7.6余角和补角的教学设计
- 格式:doc
- 大小:39.50 KB
- 文档页数:4
余角和补角教案下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!作为一名老师,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。
来参考自己需要的教案吧!下面是小编为大家整理的余角和补角教案,希望对大家有所帮助。
余角和补角教案1[教学目标]1、在具体情境中认识余角和补角的概念,并会运用解题;2、经历观察、操作、探究、推理、交流等活动,发展学生的空间观念,培养学生的推理能力和有条理的表达能力;3、体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的信心。
[教学重点与难点]1、教学重点:互为余角、互为补角的概念;2、教学难点:应用方程的思想解决有关余角和补角的问题。
[教学准备]多媒体课件、纸板、三角尺[教学过程]一、情境引入1、带领同学们领略意大利的比萨斜塔的壮观景象,并思考:斜塔与地面所成的角度和它与竖直方向所成的角度相加为多少度?(课件演示)2、(动手操作1)拿出一个直角纸板,将直角剪成两个角,∠1和∠2,问:∠1和∠2的和为多少度呢?∠1+∠2=90°,我们把具有这种关系的∠1、∠2称为互余,其中∠1叫做∠2的余角,∠2叫做∠1的余角。
请同学们根据老师的演示试着说出余角的定义。
(设计意图:通过比萨斜塔的现实情境和剪纸这一实际操作引出余角概念,既调起学生的兴趣,又直观易懂。
)二、新知探究1、余角的定义:如果两个角的和为90°(直角),我们就称这两个角互为余角,简称互余。
2、(动手操作2)(1)拿出和的两个角的纸板拼成一个直角,问:“这两个角互余吗?”把其中一个角移开,“这两个角还互余吗?”注意事项1:两角互余只与度数有关,与位置无关。
7.6 余角、补角 班级 姓名 学号 【学习目标/难点重点】 理解余角、补角、互余、互补等概念,会求已知角的余角或补角,理解余角(补角)的性质,会用方程的思想方法求有关角的度数,解互余(及互补)两角的等式表示方法,
一、课前预习
1.观察与思考:用量角器分别量出∠α、∠β、∠γ的度数,并思考∠α与∠β、∠α与∠γ之间有什么特殊关系?
二、新课学习 互为余角定义:如果两个角的 ,那么这两个角叫做 ,简称 .其中一个角称为另一个角的 .
数学式子表示:如果 ,那么 . 问题:如果已知两个角互余,那么你能得出什么结论呢?如何用数学式子表示呢?
互为补角定义:如果两个角的 ,那么这两个角叫做 ,简称 .其中一个角称为另一个角的 .
数学式子表示:如果 ,那么 . 问题:如果已知两个角互余,那么你能得出什么结论呢?如何用数学式子表示呢?
练习1:如图,射线OM 、ON 把平角∠AOB ,直角∠DOC 分别分成了几个角?它们的度数关系如何?
β α
γ
角的度量单位
思考:角是有大小的,它的度量单位有那些?
例题1 计算下列各式:
1)77°54′36″+34°27′44″; 2)89°6′4″-24°27′35″;
例题2:已知∠1=53°38′,求∠1的余角及补角的度数.
例题3:已知一个角的补角是这个角的余角的3倍,求这个角的度数.
思考并操作:已知锐角∠AOB ,如何用三角尺最快地画出∠AOB 的余角和补角.
11.余角(补角)的性质:
余角的性质: .
