.85C.90四、计算题(共2题,共28分)20 (10分) 竖式计算.(打*要验算)(1)16 6.7-= (2)12.09 5.91+= (3)*141.248.98-= (4)*3.97 1.03+=21 (18分) 简便计算.(1)14615525445+++ (2)112773127-- (3)4325⨯⨯(4)142594259⨯-⨯ (5)()870872÷⨯(6)64125⨯五、解答题(共7题,共38分)22 (4分) 某果园栽了12行桃树,共288棵;栽了18行梨树,共540棵.平均每行梨树比每行桃树多多少棵?23 (4分) 笑笑在期中测试中数学和语文的平均分是95分,英语成绩出来后,三科平均分增加1分,笑笑的英语是多少分?24 (4分) 阳阳和爸爸妈妈去爬山,阳阳15分钟走了630米山路. (1)阳阳平均每分钟走多少米山路?(2)照这样的速度,剩下的294米山路.阳阳还需要走多少分钟?25 (6分) 小刚和小强分别制作了一艘轮船模型进行比赛.下面是这两艘轮船前4次的试航情况的统计图.(1)前4次试航,谁的轮船平均每次航行的距离远一些?(2)第5次试航,小刚的轮船航行距离是20米,小强的轮船航行距离是16米.请你在图中表示出来.(3)请你选一选,第5次试航后,小刚的轮船航行距离的平均数会________,小强的轮船航行距离的平均数会________. A .增加 B .不变 C .减少26 (4分) 下面是某地区2012-2015年空气质量统计表: 天数年份 空气质量 2012年 2013年 2014年 2015年 合格 185195200 213 污染181 170165152(1)根据上面的统计表,完成下面统计图.(2)哪年空气质量为污染的天数最多?哪年空气质量为合格的天数最多?你认为这个地区的空气质量是在好转还是在恶化?次数某地区 2012 ——2015 年空气质量统计图27 (8分) 下面是实验小学五(1)班语文能力考核合格人数统计图.(1)男、女生水平相差最大的项目是________;水平相当的项目是_________和_________. (2)全班合格人数最多的项目是_________,有________人.(3)女生需要在________项目上加强训练,以缩小和男生的差距. (4)五(1)班最少有多少名学生?28 (8分) 一辆汽车从甲地经过乙地到达丙地,然后原路返回.去时平均每小时行驶48千米,这辆车往返的平均速度是每小时多少千米?女生数量人()课外积累写作基础知识阅读302010时间/时4512。
统计基础单元测试第一章概述一、单项选择题(10题20分)1.社会经济统计的基本特点是A.数量性B.具体性C.总体性D.社会性2.大量观察法主要用于统计工作的A.调查阶段B.整理阶段C.分析阶段D.设计阶段3.下列总体中属于无限总体的是A.城市流动人口数B.鱼塘中养的鱼尾数C.工业中大量连续生产的产品组成的总体D.全国人口数4.调查某校学生的学习成绩,总体单位是A.该学校全部学生B.该学校每一名学生C.该校全部学生的学习成绩D.该校每一名学生的学习成绩5.下列属于品质标志的是A.学生的年龄B.学生的性别C.学生的考试分数D.学生的月消费支出6.某工人月工资3000元,这里的“工资”是A.品质标志B.变量值C.数量标志D.指标值7.产品的等级分为一、二、三等品,这是属于A.数量指标B.品质标志C.数量标志D.质量指标8.某地区有570家工业企业,要研究这些企业的产品生产情况,总体单位是A.每一个工业企业B.570家工业企业C.每一件产品D.全部工业产品9.人的年龄是A.离散变量B.确定性变量C.随机变量D.连续变量10.如果研究整个工业企业职工人员的状况,则总体单位总量是A.工业企业职工人数之和B.工业企业个数之和C.职工工资总额D.工业企业总产值之和二、多项选择题(10题30分) 1.统计的职能有A.核算B.信息C.咨询D.监督2.某企业是总体单位,数量标志有A.所有制B.职工人数C.月平均工资D.年工资总额3.统计指标有A.质的规定性B.具体性C.数量性D.综合性4.统计研究的综合指标法常用的基本综合指标有A.问题指标B.相对指标C.平均指标D.变异指标5.下列属于无限总体的是A.气象总体B.宇宙总体C.工业中大量连续生产的产品总体D.全国人口总体6.统计指标按其表现形式分为A.数量指标B.总量指标C.相对指标D.平均指标7.下列对变异和变量理解正确的有A.变异是指标之间的差异B.变异的概念包括变量的范畴C.变异可分为品质变异和数量变异D.数量标志和所有的统计指标都是变量8.职工的平均工资是A.数量指标B.质量指标C.相对指标D.平均指标9.统计指标是反映总体现象数量特征的概念和具体数值,在这种理解下,包括( )要素A.时间空间要素B.指标名称C.计量单位和计算方法D.指标数值10.下列属于质量指标的有A.销售利润率B.亏损额C.人口性别比D.股票价格三、填空题(每空1分共10分)1.社会经济统计学是一门研究方法论的社会科学2.对现象总体的全部或足够多的个体进行调查研究,称为大量观察法3.统计研究方法中,统计分组法通常与综合指标法结合运用4.随着研究目的不同,总体和总体单位也会有所不同5.同质性是构成统计总体的前提条件,大量性是构成总体的充分条件,而差异性是构成总体的必要条件6.统计调查是统计整理和统计分析的基础环节,统计整理是统计工作的中间环节,统计分析是统计工作的决定性环节四、简答题(前2题每题5分,后2题每10分,共30分)1.统计学研究对象是什么?答:统计学研究对象是如何去认识客观事物的数量特征和数量关系的理论和方法。
