高中物理 第一章 碰撞与动量守恒 1.5 动量守恒定律的应用(1)几个碰撞问题的定量分析导学案 教科版选修35
- 格式:doc
- 大小:333.50 KB
- 文档页数:13
高一物理碰撞中的动量守恒【本讲主要内容】碰撞中的动量守恒碰撞中的动量守恒问题的理解本讲的重点、难点是对三种碰撞:弹性碰撞(碰撞过程中动能守恒),非弹性碰撞(碰撞过程中动能不守恒),完全非弹性碰撞(碰撞过程中系统的动能损失最大)的理解和应用。
【知识掌握】【知识点精析】1. 碰撞 两物体互相接触时间极短而互相作用力较大的相互作用.在碰撞问题中,忽略碰撞时间,将物体接触的时间定义为极短,因此物体接触过程中的位移忽略,撞击物之间相互作用的内力极大。
为此,在碰撞现象中,有时尽管撞击物所受的合外力不为零,但合外力的冲量远小于内力的冲量,若仅以相撞物体为系统,则动量近似守恒。
假设碰撞的整个过程中,物体均做直线运动。
将碰撞问题可分为撞击模型和追及模型。
撞击模型中,若两物碰后同向运动,则撞入物的速度应小于或等于被撞物的速度;在追及模型中,碰撞后, 撞入物的速度应等于或大于被撞物的速度(即速度较大的物体在碰撞后仍具有较大的速度)。
假设在碰撞过程中,满足动量守恒定律要求的所有条件。
这就要求学生在解决此类问题的过程中,必须将动量守恒定律作为解决问题的手段之一。
并且部分的满足能量的转化与守恒定理,即除了爆炸与反冲现象以外,在碰撞的过程中,系统的动能不可能增加。
从动能改变的观点,可以将碰撞问题归结为:弹性碰撞(碰撞过程中动能守恒),非弹性碰撞(碰撞过程中动能不守恒),完全非弹性碰撞(碰撞过程中系统的动能损失最大)。
2. 完全弹性碰撞 两物体碰撞之后, 它们的动能之和不变。
完全弹性碰撞 如下图所示(五个小球质量全同)现象:左边下落与静止小球碰撞,最右边小球开始上升,出现了左右两边的小球速度交换运动。
例1. 设有两个质量分别为1m 和2m ,速度分别为10v 和20v 的弹性小球作对心碰撞,两球的速度方向相同。
若碰撞是完全弹性的,求碰撞后的速度1v 和2v 。
解析:取速度方向为正向,由动量守恒定律得讨论:(1)若21m m =,则201v v =,102v v =(2)若2m >1m ,且020=v ,则101v v -≈,02≈v(3)若2m <1m ,且020=v ,则101v v ≈,1022v v ≈3. 非弹性碰撞 由于非保守力的作用,两物体碰撞后,使机械能转换为热能、声能,化学能等其他形式的能量。
动量守恒定律在碰撞中的应用一、动量守恒定律1.定义:在一个没有外力作用(或外力相互抵消)的系统中,系统的总动量(质量和速度的乘积之和)保持不变。
2.表达式:(P_初= P_末),其中(P_初)表示碰撞前系统的总动量,(P_末)表示碰撞后系统的总动量。
3.适用范围:适用于所有类型的碰撞,包括弹性碰撞、非弹性碰撞和完全非弹性碰撞。
二、弹性碰撞1.定义:在弹性碰撞中,碰撞物体在碰撞过程中不损失能量,即系统的总动能保持不变。
2.动量守恒:在弹性碰撞中,动量守恒定律仍然成立,即碰撞前后的总动量相等。
3.动能守恒:在弹性碰撞中,动能守恒定律也成立,即碰撞前后的总动能相等。
三、非弹性碰撞1.定义:在非弹性碰撞中,碰撞物体在碰撞过程中部分能量转化为内能(如热能、声能等),导致系统的总动能减小。
2.动量守恒:在非弹性碰撞中,动量守恒定律仍然成立,即碰撞前后的总动量相等。
3.动能损失:在非弹性碰撞中,动能损失等于碰撞前后的总动能差。
四、完全非弹性碰撞1.定义:在完全非弹性碰撞中,碰撞物体在碰撞过程中几乎所有能量都转化为内能,导致系统的总动能急剧减小。
2.动量守恒:在完全非弹性碰撞中,动量守恒定律仍然成立,即碰撞前后的总动量相等。
