自由基聚合反应
- 格式:ppt
- 大小:1.65 MB
- 文档页数:142
自由基聚合反应自由基聚合反应是一种重要的有机化学反应,它是指在自由基作用下,单体分子之间发生的聚合反应。
这种反应在有机合成、高分子化学、生物化学等领域都有广泛的应用。
自由基聚合反应的基本原理是:在反应体系中加入引发剂,引发剂能够产生自由基,自由基与单体分子发生反应,形成新的自由基,这些自由基又与其他单体分子反应,形成更多的自由基,最终形成高分子化合物。
自由基聚合反应的引发剂有很多种,常见的有过氧化物、有机过氧化物、过硫酸铵等。
这些引发剂在反应体系中分解,产生自由基,引发聚合反应。
自由基聚合反应的反应速度很快,反应过程中会产生大量的热量,需要控制反应温度,避免反应失控。
自由基聚合反应的应用非常广泛,其中最重要的应用之一是高分子材料的制备。
高分子材料是一种重要的工业原料,广泛应用于塑料、橡胶、纤维等领域。
自由基聚合反应可以制备各种类型的高分子材料,如聚乙烯、聚丙烯、聚苯乙烯等。
自由基聚合反应还可以用于有机合成。
在有机合成中,自由基聚合反应可以用于制备各种有机化合物,如醇、醛、酮等。
自由基聚合反应的优点是反应条件温和,反应物易得,反应产物纯度高,是一种重要的有机合成方法。
自由基聚合反应还可以用于生物化学研究。
在生物化学研究中,自由基聚合反应可以用于制备各种生物大分子,如蛋白质、核酸等。
自由基聚合反应的优点是反应条件温和,反应产物纯度高,可以制备大量的生物大分子,为生物化学研究提供了重要的工具。
自由基聚合反应是一种重要的有机化学反应,具有广泛的应用前景。
在高分子材料制备、有机合成、生物化学研究等领域都有重要的应用。
随着科学技术的不断发展,自由基聚合反应的应用前景将会更加广阔。
第一章 自由基聚合反应高聚物的形成反应,按反应机理不同分类连锁聚合反应−−−−−→−依活性种不同分y 自由基型聚合反应、离子型聚合反应、配位聚合反应。
两大类逐步聚合反应−−−−−−→−依参加反应的单体分缩聚反应、开环逐步聚合反应、逐步加聚反应第一节 自由基聚合反应的特点及分类1、自由基聚合反应:指单体借助于光、热、辐射、引发剂等的作用,使单体分子活化为活性自由基,再与单体分子连锁聚合形成高聚物的化学反应。
2、自由基聚合反应的特点(1)反应可明显的分为链引发、连增长、链终止等基元反应。
(2)反应速度快,单体一经引发,即迅速进行聚合反应,瞬间形成大分子。
(3)体系中始终没有从低分子量到高分子量的中间产物,反应无法停留在中间阶段,也无法分离出稳定的中间产物。
(4)反应是不可逆的反应。
(5)产物分子量大,但分布较窄,即分子量差别不大。
3、分类(1)均聚合反应:同种单体分子间的聚合反应。
(2)共聚合反应:两种以上单体分子间的聚合反应。
4、自由基的产生 (1)自由基化合物的共价键发生均裂反应,形成两个带独电子的中性基团。
R R ∙∙−−→−均裂2R · (2)自由基的相对活性顺序:∙H >3H C ∙>56H C ∙>2H C R ∙>H C R ∙2>∙C Cl 3>∙C R 3>∙C Br 3>HCOR C R ∙>HCN C R ∙>HCOOR C R ∙>22H C CH CH ∙=>256H C H C ∙>()H C H C ∙256>l C ∙>()∙C H C 356考虑:(1)共轭效应:没有共轭效应的自由基活泼,有共轭效应的自由基不活泼。
(2)极性效应:吸电子基团常合自由基稳定,推电子基团使自由基活泼。
(3)空间位阻效应:体积较大基团使自由基活性降低→主导地位 5、自由基的反应特征含有未成键的电子,具有很高的反应活性,可以发生如下反应: (1)自由基的加成反应→→链增长的基础R ·+CH 2=CH 2 R -CH 2-CH 2(2)自由基的夺取原子反应→→链转移和歧化终止的基础a 、夺取其他分子上的氢原子,本身失去活性,同时产生新的自由基。
自由基聚合反应名词解释
自由基聚合反应是一种化学反应,其中自由基通过一系列步骤进行连续的反应,从而形成更大分子的聚合物。
在这种反应中,自由基是活跃的化学物质,它们具有未成对电子,可以与其他化合物中的自由基或原子发生反应。
自由基聚合反应在有机化学和高分子化学中具有广泛的应用。
自由基聚合反应通常涉及三个关键步骤:启动、传递和终止。
1.启动:在启动步骤中,一个化合物(启动剂)被加热、光照或与其他反应物发生反应,从而产生自由基。
这个自由基可以是一个单独的原子或分子,具有未成对电子。
2.传递:在传递步骤中,自由基与单体分子中的另一个未成对电子结合,形成一个新的自由基。
这个过程会不断重复,使得聚合物链不断增长。