统计基础单元测试第二章统计调查和统计整理一、单项选择题(12题24分)1.统计调查的基本任务是取得原始统计资料,所谓原始统计资料是指A.统计部门掌握的统计资料B.向调查单位收集的尚待汇总整理的统计资料C.对历史资料进行分析后取得的预测数据D.统计年鉴或统计公报上发布的资料2.统计调查有全面调查和非全面调查之分,它们划分的标志是A.是否进行登记、计量B.是否按期填写调查表C.是否制定调查方案D.是否对所有组成总体的单位进行逐一调查3.工业企业生产设备普查中,工业企业的每一台生产设备是A.调查对象B.填报单位C.调查单位D.调查项目4.下列对普查描述中,( )是错误的A.普查是专门组织的B.普查是一种全面调查C.普查适宜经常性进行D.普查工作量较大、耗资较多5.以下属于经常性调查的是A.每隔10年进行一次人口普查B.对2010年大学毕业生分配状况的调查C.对近年来物价变动情况进行一次摸底调查D.按旬上报钢铁产量6.对市场占有率特别大的6个大型集市贸易的成交额进行调查,这种调查组织方式属于A.普查B.抽样调查C.重点调查D.典型调查7.抽样调查和重点调查是非全面调查,两者的根本区别在于A.灵活程度不同B.组织方式不同C.作用不同D.选取单位方式不同8.学校组织期中进行教学质量检查,要求11月10日至20日全部完毕,这一时间规定是A.调查时间B.调查期限C.时期指标D.时点指标9.对统计分组下列说法正确的有A.对离散性变量只能编制单项式变量分布数列B.对连续变量只能编制单项式变量分布数列C.对离散性变量根据数据特点既可编制单项式分布数列,也可编制组距式分布数列D.以上说法都不正确10.变量分布数列的构成要素是A.分成的各组和各组的次数B.分组标志和各级界限C.变量值和次数D.组距和组数11.统计数据整理的中心是A.资料审核B.资料分组C.统计汇总D.编制统计表,绘制统计图12.调查表是将拟好的调查项目按一定格式进行排列的表格。
一、选择题1.给出下列结论:(1)某学校从编号依次为001,002,…,900的900个学生中用系统抽样的方法抽取一个样本,已知样本中有两个相邻的编号分别为053,098,则样本中最大的编号为862.(2)甲组数据的方差为5,乙组数据为5、6、9、10、5,那么这两组数据中较稳定的是甲.(3)若两个变量的线性相关性越强,则相关系数r的值越接近于1.(4)对A、B、C三种个体按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为30.则正确的个数是()A.3B.2C.1D.02.某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号,001,002,……,699,700.从中抽取70个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 0432 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45A.623 B.328 C.253 D.007,,,件,为3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200400300100检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取()件.A.24 B.18 C.12 D.6”模式指考生总成绩由语文、数学、外语3个科目成绩和高中学业水平考试4.高考“333个科目成绩组成.计入总成绩的高中学业水平考试科目,由考生根据报考高校要求和自身特长,在思想政治、历史、地理、物理、化学、生物6个科目中自主选择.某中学为了解本校学生的选择情况,随机调查了100位学生的选择意向,其中选择物理或化学的学生共有40位,选择化学的学生共有30位,选择物理也选择化学的学生共有10位,则该校选择物理的学生人数与该校学生总人数比值的估计值为()A.0.1B.0.2C.0.3D.0.45.某单位青年、中年、老年职员的人数之比为10∶8∶7,从中抽取200名职员作为样本,若每人被抽取的概率是0.2,则该单位青年职员的人数为()A.280 B.320 C.400 D.10006.对于一组数据x i(i=1,2,3,…,n),如果将它们改变为x i+C(i=1,2,3,…,n),其中C≠0,则下列结论正确的是()A.平均数与方差均不变B.平均数变,方差保持不变C.平均数不变,方差变D.平均数与方差均发生变化7.某公司引进先进管理经验,在保持原有员工人数的基础上,注重产品研发及员工待遇,提高产品质量和员工积极性,效益显著提高.同时该公司的各项成本也随着收入的变化发生了相应变化.下图给出了该公司2018年和2019年的运营成本及利润占当年总收入的比例,已知2019年和2018年的材料设备费用相同,则下列说法不正确的是()A.该公司2019年利润是2018年的3倍B.该公司2019年的员工平均工资是2018年的2倍C.该公司2019年的总收入是2018年的2倍D.该公司2019年的研发费用等于2018年的研发和工资费用之和8.某位教师2017年的家庭总收入为80000元,各种用途占比统计如下面的折线图.2018年家庭总收入的各种用途占比统计如下面的条形图,已知2018年的就医费用比2017年的就医费用增加了4750元,则该教师2018年的旅行费用为()A.21250元B.28000元C.29750元D.85000元9.2018年,某地认真贯彻落实中央十九大精神和各项宏观调控政策,经济运行平稳增长,民生保障持续加强,惠民富民成效显著,城镇居民收入稳步增长,收入结构稳中趋优.据当地统计局公布的数据,现将8月份至12月份当地的人均月收入增长率与人均月收入分别绘制成折线图(如图一)与不完整的条形统计图(如图二).请从图中提取相关的信息:①10月份人均月收入增长率为20.9%左右;②11月份人均月收入为2047元;③从上图可知该地9月份至12月份人均月收入比8月份人均月收入均得到提高.其中正确的信息个数为()A .0B .1C .2D .310.某小学共有学生2000人,其中一至六年级的学生人数分别为400,400,400,300,300,200.为做好小学放学后“快乐30分”活动,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么应抽取一年级学生的人数为( ) A .120B .40C .30D .2011.