3.动能损失:在完全非弹性碰撞中,动能损失等于碰撞前后的总动能差,损失程度最大。
五、碰撞中动量守恒的应用1.计算碰撞后物体速度:利用动量守恒定律,可以计算碰撞后物体的速度。
2.判断碰撞类型:根据动量守恒定律和动能守恒定律,可以判断碰撞是弹性碰撞、非弹性碰撞还是完全非弹性碰撞。
3.求解碰撞问题:在解决实际碰撞问题时,可以运用动量守恒定律,简化问题并得到正确答案。
4.理解物理现象:动量守恒定律在碰撞中的应用,有助于我们理解自然界中各种碰撞现象,如体育比赛中的碰撞、交通事故等。
总结:动量守恒定律在碰撞中的应用是物理学中的重要知识点,掌握这一定律,可以帮助我们解决各类碰撞问题,并深入理解碰撞现象。
在学习和应用过程中,要结合课本和教材,逐步提高自己的物理素养。
动量与碰撞解析动量守恒定律与碰撞的应用动量与碰撞解析动量守恒定律与碰撞的应用动量是物体在运动过程中所具有的性质,它描述了物体运动的力度和方向。
在力学中,动量的守恒是一个重要的定律,它可以帮助我们分析和解决各种碰撞问题。
本文将探讨动量守恒定律与碰撞的应用,并通过具体案例来解析这些问题。
一、动量守恒定律动量守恒定律是指在一个系统内,当无外力作用时,系统的总动量守恒。
即系统内物体的总动量在碰撞前后保持不变。
这个定律可以用数学公式表示为:m1v1 + m2v2 = m1v1' + m2v2'。
其中,m1和m2分别是两个物体的质量,v1和v2分别是它们的初速度,v1'和v2'分别是它们的末速度。
通过动量守恒定律,我们可以计算出碰撞过程中物体的速度变化。
二、完全弹性碰撞完全弹性碰撞是指碰撞物体在碰撞中没有能量损失的情况下发生的碰撞。
在完全弹性碰撞中,动量守恒定律成立,并且还要考虑动能守恒定律。
通过这两个定律,我们可以解决完全弹性碰撞的问题。
例如,两个具有质量m1和m2的物体在碰撞前速度分别为v1和v2,在碰撞后速度分别为v1'和v2'。
根据动量守恒定律,我们可以得到以下方程:m1v1 + m2v2 = m1v1' + m2v2'。
在完全弹性碰撞中,动能守恒定律也成立,它表示碰撞前后物体的总能量保持不变:(1/2)m1v1^2 + (1/2)m2v2^2 = (1/2)m1v1'^2 + (1/2)m2v2'^2。
通过这两个方程,我们可以求解出碰撞后物体的速度。
三、完全非弹性碰撞完全非弹性碰撞是指碰撞物体在碰撞中发生塑性变形或能量损失的情况下发生的碰撞。
在完全非弹性碰撞中,动量守恒定律成立,但动能守恒定律不成立。
通过动量守恒定律,我们可以解决完全非弹性碰撞的问题。
例如,两个具有质量m1和m2的物体在碰撞前速度分别为v1和v2,在碰撞后合并为一个物体,速度为v'。
5 动量守恒定律的应用(一)几个碰撞问题的定量分析[目标定位] 1.进一步理解弹性碰撞和非弹性碰撞,会用动量和能量的观点综合分析解决一维碰撞问题.2.了解动量守恒定律在研究粒子物理中的重要作用.一、碰撞的特点 1.经历的时间很短;2.相互作用力很大,物体速度变化明显. 二、碰撞的分类1.弹性碰撞:碰撞过程中两物体的总动量守恒、总动能守恒.满足:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′.12m 1v 21+12m 2v 22=12m 1v 1′2+12m 2v 2′2.2.非弹性碰撞:碰撞过程中两物体的总动量守恒,总动能减少.满足:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′.12m 1v 21+12m 2v 22>12m 1v 1′2+12m 2v 2′2.3.完全非弹性碰撞:碰后两物体粘在一起,碰撞过程中两物体的总动量守恒,动能损失最大.