探索三角形相似条件1
- 格式:ppt
- 大小:275.50 KB
- 文档页数:15
探索三角形相似的条件(一)●教学目标(一)教学知识点1.掌握三角形相似的判定方法1.2.会用相似三角形的判定方法1来证明及计算.(二)能力训练要求1.通过亲身体会得出相似三角形的判定方法,培养学生的动手能力;2.利用相似三角形的判定方法1进行有关计算及证明,训练学生的灵活运用能力.(三)情感与价值观要求1.经历对图形的观察、实验、猜想等数学活动过程,发展合情推理能力,并能有条理地、清晰地阐述自己的观点.2.通过用三角形全等的判定方法类比得出三角形相似的判定方法,进一步领悟类比的思想方法.●教学重点相似三角形的判定方法以及推导过程,并会用判定方法来证明和计算.●教学难点判定方法的运用●教学过程Ⅰ.创设问题情境,引入新课定义法:三角对应相等、三边对应成比例的两个三角形是相似三角形本节课开始我们将进行这方面的探索Ⅱ.新课问题:相似三角形应该如何判断呢?1.做一做.(1)画一个△ABC,使得∠BAC=60°,与同伴交流,你们所画的三角形相似吗?(2)与同伴合作,一人画△ABC,另一人画△A′B′C′,使得∠A和∠A′都等于给定的∠α,∠B和∠B′都等于给定的∠β,比较你们画的两个三角形,∠C与∠C′相等吗?对应边的比相等吗?这样的两个三角形相似吗?改变∠α、∠β的大小,再试一试.结论:判定方法1:两角对应相等的两个三角形相似.2.例题.如图,D、E分别是△ABC边AB、AC上的点,DE∥BC.(1)图中有哪些相等的角?(2)找出图中的相似三角形,并说明理由;(3)写出三组成比例的线段.3.想一想 在上面例题的条件下,AECE AD BD 吗? Ⅲ.课堂练习1.随堂练习(1)有一个锐角对应相等的两个直角三角形是否相似?为什么?(2)顶角相等的两个等腰三角形是否相似?为什么?2.补充练习(1)已知△ABC 与△A′B′C′中,∠B=∠B′=75°,∠C=50°,∠A′=55°,这两个三角形相似吗?为什么?(2)已知一个三角形的两个角分别是70°和65°,你能画一个和这个三角形相似的三角形吗?Ⅳ.课时小结本节课主要探索了相似三角形的判定方法,即两角对应相等的两个三角形相似,并且利用这个判定方法进行有关证明和计算.Ⅴ.课后作业。
探索三角形相似的条件(一)一、说教材:1.地位及重要性本节课是在学生学习了相似三角形的基本概念和基本性质等知识后,对三角形相似的判定的进一步探索。
既是之前学过的全等三角形等知识的延伸和拓展,又是今后证明线段成比例,研究相似多边形性质的重要工具。
本节内容起着承上启下的重要作用。
通过本节课的学习,可以培养学生猜想、实验、探索等能力,因此,这节课在本章中有着举足轻重的地位。
2.教学目标(1)知识与技能目标:理解三角形相似的判定方法;掌握找相等角从而运用判定条件(一)来解决问题。
(2)过程与方法目标:经历“直观感觉――动手感知――理性思维――应用拓展”的活动过程,探索两个三角形相似的条件并用它来解决简单问题,进一步发展学生的逻辑推理能力。
(3)情感、态度与价值观目标:通过生活中的有关三角形相似的应用,让学生体会到数学来源于生活,应用于生活的辩证思想。
3.重点与难点:教学重点:相似三角形的判定方法及其探索过程教学难点:找对应相等的两个角来判定三角形相似二、说教法——师生互动探究式教学学情分析初二学生活泼,求知欲强,这为探究三角形相似的判定条件提供了情感保障,而且学生在此已经学过相似三角形的定义和平行线的特征等知识,这为判定条件的探索和应用提供了认知基础。
同时在以前的数学学习中已经经历了很多合作学习的过程,具备了一定的合作交流的能力。
教学方法为贯彻“学生的主体地位,而教师是教学过程中的组织者、合作者和引导者”这样的教学理念,我确定如下的教学方式:学生自主探究、合作交流学习,教师引导发现教学。
三、说学法——自主探索研讨发现新课改的精神在于把学习的主动权还给学生。
因此,本节课通过教师引导,学生观察和动脑,主动探索获取新知识。
然后通过针对性练习来让学生突破找相等角证明三角形相似的难点,学生在获得新知的情况下,体验成功。
四、教学过程:本节课的教学,大致按照“温故知新,谈话揭题——合作交流,探索条件——例题拓展,深化提高——归纳总结,深化目标——作业布置、检测反馈”五个环节进行组织。
第四章 图形的相似4.4 探索三角形相似的条件第1课时 教学设计一、教学目标1.经历两个三角形相似条件的探索过程,增强发现问题、提出问题的意识,进一步体会类比、分类、归纳等思想与方法.2.了解相似三角形的判定定理1.3.了解黄金分割.4.能够运用三角形相似的条件解决简单的问题,发展应用意识.二、教学重点及难点重点:相似三角形的判定定理及其探索过程.难点:相似三角形的判定定理的应用.三、教学用具多媒体课件、直尺或三角板.四、相关资源《相似三角形引入》视频,《相似的判定AA 》动画,《相似三角形的判定》微课.五、教学过程【复习引入】根据所学的相似多边形的定义,你能给相似三角形下个定义吗?师生活动:教师引导学生得出,如果两个三角形的三个角分别相等,三条边成比例,我们就说这两个三角形相似.相似用符号“∽”表示,读作“相似于”.例如,在△ABC 和△A'B'C'中,如果∠A =∠A',∠B =∠B',∠C =∠C',,我们就说△ABC 和△A'B'C'相似,相似比为k ,记作△ABC ∽△A'B'C'.设计意图:引导学生回顾旧知识,从而得出相似三角形的定义及写法.判定三角形全等,我们并不是验证六个条件,而是利用了几个简便的判定定理,那么三角形相似的判定我们又能找到哪些简便的方法呢? 设计意图:类比三角形全等的判定方法为我们探索三角形相似的判定方法提供了方向AB BC AC k A'B'B'C'A'C'===性的指导,从而揭示本节课的主题.【探究新知】想一想如果两个三角形只有一个角相等,它们一定相似吗?如果有两个角分别相等呢?师生活动:教师引导学生用直尺和圆规任意画一个三角形,再画一个三角形,使它的一个角与原来三角形的一个角相等,度量这两个三角形的三边及其他的两个角,看这两个三角形的三边是否成比例?其他的两个角是否相等?从而判定这两个三角形是否相似?再画一个三角形,使它的两个角与原来三角形的两个角相等,度量这两个三角形的三边和其他的一个角,看它们的三边是否成比例?其他的一个角是否相等?从而判定这两个三角形是否相似?做一做与同伴合作,两个人分别画△ABC和△A`B`C`,使得∠A和∠A`都等于∠α,∠B 和∠B`都等于∠β,此时∠C与∠C`相等吗?三边的比相等吗?这样的两个三角形相等吗?改变∠α和∠β的大小,再试一试。