补角的性质: . A O B A
O
B。
余角与补角教案一、教学目标:知识与技能:(1)理解余角、补角的概念(2)理解掌握余角和补角的性质;(3)让学生初步接触和体会归纳演绎推理的方法和表述。
(4)了解角在解决实际简单问题中的一些简单应用。
过程与方法:(1)经历观察、推理、交流等活动,发展学生的空间观念,培养学生的推理能力和有条理的表达能力;(2)求某角的度数,使学生初步会用简单的代数思想一方程来处理图形的数量关系情感态度价值观:(1)类比余角的概念,同桌合作,自主探索补角的概念及特点的过程中,培养学生合作探究精神。
(2)体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的自信心。
二、教学重难点重点:余角和补角的概念及其性质难点:余角和补角的性质应用,培养学生的推理能力和有条理的表达能力。
三、教学设计1.余角教学1.新课探究:比萨斜塔的底部是石块堆积而成,量角器无法伸入斜塔底部测量,如何得到斜塔偏离竖直方向的角度?由于不能直接的测量∠1的度数,我们可以把∠2的度数测量出来,因为∠1+∠2=90°,所以∠1=90°-∠2.互为余角,简称互余,也可以说其中一个角是另一个角的余角。
如右图中,∠ 1与∠ 2互为余角,∠ 1是∠ 2的余角,∠ 2也是∠ 1的余角。
互余的数量关系:∠1+∠2=90 °∠1的余角=90 °—∠14.注意要点:(1)移动剪纸后的∠1和∠2,是这两个角处于不同的平面,提问:∠1和∠2还互余吗?(仍然互余,因为概念中没有对角的位置做要求)(2)把∠2剪成∠2和∠3,那么我们可以说∠1,∠2和∠3互余吗?(不能,因为概念中互余是对相对两个角而言的,不能扩展到三个角)2.补角教学1.新课探究:水库大坝的底部是石块堆积而成,量角器无法伸入大坝底部测量,如何得到大坝的坡度?由于不能直接的测量∠1的度数,我们可以把∠2的度数测量出来,因为∠1+∠2=180°,所以∠1=180°-∠2.2.实验探究:拿出一张用硬纸板做的平角,然后将其任意剪成两个角,分别标上∠1,∠2,问这两个角的和为多少度?(∠1+∠2=1800°,我们把具有这种关系的∠1、∠2称为互补)3.自主探究:以同桌为一个小组,类比两角互余的概念,一起探讨两角互补的概念及特点互补的概念:如果两个角的和是一个平角,我们就说这两个角互为补角,简称互补,也可以说其中一个角是另一个角的补角。
余角和补角教学目标:1.理解余角与补角的概念2.能用规范的数学符号语言描述余角、补角,并进行相关的求角问题的计算3.理解有关余角、补角的两个命题重点与难点;余角、补角的概念、性质教学过程:一,课堂导入前面我们学习了角的相关内容(如角的定义,角的分类,角的计算,画角的和差,角的平分线等)。
我们今天要研究的内容是关于两个角之间特殊数量关系的:余角和补角.二,新课:1.余角,补角的概念:①如果两个角的和等于 90°(直角),就说这两个角互为余角。
符号语言:如果∠1+∠2= 90°,那么∠1和∠2互为余角。
反之也成立:如果∠1与∠2互为余角,那么∠1+∠2= 90°。
②如果两个角的和等于 180度 ( 平角 ),就说这两个角互为补角。
符号语言:如果∠1+∠2= 180°,那么∠1和∠2互为补角。
反之也成立:如果∠1与∠2互为补角,那么∠1+∠2= 180°。
概念关键点:互为余角、互为补角的两个角只与它们的和有关,与它们的位置无关。
两个角在不在一起没关系,主要看它们的和是多少。
2.求出一个角的余角、补角试一试:(1、图中给出的各角中,哪些互为余角,哪些互为补角)∠α∠α的余角∠α的补角5°32°45°62°23′77°38′45″x1.所有的角都有余角吗?2.所有的角都有补角吗?3.一个角的余角的表示:()一个角的补角的表示:()4.同一个角的补角比它的余角大多少度?3 利用角的数量关系列方程求解例1 若一个角的补角等于它的余角的3倍,求这个角的度数。
解设这个角为x度,则它的补角为(180-x)度,它的余角为(90-x)度180-x=3(90-x)X=45答:这个角为45°(练习:若一个角的补角比它的余角的2倍多25度,求这个角)4 余角、补角的性质通过观察得到:同角(等角)的余角相等同角(等角)的补角相等三、练习书105页四、小结我们今天学习了……..五、作业练习册7.6。
