基于时间序列分析的Kalman滤波方法在MEMS陀螺仪随机漂移误差补偿中的应用研究
- 格式:pdf
- 大小:260.84 KB
- 文档页数:5
MEMS陀螺仪零位误差分析与处理陈旭光;杨平;陈意【摘要】Study on zero position error of MEMS gyroscope has a great value on improving the accuracy of inertial navigation system. Allan variance analysis melhod was adopted to evaluate on zero position error of MEMS gyroscope. A kind of dynamic zero offset compensation algorithm was presented to eliminate the zero offset error. HDR( Heuristic Drift Reduction) was also improved and the compensation accuracy of original algorithm was increased effectively. Finally, Allan variance analysis method was adopted to evaluate on the compensated zero position error. Test had been done with the platform of gyro-equipped indoor mobile robot Voyager-lIA and the results show precision was increased significantly with the improved algorithm.%研究微机械陀螺仪的零位误差对提高惯性导航精度具有重要意义.采用Allan方差分析法对MEMS陀螺仪的零位误差做了综合评定,提出了一种动态的零值偏移误差补偿算法来滤除陀螺仪的零值偏移误差,还对启发式漂移消减法HDR(Heuristic Drift Reduction)做了改进,有效地提高了原算法的补偿精度.最后,再次采用Allan方差分析法对补偿后的零位误差进行评定,并以Voyager-IIA机器人为平台进行试验,结果证明了改进后的算法能显著的提高陀螺仪的输出精度.【期刊名称】《传感技术学报》【年(卷),期】2012(025)005【总页数】5页(P628-632)【关键词】MEMS陀螺仪;零位误差;启发式漂移消减法;动态补偿;Allan方差分析【作者】陈旭光;杨平;陈意【作者单位】电子科技大学机械电子工程学院,成都 611731;电子科技大学机械电子工程学院,成都 611731;电子科技大学机械电子工程学院,成都 611731【正文语种】中文【中图分类】V241.5微电子机械系统MEMS(Micro-Electro-Mechanical System)陀螺仪以其尺寸小、质量轻、价格低的优点越来越受到人们的重视,但是精度较低限制了它的应用领域。
mems陀螺随机误差建模与补偿
MEMS陀螺随机误差建模与补偿是采用数学方法模拟微机电系统(MEMS)所产生的随机振动误差,并对其进行补偿,以改善其可靠性和精度。
随机误差建模和补偿通常利用一个模型,它利用从陀螺仪反馈出来的位置、速度或加速度信息来模拟陀螺仪的随机噪声。
具体而言,这种模型可以以不同方式建立,从而有效地模拟MEMS陀螺仪所产生的位置、速度、加速度和频率误差。
随机误差建模的第一步是将反馈的位置、速度或加速度信息转换为功率谱,以便更好地分析误差的特性。
然后将模型化成一定长度的时域过程,然后根据这一过程对误差参数进行估计。
最后,通过拟合功率谱和参数估计来判断模型的准确性,并确定MEMS的随机误差补偿方案。
随机误差补偿一般可以采用两种方式实现,即:信号补偿和结构补偿。
信号补偿通常是使用一些滤波器来减小模型的噪声,以改善信号的精度。
结构补偿则是对陀螺仪的结构进行改进,以抑制误差的源头,甚至抵消部分误差,从而获得更好的精度。
MEMS陀螺仪所产生的随机误差主要来自于设备内部的失真、电磁抖动和湿度抖动等因素,这些误差可利用MEMS陀螺随机误差建模与补偿技术加以抑制,以改进陀螺仪的精度和可靠性。
时序预测中的卡尔曼滤波技巧时序预测是指根据历史数据预测未来趋势或者事件的发展趋势。
在实际生活和工作中,时序预测有着广泛的应用,比如股票价格预测、气象预测、交通流量预测等。
而卡尔曼滤波技巧是时序预测中一种非常重要的方法,它可以有效地处理噪声干扰和不确定性,提高预测的准确性和稳定性。
卡尔曼滤波是由美国工程师鲁道夫·艾米尔·卡尔曼提出的一种状态估计方法,最初应用于航空航天领域。