尊敬的各位评委、各位老师:大家好!我是腰站子中学的数学老师景鹏洲,能参加本次课堂教学观摩活动,我感到十分高兴,同时也非常珍惜这样一个交流和学习的机会,希望大家多多指教。
今天我说课的题目是《探索三角形相似的条件(第一课时)》。
下面,我就从教材、教法、学法、教学过程和理论依据五个方面谈谈自己对这节课的理解和处理。
理论依据我会穿插的前面四个环节中说明。
一、教材分析1、教材的地位和作用我所说的《探索三角形相似的条件》是北师大版八年级下册第四章第六节的内容,它是在学习了相似多边形、相似三角形的概念和性质的基础上所进行的一堂课,后面还要学习测量旗杆的高度,相似多边形的性质,所以,它有着承上启下的作用。
是本章的重点之一。
既是前面知识的延伸和全等三角形性质的拓展,也是今后研究相似多边形性质的重要工具。
同时它也是九年级进一步学习圆的有关知识和研究线段间的比例关系的基础,因此,这一内容在《空间与图形》中所占的位置非常重要,同时也是八年级教学中的一个难点。
2、教学目标(1)知识与技能:初步掌握两个三角形相似的判定条件(两角对应相等的两个三角形相似),能够运用三角相似的条件解决简单的问题。
(2)过程与方法:经历两个三角形相似条件的探索过程,进一步发展学生的探究、交流能力。
(3)情感态度与价值观:发展学生的合情推理能力和初步的逻辑推理意识,体会数学思维的价值。
由于学生已经掌握了相似三角形的定义,并初步经历了由全等到相似的认识过程,而本节内容正与全等的有关知识是类似且紧密联系的,因此,在建构主义理论的指导下,从教学过程的角度提出了以上目标。
3、教学重点、难点:重点:初步掌握判定两个三角形相似的条件难点:判定相似三角形条件的应用针对以上重、难点,我将引导学生用类比、探究等方法寻求判定两个三角形相似的条件,突出教学重点;分解教学难点。
二、教法八年级学生,身心发展较快,有较强的求知欲,有了一定自主探索,合作交流的学习意识和实践操作能力及思维概括能力。
求三角形相似的条件三角形相似是几何学中一个重要的概念,它指的是两个或多个三角形的对应角相等,并且对应边的比值相等。
在实际问题中,我们经常会用到三角形相似的性质来求解各种问题。
本文将从三角形相似的条件入手,详细介绍三角形相似的相关内容。
一、三角形相似的条件要判断两个三角形是否相似,需要满足以下条件:1. AA相似条件:两个三角形的对应角相等,则这两个三角形相似。
这意味着两个三角形的对应边的比值相等。
2. SSS相似条件:两个三角形的对应边的比值相等,则这两个三角形相似。
这意味着两个三角形的对应角相等。
3. SAS相似条件:两个三角形中,一对对应边的比值相等,并且这对边夹角的大小相等,则这两个三角形相似。
二、三角形相似的应用1. 比例求解:通过三角形相似的条件,我们可以利用已知三角形的一些边长关系,求解其他未知边长的比例关系。
例如,已知两个相似三角形的一对对应边的比值,可以求解其他对应边的比值。
2. 测量计算:在实际测量中,我们可以利用三角形相似的性质,通过测量一个三角形的一些边长和角度,推导出其他三角形的边长和角度。
3. 图形放缩:利用三角形相似的性质,我们可以将一个三角形放大或缩小成为另一个相似的三角形。
这在地图绘制、模型制作等领域中有很多应用。
4. 几何证明:三角形相似的性质在几何证明中也经常被使用。
通过运用三角形相似的条件,我们可以证明一些几何定理和性质。
三、三角形相似的例题下面通过几个例题来进一步理解三角形相似的应用。
例题1:已知三角形ABC和三角形DEF相似,且AB=12cm,BC=9cm,DE=8cm,求EF的长度。
解:根据题意可知,三角形ABC和三角形DEF相似,且AB/DE=BC/EF,代入已知数据,得到12/8=9/EF,通过交叉乘法得到EF=6cm。
例题2:已知三角形ABC和三角形DEF相似,且∠B=45°,∠C=60°,EF=5cm,求三角形DEF的角度。
三角形相似的判定条件:三角形相似的条件:两角分别对应相等的两个三角形相似;两边对应成比例且夹角相等,两个三角形相似;三边对应成比例,两个三角形相似;三边对应平行,两个三角形相似;斜边与直角边对应成比例,两个直角三角形相似;全等三角形相似。
一、相似三角形的判定定理:1.平行于三角形一边的直线和其他两边和两边的延长线相交,所构成的三角形与原三角形相似。
2.如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
3.如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
4.如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似。
二、相似三角形介绍三角分别相等,三边成比例的两个三角形叫作相似三角形。
相似三角形是几何中重要的证明模型之一,是全等三角形的推广。
全等三角形可以被理解为相似比为1的相似三角形。
相似三角形其实是一套定理的集合,它主要描述了在相似三角形是几何中两个三角形中,边、角的关系。
三、相似三角形的性质1.性质1:相似三角形对应边上的高、中线和它们周长的比都等于相似比;性质2:相似三角形的面积比等于相似比的平方.结论:相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方2.性质:三条平行线截两条直线,所得的对应线段成比例推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3.如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.推论1:经过三角形一边的中点与另一边平行的直线必平分第三边。
推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰。
四、特殊情况1.凡是全等的三角形都相似。
全等三角形是特殊的相似三角形,相似比为1。
反之,当相似比为1时,相似三角形为全等三角形。
2. 有一个顶角或底角相等的两个等腰三角形都相似。
由此,所有的等边三角形都相似。