如图所示是小王与小张二人参加某射击比赛的预赛的五次测试成绩的折线图,设小王与小张成绩的样本平均数分别为A x 和B x ,方差分别为2A s 和2B s ,则( )A .AB x x <,22A B s s > B .A B x x <,22A B s s < C .>A B x x ,22A B s s > D .>A B x x ,22A B s s <12.某企业开展职工技能比赛,并从参赛职工中选1人参加该行业全国技能大赛.经过6轮选拔,甲、乙两人成绩突出,得分情况如茎叶图所示.若甲乙两人的平均成绩分别是x 甲,x 乙,则下列说法正确的是( ). A .x x >甲乙,乙比甲成绩稳定,应该选乙参加比赛 B .x x >甲乙,甲比乙成绩稳定,应该选甲参加比赛 C .x x <甲乙,甲比乙成绩稳定,应该选甲参加比赛 D .x x <甲乙,乙比甲成绩稳定,应该选乙参加比赛13.某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下: 行业名称计算机机械营销物流贸易应聘人数2158302002501546767457065280行业名称计算机营销机械建筑化工招聘人数124620102935891157651670436若用同一行业中应聘人数和招聘人数的比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是( ) A .计算机行业好于化工行业 B .建筑行业好于物流行业 C .机械行业最紧张D .营销行业比贸易行业紧张二、解答题14.辽宁省六校协作体(葫芦岛第一高中、东港二中、凤城一中、北镇高中、瓦房店高中、丹东四中)中的某校文科实验班的100名学生期中考试的语文、数学成绩都不低于100分,其中语文成绩的频率分布直方图如图所示,成绩分组区间是:[)100,110、[)110,120、[)120130,、[)130140,、[]140,150.(1)根据频率分布直方图,估计这100名学生语文成绩的中位数和平均数;(同一组数据用该区间的中点值作代表;中位数精确到0.01)(2)若这100名学生语文成绩某些分数段的人数x 与数学成绩相应分数段的人数y 之比如下表所示: 分组区间[)100,110[)110,120[)120130, [)130140, :x y 1:31:13:4 10:1从数学成绩在[]130,150的学生中随机选取2人,求选出的2人中恰好有1人数学成绩在[]140,150的概率.15.汽车是碳排放量比较大的行业之一,欧盟规定,从2015年开始,将对2CO 排放量超过130g/km 的1M 型新车进行惩罚(视为排放量超标),某检测单位对甲、乙两类1M 型品牌抽取5辆进行2CO 排放量检测,记录如下(单位:g/km ):经测算发现,乙品牌车2CO 排放量的平均值为120/x g cm =乙.(Ⅰ)从被检测的5辆甲类品牌中任取2辆,则至少有一辆2CO 排放量超标的概率是多少? (Ⅱ)若乙类品牌的车比甲类品牌的2CO 的排放量的稳定性要好,求x 的范围. 16.某单位共有10名员工,他们某年的收入如下表:(1)求该单位员工当年年薪的平均值和中位数;(2)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元、5.5万元、6万元、8.5万元,预测该员工第六年的年薪为多少?附:线性回归方程ˆˆˆybx a =+中系数计算公式分别为:()()()121ˆniii nii x x y y b x x ==--=-∑∑,ˆˆay bx =-,其中x、y 为样本均值. 17.南充高中扎实推进阳光体育运动,积极引导学生走向操场,走进大自然,参加体育锻炼,每天上午第三节课后全校大课间活动时长35分钟.现为了了解学生的体育锻炼时间,采用简单随机抽样法抽取了100名学生,对其平均每日参加体育锻炼的时间(单位:分钟)进行调查,按平均每日体育锻炼时间分组统计如下表: 若将平均每日参加体育锻炼的时间不低于120分钟的学生称为“锻炼达人”. (1)将频率视为概率,估计我校7000名学生中“锻炼达人”有多少? (2)从这100名学生的“锻炼达人”中按性别分层抽取5人参加某项体育活动. ①求男生和女生各抽取了多少人;②若从这5人中随机抽取2人作为组长候选人,求抽取的2人中男生和女生各1人的概率. 18.对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:分组频数频率[10,15)100.25[15,20)25n[20,25)m p[25,30)20.05合计M1(1)求出表中M,p及图中a的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[15,20)内的人数;(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,请列举出所有基本事件,并求至多1人参加社区服务次数在区间[20,25)内的概率.19.随着电子商务的发展, 人们的购物习惯正在改变, 基本上所有的需求都可以通过网络购物解决. 小韩是位网购达人, 每次购买商品成功后都会对电商的商品和服务进行评价. 现对其近年的200次成功交易进行评价统计, 统计结果如下表所示.对服务好评对服务不满意合计对商品好评8040120对商品不满意701080合计15050200(1) 是否有99.9%的把握认为商品好评与服务好评有关? 请说明理由;(2) 若针对商品的好评率, 采用分层抽样的方式从这200次交易中取出5次交易, 并从中选择两次交易进行观察, 求只有一次好评的概率.()2P K k>0.150.100.050.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.828(22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++)20.