预习完成后,请把你疑惑的问题记录在下面的表格中一、对碰撞问题的理解 1.碰撞(1)碰撞时间非常短,可以忽略不计.(2)碰撞过程中内力往往远大于外力,系统所受外力可以忽略不计,所以系统的动量守恒. 2.三种碰撞类型 (1)弹性碰撞动量守恒:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ 机械能守恒:12m 1v 21+12m 2v 22=12m 1v 1′2+12m 2v 2′2当v 2=0时,有v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1m 1+m 2v 1 推论:质量相等,大小、材料完全相同的弹性小球发生弹性碰撞,碰后交换速度.即v 1′=0,v 2′=v 1 (2)非弹性碰撞动量守恒:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ 机械能减少,损失的机械能转化为内能 |ΔE k |=E k 初-E k 末=Q (3)完全非弹性碰撞动量守恒:m 1v 1+m 2v 2=(m 1+m 2)v 共 碰撞中机械能损失最多|ΔE k |=12m 1v 21+12m 2v 22-12(m 1+m 2)v 2共【例1】 质量分别为300 g 和200 g 的两个物体在无摩擦的水平面上相向运动,速度分别为50 cm/s 和100 cm/s.(1)如果两物体碰撞并粘合在一起,求它们共同的速度大小; (2)求碰撞后损失的动能;(3)如果碰撞是弹性碰撞,求两物体碰撞后的速度大小. 答案 (1)0.1 m/s (2)0.135 J (3)0.7 m/s 0.8 m/s解析 (1)令v 1=50 cm/s =0.5 m/s ,v 2=-100 cm/s =-1 m/s ,设两物体碰撞后粘合在一起的共同速度为v , 由动量守恒定律得m 1v 1+m 2v 2=(m 1+m 2)v ,代入数据解得v =-0.1 m/s ,负号表示方向与v 1的方向相反. (2)碰撞后两物体损失的动能为 ΔE k =12m 1v 21+12m 2v 22-12(m 1+m 2)v 2=12×0.3×0.52+12×0.2×(-1)2-12×(0.3+0.2)×(-0.1)2J =0.135 J. (3)如果碰撞是弹性碰撞,设碰后两物体的速度分别为v 1′、v 2′,由动量守恒定律得m 1v 1+m 2v 2=m 1v 1′+m 2v 2′由机械能守恒定律得12m 1v 21+12m 2v 22=12m 1v 1′2+12m 2v 2′2, 代入数据得v 1′=-0.7 m/s ,v 2′=0.8 m/s. 针对训练如图1所示,在光滑水平面的左侧固定一竖直挡板,A 球在水平面上静止放置,B 球向左运动与A 球发生正碰,B 球碰撞前、后的速率之比为3∶1,A 球垂直撞向挡板,碰后原速率返回.两球刚好不发生第二次碰撞,求A 、B 两球的质量之比和A 、B 碰撞前、后两球总动能之比.图1答案 4∶1 9∶5解析 设A 、B 球的质量分别为m A 和m B ,A 球碰撞后的速度大小为v A 2,B 球碰撞前后的速度大小分别为v B 1和v B 2,由题意知v B 1∶v B 2=3∶1,v A 2=v B 2.A 、B 碰撞过程由动量守恒定律得m B v B 1=m A v A 2-m B v B 2,所以有m A m B =v B 1+v B 2v A 2=41. 碰撞前后的总动能之比为12m B v 2B 112m B v 2B 2+12m A v 2A 2=95.二、弹性正碰模型及拓展应用1.