A B C A ′10.4探索三角形相似的条件(1) 学习目标:1.通过探索与交流,得出两个三角形只要具备有两个角对应相等,即可判断两个三角形相 似的方法.2.尝试判断两个三角形相似,并能解决生活中一些简单的实际问题.学习重点:1.两个三角形相似的条件(一)的应用.2.了解两个三角形相似的条件(一)的探究思路和应用.水平.教学过程一、情境引入:我们知道,用相似三角形的定义能够判定两个三角形相似,涉及的条件较多.需要有三对对应角相等,三条对应边的比也都相等,显然用起来很不方便.那么能不能用较少的几个条件就能判定三角形相似呢?二、探究学习:1.尝试:小明用白纸遮住了3个三角形的一部分,你能画出这3个三角形吗?在图中,若∠A =∠A ′,∠B =∠B ′, AB =A ′B ′,那么(1)和(2)中的两个三角形全等吗? 若∠A =∠A ″,∠B =∠B ″, A ″B ″=2AB ,那么(1)和(3)中的两个三角形相似吗?2.概括总结.由此得判定方法一:如果一个三角形的 与另一个三角形的 ,那么这两个三角形相似。
几何语言:在△ABC 与△A ″B ″C ″中,∵∠A =∠A ″,∠B =∠B ″,∴△A ″B ″C ″∽△ABC3.概念巩固:练习:(1)关于三角形相似下列叙述不准确的是 ( )A.有一个底角对应相等的两个等腰三角形相似;B.有一个角对应相等的两个等腰三角形相似;C.所有等边三角形都相似;D.顶角对应相等的两个等腰三角形相似.(2)判断题⑴所有的等腰三角形都相似。
( ) ⑵所有的等腰直角三角形都相似。
( ) ⑶所有的等边三角形都相似。
( ) ⑷所有的直角三角形都相似。
( ) ⑸有一个角是100°的两个等腰三角形相似。
( )⑹有一个角是70°的两个等腰三角形相似。
( )4.典型例题:例1.在△ABC 和△A ′B ′C ′中,∠A =50°,∠B =∠B ′=60°,∠C ′=70°,△ABC 与△A ′B ′C ′相似吗?例 2.如图,在方格图中,画△A ′B ′C ′,使A ′C ′∥AC ,B ′ A ″ B ″ A B (1) (2) (3) B C′A E F C DB B ′C ′∥BC,(1)如果∠A =250,∠B =1350 ,那么∠A ′= ,∠B ′= ,∠C ′= ;(2) 测量两个三角形的三边长后判定△ABC 与A ′B ′C ′是否相似?(3)发现:两角 的两三角形相似.5.探究:如图,DE ∥BC ,分别交AB 、AC 于点D 、E ,△ADE 与△ABC 相似吗?为什么?【变题】如图,点A 、B 、D 与点A 、C 、E 分别在一条直线上,如果DE ∥BC ,△ADE 与△ABC 相似吗?为什么?由此得:平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.几何语言:∵DE ∥BC ∴△ADE ∽△ABC练习:1.已知:如图,四边形ABCD 是平行四边形,则图中相似的三角形有 对.2.如图,▱ABCD 中,E 是AD 延长线上一点,BE 交AC 于点F ,交DC于点G ,则下列结论中错误的是( )A .△ABE ∽△DGEB .△CGB ∽△DGEC .△BCF ∽△EAFD .△ACD ∽△GCF三、归纳总结:1.探索三角形相似的条件(1),并使用这个条件解决相关问题.2.经历“操作——观察——探索——说理”的数学活动过程,发展合情推理和有条理的表达水平.【课后作业】1.如图(1), AE 与BD 相交于C ,要△ABC ∽△DEC ,需要条件 。
2021-2022学年北师大版数学九年级上册压轴题专题精选汇编专题07 探索三角形相似的条件一.选择题1.(2021春•沂源县期末)如图,△ABC中,CE⊥AB,垂足为E,BD⊥AC,垂足为点D,CE与BD交于点F,则图中相似三角形有几对()A.6对B.5对C.4对D.3对【思路引导】根据相似三角形的判定一一证明即可.【完整解答】解:∵BD⊥AC,CE⊥AB,∴∠AEC=∠ADB=90°,∠BEF=∠CDF=90°,∵∠A=∠A,∠EFB=∠DFC,∴△AEC∽△ADB,△BEF∽△CDF,∵∠EBF=∠ABD,∠BEF=∠ADB=90°,∴△BEF∽△BDA∽△CEA∽△CDF,∴共有6对相似三角形,故选:A.2.(2021春•芝罘区期末)如图,小正方形的边长均为1,则A、B、C、D四个选项中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.【思路引导】应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.【完整解答】解:已知给出的三角形的各边分别为、2、、只有选项A的各边为1、、与它的各边对应成比例.故选:A.3.(2021春•周村区期末)平面直角坐标系中,直线y=﹣x+2和x轴,y轴分别交于A,B两点,在第二象限内有一点P,使△P AO和△AOB相似,则符合要求的点P的个数为()A.2B.3C.4D.5【思路引导】根据相似三角形的相似条件,画出图形即可解决问题.【完整解答】解:如图,①分别过点O、点A作AB、OB的平行线交于点P1,则△OAP1与△AOB相似(全等),②作AP2⊥OP1,垂足为P2则△AOP2与△AOB相似.③作∠AOP3=∠ABO交AP1于P3,则△AOP3与△AOB相似.④作AP4⊥OP3垂足为P4,则△AOP4与△AOB相似.故选:C.4.(2021春•雁塔区校级期末)如图,D是△ABC边AB上一点,添加一个条件后,仍不能使△ACD∽△ABC的是()A.∠ACD=∠B B.∠ADC=∠ACB C.AC2=AD•AB D.【思路引导】直接利用相似三角形的判定方法分别分析得出答案.【完整解答】解:A、当∠ACD=∠B时,再由∠A=∠A,可得出△ACD∽△ABC,故此选项不合题意;B、当∠ADC=∠ACB时,再由∠A=∠A,可得出△ACD∽△ABC,故此选项不合题意;C、当AC2=AD•AB时,即=,再由∠A=∠A,可得出△ACD∽△ABC,故此选项不合题意;D、当=时,无法得出△ACD∽△ABC,故此选项符合题意.故选:D.5.(2021•龙湾区模拟)如图,△ABC中,P为边AB上一点,下列选项中的条件,不能说明△ACP与△ACB相似的是()A.∠ACP=∠B B.∠APC=∠ACBC.AC2=AP×AB D.AB×CP=AP×AC【思路引导】本题主要应用两三角形相似的判定定理,做题即可.【完整解答】解:A、当∠ACP=∠B,∠A=∠A时,△APC∽△ACB,故本选项不符合题意;B、当∠APC=∠ACB,∠A=∠A时,△APC∽△ACB,故本选项不符合题意;C、当AC2=AP•AB,即AC:AB=AP:AC时,结合∠A=∠A可以判定△APC∽△ACB,故本选项不符合题意;D、当AB×CP=AP×AC时,不能判断△APC和△ACB相似.