卡尔曼滤波通过观测值和动态系统模型,对系统当前的状态进行估计,并预测未来的状态。
在时序预测中,卡尔曼滤波可以用来对变量的未来值进行预测,尤其适用于具有连续观测和线性动态系统模型的情况。
首先,卡尔曼滤波利用观测值和动态系统模型对系统的当前状态进行估计。
观测值是指我们可以直接测量到的变量值,而动态系统模型则是描述变量随时间变化的规律。
通过将这两者结合起来,卡尔曼滤波可以对系统当前的状态进行估计,从而为未来的预测提供基础。
其次,卡尔曼滤波可以根据系统的动态模型预测未来的状态。
通过对系统的动态模型进行建模和参数估计,卡尔曼滤波可以对未来的状态进行预测。
这种预测不仅可以考虑观测值,还可以通过动态模型对系统的演化趋势进行分析,提高了预测的准确性。
除此之外,卡尔曼滤波还可以有效地处理噪声干扰和不确定性。
在实际的时序预测过程中,观测值往往会受到各种随机因素的影响,比如测量误差、环境变化等。
而卡尔曼滤波可以通过对观测值和动态模型的信息进行融合,对噪声进行滤波,从而提高了预测的稳定性。
另外,卡尔曼滤波还具有递归更新的特性,可以实现实时的预测和估计。
在时序预测的实际应用中,数据通常是连续不断地产生的,而卡尔曼滤波可以根据新的观测值和动态模型,递归地更新系统的状态估计,实现实时的预测和估计。
总的来说,卡尔曼滤波技巧在时序预测中具有重要的应用价值。
它不仅可以对系统当前的状态进行估计,还可以预测未来的状态,同时还能有效地处理噪声干扰和不确定性,具有递归更新的特性,适用范围广泛。
陀螺仪卡尔曼滤波漂移
卡尔曼滤波是一种在各种系统估计和控制系统应用中广泛使用的先进算法,其中包括陀螺仪。
然而,当使用卡尔曼滤波对陀螺仪数据进行处理时,可能会遇到一个常见的问题——漂移。
这种漂移现象通常是由于陀螺仪内部的物理特性导致的,例如热效应、非理想因素等,这些因素可能导致陀螺仪读数的长期偏差,进而严重影响其准确性。
为了解决这个问题,我们可以采取一些方法来减小陀螺仪的漂移。
首先,可以采用更精确的陀螺仪技术来提高测量值的准确性。
其次,可以在系统中使用其他传感器,如加速度计和磁力计等,来辅助姿态估计,以减少对陀螺仪数据的依赖。
此外,还可以通过校准和补偿技术来减小陀螺仪的漂移。
这些方法的应用可以有效地提高姿态估计的准确性,从而解决卡尔曼滤波在处理陀螺仪数据时遇到的问题。
虽然卡尔曼滤波可以用于处理陀螺仪数据,但是由于陀螺仪可能存在的漂移问题,需要采取一些有效的措施来减小其影响。
传统组合导航中的实⽤Kalman滤波技术评述严恭敏,邓瑀(西北⼯业⼤学⾃动化学院,西安710072)摘要:在随机线性系统建模准确的情况下,Kalman滤波是线性最⼩⽅差⽆偏估计。
针对传统惯导/卫导组合导航的实际应⽤,难以精确建模,给出了常⽤的建模⽅法、状态量选取原则、离散化⽅法及滤波快速计算⽅法。
讨论了平⽅根滤波、⾃适应滤波、联邦滤波和⾮线性滤波等技术的适⽤场合,并给出了使⽤建议。
针对前⼈研究可观测度中未考虑随机系统噪声的缺陷,提出了更加合理的以初始状态均⽅误差阵为参考的可观测度定义和分析⽅法。
提出了均⽅误差阵边界限制⽅法,可有效抑制滤波器的过度收敛和滤波发散。
该讨论可为⼯程技术⼈员提供⼀些有实⽤价值的参考。
关键词:捷联惯导系统;组合导航;Kalman滤波;评述0 前⾔估计理论是概率论与数理统计的⼀个分⽀,它是根据受扰动的观测数据来提取系统某些参数或状态的⼀种数学⽅法。
1795年,⾼斯提出了最⼩⼆乘法;1912年,费歇尔(R.A.Fisher)提出了极⼤似然估计法,从概率密度的⾓度考虑估计问题;1940年,维纳提出了在频域中设计统计最优滤波器的⽅法,称为维纳滤波,但它只能处理平稳随机过程问题且滤波器设计复杂,应⽤受到很⼤限制;1960年,卡尔曼基于状态⽅程描述提出了⼀种最优递推滤波⽅法,称为Kalman滤波,它既适⽤于平稳随机过程,也适⽤于⾮平稳过程,⼀经提出便得到了⼴泛应⽤。
在Kalman滤波器出现以后,针对随机动态系统的估计理论的发展基本上都是以它的框架为基础的⼀些扩展和改进[1]。
Kalman滤波器最早和最成功的应⽤实例便是在组合导航领域。
惯性导航系统(Inertial Navigation System,INS)是最重要的⼀种导航⽅式,它能提供姿态、⽅位、速度和位置,甚⾄还包括加速度和⾓速率等导航信息,可⽤于运载体的正确操纵和控制。
惯导具有⾃主性强、动态性能好、导航信息全⾯且输出频率⾼等优点,但其误差随时间不断累积,长期精度不⾼。
卡尔曼滤波详解卡尔曼滤波是一种常用于估计和预测系统状态的优秀滤波算法。
它于1960年代由R.E.卡尔曼提出,被广泛应用于飞机、导弹、航天器等领域,并逐渐在其他科学领域中得到应用。
卡尔曼滤波的基本思想是通过融合测量数据和系统模型的信息,对系统状态进行更准确的估计。