某市对所有高校学生进行普通话水平测试,发现成绩服从正态分布N(μ,σ2),下表用茎叶图列举出来抽样出的10名学生的成绩.(1)计算这10名学生的成绩的均值和方差;(2)给出正态分布的数据:P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544.由(1)估计从全市随机抽取一名学生的成绩在(76,97)的概率.21.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足..的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.22.为了普及法律知识,达到“法在心中”的目的,某市法制办组织了一次普法知识竞赛.统计局调查队从甲、乙两单位中各随机抽取了5名职工的成绩,如下表所示:甲单位职工的成绩(分)8788919193乙单位职工的成绩(分)8589919293根据表中的数据,分别求出样本中甲、乙两单位职工成绩的平均数和方差,并判断哪个单位的职工对法律知识的掌握更为稳定?23.某网站从春节期间参与收发网络红包的手机用户中随机抽取10000名进行调查,将受访用户按年龄分成5组:[10,20),[20,30),…,[50,60],并整理得到如下频率分布直方图:(Ⅰ)求a 的值;(Ⅱ)从春节期间参与收发网络红包的手机用户中随机抽取一人,估计其年龄低于40岁的概率;(Ⅲ)估计春节期间参与收发网络红包的手机用户的平均年龄. 24.有一容量为50的样本,数据的分组以及各组的频数如下:[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5],4. (1)列出样本的频率分布表. (2)画出频率分布直方图.(3)根据频率分布表,估计数据落在[15.5,24.5)内的可能性约是多少?25.为了了解高一(1)班53名同学的牙齿健康状况,需从中抽取5名同学做医学检验,现已对53名同学编号为00,01,02,…,50,51,52.从下面所给的随机数表的第1行第3列的5开始从左向右读下去,则选取的号码依次为____________.随机数表如下: 0154 3287 6595 4287 5346 7953 2586 5741 3369 8324 4597 7386 5244 3578 624126.语文成绩服从正态分布2(100,17.5)N ,数学成绩的频率分布直方图如下:(Ⅰ)如果成绩大于135的为特别优秀,这500名学生中本次考试语文、数学特别优秀的大约各多少人?(假设数学成绩在频率分布直方图中各段是均匀分布的)(Ⅱ)如果语文和数学两科都特别优秀的共有6人,从(Ⅰ)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有X 人,求X 的分布列和数学期望. (附参考公式)若2(,)XN μσ,则()0.68P X μσμσ-<≤+=,(22)0.96P X μσμσ-<≤+=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】运用抽样、方差、线性相关等知识来判定结论是否正确 【详解】(1)中相邻的两个编号为053,098, 则样本组距为985345-=∴样本容量为9002045= 则对应号码数为()53452n +-当20n =时,最大编号为534518863+⨯=,不是862,故(1)错误 (2)甲组数据的方差为5,乙组数据为5、6、9、10、5, 则56910575x ++++==乙乙组数据的方差为()()()()()22222157679710757 4.455⎡⎤-+-+-+-+-=<⎣⎦ 那么这两组数据中较稳定的是乙,故(2)错误(3)若两个变量的线性相关性越强,则相关系数r 的绝对值越接近于1,故错误(4)按3:1:2的比例进行分层抽样调查,若抽取的A 种个体有15个,则样本容量为31530312÷=++,故正确综上,故正确的个数为1故选C 【点睛】本题主要考查了系统抽样、分层抽样、线性相关、方差相关知识,熟练运用各知识来进行判定,较为基础2.A解析:A【解析】分析:从第五行第六列开始向右读,依次读取,将其中不符合要求的也就是超范围的数据去掉,再将重复的去掉,最后找到满足条件的数据.详解:从第5行第6列开始向又读取数据,第一个数为253,第二个数是313,第三个数是457,下一个数是860,不符合要求,下一个数是736,不符合要求,下一个是253,重复,第四个是007,第五个是328,第六个是623,故选A.点睛:这是一道有关随机数表的题目,明确随机数的含义是关键,在读取数据的过程中,需要把超范围的数据和重复的数据都去掉,接着往下读就行了.3.B解析:B【分析】根据分层抽样列比例式,解得结果.【详解】根据分层抽样得应从丙种型号的产品中抽取30060=18200+400+300+100⨯,选B.【点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i∶N i=n∶N. 4.B解析:B【分析】计算选择物理的学生人数为20,再计算比值得到答案.【详解】选择物理的学生人数为40301020-+=,即该校选择物理的学生人数与该校学生总人数比值的估计值为200.2 100=.故选:B【点睛】本题考查了根据样本估计总体,意在考查学生的应用能力.5.C解析:C【分析】由题意知这是一个分层抽样问题,根据青年、中年、老年职员的人数之比为1087∶∶,从中抽取200名职员作为样本,得到要从该单位青年职员中抽取的人数,根据每人被抽取的概率为0.2,得到要求的结果【详解】由题意知这是一个分层抽样问题,青年、中年、老年职员的人数之比为1087∶∶,从中抽取200名职员作为样本,∴要从该单位青年职员中抽取的人数为:10200801087⨯=++每人被抽取的概率为0.2,∴该单位青年职员共有804000.2= 故选C 【点睛】本题主要考查了分层抽样问题,运用计算方法求出结果即可,较为简单,属于基础题.6.B解析:B 【解析】由平均数的定义,可知每个个体增加C ,则平均数也增加C ,方差不变.