故选:D.6.(2020•黄埔区模拟)如图,在四边形ABCD中,∠BAC=90°,AB=6,AC=8,E是BC 的中点,AD∥BC,AE∥DC,EF⊥CD于点F.下列结论错误的是()A.四边形AECD的周长是20B.△ABC∽△FECC.∠B+∠ACD=90°D.EF的长为【思路引导】根据平行四边形和菱形的判定即可证明A选项;根据菱形的性质和三角形的面积公式即可证明C选项和D选项;根据△ABC与△FEC的三边长即可证明B选项.【完整解答】解:∵∠BAC=90°,AB=6,AC=8,∴BC==10,∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC=5,∴四边形AECD是菱形,∴菱形AECD的周长是20,故A选项正确,不符合题意;∵四边形AECD是菱形,∴∠ACB=∠ACD,∵∠B+∠ACB=90°,∴∠B+∠ACD=90°,故C选项正确,不符合题意;如图,过A作AH⊥BC于点H,∵S△ABC=BC•AH=AB•AC,∴AH==,∵点E是BC的中点,BC=10,四边形AECD是菱形,∴CD=CE=5,∵S▱AECD=CE•AH=CD•EF,∴EF=AH=.故D选项正确,不符合题意;在Rt△EFC中,EF=,EC=5,∴FC==,在Rt△CAB中,AB=6,AC=8,BC=10,∵=,=,=,∴△ABC与△FEC不相似,故B选项错误,符合题意.故选:B.7.(2020秋•叶县期中)如图,在△ABC中,点D、E分别在边AB、AC上,则在下列四个条件中:①∠AED=∠B;②DE∥BC;③;④AD•BC=DE•AC,能满足△ADE∽△ACB的条件有()A.1个B.2个C.3个D.4个【思路引导】根据相似三角形的判定定理对各条件进行逐一判断即可.【完整解答】解:①∠B=∠AED,∠A=∠A,则可判断△ADE∽△ACB,故①符合题意;②DE∥BC,则△ADE∽△ABC,故②不符合题意,③,且夹角∠A=∠A,能确定△ADE∽△ACB,故③符合题意;④由AD•BC=DE•AC可得=,此时不确定∠ADE=∠ACB,故不能确定△ADE∽△ACB,故④不符合题意,故选:B.8.(2020•浙江自主招生)已知点A,C在直线BD的同侧,且AB⊥BD于B,CD⊥BD于D,AB=6,CD=4,BD=14,现有点P在直线BD上,并且满足△ABP与△CDP相似,则这样的点P的个数为()A.3B.5C.6D.7【思路引导】设DP=x,根据已知可以分三种情况:①当点P在线段BD上时;②当点P在线段BD的右侧时;③当点P在线段BD的左侧时;分别得出比例式得出方程,解方程求出x的值,即可得出结果.【完整解答】解:∵AB⊥DB,CD⊥DB,∴∠D=∠B=90°,设DP=x,分三种情况:①当点P在线段BD上时,当PD:AB=CD:PB时,△PDC∽△ABP,∴=,解得:DP=2或12,当PD:PB=CD:AB时,△PCD∽△P AB,∴,解得:DP=5.6;②当点P在线段BD的右侧,如图1所示:当时,△PCD∽△P AB,即,解得:x=28;当时,△PCD∽△APB,即,解得:x=﹣7±(负值舍去),∴PD=﹣7+;③当点P在线段BD的左侧时,如图2所示:当时,△PCD∽△APB,即,解得:x=7±(负值舍去),∴PD=7+;综上所述:当DP=5.6或2或12或28或﹣7+或7+时,△ABP与△CDP相似,即这样的点P的个数有6个;故选:C.9.(2019春•宝安区校级月考)如图,正方形ABCD中,AB=2,点N为AD为边上一点,连接BN,作AP⊥BN于点P,点M为AB边上一点,且∠PMA=∠PCB,连接CM.下列结论正确的个数有()(1)△P AM∽△PBC(2)PM⊥PC;(3)∠MPB=∠MCB;(4)若点N为AD中点,则S△PCN=6(5)AN=AMA.5个B.4个C.3个D.2个【思路引导】根据互余角性质得∠P AM=∠PBC,进而得△P AM∽△PBC,可以判断(1);由相似三角形得∠APM=∠BPC,进而得∠CPM=∠APB,从而判断(2);由B、C、P、M四点共圆得∠MPB=∠MCB,进而判断(3);过P点作EF⊥BC,分别志AD、BC相交于点EF,由相似三角形得PF,进而由△BCN与△BCP的面积之差求得△PCN的面积便可判断(4);由△APB∽△NAB得,再结合△P AM∽△PBC便可判断(5).【完整解答】解:(1)∵AP⊥BN,∴∠P AM+∠PBA=90°,∵∠PBA+∠PBC=90°,∴∠P AM=∠PBC,∵∠PMA=∠PCB,∴△P AM∽△PBC,故(1)正确;(2)∵△P AM∽△PBC,∴∠APM=∠BPC,∴∠CPM=∠APB=90°,即PM⊥PC,故(2)正确;(3)∵∠MPC+∠MBC=90°+90°=180°,∴B、C、P、M四点共圆,∴∠MPB=∠MCB,故(3)正确;(4)过点P作EF⊥BC,分别交AD、BC于E、F点,∵N为AD的中点,AB=2∴AN=DN=,BC=EF=2,∴BN=,易证△ANP∽△NBA,得,即,∴PN=1,∴PB=5﹣1=4,∵AD∥BC,∴△PEN∽△PFB,∴,∴PF=,∴,故(4)错误;(5)易证△P AN∽△P AB,∴,∵△P AM∽△PBC,∴,∴,∵AB=BC,∴AM=AN,故(5)正确;故选:B.二.填空题10.(2021春•濮阳期末)在△ABC中,AB=6cm,AC=9cm,动点D从点B开始沿BA边运动,速度为1cm/s;动点E从点A开始沿AC边运动,速度为2cm/s.如果D,E两动点同时运动,那么当它们运动或s时,由D,A,E三点连成的三角形与△ABC 相似.【思路引导】分两种情形①当=时,②当=时,分别构建方程求解即可.【完整解答】解:根据题意得:AE=2t,BD=t,∴AD=6﹣t,∵∠A=∠A,∴分两种情况:①当=时,即=,解得:t=;②当=时,即=,解得:t=;综上所述:当t=或时,△ADE与△ABC相似.11.(2021•葫芦岛二模)如图,在△ABC中,AB=15,AC=18,D为AB上一点,且AD=AB,在AC边上取一点E,便以A,D,E为顶点的三角形与△ABC相似,则AE等于12或.【思路引导】根据相似三角形对应边成比例得出=或=,再代值计算即可.【完整解答】解:∵△ABC∽△ADE或△ABC∽△AED,∴=或=,∵AD=AB,AB=15,∴AD=10,∵AC=18,∴=或=,解得:AE=12或.