两质量分别为m 1、m 2的小球发生弹性正碰,v 1≠0,v 2=0,则碰后两球速度分别为v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1m 1+m 2v 1. (1)若m 1=m 2的两球发生弹性正碰,v 1≠0,v 2=0,则碰后v 1′=0,v 2′=v 1,即二者碰后交换速度.(2)若m 1≫m 2,v 1≠0,v 2=0,则二者弹性正碰后, v 1′=v 1,v 2′=2v 1.表明m 1的速度不变,m 2以2v 1的速度被撞出去.(3)若m 1≪m 2,v 1≠0,v 2=0,则二者弹性正碰后,v 1′=-v 1,v 2′=0.表明m 1被反向以原速率弹回,而m 2仍静止.2.如果两个相互作用的物体,满足动量守恒的条件,且相互作用过程初、末状态的总机械能不变,广义上也可以看成是弹性碰撞.【例2】 如图2,三个质量相同的滑块A 、B 、C ,间隔相等地静置于同一水平直轨道上.现给滑块A 向右的初速度v 0,一段时间后A 与B 发生碰撞,碰后A 、B 分别以18v 0、34v 0的速度向右运动,B 再与C 发生碰撞,碰后B 、C 粘在一起向右运动.滑块A 、B 与轨道间的动摩擦因数为同一恒定值.两次碰撞时间均极短.求B 、C 碰后瞬间共同速度的大小.图2答案2116v 0 解析 设滑块质量为m ,A 与B 碰撞前A 的速度为v A ,由题意知,碰后A 的速度v A ′=18v 0,B 的速度v B =34v 0,由动量守恒定律得 mv A =mv A ′+mv B ①设碰撞前A 克服轨道阻力所做的功为W A ,由功能关系得W A =12mv 20-12mv 2A ②设B 与C 碰撞前B 的速度为v B ′,B 克服轨道阻力所做的功为W B ,由功能关系得W B =12mv 2B -12mv B ′2③据题意可知W A =W B ④设B 、C 碰后瞬间共同速度的大小为v ,由动量守恒定律得mv B ′=2mv ⑤联立①②③④⑤式,代入数据得v =2116v 0⑥ 借题发挥 对于物理过程较复杂的问题,应注意将复杂过程分解为若干简单的过程(或阶段),判断在哪个过程中系统动量守恒,哪一个过程机械能守恒或不守恒,但能量守恒定律却对每一过程都适用.【例3】 (多选)如图3所示,在光滑水平面上停放质量为m 装有弧形槽的小车.现有一质量也为m 的小球以v 0的水平速度沿切线水平的槽口向小车滑去(不计摩擦),到达某一高度后,小球又返回小车右端,则( )图3A .小球在小车上到达最高点时的速度大小为v 02B .小球离车后,对地将向右做平抛运动C .小球离车后,对地将做自由落体运动D .此过程中小球对车做的功为12mv 2答案 ACD解析 小球到达最高点时,小车和小球相对静止,且水平方向总动量守恒,小球离开车时类似完全弹性碰撞,两者速度完成互换,故选项A 、C 、D 都是正确的. 三、碰撞需满足的三个条件1.动量守恒,即p 1+p 2=p 1′+p 2′.2.动能不增加,即E k1+E k2≥E k1′+E k2′或p 212m 1+p 222m 2≥p 1′22m 1+p 2′22m 2.3.速度要符合情景:碰撞后,原来在前面的物体的速度一定增大,且原来在前面的物体的速度大于或等于原来在后面的物体的速度,即v 前′≥v 后′,否则碰撞不会结束. 【例4】 如图4所示质量相等的A 、B 两个球,原来在光滑水平面上沿同一直线相向做匀速直线运动,A 球的速度是6 m/s ,B 球的速度是-2 m/s ,不久A 、B 两球发生了对心碰撞.对于该碰撞之后的A 、B 两球的速度可能值,某实验小组的同学们做了很多种猜测,下面的哪一种猜测结果一定无法实现的是( )图4A .v A ′=-2 m/s ,vB ′=6 m/s B .v A ′=2 m/s ,v B ′=2 m/sC .v A ′=1 m/s ,v B ′=3 m/sD .v A ′=-3 m/s ,v B ′=7 m/s 答案 D解析 两球碰撞前后应满足动量守恒定律及碰后两球的动能之和不大于碰前两球的动能之和.