其核心原理是基于贝叶斯定理,将先验知识与观测数据相结合来更新系统状态的概率分布。
卡尔曼滤波算法包括两个主要步骤:更新和预测。
在更新步骤中,算法通过观测值来计算系统的状态估计。
在预测步骤中,算法使用系统的模型对下一个时间步长的状态进行预测。
通过反复进行这两个步骤,可以得到不断更新的状态估计结果。
卡尔曼滤波算法的关键是系统模型和观测模型的建立。
系统模型描述了系统状态的演化规律,通常用线性动态方程表示。
观测模型描述了观测值与系统状态之间的关系,也通常用线性方程表示。
当系统模型和观测模型都是线性的,并且系统噪声和观测噪声都是高斯分布时,卡尔曼滤波算法能够得到最优的状态估计。
卡尔曼滤波的优点在于,在给定模型和测量信息的情况下,它能够最小化误差,并提供最佳的状态估计。
此外,卡尔曼滤波算法还具有递归、高效、低存储等特点,使其在实时应用中具有广泛的应用前景。
然而,卡尔曼滤波算法也有一些限制。
首先,它要求系统模型和观测模型能够准确地描述系统的动态特性。
如果模型存在误差或不完全符合实际情况,滤波结果可能会产生偏差。
其次,卡尔曼滤波算法适用于线性系统,对于非线性系统需要进行扩展,例如使用扩展卡尔曼滤波或无迹卡尔曼滤波。
另外,卡尔曼滤波算法还会受到噪声的影响。
如果系统的噪声比较大,滤波结果可能会失真。
此外,卡尔曼滤波算法对初始状态的选择也敏感,不同的初始状态可能会导致不同的滤波结果。
综上所述,卡尔曼滤波是一种高效、优秀的滤波算法,能够在给定模型和测量信息的情况下提供最优的状态估计。
然而,它也有一些局限性,需要充分考虑系统模型和观测模型的准确性、噪声的影响以及初始状态的选择。
2010年12月第36卷第12期北京航空航天大学学报Journa l o f Be iji ng U nivers it y of A eronauti cs and A stronauti cs D ecember 2010V o.l 36 N o 12收稿日期:2009 10 27基金项目:总装预研基金资助项目(9140A09031008CB01作者简介:袁赣南(1945-,男,江西赣州人,教授,yu angannan @163.co m.ME M S 陀螺随机漂移在线补偿技术袁赣南梁海波何昆鹏谢燕军(哈尔滨工程大学自动化学院,哈尔滨150001摘要:为了提高微机电系统(M E MS,M icro E lectro M echanical Syste m 陀螺测量的精度,提出了一种陀螺随机漂移的在线补偿方法.在静态时在线建立随机漂移的自回归滑动平均(ARMA,Auto Regressi v e M ov i n g Average模型,并针对随机漂移模型随时间慢变的特性,引关键词:陀螺仪;随机漂移;时间序列分析;目标跟踪;自适应滤波中图分类号:V 241.6文献标识码:A 文章编号:1001 5965(201012 1448 05On li n e co mpensati o n t echni q ue f or m i c ro mechanica lgyroscope rando m errorYuan GannanLiang H ai b oH e KunpengX ie Yan j u n(C ollege of Auto m ati on ,H arb i n Eng i neeri ng Un i vers i ty ,H arb i n 150001,C h i naAbstr act :To i m prove the m easure m en t prec ision of m icro electr o m echan ical syste m (ME M S gyro scope ,an on li n e co m pensation approach forME M S gyroscope rando m error was presented .The autoregressi v e m oving average (ARMA m odel of rando m error w as estab lished under static conditi o n ,and the fictitiousno ise co m pensation technique w as i n troduced to acco mm odate the ti m e varying m ode.l Due to t h e unkno wn m ove m ent o f carrier ,t h e techn ique ofm aneuveri n g target track i n g w as presented to obta i n the m aneuveri n g an gular rate m ode.l The rando m error