故答案为:12或.12.(2020秋•北海期末)如图,在△ABC中,AB=8,BC=16,点P是AB边的中点,点Q 是BC边上一个动点,当BQ=2或8 时,△BPQ与△BAC相似.【思路引导】直接利用△BPQ∽△BAC或△BPQ∽△BCA,分别得出答案.【完整解答】解:∵AB=8,BC=16,点P是AB边的中点,∴BP=4.当△BPQ∽△BAC时,则=,故=,解得:BQ=8;当△BPQ∽△BCA时,则=,故=,解得:BQ=2,综上所述:当BQ=2或8时,△BPQ与△BAC相似.故答案为:2或8.13.(2021•抚顺县模拟)如图,在正方形网格中有3个斜三角形:①△ABC;②△CDB;③△DEB;其中能与△ABC相似的是③△DEB.(△ABC除外)【思路引导】分别求出三个三角形的三边的比,符合这个结果就是与△ABC相似的.【完整解答】解:∵△ABC的三边之比是AB:AC:BC=1::,②△CDB的三边之比是CD:BC:BD=1::;③△DEB中DE:BD:BE=2:2:=1::.∴③(△DEB)与△ABC相似,故答案为:③△DEB.14.(2021•河北模拟)如图,在Rt△ABC的直角边AC上有一任意点P(不与点A、C重合),过点P作一条直线,将△ABC分成一个三角形和一个四边形,则所得到的三角形与原三角形相似的直线最多有 4 条.【思路引导】过点P作直线与另一边相交,使所得的三角形与原三角形已经有一个公共角,只要再作一个等于△ABC的另一个角即可.【完整解答】解:如图所示,①过点P作AB的垂线段PD,则△ADP∽△ACB;②过点P作BC的平行线PE,交AB于E,则△APE∽△ACB;③过点P作AB的平行线PF,交BC于F,则△PCF∽△ACB;④作∠PGC=∠A,则△GCP∽△ACB.故答案为:4.15.(2020秋•松江区月考)如图,△ABC中,∠C=90°,∠B=30°,AC=2,点P是边AB上一点,将△ABC沿经过点P的直线折叠,使得点A落在边BC上的A′处,若△PBA′恰好和△ABC相似,则此时AP的长为或2﹣2 .【思路引导】分两种情形:①如图1中,当∠P A′B=∠C=90°时,△BP A′∽△BAC,②如图2中,当∠PBC=90°时,△BP A′∽△BCA,分别利用相似三角形的性质构建方程求解即可.【完整解答】解:①如图1中,当∠P A′B=∠C=90°时,设P A=P A′=x.在Rt△ABC中,∵∠C=90°,AC=2,∠B=30°,∴AB=2AC=4,BC=AC=2,∵∠B=∠B,∠BA′P=∠C=90°,∴△BP A′∽△BAC,∴=,∴=,∴x=.②如图2中,当∠BP A′=90°时,△BP A′∽△BCA,∴=,∴=,∴x=2﹣2,综上所述,满足条件的AP的值为或2﹣2.16.(2020秋•江阴市月考)如图,在△ABC纸板中,AC=8,BC=4,AB=10,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是6≤AP<8 .【思路引导】分四种情况讨论,依据相似三角形的对应边成比例,即可得到AP的长的取值范围.【完整解答】解:如图所示,过P作PD∥AB交BC于D或PE∥BC交AB于E,则△PCD∽△ACB或△APE∽△ACB,此时0<AP<8;如图所示,过P作∠APF=∠B交AB于F,则△APF∽△ABC,此时0<AP≤8;如图所示,过P作∠CPG=∠CBA交BC于G,则△CPG∽△CBA,此时,△CPG∽△CBA,当点G与点B重合时,CB2=CP×CA,即42=CP×8,∴CP=2,AP=6,∴此时,6≤AP<8;综上所述,要有4种不同的剪法,使得过点P沿直线剪下一个与△ABC相似,则AP长的取值范围是6≤AP<8.故答案为:6≤AP<8.17.(2019•东平县二模)如图,△ABC是边长为6cm等边三角形,动点P、Q同时从A、B 出发,分别沿AB、BC方向匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点停止运动,在运动过程中作QR∥BA交AC于点R,连接PR,设运动的时间为t(s),当t=1.2 s时△APR∽△PRQ.【思路引导】先证△CRQ为等边三角形,并用含t的式子表示图中的相关线段,由QR∥BA推得∠QRP=∠APR,从而△PRQ中再有一个角等于∠A,即等于60°,即可得△APR ∽△PRQ.根据相似三角形的性质列比例式求解即可.【完整解答】解:∵△ABC是边长为6cm等边三角形,∴∠A=∠B=∠C=60°∵QR∥BA∴∠CRQ=∠A=60°,∠CQR=∠B=60°∴△CRQ为等边三角形∵点P运动的速度是1cm/s,点Q运动的速度是2cm/s∴AP=t,PB=6﹣t,BQ=2t,CQ=CR=RQ=6﹣2t,AR=2t∵QR∥BA∴∠QRP=∠APR若要△APR∽△PQR,则需满足∠RPQ=60°∴∠BPQ+∠APR=120°,∠ARP+∠APR=120°∴∠BPQ=∠ARP又∵∠A=∠B∴△APR∽△BQP∴=∴=解得t=1.2故答案为1.2.18.(2011春•成华区期末)如图,正方形ABCD的边长为4,AE=EB,MN=2,线段MN 的两端在CB、CD上滑动,当CM=或时,△ADE与△CMN相似.【思路引导】根据AE=EB,△AED中AD=2AE,所以在△MNC中,分CM与AE和AD 是对应边两种情况利用相似三角形对应边成比例求出CM与CN的关系,然后利用勾股定理列式计算即可.【完整解答】解:∵AE=EB,∴AD=2AE,又∵△AED与以M、N、C为顶点的三角形相似,∴分两种情况:①CM与AD是对应边时,CM=2CN,∴CM2+CN2=MN2=4,即CM2+CM2=4,解得:CM=;②CM与AE是对应边时,CM=CN,∴CM2+CN2=MN2=4,即CM2+4CM2=4,解得:CM=.综上所述:当CM为或时,△AED与△CMN相似.故答案是:或.19.(2003•武汉)△ABC中,以AB为直径的▱O交BC边于点D,连接AD,要使△ABD与△ACD相似,则△ABC的边AB与AC之间,应满足的条件为AB⊥AC.(填入一个即可)【思路引导】本题主要应用两三角形相似的判定定理,做题即可.【完整解答】解:∵AB为▱O的直径∴∠ADC=∠BDA=90°∴当∠CAD=∠B时,△ABD∽△CAD∵∠CAD+∠C=90°∴∠B+∠C=90°∴AB⊥AC答案不唯一,如AB⊥AC.三.解答题20.(2021春•朝阳区校级期末)如图所示,在四边形ABCD中,CA是∠BCD的角平分线,且AC2=CD•BC,求证:△ABC∽△DAC.