即m A v A +m B v B =m A v A ′+m B v B ′①,12m A v 2A +12m B v 2B ≥12m A v A ′2+12m B v B ′2②,答案D 中满足①式,但不满足②式,所以D 选项错误. 借题发挥 处理碰撞问题的思路(1)对一个给定的碰撞,首先要看动量是否守恒,其次再看总动能是否增加.(2)一个符合实际的碰撞,除动量守恒外还要满足能量守恒,注意碰撞完成后不可能发生二次碰撞的速度关系的判定.(3)要灵活运用E k =p 22m或p =2mE k 关系式转换动能、动量.碰撞特点及满足条件1.质量相等的A 、B 两球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是7 kg·m/s,B 球的动量是5 kg·m/s,A 球追上B 球发生碰撞,则碰撞后A 、B 两球的动量可能值是( )A .p A ′=6 kg·m/s,pB ′=6 kg·m/sB .p A ′=3 kg·m/s,p B ′=9 kg·m/sC .p A ′=-2 kg·m/s,p B ′=14 kg·m/sD .p A ′=-4 kg·m/s,p B ′=17 kg·m/s 答案 A解析 从碰撞前后动量守恒p A +p B =p A ′+p B ′验证,A 、B 、C 三种皆有可能.从总动能不增加即p 2A 2m A +p 2B2m B ≥p A ′22m A +p B ′22m B来看,只有A 可能.弹性碰撞的特点2.(多选)甲物体在光滑水平面上运动速度为v 1,与静止的乙物体相碰,碰撞过程中无机械能损失,下列结论正确的是( )A .乙的质量等于甲的质量时,碰撞后乙的速度为v 1B .乙的质量远远小于甲的质量时,碰撞后乙的速率是2v 1C .乙的质量远远大于甲的质量时,碰撞后甲的速率是v 1D .碰撞过程中甲对乙做的功大于乙动能的增量 答案 ABC解析 由于碰撞过程中无机械能损失,故是弹性碰撞,根据动量守恒和机械能守恒可以解得两球碰后的速度v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1m 1+m 2v 1.当m 1=m 2时,v 2′=v 1,A 对;当m 1≫m 2时,v 2′=2v 1,B 对;当m 1≪m 2时,v 1′=-v 1,C 对;根据动能定理可知D 错误.非弹性碰撞的特点及计算3.在光滑的水平面上有两个在同一直线上相向运动的小球,其中甲球的质量m 1=4 kg ,乙球的质量m 2=1 kg ,规定向左为正方向,碰撞前后甲球的v -t 图像如图5所示.已知两球发生正碰后粘在一起,则碰前乙球速度的大小和方向分别为( )图5A .3 m/s ,向右B .13 m/s ,向左C .13 m/s ,向右D .3 m/s ,向左答案 C解析 由题图知,碰撞前甲球的速度为v 1=2 m/s ,碰撞后,甲、乙两球的速度v =-1 m/s ,以甲、乙两球组成的系统为研究对象,碰撞过程动量守恒,由动量守恒定律,得m 1v 1+m 2v 2=(m 1+m 2)v ,代入数据,解得v 2=-13 m/s ,负号表示碰前乙球的速度方向与正方向相反,即方向向右.选项C 正确.4.冰球运动员甲的质量为80.0 kg.当他以5.0 m/s的速度向前运动时,与另一质量为100 kg、速度为3.0 m/s的迎面而来的运动员乙相撞.碰后甲恰好静止.假设碰撞时间极短,求:(1 )碰后乙的速度的大小;(2)碰撞中总机械能的损失.