and angu lar rate w ere esti m ated in real ti m e by using adapti v e K al m an fil ter in the dyna m ic tes.t The resu lt of test i n dicates t h at the m odel of rando m error ,the angu lar rate ,and the algorithm of filteri n g can satisfy the dyna m ic application of the ME M S based attitude headi n g reference syste m.Further m ore ,t h e precisi o n of syste m is greatly i m proved after co m pensated .Key wor ds :gyroscopes ;rando m errors ;ti m e ser i e s ana l y sis ;tar get track i n g ;adapti v e filtering微机电系统(ME M S ,M icro E lectro M echani ca l Syste m 陀螺的漂移由确定性漂移和随机漂移两部分构成.确定性漂移可以通过标定和测试,建立其精确的数学模型加以补偿,而随机漂移则表现为随时间缓慢变化、无规律的过程.由于随机漂移是影响陀螺精度的重要误差源之一,对整个导航系统精度有较大的影响,因而针对随机漂移开展研究具有重要意义[1].M E M S 陀螺随机漂移的补偿一般采用时间序列分析建模的方法,然后利用Ka l m an 滤波对随机漂移进行估计并加以补偿.然而,实际中的随机漂移的均值和方差都会随时间缓慢地发生变化,这明显不符合经典K al m an 滤波器的使用条件,无法保证估计的精度.本文采用一种在线的随机漂移补偿方法,以适应随机漂移的时变特性,从而达到提高系统精度的目的.1系统状态空间模型的构建1.1随机漂移模型的状态空间构建采用文献[2]的方法,建立陀螺随机漂移的自回归滑动平均(ARMA,Auto Reg ressive M ov ing A verage模型.利用Kal m an滤波器对ME M S陀螺随机漂移进行估计,需要将ARMA模型转化为状态空间模型.为表述方便起见,这里以ARMA(2, 1模型为例,其表达式为z k= 1z k-1+ 2z k-2+a k+ 1a k-1(1式中, 1和 2为模型中自回归部分的参数; 1为模型中滑动平均部分的参数.设状态变量为X k=[x k x k-1]T,系统噪声变量为W k=a k,满足如下系统方程(定义为系统 :X k=A X k-1+B W k(2Z k=H X k+V k(3式中A =01 2 1B =G0G1H =[1 0]其中,V k为量测噪声;G0,G1为ARMA(2,1模型的格林函数[3-4].根据文献[2]对格林函数的相关阐述,可以推导出AR MA(2,1模型的格林函数如下:G0=1G1= 1G0+ 1= 1+ 11.2角速率模型的状态空间构建在载体运动过程中,角速率的变化情况是无法提前预知的,因此角速率模型要能够适应载体运动状态的变化.本文使用机动目标跟踪理论中的当前!概率密度模型[5],其模型为∀t∀∀=010-!t∀+!∀-t+1w t(4式中,t,∀t为陀螺敏感的角速率和角加速度;! 为机动加速度时间常数的倒数;∀-t为当前角加速度均值;w t是均值为零、方差为2!#2a的白噪声序列,#2a为角加速度方差.在满足一定采样周期T s下,利用离散化处理方法,得到离散系统状态方程(定义为系统#:X#k=A#X#k-1+U#∀-k+W#k(5式中X#k=[k ∀k]TA#=11!(1-e-!T s0e-!T s(6U#=T s-1-e-!T s!1-e-!T sT(7其中,W#k是均值为零、方差为Q#k的高斯系统噪声.离散系统量测方程为Z#k=H#X#k+V#k(8当仅有含噪声的角速率可量测时,有H#=[1 0].V#k是均值为零、方差为R#k的高斯量测噪声.式(5和式(8就构成了机动角速率状态空间模型.2自适应Kal m an滤波器设计2.1随机漂移滤波器考虑到陀螺随机漂移是一个随时间缓慢变化的近似随机过程,随着时间的推移,前文所建立的ARMA模型参数必然发生变化,采用经典Ka l m an 滤波显然不能满足实际情况.