【思路引导】根据两边成比例夹角相等两三角形相似证明即可.【完整解答】证明:∵AC平分∠BCD,∴∠ACB=∠ACD,∵AC2=CD•BC,∴=,∴△ABC∽△DAC.21.(2021春•龙口市期末)如图,在Rt△ABC中,∠C=90°,AC=10cm,BC=8cm.点M从点C出发,以2cm/s的速度沿CA向点A匀速运动,点N从点B出发,以1cm/s的速度沿BC向点C匀速运动,当一个点到达终点时,另一点也随即停止运动.(1)经过几秒后,△MCN的面积等于△ABC面积的?(2)经过几秒,△MCN与△ABC相似?【思路引导】(1)设经过x秒,△MCN的面积等于△ABC面积的,根据三角形的面积和已知列出方程,求出方程的解即可;(2)根据相似三角形的判定得出两种情况,再求出t即可.【完整解答】解:(1)设经过x秒,△MCN的面积等于△ABC面积的.×2x(8﹣x)=×8×10×.解得x1=x2=4.答:经过4秒后,△MCN的面积等于△ABC面积的;(2)设经过t秒,△MCN与△ABC相似.∵∠C=∠C,∴可分为两种情况:①=,即=,解得t=;②=,即=.解得t=.答:经过或秒,△MCN与△ABC相似.22.(2021•越秀区校级二模)如图,在△P AB中,点C、D在AB上,PC=PD=CD,∠A=∠BPD,求证:△APC∽△PBD.【思路引导】根据等腰三角形的性质得出∠PCD=∠PDC,根据三角形的外角性质得出∠A+∠APC=∠PCD,∠B+∠BPD=∠PDC,求出∠B=∠APC,再根据相似三角形的判定推出即可.【完整解答】证明:∵PC=PD,∴∠PCD=∠PDC,∵∠A+∠APC=∠PCD,∠B+∠BPD=∠PDC,又∵∠A=∠BPD,∴∠B=∠APC,∴△APC∽△PBD.23.(2020秋•崇川区期末)如图,已知BD⊥AB于点B,AC⊥AB于点A,且BD=4,AC=3,AB=a,在线段AB上是否存在一点E,使△BDE∽△ACE?【思路引导】当∠ACE=∠BDE时,△ACE∽△BDE,利用相似三角形的性质解答.【完整解答】解:存在,理由如下:∵BD⊥AB于点B,AC⊥AB,∴∠A=∠B=90°,当∠ACE=∠BDE时,△ACE∽△BDE,∴==,∴AE=BE,∴AE=AB=a.∴点E在线段AB上,距离点A的距离是a.24.(2020秋•宁德期末)如图,在矩形ABCD中,点E是BC边上的点,AC⊥DE,垂足为F.求证:△ABC∽△ECD.【思路引导】利用“两角法”证得结论.【完整解答】证明:∵四边形ABCD是矩形,∴∠B=∠BCD=90°.∴∠ACB+∠ACD=90°.又∵AC⊥DE,∴∠CDE+∠ACD=90°.∴∠ACB=∠CDE.∴△ABC∽△ECD.25.(2021•拱墅区二模)如图,在△ABC中,D、E分别是边AC、BC的中点,F是BC延长线上一点,∠F=∠B.(1)若AB=10,求FD的长;(2)若AC=BC,求证:△CDE∽△DFE.【思路引导】(1)首先利用中位线定理得到DE∥AB以及DE的长,再证明∠DEC=∠F 即可;(2)根据等腰三角形的性质得到∠A=∠B,进而求出∠CDE=∠F并结合∠CED=∠DEF即可证明△CDE∽△DFE.【完整解答】解:(1)∵D、E分别是AC、BC的中点,∴DE∥AB,DE=AB=5,∵DE∥AB,∴∠DEC=∠B,而∠F=∠B,∴∠DEC=∠F,∴DF=DE=5;(2)∵AC=BC,∴∠A=∠B,∵∠CDE=∠A,∠CED=∠B,∴∠CDE=∠B,∵∠B=∠F,∴∠CDE=∠F,∵∠CED=∠DEF,∴△CDE∽△DFE.26.(2020秋•肇源县期末)已知:如图,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),当t为何值时,以A、P、Q为顶点的三角形与△ABC相似?【思路引导】先利用勾股定理计算出AB=5,由于∠P AQ=∠BAC,根据两组对应边的比相等且夹角对应相等的两个三角形相似,当=时,△APQ∽△ABC,即=;当=时,△APQ∽△ACB,即=,然后分别解方程求出t即可.【完整解答】解:∵∠C=90°,AC=4cm,BC=3cm,∴AB==5,则BP=t,AQ=2t,AP=5﹣t,∵∠P AQ=∠BAC,当=时,△APQ∽△ABC,即=,解得t=;当=时,△APQ∽△ACB,即=,解得t=;答:t为s或s时,以A、P、Q为顶点的三角形与△ABC相似.27.(2019秋•临安区期末)如图,点B、D、E在一条直线上,BE交AC于点F,=,且∠BAD=∠CAE.(1)求证:△ABC∽△ADE;(2)求证:△AEF∽△BCF.【思路引导】(1)根据相似三角形的判定定理证明;(2)根据相似三角形的性质定理得到∠C=∠E,结合图形,证明即可.【完整解答】(1)∵∠BAD=∠CAE∴∠BAD+∠CAD=∠CAE+∠CAD即∠BAC=∠DAE在△ABC和△ADE中=,∠BAC=∠DAE,∴△ABC∽△ADE;(2)∵△ABC∽△ADE,∴∠C=∠E、在△AEF和△BFC中,∠C=∠E,∠AFE=∠BFC,∴△AEF∽△BCF.28.(2020春•肇源县期末)如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,点P从点A开始,沿AB边以1cm/s的速度向点B运动:点Q从点B开始,沿BC边以2cm/s的速度向点C运动,当点P运动到点B时,运动停止,如果P、Q分别从A、B两点同时出发.(1)几秒后△PBQ的面积等于8cm2?(2)几秒后以P、B、Q为顶点的三角形与△ABC相似?【思路引导】(1)设t秒后△PBQ的面积等于8cm,此时,AP=t,BP=6﹣t,BQ=2t,再由三角形的面积公式即可得出结论;(2)设x秒后以P、B、Q为顶点的三角形与△ABC相似,此时,AP=x,BP=6﹣x,BQ=2x,再分△BPQ∽△BAC与△BPQ∽△BCA两种情况进行讨论即可.【完整解答】解:(1)设t秒后△PBQ的面积等于8cm,此时,AP=t,BP=6﹣t,BQ=2t,∵S△PBQ=BP•BQ,即(6﹣t)×2t=8,即t2﹣6t+8=0,解得t1=2,t2=4.∴2秒或4秒后,△PBQ的面积等于8cm2;(2)设x秒后以P、B、Q为顶点的三角形与△ABC相似,此时,AP=x,BP=6﹣x,BQ=2x,①若△BPQ∽△BAC,则=,即=,解得x=3;②若△BPQ∽△BCA,则=,即=,解得x=1.2.综上所述,1.2秒或3秒后,以P、B、Q为顶点的三角形与△ABC相似.。