答案(1)1.0 m/s (2)1 400 J解析(1)设运动员甲、乙的质量分别为m、M,碰前速度大小分别为v、V,碰后乙的速度大小为V′.由动量守恒定律有mv-MV=MV′,代入数据得V′=1.0 m/s(2)设碰撞过程中总机械能的损失为ΔE,应有1 2mv2+12MV2=12MV′2+ΔEV′=1.0 m/s,代入上式解得ΔE=1 400 J.(时间:60分钟)题组一碰撞的特点及可能性分析1.下列关于碰撞的理解正确的是( )A.碰撞是指相对运动的物体相遇时,在极短时间内它们的运动状态发生了显著变化的过程B.在碰撞现象中,一般内力都远大于外力,所以可以认为碰撞时系统的动能守恒C.如果碰撞过程中机械能守恒,这样的碰撞叫做非弹性碰撞D.微观粒子的相互作用由于不发生直接接触,所以不能称其为碰撞答案 A解析碰撞是十分普遍的现象,它是相对运动的物体相遇时发生的一种现象.一般内力远大于外力.如果碰撞中机械能守恒,就叫做弹性碰撞.微观粒子的相互作用同样具有短时间内发生强大内力作用的特点,所以仍然是碰撞.2.在一条直线上相向运动的甲、乙两个小球,它们的动能相等,已知甲球的质量大于乙球的质量,它们正碰后可能发生的情况是( )A.甲、乙两球都沿乙球的运动方向B.甲球反向运动,乙球停下C.甲、乙两球都反向运动D.甲、乙两球都反向运动,且动能仍相等答案 C解析由p2=2mE k知,甲球的动量大于乙球的动量,所以总动量的方向应为甲球的初动量的方向,可以判断C正确.3.(多选)质量为m的小球A在光滑的水平面上以速度v与静止在光滑水平面上的质量为2m的小球B 发生正碰,碰撞后,A 球的动能变为原来的19,那么碰撞后B 球的速度大小可能是( )A.13vB.23vC.49vD.89v 答案 AB解析 设A 球碰后的速度为v A ,由题意有12mv 2A =19×12mv 2,则v A =13v ,碰后A 的速度有两种可能,因此由动量守恒有mv =m ×13v +2mv B 或mv =-m ×13v +2mv B ,解得v B =13v 或23v .4.(多选)两个小球A 、B 在光滑的水平地面上相向运动,已知它们的质量分别是m A =4 kg ,m B =2 kg ,A 的速度v A =3 m/s(设为正),B 的速度v B =-3 m/s ,则它们发生正碰后,其速度可能分别为( ) A .均为+1 m/s B .+4 m/s 和-5 m/s C .+2 m/s 和-1 m/s D .-1 m/s 和+5 m/s答案 AD解析 由动量守恒,可验证四个选项都满足要求.再看动能变化情况:E k 前=12m A v 2A +12m B v 2B =27 JE k 后=12m A v A ′2+12m B v B ′2由于碰撞过程中动能不可能增加,所以应有E k 前≥E k 后,据此可排除B ;选项C 虽满足E k 前≥E k后,但A 、B 沿同一直线相向运动,发生碰撞后各自仍然保持原来的速度方向,这显然是不符合实际的,因此C 选项错误.验证A 、D 均满足E k 前≥E k 后,且碰后状态符合实际,故正确选项为A 、D.题组二 碰撞模型的处理5.现有甲、乙两滑块,质量分别为3m 和m ,以相同的速率v 在光滑水平面上相向运动,发生了碰撞.已知碰撞后,甲滑块静止不动,那么这次碰撞是( ) A .弹性碰撞 B .非弹性碰撞 C .完全非弹性碰撞 D .条件不足,无法确定答案 A解析 由动量守恒3m ·v -mv =0+mv ′,所以v ′=2v 碰前总动能:E k =12×3m ·v 2+12mv 2=2mv 2碰后总动能E k ′=12mv ′2=2mv 2,E k =E k ′,所以A 正确.6.在光滑的水平面上有两个质量均为m 的物块A 和B ,物块B 的左端与一轻弹簧相连并处于静止状态,如图1所示.