本文通过引入带未知时变噪声统计的虚拟噪声来补偿模型误差,从而把问题归结为带未知时变噪声统计系统的自适应Kal m an滤波问题,自适应K al m an滤波器方程[6]如下:X∃ k,k-1=A X∃ k-1+q∃ k-1(9P k,k-1=A P k-1A T +Q∃ k-1(10K k=P k,k-1H T (H P k,k-1H T +R∃ k-1-1(11∃ k=Z k-H X∃ k,k-1-r∃ k-1(12X∃ k=X∃ k,k-1+K k∃ k(13P k=(I-K k H P k,k-1(14并且Dk=H T (H P k,k-1H T +R∃ K-1-1(15q∃ k=q∃ k-1+%Q∃ k-1D k∃ k(16Q∃ k=Q∃ k-1+%Q∃ k-1D k(∃ k∃T k-H P k,k-1H T -R∃ k-1D T k Q∃ k-1(17r∃ k=(1-%r∃ k-1+%(Z k-H X k (18R∃ k=(1-%R∃ k-1+[(I-H K k∃ k∃T k∀(I-H K kT+H P k H T ](19式中,q k,Q k分别为时变系统噪声的均值和方差;r k,R k分别为时变量测噪声的均值和方差;上标∃表示滤波器变量的一步预测值;I为单位阵;%=(1-b/(1-b k+1,b为遗忘因子,0%b%1,对于慢时变噪声统计应取较大的接近于1的b[6-7].交替使用式(9~式(14和式(15~式1449 第12期袁赣南等:M E M S陀螺随机漂移在线补偿技术针对机动角速率模型式(5和式(8的经典K al m an 滤波方程为X ∃#k,k-1=A #X ∃#k-1+U #∀-k (20P #k,k-1=A #P #k-1AT #+Q ∃#k-1(21K #k =P #k,k-1H T #(H #P #k ,k-1HT#+R #-1(22∃#k =Z #k -H #X ∃#k ,k-1(23X ∃#k =X ∃#k,k-1+K #k ∃#k(24P #k =(I -K #k H #P #k,k-1(25根据机动目标跟踪理论,将状态变量∀k 的一步预测值∃∀k,k -1看作在k T s 时刻的∀-k ,就可得到角加速度的均值自适应算法.因此,设∀-k =^∀k,k -1,联立式(6、式(7和式(20,有X ∃#k,k-1=A &#X ∃#k-1(26其中,A &#=1T s 01.此时系统状态方程等效为X #k =A &#X #k-1+W #k(27由于系统噪声W #k 是均值为零、方差为2!#2 a的白噪声序列,有Q ∃#k =E [W #k ∀W T#k ]=2!#2aq 11q 12q 21q 22式中 q 11=12!3(4e-!T s -3-e -2!Ts +2!T s q 12=q 21=12!2(e-2!T s +1-2e -!Ts q 22=12!(1-e -2!Ts#2a =4-&&(∀m ax -| ∃∀k,k-1|2其中,∀max 为角加速度机动的最大值.由此,Q ∃前文已经分别设计了基于陀螺随机漂移和机动角速率的自适应Ka l m an 滤波器,二者既有联系又存在差异,因此有必要通过适当的处理,将其结合在一起以便于实用.系统强调噪声均值和方差的时变特性,在每个滤波周期中,分别对系统噪声和量测噪声的均值、方差进行实时估计;而系统#则只强调系统噪声的方差随角加速度的变化,均值恒定为零,且其量测噪声均值为零,方差恒定.设结合后的系统为系统∋,取X ∋k =[x k x k-1 k ∀k ]T W ∋k =[a k a k-1 w 1k w 2k ]T满足系统方程:X ∋k =A &∋X ∋k-1+B ∋W ∋k(28Z ∋k =H ∋X ∋k +V ∋k(29式中A &∋=A 00A&#B ∋=B 00B #H ∋=[1 0 1 0]Q ∃∋k =Q ∃k 00Q ∃#kq ∃∋k =[q ∃k q ∃#k ]T=[q ∃ k 0]TR ∃∋k =va r (Z ∋kr ∃∋k =m ean (Z ∋k以系统的滤波器为主体,并加入对Q ∃#k 的估计算法,便构成了系统∋的自适应K al m an 滤波器.在每个滤波周期内,分别对X ∋k ,Q ∃∋k ,R ∃∋k ,q ∃∋k 和r ∃∋k 中的各分量进行实时估计.3随机漂移补偿试验为了验证自适应Kal m an 滤波器对随机漂移的实时补偿效果以及对ME M S 姿态测量系统的精度改善情况,将该滤波算法装订在某型ME M S 姿态测量仪中,在线建立陀螺随机漂移模型,将实时补偿后的数据用于姿态解算,通过对比随机漂移补偿前后的姿态解算结果来获取滤波器的性能信息.具体试验方案如下:将ME M S 姿态测量仪安装于三轴速率转台上,使载体坐标系、转台坐标系与东北天地理坐标系重合.以天轴上的陀螺作为试验对象,控制转台按照如下方式运动:0~320s :陀螺静止;321~660s :陀螺绕敏感轴以5((/s 的速率转动;661~1000s :陀螺绕敏感轴以10((/s 的速率转动;1001~1650s :陀螺绕敏感轴做幅值为10(,周期为10s 的摇摆运动;1651~1800s :陀螺静止.