故选B.7.B解析:B 【分析】设2018年全年收入为x ,则2019年全年收入为y ,由2019年和2018年的材料设备费用相同得:1:2x y =,再根据题意依次讨论即可得答案. 【详解】解:2018年全年收入为x ,则2019年全年收入为y ,因为2019年和2018年的材料设备费用相同,所以0.40.2x y =,即:2y x =,故C 选项正确;对于A 选项,2018年的利润为:0.2x ,2019年的利润为:0.30.320.630.2y x x x =⨯==⨯,故正确;对于B 选项,2019年的平均工资为:0.250.5y x =, 2018年的平均工资为:0.2x ,故B 选项不正确;对于D 选项,2019年的研发费用为:0.150.3y x =,2018年的研发和工资费用之和为:0.10.20.3x x x +=,故正确. 故选:B . 【点睛】本题考查根据折线图分析相关的统计数据,考查数据分析能力与运算能力,是中档题.8.C解析:C 【分析】由题意首先求得2017年的就医花费,然后由2018年的就医花费结合条形图可得2018年的旅行费用. 【详解】由题意可知,2017年的就医花费为8000010%8000⨯=元,则2017年的就医花费为8000475012750+=元, 2018年的旅行费用为12750352975015⨯=元. 故选C . 【点睛】本题主要考查统计图表的识别与应用,属于中等题.9.C解析:C 【分析】由图逐个分析,①设10月份人均月收入增长率为%x ,列式解得20.9x ≈; ②,11月份人均月收入为()1780125%2225⨯+=元,③由图明显正确. 【详解】对于①,设10月份人均月收入增长率为%x ,则()14721%1780x ⨯+=,解得20.9x ≈,故①正确;对于②,11月份人均月收入为()1780125%2225⨯+=元,故②错误;对于③,从图中易知8月人均月收入最低,所以该地9月份至12月份人均月收入均得到提高,故③正确. 综上,正确的选项有2个. 故选C. 【点睛】本题考查统计问题以及图表分析能力,属于一般题.10.B解析:B 【分析】根据分层抽样的定义即可得到结论. 【详解】假设抽取一年级学生人数为n . ∵一年级学生400人∴抽取一个容量为200的样本,用分层抽样法抽取的一年级学生人数为4002000200n= ∴40n =,即一年级学生人数应为40人, 故选B . 【点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即::i i n N n N =.11.C解析:C【分析】根据图形分析数据的整体水平和分散程度. 【详解】观察题图可知,实线中的数据都大于或等于虚线中的数据,所以小王成绩的平均数大于小张成绩的平均数,即>AB x x ;显然实线中的数据波动都大于或等于虚线中的数据波动,所以小王成绩的方差大于小张成绩的方差,即22A B s s >.故选:C. 【点睛】此题考查根据数据特征辨析平均数和方差,关键在于准确分析图形反映的数据特征而并非计算.12.D解析:D 【解析】 试题分析:727879858692826x +++++==甲,788688889193876x +++++=≈乙,所以x x <甲乙.()2110016991610041.676S =+++++≈甲,()2181111163622.676S =+++++≈乙,因为22S S 乙甲<,所以乙成绩比甲成绩稳定,应该选乙参加比赛.考点:1.茎叶图;2.平均数和方差 13.B解析:B 【解析】试题分析:就业形势的好坏,主要看招聘人数与应聘人数的比值,比值越大,就业形势越好,故选B .考点:本题主要考查不等式的概念、不等式的性质.点评:解答此类题目,首先要审清题意,明确就业形势的好坏,主要看招聘人数与应聘人数的比值.二、解答题14.(1)中位数是121.67;平均数是123;(2)35. 【分析】(1)利用中位数左边矩形面积之和为0.5可求出中位数,将每个矩形底边中点值乘以相应矩形的面积,再相加可得出这100名学生语文成绩的平均数;(2)计算出数学成绩在[]130,150、[]140,150的学生人数,列举出所有的基本事件,然后利用古典概型的概率公式可计算出所求事件的概率. 【详解】(1)0.050.40.30.750.5++=>,0.750.50.25-=,∴这100名学生语文成绩的中位数是0.2513010121.670.3-⨯=.这100名学生语文成绩的平均数是:1050.051150.41250.31350.21450.05123⨯+⨯+⨯+⨯+⨯=;(2)数学成绩在[)100,140之内的人数为4130.050.40.30.210097310⎛⎫⨯++⨯+⨯⨯=⎪⎝⎭, ∴数学成绩在[]140,150的人数为100973-=人,设为1a 、2a 、3a ,而数学成绩在[)130140,的人数为10.2100210⨯⨯=人,设为1b 、2b , 从数学成绩在[]130,150的学生中随机选取2人基本事件为:()12,a a 、()13,a a 、()11,a b 、()12,a b 、()23,a a 、()21,a b 、()22,a b 、()31,a b 、()32,a b 、()12,b b ,共10个,选出的2人中恰好有1人数学成绩在[]140,150的基本事件为:()11,a b 、()12,a b 、()21,a b 、()22,a b 、()31,a b 、()32,a b ,共6个,∴选出的2人中恰好有1人数学成绩在[]140,150的概率是35.【点睛】本题考查利用频率分布直方图计算平均数与中位数,同时也考查了利用古典概型的概率公式计算事件的概率,考查计算能力,属于中等题. 15.(Ⅰ)()0.7P A =;(Ⅱ)()90,130. 