聚合反应中使用的单体分子可以是有机物,如乙烯、丙烯酸甲酯等,也可以是无机物,如二氧化硅等。
3.终止:在终止步骤中,聚合反应停止。
这可以通过两个自由基相互结合或与其他反应物结合来实现。
终止步骤可以避免过度聚合或产生不受控制的聚合物。
自由基聚合反应具有许多重要的应用。
在高分子化学中,它用于合成各种聚合物,如塑料、橡胶和纤维素。
这些聚合物在日常生活中广泛应用,如塑料容器、纤维素纤维和橡胶制品。
此外,自由基聚合反应还用于制备各种化学品、药物和材料。
总之,自由基聚合反应是一种重要的化学反应,通过自由基的连续反应,将单体分子聚合成聚合物。
这种反应在有机化学和高分子化学中具有广泛的应用,并在制备塑料、橡胶和纤维素等产品方面发挥着关键作用。
自由基聚合的四种方法自由基聚合是高分子化学中最常用的聚合方法之一,它是通过自由基引发剂引发的聚合反应,将单体分子聚合成高分子链的过程。
自由基聚合方法具有操作简单、反应条件温和、适用范围广等优点,在工业生产中得到广泛应用。
本文将介绍自由基聚合的四种方法。
一、自由基聚合反应自由基聚合反应是一种通过引发剂产生自由基,引发单体分子聚合成高分子链的反应。
自由基聚合反应的一般过程如下:1. 引发剂产生自由基2. 自由基引发单体分子聚合3. 高分子链不断增长4. 反应结束,高分子链停止增长自由基聚合反应的引发剂有很多种,常用的有过氧化物、亚硝酸盐、过硫酸盐等。
引发剂的选择要考虑到反应温度、反应速率、反应产物等因素。
二、自由基聚合的溶液聚合法自由基聚合的溶液聚合法是将单体分子溶解在合适的溶剂中,加入引发剂后进行聚合反应。
这种方法适用于聚合物的分子量较低,分子结构较简单的情况。
溶液聚合法的优点是反应条件温和,反应速率较快,但产品纯度较低。
三、自由基聚合的悬浮聚合法自由基聚合的悬浮聚合法是将单体分子悬浮在水中,加入引发剂后进行聚合反应。
这种方法适用于聚合物的分子量较高,分子结构较复杂的情况。
悬浮聚合法的优点是反应条件温和,反应速率较快,产品纯度较高。
四、自由基聚合的乳液聚合法自由基聚合的乳液聚合法是将单体分子和表面活性剂混合,形成乳液后加入引发剂进行聚合反应。
这种方法适用于聚合物的分子量较高,分子结构较复杂的情况。
乳液聚合法的优点是反应条件温和,反应速率较快,产品纯度较高。
此外,乳液聚合法的产品具有较好的分散性和稳定性,可广泛应用于涂料、胶粘剂等领域。
总之,自由基聚合是一种常用的高分子化学方法,具有操作简单、反应条件温和、适用范围广等优点。
不同的自由基聚合方法适用于不同的聚合物分子结构和分子量,选择合适的方法可以提高反应效率和产品质量。
第三章自由基聚合第一节连锁聚合的单体一、电子效应与羰基C=O不一样,乙烯基单体的C=C既可均裂,也可异裂。
因此,可以进行自由基聚合,也可以进行离子聚合。
·C-C·← C=C →+C-C-乙烯分子无取代基,结构对称,无诱导效应和共轭效应,偶极矩为零。
目前只有2条聚合途径:在高温高压下进行自由基聚合,在四氯化钛-三乙基铝等络合催化体系作用下进行配位聚合。
1、供电子取代基(1)原理乙烯基单体上的供电子取代基,例如:烷基、烷氧基、苯基、乙烯基等,使双键上的电子云密度增加,有利于阳离子的进攻,形成碳阳离子。
CH2δ-=CH←Y同时,供电子取代基还会使碳阳离子上电子云密度缺少的情况有所改善,体系的能量有所降低,碳阳离子的稳定性有所增加。
综上所述,带有供电子取代基的烯类单体有利于阳离子聚合,阳离子聚合的单体有异丁烯、烷基乙烯基醚、苯乙烯、异戊二烯等。
(2)实例由于单个烷基的供电子诱导效应和超共轭效应都较弱,因此只有1,1-双从使双键电子云密度增加,只能进行阳离子聚合。
2、吸电子取代基(密度降低,并使碳阴离子的稳定性增加,因此有利于阴离子的进攻。
电子的自由,能同时进行阴离子和自由基聚合的单体有丙烯腈、丙烯酸酯类等。
电子要弱,由的诱导效应和共振效应比氯原子更弱的原因。
3、共烯、丁二烯、异戊二烯等二烯类单体,能够按照三种聚合机理进行。
烷基烯烃才能进行阳离子聚合。
乙烯基烷基醚中的烷氧基,从诱导效应看,属于吸电子基团;但共轭效应来看,却1)原理硝基、氰基、羰基等吸电子取代基,将使双键上的电子云CH 2δ+=CH →Y 吸电子取代基使双键上的电子云密度降低后,也易和含有独基结合,并使自由基稳定,因此也有利于自由基的进攻。
带有吸电子取代基的烯类单体有利于阴离子聚合和自由基聚合(2)特例硝基乙烯、偏二腈乙烯,只能阴离子聚合,难自由基聚合。
卤代烯烃如氯乙烯,由于卤素的诱导效应是吸电子,共轭效应是供,但2种效应都较弱,双键的极性很弱,只能进行自由基聚合。