北师大版七年级数学下册第二章第一节余角与补角教学设计江西省吉安市神岗山学校刘丹“余角与补角”的教学设计教学任务分析教学内容解析本节课是北师大版七年级数学下册第二章的第一课时,主要研究互为余角、互为补角、对顶角的概念,掌握它们的性质及其应用.它是在学生学习了简单几何知识基础上学习的,对发展学生的空间观念是一个渗透,是后续学习空间与图形领域的基础,在教材中,起着承上启下的作用,同时,在日常生活中的应用也非常广泛,可以帮助我们解决很多实际问题.这一课为学生提供了生动有趣的问题情境,提供了观察、操作、推理、交流等丰富的数学活动,提出了与现实生活中联系密切的问题,以引起学生的好奇与思考,是激发学生认识兴趣和求知欲的有效办法和手段. 创设问题情境以激起学生的求知欲,把学生引入一种与问题有关的情境的过程,使学生经历探究—深思—发现—解决问题的过程,把要解决的问题有意识地、巧妙地寓于各种各样符合学生实际的知识基础之中,给他们造成一种悬念,从而使学生的注意、记忆、思维凝聚在一起,以达到智力活动的最佳状态. 例如:打台球时,选择适当的方向用白球击打红球是否直接入袋与角有着密切的关系,学生实际操作剪子剪东西时角的变化等,让学生获得直观的体验. 鼓励学生用多种方式探索图形的性质,用自己的语言描述,发展学生有条理地思考能力和表达能力.教学重点理解余角、补角的概念、性质.让学生亲身经历概念、性质获得的过程.教学难点运用所学知识解决实际问题.教学目标设置知识技能①在具体的活动中,了解互为余角、互为补角、对顶角的概念,掌握它们的性质.②能用所学的知识进行简单的推理.③通过概念性质的形成,培养学生的实验、观察、分析、概括能力. 数学思考①从丰富的生活情景中经历概念、性质产生的过程,体会数学与现实生活的密切联系.②通过观察、实验、操作等数学活动过程,使学生掌握从事科学研究的方法.问题解决能从具体事物中抽象出几何图形,并用几何图形知识解释一些现实现象.情感态度①通过性质的发现与运用,向学生渗透知识来源与生活并运用于生活的辨证唯物主义观点.②通过分工合作实验,培养学生的团队合作意识,品尝与同伴合作交流的乐趣.学生学情分析学生在学习了简单几何知识基础上学习的,对发展学生的空间观念是一个渗透,是后续学习空间与图形领域的基础,在教材中,起着承上启下的作用,同时,在日常生活中的应用也非常广泛,可以帮助我们解决很多实际问题.学生之间的基础知识、综合素质有差异:有的学生学习品质好,在学习过程中有好奇心、有探索意识;有的学生学习依赖性强,自己不主动获取知识。
《余角与补角》教学设计《余角与补角》教学设计(七年级上册·第四章第三节)德江县楠杆土家族乡民族初级中学周刚一、【教材分析】1.教学内容本节内容是湘教版教材《数学七年级(上)》第四章《图形的认识》的第三节,主要内容是理解余角、补角的定义及性质.2.地位与作用本节课是学生在学习了“角、直角、平角的定义”、“角的大小比较”等内容的基础上,对角与角之间关系的进一步深入和拓展,它为以后证明角相等提供了一种重要依据.因此本节课起着承上启下的作用.同时本节课中从“数量”关系定义余角、补角,使学生对定义认识的深度、广度得以拓展.二、【学情分析】1.知识基础:学生已经学习了直角、平角,比较角的大小等有关基础知识,并能用这些知识解决简单问题.2.认知水平和能力:七年级学生具有初步的观察、分析、概括能力,有着一定的学习经验及活动经验,形成了较好的参与意识和合作意识.并能在教师引导下低起点、小步距进行探究.3.任教学生特点:我班学生基础知识较扎实、思维较活跃,能较好地应用所学知识解决问题,但逻辑推理能力和用数学语言进行正确表达的能力还有待进一步提高.三、【目标分析】1.教学目标依据教材的教学要求,渗透新课标理念,并结合以上学情分析,我制定了如下教学目标:①通过在生活情境中从数学角度发现问题、提出问题,让学生理解余角、补角、对顶角的概念.②通过学生经历探究活动中的动手操作,合作交流,使学生掌握同角(等角)的余角相等,同角(等角)的补角相等,对顶角相等的性质.