以50H z 的采样频率采集陀螺输出信号,并对陀螺信号进行确定性漂移补偿后的结果如图11450北京航空航天大学学报 2010年所示.图1 动态试验数据在0~320s 范围内陀螺处于静止状态,此时的数据可以认为是陀螺的随机漂移.利用前8s 的数据(400个点在线建立最优模型为ARMA (2,1,其表达式为z k =0.681z k-1-0.255z k-2+a k +0.504a k-1(30结合机动角速率模型,建立形如式(28和式(29的线性系统方程,其参数为A &∋=100-0.2550.681000010.020001B ∋=10001.18500000000001H ∋=[1 0 1 0]自适应K al m an 滤波器选取如下初始参数:X ∋0=[0 0 0 0]TP ∋0=10I系统噪声方差阵元素分别取自陀螺的ARMA 在线建模残差方差和A llan 方差分析结果,具体数值为Q ∋0=d iag [2.954 2.954 11.421 0.383]10-6R ∋0=va r (Z ∋k =7.69910-6以9~1800s 的试验数据作为量测值,使用自适应K alm an 滤波器进行实时滤波,滤波器估计结果如图2~图5所示.图2 估计角速率图3 估计随机漂移图4 估计虚拟噪声均值图5 估计虚拟噪声方差由图2~图5可知,估计出的角速率对量测值跟踪性能良好,估计出的虚拟噪声均值和方差随着时间的推移,在缓慢地发生变化,与实际情况相符.由此可见,滤波器能够适应ME M S 姿态测量仪在一定动态条件下的应用.将角速率估计结果用于实时姿态解算,由于试验对象为天轴陀螺,只需考察解算出的航向角即可.表1给出了统计意义下的航向角解算误差值的比较结果.表1 航向角解算误差比较rad项目运动状态静态0.09710.55320.1789结合图1、图2和表1,可以得出以下结论:1在静态条件下,补偿后的解算结果优于补偿前的情况,误差均值和标准差均降为补偿前的50%.3摇摆条件下,补偿后的解算结果较补偿前1451第12期袁赣南等:M E M S 陀螺随机漂移在线补偿技术的性能也有所提高,误差均值降为补偿前的29%,误差标准差降为补偿前的53%.4 结束语M E M S陀螺随机漂移是随时间缓慢变化的、无规律的近似随机过程,是影响姿态测量系统精度的主要因素之一,有必要加以补偿.通过在线建立随机漂移的ARMA模型和机动角速率模型,进行基于虚拟噪声补偿理论的自适应K al m an滤波,对随机漂移和角速率进行实时估计.试验结果表明,文中采用的系统模型和滤波算法能够适应姿态测量系统动态应用的需要,且使姿态解算精度有了较大程度的提高.参考文献(References[1]王新龙,马闪.光纤陀螺随机漂移误差补偿适用性方法[J].北京航空航天大学学报,2008,34(6:681-685W ang X i n l ong,M a Shan.Appli cab ili ty co m pensati on m et hod f orrando m drift of fi ber opti c gyroscopes[J].J ou rnal ofB eiji ng Un ivers i ty ofAeronau ti cs and A stronau tics,2008,34(6:681-685(i n C h i nese[2]杨叔子,吴雅.时间序列分析的工程应用[M].2版.武汉:华中理工大学出版社,2007:46-138Y ang Shuz,iW u Y a.T i m e s eri es an al ysis i n engineeri ng app lica tion[M].Th e S econd Ed i ti on.W uhan:H uaz hong U n i vers it y of S ci ence and Techn ol ogy Pres s,2007:46-138(i n Ch i nes e [3]Box G E P,Jenk i ns G M,Re i nselG C.T i m e series anal ysis:forecasti ng and con trol[M].Be iji ng:Post&Teleco m Press,2005:287-298[4]P i et D J,Jere m y P.The AR M A m odel i n state space f or m[J].S tatistic&P robab ility L etters,2004,70(8:119-125[5]周洪仁,敬忠良,王培德.机动目标跟踪[M].北京:国防工业出版社,1991:135-153Zhou H ongren,J i ng Zhong li ang,W ang Pei de.M aneuveri ng t arget track ing[M].Beiji ng:N ati ona l Defense I ndu stry Press,1991:135-153(i n C h i nese[6]邓自立.