【分析】(Ⅰ)由题意逐个列出从被检测的5辆甲类品牌中任取2辆,共有10种不同的2CO 排放量结果及事件A 包含的结果,利用古典概型事件的概率公式即可求得;(Ⅱ)由题意算出甲乙的平均值,并算出方差,利用乙类品牌的车2CO 的排放量稳定性比甲类品牌的车2CO 的排放量的稳定性好,建立方程求解. 【详解】解:(Ⅰ)从被检测的5辆甲类品牌中任取2辆,共有10种不同的2CO 排放量结果:()80,110,()80,120,()80,140,()80,150,()110,120,()110,140,()110,150,()120,140,()120,150,()120,150,()140,150设“至少一辆不符合2CO 排放量”为事件A ,则A 包含以下7种结果:()80,140,()80,150,()110,140,()110,150,()120,140,()120,150,()140,150所以()70.710P A ==. (Ⅱ)因为801201101401501205x ++++==甲,所以120x x ==甲乙,220x y +=.()()()()()2222225801201101201201201401201501203000S =-+-+-+-+-=甲()()()()()()222222225100120120120120120(160120)2000120120S x y x y =-+-+-+-+-=+-+-乙 因为220x y +=,所以()()22252000120100S x x =+-+-乙由乙类品牌的车2CO 的排放量稳定性比甲类品牌的车稳定性要好,得2255S S <乙甲即()()2220001201003000x x +-+-<,所以2220117000x x -+<,解得90130x <<所以x 的取值范围为()90,130 【点睛】本题考查了古典概型的事件的概率,还考查了方差的意义及利用方差意义建立方程,还考查了一元二次方程的求解,属于中档题.16.(1)平均值为11万元,中位数为7万元(2)预测该员工年后的年薪收入为10.9万元 【分析】(1)直接利用平均数和中位数的定义计算得到答案.(2)设,(1,2,3,4)i i x y i =分别表示工作年限及相应年薪,利用公式直接计算得到回归方程 1.4 2.5y x =+,代入数据计算得到答案. 【详解】 (1)平均值为4+4.5+6+5+6.5+7.5+8+8.5+9+511110= 万元,中位数为7万元.(2)设,(1,2,3,4)i i x y i =分别表示工作年限及相应年薪,则 2.5x =,6y =,()4212.250.250.25 2.255i x x -=+++=∑()()411.5(2)(0.5)(0.5)0.50 1.52.57iii x x y y =--=-⨯-+-⨯-+⨯+⨯=∑()()()127ˆ 1.45niii i x x y y bx x =--===-∑,ˆˆ6 1.4 2.5 2.5ay bx =-=-⨯=由线性回归方程: 1.4 2.5y x =+,6x =时,10.9y = 可预测该员工年后的年薪收入为10.9万元. 【点睛】本题考查了线性回归方程的应用,意在考查学生的计算能力和应用能力. 17.(1)700人;(2) ①男生抽取4人,女生抽取1人.② 25【分析】(1)100名学生中“锻炼达人”的人数为10人,由此能求出7000名学生中“锻炼达人”的人数.(2)①100名学生中的“锻炼达人”有10人,其中男生8人,女生2人.从10人中按性别分层抽取5人参加体育活动,能求出男生,女生各抽取多少人.②抽取的5人中有4名男生和1名女生,四名男生一次编号为男1,男2,男3,男4,5人中随机抽取2人,利用列举法能求出抽取的2人中男生和女生各1人的概率. 【详解】(1)由表可知,100名学生中“锻炼达人”的人数为10人,将频率视为概率,我校7000名学生中“锻炼达人”的人数为107000700100⨯=(人) (2)①由(1)知100名学生中的“锻炼达人”有10人,其中男生8人,女生2人. 从10人中按性别分层抽取5人参加体育活动,则男生抽取4人,女生抽取1人. ②抽取的5人中有4名男生和1名女生,四名男生一次编号为男1,男2,男3,男4,则5人中随机抽取2人的所有结果有:男1男2,男1男3,男1 男4,男1女,男2男3,男2男4,男2女,男3男4,男3女,男4女.共有10种结果,且每种结果发生的可能性相等.记“抽取的2人中男生和女生各1人”为事件A ,则事件A 包含的结果有男1女,男2女,男3女,男4女,共4个,故42()105P A ==. 【点睛】本题考查频数、概率的求法,考查列举法、古典概型等基础知识,考查运算求解能力,是基础题.18.(1)0.125;(2)5;(3)710【分析】 (1)由频率=频数总数,能求出表中M 、p 及图中a 的值.(2)由频数与频率的统计表和频率分布直方图能求出参加社区服务的平均次数.(3)在样本中,处于[20,25)内的人数为3,可分别记为A ,B ,C ,处于[25,30]内的人数为2,可分别记为a ,b ,由此利用列举法能求出至少1人参加社区服务次数在区间[20,25)内的概率. 【详解】(1)由分组[10,15)内的频数是10,频率是0.25知,,所以M=40.因为频数之和为40,所以.因为a是对应分组[15,20)的频率与组距的商,所以.(2)因为该校高三学生有360人,分组[15,20)内的频率是0.625,所以估计该校高三学生参加社区服务的次数在此区间内的人数为360×0.625=225人.(3)这个样本参加社区服务的次数不少于20次的学生共有3+2=5人设在区间[20,25)内的人为{a1,a2,a3},在区间[25,30)内的人为{b1,b2}.则任选2人共有(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)10种情况,(9分)而两人都在[20,25)内共有(a1,a2),(a1,a3),(a2,a3)3种情况,至多一人参加社区服务次数在区间[20,25)内的概率为.