③通过对余角、补角性质的探究,渗透从“特殊”到“一般”、类比的数学思想方法;会对文字、图形、符号三种语言进行相互转化.④通过关于比萨斜塔的新闻轶事引入,让学生感受数学来源于生活,生活中处处有数学,体会学习数学的价值.2.教学重点及难点重点:余角、补角的定义及性质难点:余角、补角性质的合情推理和数学语言的规范表达重、难点解决的方法策略根据七年级学生的认知特点,乐于动手操作探究,易于在实践中明确事理,故而本节课采用以实验发现法为主的教学方法.教学中,通过剪裁、度量、旋转等操作活动,精心设计了一个又一个带有操作性、启发性和思考性的问题,引导学生动手操作,思考问题,同时教师适时地引导,逐步推导归纳得出结论,使学生始终处于自主探索、合作交流的积极状态,形成生动活泼的、主动的和富有个性的学习活动,从而掌握余角、补角、对顶角的定义及性质,并能运用性质解决简单的问题.四、【教学模式与教法、学法】本课采用“探究——发现”教学模式.教师的教法突出活动的安排与问题的引导.学生的学法突出动手操作、探究发现与归纳建构.教具:教材,多媒体课件,剪子,纸质直角三角板学具:三角板,量角器,教材,练习本五、【过程设计】结合教材知识内容和教学目标,本课的教学环节及时间分配如下:引入概念(3分钟)——概念学习(10分钟)——探究活动一(15分钟)——探究活动二(7分钟)——应用拓展(8分钟)——总结提升(2分钟)教学过程:一、引入概念首先播放一段有关著名的比萨斜塔近况的新闻视频,提出问题:从视频得知,“塔身的倾斜度由原来的5.5︒变成现在的3.99︒”,你知道其中的5.5︒和3.99︒是怎么测量的吗?注意这里的测角仪不能直接伸入塔身.(学生相互讨论,提出初步测量方案)(根据学生回答,进一步追问.)问题一:如果我们使用测角仪测量出了1∠的大小,能否得出塔身的倾斜度2∠呢?为什么?问题二:如果想得到塔身与地面所成角中最大的角3∠的度数,能行吗?为什么?二、形成概念师:在刚才的问题解决过程中,我们用到了两个角的和分别是90︒,180︒,于是定义:如果两个角的和等于90°(直角),就说这两个角互为余角.如果两个角的和等于180°(平角),就说这两个角互为补角.三、辨析概念师:请一名同学为大家朗读定义,并重读关键词.(辨析概念中的两个关键词“两个角”、“互为”)动手操作:请同学们用手中的剪刀和纸质的三角板,通过“剪——移——拼”的过程,探究直角三角形两锐角之间的关系.(通过学生动手操作,内化余角的定义,感知余角定义的实质,为学生类比理解补角定义打下基础.)对余角定义的辨析:①“两个角”,“互为”;②是从“数量”关系进行定义;③︒↔-︒.x x(90)(学生类比完成对补角定义的辨析)四、应用概念小试身手:下列各角哪些互为余角,哪些互为补角?①②③④⑤⑥⑦⑧五、探究活动一以同桌为一组,将手中的三角板△AOB,△COD的直角顶点O重合在一起.①观察猜想:如图放置,度量1∠,你发现了什么?∠与2②操作验证:请甲同学旋转△COD,乙同学观察1∠的大小变化,①中的结论还∠与2成立吗?③推理论证:请用所学知识论证你的发现.证明:1390∠+∠=︒2390∠+∠=︒∴∠=︒-∠=∠19032∴∠=∠(等量代换)12(请一名学生板书证明过程,教师批注.)师:你能用一句话归纳刚才的发现吗?余角的性质同角(或等角)的余角相等.小试身手:1.已知△ABC中,90∠=︒,CD AB⊥,试找出下图中相等的锐角,并说明依据.ACB合情推理:A∠的余角,据余角的性质得1∠=∠;∠为同一个角2A∠与1B∠=∠;∠的余角,据余角的性质得2∠与2∠为同一个角1B(教师协助、点评“小老师”的讲解)✓✓它们定义的方式分别从“数量”与“位置”关系进行;✓求解一个角常常转化成它的余角、补角来达成.2.今后我可以采取怎样的方法学习几何概念?形成概念——辨析概念——应用概念3.本节课渗透了哪些数学思想方法?从“特殊”到“一般”、类比、化归4. 作业布置:《名校课堂》相应部分(分层:A,B组)(A层全班同学完成,B层是部分同学完成)5.挑战自我:请任意作出一个三角形,在其中添加一条线段构造出互余、互补的角,并写出它们.板书设计:六、【课后反思】根据教学经历和学生反馈,本堂课教学设计操作性强,效果良好.