自校正滤波理论及其应用:现代时间序列分析方法[M].哈尔滨:哈尔滨工业大学出版社,2003:179-185Deng Z il.i Ad apti ve filt eri ng t h eory and app lication:m et hod of m od ern ti m e series anal ysis[M].H arb i n:H arb i n In stit u te of Tec hno l ogy P ress,2003:179-185(i n C h i nese[7]邓自立,许燕.基于K al m an滤波的白噪声估计理论[J].自动化学报,2003,29(1:23-31D eng Zil,i Xu Yan.W hite noise esti m ati on t heory based on Kalm an filteri ng[J].A cta Au t om ati ca S i n i ca,2003,29(1:23-31(i n Ch i n ese(编辑:赵海容(上接第1439页5 结论1本文完成B737 800驾驶舱空气流动和传热的数值模拟,得出的数值模拟结果符合大型客机驾驶舱空气设计要求,且与飞行员主观评价结果相一致;2根据数值模拟结果求得驾驶舱P MV指标,该客观评价得出B737 800驾驶舱处于舒适区的范围内,与飞行员主观评价结果相一致;3根据以上两个结论,得出本文驾驶舱的模型设计、简化与驾驶舱边界条件、计算条件的处理均为合理的,本文的驾驶舱数值模拟方法和客观评价方法可运用于此类机型驾驶舱的初期设计研究中.参考文献(References[1]Ab oos a i d iF,W arfi eld M J.Num eri cal an al ysis of a i rflo w i n aircraft cab i n s[R].SAE 91 1441,1991[2]DeJ ager A W,Lytle D m erci al airplane air d i stribu tions yste m developm ent through t h e u se of co m putational fl u i d dy na mics[R].AI AA 1992 0987,1992[3]S ingh A,H os n iM H,H orts m an RH.Nu m erical si m u l ation of airflo w i n an aircraft cabin section[J].ASHRAE T ransacti ons,2002,108(1:1005-1013[4]寿荣中,何慧珊.飞行器环境控制[M].北京:北京航空航天大学出版社,2006:7Shou Rongzhong,H e H uis h an.Aerocraft environm ent con trol sys te m[M].Be iji ng:Beiji ng U n i versit y of A eronau tics and A stro nauti cs Press,2006:7(i n C h i nese[5]陶文铨.数值传热学[M].西安:西安交通大学出版社,2004:28-47TaoW enquan.Num eri calheat tran sfer[M].Xi an:X i an Jiaot ong Un ivers it y Press,2004:28-47(i n C h i nes e[6]谢东,王汉青.不同气流组织下夏季空调室内热舒适环境模拟[J].建筑热能通风空调,2007,27(3:66-69X i e Dong,W ang H anq i ng.Roo m ther m al co m f ort s i m u lati on ofd ifferen t air cond iti oning i n summ er[J].B uil d i ng En ergy&Env i ronm ent,2007,27(3:66-69(i n Ch i nese[7]GB/T18977∗2003热环境人类工效学、适用主观判定量表评价热环境的影响[S]GB/T18977∗2003Ther mal environm en t of ergono m i cs,u si ng t he s ub jective eva l uati on scale d eter m i n e t he effecti ve of t h er m al en vi ronm ent[S](i n Ch i nes e(编辑:李晶1452北京航空航天大学学报 2010年。