【点睛】本题考查频率分布表和频率分布直方图的应用,考查概率的求法,是中档题,解题时要认真审题,注意列举法的合理运用.19.(1)有;(2) 3 5 .【分析】()1根据列联表计算2K,对照观测值表即可得到结论()2利用分层抽样法抽取5次交易,计算好评的交易次数和不满意次数,用列举法计算对应的概率值即可【详解】(1)由上表可得()222008010407011.11110.8281505012080K⨯⨯-⨯=≈>⨯⨯⨯,所以有99.9%的把握认为商品好评与服务好评有关(2) 由表格可知对商品的好评率为35,若针对商品的好评率, 采用分层抽样的方式从这200次交易中取出5次交易, 则好评的交易次数为3次, 不满意的次数为2次, 令好评的交易为,,A B C, 不满意的交易,a b, 从5次交易中, 取出2次的所有取法为()()()(),,,,,,,A B A C A a A b,()()(),,,,,,B C B a B b(),C a, (),C b, (),a b, 共计10种情况, 其中只有一次好评的情况是(),A a,(),A b,(),B a,(),B b,(),C a,(),C b, 共计6种情况.因此, 只有一次好评的概率为63 105=.【点睛】本题主要考查了古典概型概率计算公式,利用列举法计算基本事件数及事件发生的概率,属于基础题.20.(1)49(2)0.8185【解析】分析:(1)根据茎叶图所给数据,求出总和,求得平均值;利用方差计算公式可得方差值。
四年级上册数学单元测试-8平均数和条形统计图一、单选题1广州市年平均气温是()℃A 36%B ﹣C D2下面是我们学校三年级植树情况统计表,4个班平均植树()棵。
A 7B 8C 9D 43三个数的平均数是18,其中两个数是26和16,第三个数是()。
A 25B 14C 124下列数据中,其众数,中位数,平均数都相等的是()A 17,17,18,19.B 24,25,23,24C 42,42,41,40D 4,2,3,5.二、判断题,小刚所在班级同学的平均身高是142cm,由此判断小明一定比小刚矮。
6四(1)班同学的平均体重是33g,有的同学体重会超过33g,有的同学体重不到33g。
()7一组数据的中位数可能与平均数相等.8芳芳在一次测验中,语文和数学的平均成绩是95分,语文、数学、英语三科的平均成绩是96分,则英语成绩是98分三、填空题9 在一次投篮训练中,8名同学投中的个数如下:4个、5个、4个、6个、10个、9个、8个、10个这组数据的平均数是________ ,众数是________ ,中位数是________ .10下面是实验小学六年级一班第一小组同学一分时间打字个数统计表:这组数据的中位数是________,众数是________,平均数是________.11甲、乙、丙三个数的平均数是60。
甲、乙、丙三个数的比是3︰2︰1。
甲、乙、丙三个数分别是________、________、________。
12一组数按从小到大排列是10,15,,48,50。
当=________时,这组数的平均数是30。
四、解答题13六年级一班第四组的男生和女生进行投篮比赛,每人投10次.下面的统计图分别表示他们投中的次数.(1)男生平均每人投中多少次?(2)女生平均每人投中多少次?(3)从图中你还能获得哪些信息?写下来.14光明小学五个课外活动小组的学生人数统计如下:航模:23人器乐:27人武术:30人美术:28人合唱:32人平均每个课外小组有多少人?五、综合题15 某公司全体员工工资情况如下表.(1)这组数据的平均数、中位数和众数各是多少?(2)你认为哪个数据代表这个公司员工工资的一般水平比较合适?16下面是育民小学各年级男、女生戴近视镜的同学人数统计图,根据统计图回答下面的问题.(1)根据表中的数据完成下面的条形统计图.(2)四年级戴近视镜的有多少人?(3)哪几个年级带近视镜的人数比较多?哪几个年级戴近视镜的男生比女生多?(4)你还能提什么数学问题?六、应用题17张强的绘画作品参加比赛,7个评委的打分分别为:89分、91分、62分、90分、92分、88分、97分(1)这7个评委打分的平均分是多少?(2)如果先去掉一个最高分和一个最低分后再计算平均分,这时的平均分是多少?(3)你认为哪一个平均分更为公平合理?参考答案一、单选题1【答案】C【解析】【解答】解:根据广州的地理位置可知,广州市年平均气温是℃故答案为:C【分析】广州位于我国的南部,全年温度较高,冬季气温也在10℃左右,由此根据实际情况判断广州的平均温度即可2【答案】A【解析】【解答】(9+4+7+8)÷4=7(棵)【分析】根据简单的统计表,即得4个班平均植树7棵。
溱潼中学2006~2007学年高二数学专题练习
新课标必修3 第二章统计
(第一节抽样方法)
班级________ 姓名__________
一、选择题(5´×10=50´)
1.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体健康状况,需从他们中抽取一个容量为36的样本,适合抽取样本的方法是(C)
A、简单随机抽样;
B、系统抽样;
C、分层抽样;
D、先从老年人中剔去一人,再分层抽样.
2.从某年级500名学生中抽取60名学生进行体重的统计分析,在这个问题中,500名学生的体重的全体是(A)
A、总体;
B、个体;
C、从总体中抽取的一个样本;
D、样本容量.
3.抽检汽车排放尾气的合格率,某环保单位在一路口随机抽查,这种抽查是(D)
A、简单随机抽样;
B、系统抽样;
C、分层抽样;
D、有放回地抽查.
4.从N个编号中抽n个号码入样,考虑用系统抽样方法抽样,则抽样间隔为(C)
A、N
n
;B、n;C、[]
N
n
;D、[]1
N
n
+.
5.某村有旱地与水田若干,现在需要估计平均亩产量,用按5%分层抽样的方法抽取15亩旱地45亩水田进行调查,则这个村的旱地与水田的亩数分别是(B)
A、150,450;
B、300,900;
C、600,600;
D、75,225.