探索三角形相似的条件一周强化一、一周知识概述相似三角形的判定方法(1)定义法:各角对应相等、各边对应成比例的两个三角形相似.(2)判定方法1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.(3)判定方法2:平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.(4)判定方法3:如果一个三角形的两边与另一个三角形的两边对应成比例,并且相应的夹角相等,那么这两个三角形相似.(5)判定方法4:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.二、重难点知识归纳1、相似的传递性:若△ABC∽△A′B′C′,且△A′B′C′∽△A″B″C″,则△ABC∽△A″B″C″.2、“平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似”的基本图形有三种情况,如图,其符号语言:因为DE∥BC,所以△ABC∽△ADE;这个判定方法有着广泛的应用,要做到“见平行想相似,见平行想比例”.3、相似三角形判定方法的选择(1)已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定方法1或判定方法3;(2)已有两边对应成比例时,可考虑利用判定方法3或判定方法4.但是,在选择利用判定方法3时,一对对应角相等必须是成比例两边的夹角对应相等.4、有关三角形的相似的基本图形.(1)平行线型(如图)(2)双直角三角形中的相似三角形(如图)△ABC∽△DBA,△ABC∽△DAC,△ABD∽△CADAB2=BD·BC,AC2=CD·CB,AD2=BD·DC三、典型例题讲解例1、如图,在△ABC中,点D在AB上,请再添加一个适当条件,使△ADC∽△ACB,那么要添加的条件是__________(只需填写满足要求的一个条件即可).解析:由于要判定的两个相似三角形隐含着一个公共角∠A,因此根据判定方法1或判定方法3,只要再找一个角对应相等,或找夹∠A的两边对应成比例,即可填∠ACD=∠B,或∠ADC=∠ACB,或AC2=AD·AB.例2、如图,在□ABCD 中,E是AB延长线上一点,连结DE,交AC于点G,交BC 于点F,那么图中相似的三角形(不含全等三角形)共有()A.6对B.5对C.4对D.3对解:由AE∥DC,可得△AEG∽△CDG,△DFC∽△EFB;由BC∥AD,可得△BFE∽△ADE,△FCG∽△DAG,△DCF∽△EAD.故选B.点评:本题主要是考查相似三角形识别的掌握情况.可运用平行线去直接找相似三角形,也可利用相似三角形的判定方法来找相似三角形,但要注意不要漏找.例3、(1)如图,O是△ABC内任一点,D、E、F分别是OA、OB、OC的中点,求证:△DEF∽△ABC;(2)如图,正方形ABCD中,E是BC的中点,DF=3CF,写出图中所有相似三角形,并证明.分析:(1)根据题设,观察图形易见,DE、EF、FD分别是△AOB、△BOC、△COA的中位线,利用三角形的中位线性质可证△DEF与△ABC的三边对应成比例;(2)由于正方形的四条边相等,且BE=CE,DF=3CF,设出正方形边长后,图中所有线段都能求出,故可从三边是否成比例判定哪些三角形相似.点评:①第(1)题,若点O在△ABC外,其他条件不变,结论仍成立;②第(2)题也可用判定方法3,先证△ABE∽△ECF,得出∠AEF=90°后,再证其中任意三角形与△AEF相似,显然,以上证法较简便.例4、已知:如图,在△ABC中,点D、E分别在边AB、AC上,连接DE并延长交BC的延长线于F,连接DC,BE.若∠BDE+∠BCE=180°.(1)写出图中三对相似三角形(注意:不得添加其他字母和线);(2)请在你所找出的相似三角形中选取一对,说明它们相似的理由.分析:先由角的关系入手,由∠BDE+∠BCE=180°和图形中∠BDE+∠ADE=∠BCE+∠ECF=180°,可得∠BDE=∠ECF,∠ADE=∠BCE,易得△ADE∽△ACB(∠A为公共角)、△ECF∽△BDF(∠F为公共角),其次,由△ECF∽△BDF得,可得△FDC∽△FBE(∠F为公共角).解:(1)△ADE∽△ACB,△ECF∽△BDF,△FDC∽△FBE.(2)①△ADE∽△ACB.证明如下:因为∠BDE+∠BCE=180°,又因为∠BDE+∠ADE=180°,所以∠ADE=∠BCE.因为∠A=∠A,所以△ADE∽△ACB.②△ECF∽△BDF.证明如下:因为∠BDE+∠BCE=180°,又因为∠BCE+∠ECF=180°,所以∠BDE=∠ECF.因为∠F=∠F,所以△ECF∽△BDF.③△FDC∽△FBE.证明如下:因为∠BDE+∠BCE=180°,又因为∠BCE+∠ECF=180°,所以∠BDE=∠ECF.因为∠F=∠F,所以△ECF∽△BDF.所以.因为∠F=∠F,所以△FDC∽△FBE.点评:这是一道结论开放型试题,这种题型要求根据题意去探求,往往结论不唯一,具有开放性,解题时,要充分利用已知条件进行大胆而合理地猜想,发现结论,这就要求平时要注意发散性思维和所学基本知识的应用能力的培养.例5、如图(1)在△ABC中,AB=AC,AD是中线,P是AD上一点,过点C作CF∥AB,延长BP交AC于点E,交CF与点F,试证明:BP2=PE·PF.分析:证明型的一般方法是把等积式写成比例式,然后再观察所在的两个三角形是否相似.如本题BP、PE、PF在一条直线上,就要看能否通过等量代换,自然要连结PC ,用BP的等量PC代入,再找出两个三角形相似,即可得解.证明:连结PC.因为AB=AC,AD是中线,所以AD⊥BC (三线合一性质).所以AD是BC的垂直平分线.所以BP=PC.又∠PBC=∠PCB,∠ABC=∠ACB,所以∠ABP=∠ACP.而AB∥CF,所以∠ABC=∠F.所以∠F=∠ACP.又∠EPC=∠CPF,所以△EPC∽△CPF,所以.即PC2=PE·PF.故BP2=PE·PF.点评:①证形如时,还要注意两个基本图形如图⑵、⑶所示.如图⑵.因为△CDB∽△ADC∽△ACB,易得BC2=BD·AB ,AC2=AD·AB,CD2=AD·DB.如图⑶,当∠A=∠1时,∠C是公共角.所以△ABC∽△BDC,易得BC2=DC·AC.②在图⑵中,△ACB是直角三角形,CD是斜边上的高,还要注意面积的应用,易得AC·CB=AB·CD的结论.例6、如图,在正方形ABCD中,M、N分别是AB、BC上的点,BM=BN,BP⊥MC 于点P.求证:(1)△PBN∽△PCD;(2)PN⊥PD.分析:要证PN⊥PD,即证∠DPN=90°,由已知∠BPC=90°,而∠BPC与∠DPN有公共部分∠CPN,因此只要证明∠4=∠5即可.这就必须先证明出结论(1).在△PBN与△PCD 中,易证∠1=∠3,以下只要证明夹∠1、∠3的两边对应成比例.证明:(1)在正方形ABCD中,AB∥CD,∠ABC=90°.因为BP⊥MC,所以△PBM∽△PCB.点评:要注意观察出图中存在的“母子相似三角形”基本图形,从而充分利用它得出∠1=∠2及△PBM∽△PCB等重要结论.。