物块A 以速度v 0向物块B 运动,在物块A 通过弹簧和物块B 相互作用的过程中,下列说法正确的是( )图1A .弹簧对物块A 和对物块B 的冲量相同B .物块A 、弹簧和物块B 组成的系统,机械能不守恒C .弹簧的最大弹性势能为14mv 20D .物块B 获得的最大速度可能大于v 0 答案 C解析 弹簧对物块A 和对物块B 的冲量大小相等,方向相反,选项A 错误;物块A 、B 和弹簧组成的系统,只有弹簧弹力做功,系统机械能守恒,物块A 、B 组成的系统机械能不守恒,选项B 错误;物块A 、B 通过弹簧作用过程中,不受外力,动量守恒,所以作用结束后,A 的速度为0,B 的速度最大,为v 0,选项D 错误;A 以速度v 0水平向右运动,通过弹簧与B 发生作用,A 减速,B 加速,当两个滑块速度相等时,弹簧压缩量最大,弹性势能最大,物块A 、B 与弹簧组成的系统动量守恒,规定向右为正方向,有mv 0=2mv ,解得v =v 02,根据能量守恒定律,得系统减少的动能等于增加的弹性势能,故弹簧获得的最大弹性势能为E p =12mv 20-12×2mv 2=14mv 20,C 正确.7. (多选)小车AB 静置于光滑的水平面上,A 端固定一个轻质弹簧,B 端粘有橡皮泥,AB 车质量为M ,长为L .质量为m 的木块C 放在小车上,用细绳连结于小车的A 端并使弹簧压缩,开始时AB 与C 都处于静止状态,如图2所示.当突然烧断细绳,弹簧被释放,使木块C 向B 端冲去,并跟B 端橡皮泥粘在一起,以下说法中正确的是( )图2A .如果AB 车内表面光滑,整个系统任何时刻机械能都守恒 B .整个系统任何时刻动量都守恒C .当木块对地运动速度为v 时,小车对地运动速度为-m Mv D .整个系统最后静止 答案 BCD8.在光滑的水平面上有a 、b 两球,其质量分别为m a 、m b ,两球在t 0时刻发生正碰,并且在碰撞过程中无机械能损失,两球在碰撞前后的速度—时间图像如图3所示,下列关系式正确的是( )图3A .m a >m bB .m a <m bC .m a =m bD .无法判断答案 B解析 由图像知,a 球以初速度与原来静止的b 球碰撞,碰后a 球反弹且速度小于初速度.根据碰撞规律知,a 球质量小于b 球质量.9.两个完全相同、质量均为m 的滑块A 和B ,放在光滑水平面上,滑块A 与轻弹簧相连,弹簧另一端固定在墙上,当滑块B 以v 0的初速度向滑块A 运动,如图4所示,碰到A 后不再分开,下述说法中正确的是( )图4A .两滑块相碰和以后一起运动过程,系统动量均守恒B .两滑块相碰和以后一起运动过程,系统机械能均守恒C .弹簧最大弹性势能为12mv 20D .弹簧最大弹性势能为14mv 2答案 D解析 B 与A 碰撞后一起运动的过程中,系统受到弹簧的弹力作用,合外力不为零,因此动量不守恒,A 项错误;碰撞过程,A 、B 发生非弹性碰撞,有机械能损失,B 项错误;碰撞过程mv 0=2mv ,因此碰撞后系统的机械能为12×2m ⎝ ⎛⎭⎪⎫v 022=14mv 20,弹簧的最大弹性势能等于碰撞后系统的机械能14mv 20,C 项错误,D 项正确.10.A 、B 两物体在水平面上相向运动,其中物体A 的质量为m A =4 kg ,两球发生相互作用前后的运动情况如图5所示.则:图5(1)由图可知A 、B 两物体在________时刻发生碰撞,B 物体的质量为m B =________kg.(2)碰撞过程中,系统的机械能损失多少?