6.下列抽样中不是系统抽样的是(C )
A、从标有1~15号的15个球中,任选三个作样本,按从小号到大号排序,随机选起点
i,
以后
05
i+,
010
i+(超过15则从1再数起)号入样;
B、工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽
一件产品进行检验;
C、搞某一市场调查,规定在商场门口随机抽一个人进行询问调查,直到调查到事先规定的
人数为止;
D、电影院调查观众的某一指标,通知每排(每排人数相同)座位号为14的观众留下座谈.7.分层抽样,即将相似的个体入归一类(层),然后每层各抽若干个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行(C)
A、每层等可能抽样;
B、每层不等可能抽样;
C、所有层用同一抽样比,等可能抽样;
D、所有层用同样多样本容量,等可能抽样.8.从编号为150
的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是(B)
A、5,10,15,20,25;
B、3,13,23,33,43;
C、1,2,3,4,5;
D、2,4,8,16,32
9.从2005个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的间隔为(C)
A、99
B、99.5
C、100
D、100.5
10.从学号为1~50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是(B)
A、1,2,3,4,5;
B、5,16,27,38,49;
C、2,4,6,8,10;
D、4,13,22,31,40.
二、填空题(5´×8=40´)
11.一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某
一特定个体被抽到的可能性是0.1.
12.从932人中抽取一个样本容量为100的样本,若采用系统抽样的方法,则必须从这932人中剔除32人.
13.某所大学的计算机工程学院的大一新生有160人,其中男生95人,女生65人,现在要抽取一个容量为20的样本,若用分层抽样,女生应抽取__8____人.
14.分层抽样适用的范围是总体由差异明显的几个部分组成.
15.某住宅小区有居民2万户,从中随机抽取200户,调查是否安装电话,调查的结果如图所示,则该小区已安装电话的户数估计有9500.
16.某学校有教师30060人,为了了解教师健康状况,从中抽取40人一个样本,用分层抽样方法抽取高级教师、中级教师、初级教师人数分别是12 、20、8.
17.为了了解老百姓对所谓“台湾公投”的态度,某记者拟分别从某大型单位50~60岁,30~40岁,18~25岁三个年龄中的800人,1200人,1000人中,采取分层抽样的方法进行调研,在50~60岁这一年龄段中抽查料40人,那么这次调研一共抽查了150人.
18.将参加数学竞赛的1000名学生编号如下:0001,0002,0003,…,1000,打算从中抽取一个容量为那50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0015,则抽取的第40个号码为0795.
三、解答题(10´×6=60´)
19.某班有50名学生,要从中随机地抽出6人参加一项活动,请有抽签法和随机数表法进行抽选,并写出过程.
解:抽签法:(1)将50名学生编号01,02,03, (50)
(2)按编号制签;
(3)将签放入同一个箱里,搅均;
(4)每次从中抽取一个签,连续抽取6次;
(5)取出与签号相应的学生,组成样本.
随机数表法:
(1)将50名学生编号01,02,03, (50)
(2)在随机数表中任选一个起始号码;
(3)从选定的号码开始读数,选取有编号的数码,直到选出6个为止;
(4)取出与号码相应的学生,组成样本.
20.已知某天一工厂甲、乙、丙三个车间生产的产品件数分别是1500、1300、1200,为了掌握
各车间的生产质量情况,要从中取出一个容量为40的样本,按照分层抽样的方法取样时,每个车间分别抽取多少件产品? 解:甲车间应抽取的件数为:40
150015150013001200
⨯
=++;
乙车间应抽取的件数为:40
130013150013001200
⨯=++;
丙车间应抽取的件数为:40
120012150013001200
⨯=++.
21.某工厂平均每天生产某种机器零件大约10000件,要求产品检验员每天抽取50件零件,检
查其质量情况;假设一天的生产时间中生产机器零件的件数是均匀的,请你设计一个调查方案.
解:采用系统抽样的方法.
由于一天的生产时间中机器零件的件数是均匀的,所以可将10000件零件依次每200件分成一组,共分50组,然后用简单随机抽样法确定第一组的抽取号码,依次累加200取样,组成样本.
(另一种方案:
由于一天的生产时间中机器零件的件数是均匀的,所以可将一天的生产时间设为T ,每隔T /50取一件零件,直到取到50件为止,组成样本.)
22.设计一个算法求:111
13521
n ++
++
- ;试用流程图和伪代码表示. 解:流程图如下: 伪代码如下:
开始 S←0 I←1
S←S+1/I
I←I+2I≤2n -1输出S 结束
↓↓↓↓↓↓↓←N Y
23.设计算法流程图,输出首项为2,公比为1
3
的等比数列的前200项. 解:流程图如下:
开始 a 1←2 a n ←a 1q n -1
n ←n +1n >200输出a n
结束
↓↓↓↓↓↓←N
Y q ←1/3↓ n ←1↓
24.(猴子吃桃子问题)猴子第一天摘下若干个桃子,当即吃了一半,还不过瘾,又多吃了一个;第二天早上又将剩下的桃子吃掉一半,又多吃了一个;以后每天早上都吃前一天剩下的一半加一个;到了第十天早上想吃时,见只剩下一个桃子了,求第一天摘了多少桃子? 试设计一个算法解决这个问题.(写出流程图和伪代码) 解:流程图如下: 伪代码如下:
开始 S←1 I←1 S←2×(S+1)
I←I+1
I ≤9↓↓↓输出S 结束
↓↓Y
N ↑↑
←。