教学过程教学内容个案调整教师主导活动学生主体活动4. 平行线分线段成比例定理的推论:如图,在三角形中,如果DE BC∥,则5.平行的判定定理:如上图,如果有BCDEACAEABAD==,那么三.交流展示:1.看图说比例式2.如图:DE∥BC,AB=15,AC=7,AD=2,求EC。
四.释疑拓展:如图,在△ABC中,DG∥EH∥FI∥BC.(1)请找出图中所有的相似三角形;(2)如果AD=1,DB=3,那么DG∶BC=_____.先让学生独立思考,然后请学生板演并讲评.AB CD EE DCBAABCD3()2() AB DE1() DE BCAB CDEABCDEA BCDEFB CDEA教学过程教学内容个案调整教师主导活动学生主体活动(2)△ABC与△A″B″C″若∠A=∠A″,∠B=∠B″,那么这个三角形有何关系?请说明理由.4.巩固:1.关于三角形相似下列叙述不正确的是( )A 有一个底角对应相等的两个等腰三角形相似B 所有等边三角形都相似C 有一个角对应相等的两个等腰三角形相似D 顶角对应相等的两个等腰三角形相似2. 判断题①所有的等腰三角形都相似 ( )②所有的等腰直角三角形都相似( )③所有的等边三角形都相似 ( )④所有的直角三角形都相似 ( )⑤有一个角是100°的两个等腰三角形相似()⑥有一个角是70°的两个等腰三角形相似()四.释疑拓展:1.如图,在△ABC和△A′B′C′中,已知∠A=50°,∠B=∠B′=60°,∠C′=70°,△ABC与△A′B′C′相似吗?为什么?2.如图,在Rt△ABC中,∠ACB=90°,CD是△ABC的高.找出图中所有的相似三角形.3.过△ABC(∠C>∠B)的边AB上一点D作一条直线与另一边AC相交,截得的小三角形与△ABC相似,这样的直线有几条?请把它们一一作出来.1.先让学生独立思考,然后让学生板演,最后学生点评.2.先让学生独立思考,然后请学生板演并讲评.3.让学生自主探究,自由交流.教学过程教学内容个案调整教师主导活动学生主体活动三.交流展示:1.如图,在△ABC和△DEF中,∠B=∠E,要使△ABC∽△DEF,需要添加什么条件?2.如图,△ABC与△A'B'C'相似吗?有哪些判断方法?四.释疑拓展:1 1. 如图,已知23ECAEBDAD==,试求BCDE的值;2 如图,在△ABC中,AB=4cm,AC=2cm,(1)在AB上取一点D,当AD=________时,△ACD∽△ABC;(2)在AC的延长线上取一点E,当CE=________时,△AEB∽△ABC,此时,BE与DC有怎样的位置关系?为什么?让学生先独立思考,然后小组讨论交流,最后全班展示交流,并让学生自己归纳发现的结论.先让学生独立思考,然后让学生板演,最后学生点评C'B'A'CBAADECB教学过程教学内容个案调整教师主导活动学生主体活动3.归纳三角形相似判定方法三文字语言:几何语言:在△ABC和△A′B′C′中,∵∴4.试一试:(1)在ΔABC与ΔA′B′C′中,若AB=3, BC=4,AC=5;A′B′=6,B′C′=8,A′C′=10,ΔABC与ΔA′B′C′相似吗?(2)在ΔABC与ΔA′B′C′中,若AB=3, BC=3,AC=4;A′B′=6,B′C′=6,A′C′=10,ΔABC与ΔA′B′C′相似吗?三.释疑拓展:1.△ABC和△DEF的顶点都在边长为1的小正方形的顶点上,△ABC与△DEF相似吗?为什么?2.要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为4,6,8.另一个三角形框架的一边长为2,它的另外两条边长应当是多少?你有几种答案?学生自己归纳发现的结论.先让学生独立思考,然后让学生板演,最后学生点评.让学生谈谈自己是如何思考的AB CA′B′C′。
引言概述:相似三角形的条件是初中数学学习中的重要内容,我们已经了解到两个三角形相似的条件之一是它们对应的角相等,而另一个条件则是它们对应的边成比例。
本文将进一步探讨相似三角形的条件,并详细阐述五个主要的条件。
正文内容:1.第一个条件:AAA(全等的对应)。
三角形ABC和DEF,如果它们的对应角度分别相等(∠A=∠D,∠B=∠E,∠C=∠F),则可以得出两个三角形相似。
这是因为根据性质可以知道:两个三角形的对应角相等,意味着它们的形状相似。
举例说明:假设∠A=∠D=60°,∠B=∠E=50°,∠C=∠F=70°,根据AAA相似性质可以得出两个三角形相似。
2.第二个条件:相似比例(边比例)。
三角形ABC和DEF,如果它们的对应边长之间成比例(AB/DE=BC/EF=AC/DF),则可以得出两个三角形相似。
这是因为比例关系表明两个三角形的形状相似,即它们的对应边长成比例关系。
举例说明:假设AB/DE=2/3,BC/EF=3/5,AC/DF=4/7,根据边比例的相似性质可以得出两个三角形相似。
3.第三个条件:SAS(两边成比例,且夹角相等)。
三角形ABC和DEF,如果它们的某两边成比例,并且这两边夹角之间相等(AB/DE=BC/EF,并且∠A=∠D),则可以得出两个三角形相似。
这是因为两个三角形的两对对应边夹角相等,另一对对应边成比例,可以得出它们的形状相似。
举例说明:假设AB/DE=2/3,BC/EF=2/3,∠A=∠D=60°,根据SAS相似性质可以得出两个三角形相似。
4.第四个条件:SSS(三边成比例)。
三角形ABC和DEF,如果它们的对应边长之间成比例(AB/DE=BC/EF=AC/DF),则可以得出两个三角形相似。
这是因为三角形的三对对应边成比例,意味着它们的形状相似。
举例说明:假设AB/DE=2/3,BC/EF=2/3,AC/DF=2/3,根据SSS 相似性质可以得出两个三角形相似。