答案 (1)2 s 6 (2)30 J解析 (1)由图像知,在t =2 s 时刻A 、B 相撞,碰撞前后,A 、B 的速度:v A =Δx A t =-42 m/s =-2 m/s v B =Δx B t =62m/s =3 m/s v AB =Δx AB t =22 m/s =1 m/s 由动量守恒定律有:m A v A +m B v B =(m A +m B )v AB ,解得m B =6 kg(2)碰撞过程损失的机械能:ΔE =12m A v 2A +12m B v 2B -12(m A +m B )v 2AB =30 J. 题组三 碰撞模型的综合应用11.在光滑的水平面上,质量为m 1的小球A 以速度v 0向右运动.在小球A 的前方O 点有一质量为m 2的小球B 处于静止状态,如图6所示.小球A 与小球B 发生正碰后小球A 、B 均向右运动.小球B 被在Q 点处的墙壁弹回后与小球A 在P 点相遇,PQ =1.5PO .假设小球间的碰撞及小球与墙壁之间的碰撞都是弹性碰撞,求两小球质量之比m 1∶m 2.图6答案 2∶1解析 从两小球碰撞后到它们再次相遇,小球A 和B 的速度大小保持不变.根据它们通过的路程,可知小球B 和小球A 在碰撞后的速度大小之比为4∶1.设碰撞后小球A 和B 的速度分别为v 1和v 2,在碰撞过程中动量守恒,碰撞前后动能相等m 1v 0=m 1v 1+m 2v 212m 1v 20=12m 1v 21+12m 2v 22利用v 2v 1=4,解得m 1∶m 2=2∶112.如图7所示,一不可伸长的轻质细绳,静止地悬挂着质量为M 的木块,一质量为m 的子弹,以水平速度v 0击中木块,已知M =9m ,不计空气阻力.问:(1)如果子弹击中木块后未穿出(子弹进入木块时间极短),在木块上升的最高点比悬点O 低的情况下,木块能上升的最大高度是多少?(设重力加速度为g )(2)如果子弹在极短时间内以水平速度v 04穿出木块,则在这一过程中子弹、木块系统损失的机械能是多少?图7答案 (1)v 20200g (2)716mv 20 解析 (1)因为子弹与木块作用时间极短,子弹与木块间的相互作用力远大于它们的重力,所以子弹与木块组成的系统水平方向动量守恒,设子弹与木块开始上升时的速度为v 1,则mv 0=(m +M )v 1所以v 1=110v 0.因不计空气阻力,所以系统上升过程中机械能守恒,设木块上升的最大高度为h ,则12(m +M )v 21=(m +M )gh ,解得h =v 20200g(2)子弹射穿木块前后,子弹与木块组成的系统水平方向动量守恒,设子弹穿出时木块的速度为v 2,则mv 0=m ⎝ ⎛⎭⎪⎫v 04+Mv 2,解得v 2=112v 0在这一过程中子弹、木块系统损失的机械能为ΔE =12mv 20-12m ⎝ ⎛⎭⎪⎫v 042-12Mv 22=716mv 20 13.如图8所示,光滑水平直轨道上两滑块A 、B 用橡皮筋连接,A 的质量为m .开始时橡皮筋松弛,B 静止, 给A 向左的初速度v 0.一段时间后,B 与 A 同向运动发生碰撞并粘在一起.碰撞后的共同速度是碰撞前瞬间A 的速度的两倍,也是碰撞前瞬间B 的速度的一半.求:图8(1)B 的质量;(2)碰撞过程中A 、B 系统机械能的损失.答案 (1)m 2 (2)16mv 20 解析 (1)以初速度v 0的方向为正方向,设B 的质量为m B ,A 、B 碰撞后的共同速度为v ,由题意知:碰撞前瞬间A 的速度为v 2,碰撞前瞬间B 的速度为2v , 由动量守恒定律得 m v 2+m B ·2v =(m +m B )v ① 由①式得m B =m 2② (2)从开始到碰撞后的全过程,由动量守恒定律得mv 0=(m +m B )v ③设碰撞过程A 、B 系统机械能的损失为ΔE ,则ΔE =12m (v 2)2+12m B (2v )2-12(m +m B )v 2④ 联立②③④式得ΔE =16mv 20⑤。