课堂中学生通过概念辨析教学,对余角、补角的概念理解较深入,能辨别三个角和为180°与补角概念之间的区别.通过探究活动得出性质让学生对性质的掌握更为牢固,而范例及变式的训练使学生对化归的数学思想方法理解更为深入,逐步形成多种方法解决问题的习惯,并能规范解题.综合以上情况,我对本课的教学设计有如下反思:(1)突出学生动手操作,合作探究根据新课程课堂教学活动的基本理念:“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识和技能,数学思想和方法,获得广泛的数学活动经验”,因此,我在本课教学设计中突出了学生的动手操作,自主探索,鼓励学生积极参与互动交流,教学设计中对余角定义的辨析、余角性质的探索.每个活动的展开是通过一个个问题串的设置实现的,整堂课创造了一个适合学生探索的环境,通过不同的途径引导其自主探索,形成了较好的数学学习经验.(2)注重数学思想的渗透本课的设计注重渗透了从“特殊”到“一般”、类比和化归的数学思想与方法.课堂中,余角性质与补角性质之间的关系,探究余角性质由有限的度量过渡到任意时刻结论是否成立,拓展应用中角之间的转化都充分体现了这些数学思想方法的渗透.(3)遵循概念学习规律本课的设计特别强调学生对概念的学习规律,遵循“引入概念——形成概念——辨析概念——应用概念”的认知过程,利用视频中蕴藏的数学知识引入概念,形成初步感知,通过学生朗读概念、动手操作内化概念,小试身手应用概念等环节达成对概念的深入理解.(4)注重学生体验,培养良好习惯本课注重学生知识的自我建构,在探究过程中使学生经历“观察猜想——操作验证——推理论证”的数学体验过程,形成良好的学习习惯.(5)目标达成在本节课的教学中,为了达成教学目标,我注意了教学环节的设计与教学目标的达成相呼应,做到目标确定环节,在环节中实现目标。
7.6 余角和补角
一.教学目标:
1、使学生掌握两个角互为余角和互为补角的概念,
2、使学生理解互余与互补的角的性质
3、学会运用类比联想的思维方法思考,并初步学会用代数方法,(主要是列
方程)解决几何问题.
4、培养学生分析问题和解决问题的能力,以及运算能力。
二.教学重点和难点:
使学生掌握两个角互为余角和互为补角的概念,和使学生学会用设未知
数的方法解决几何中的计算题是重点,余角和补角的性质是难点。
三.教学设计:
合作学习
先观察如图,∠1+∠2与Rt∠AOB相等吗?你是怎样判断的?
再观察如图,∠α+∠β与∠AOB相等吗?你是怎样判断的?
(让学生说出自己的方法:可以测量,也可以剪下来拼等等,学生的方法只要合
理就应鼓励)
教师用多媒体演示∠1+∠2与Rt∠AOB重合,再移动一角,问∠1+∠2与Rt∠AOB
相等吗?
同样∠α+∠β与∠AOB重合,再移动一角,问∠α+∠β与∠AOB相等吗?
通过上面的演示,我们看到有时两个角的和是90°,有时两个角的和是180°,
也就是两个角之和正好成一直角,或两个角之和正好成一平角,在这种情况下,
我们给出两个新的概念:
1.互为余角定义:如果两个锐角的和是一个直角,那么这两个角互为余角.简
称互余.用数学式子表示为:因为∠1+∠2=90°,所以∠1与∠2互余.反之,
因为∠1与∠2互余,所以∠1+∠2=90°.
2.互为补角定义:如果两个角的和是一个平角,那么这两个角互为补角.简
称互补.用数学式子表示为:因为∠1+∠2=180°,所以∠1与∠2互补.反之,
因为∠1与∠2互补,所以∠1+∠2=180°.
1
2
A
O
B
α
β
A O B
做一做 ( 及时巩固 )
(1)试举出互余、互补角的例子.
(2)30°与60°是互余的两角,能说30°是余角吗?
(要特别向学生指出:互余与互补角是研究两个角的关系,单独一个角不能
说是余角或补角,就像称呼两兄弟一样,而且不会随位置的改变)
(3)若一个角为35°35′35″,写出它的余角和补角.
解:35°35′35″的余角为90°-35°35′35″=54°24′25″.
(在计算过程中将90°写为89°59′60″,再与35°35′35″相减较为方
便)
35°35′35″的补角为180°-35°35′35″=144°24′25″.
(在计算过程中将180°写为179°59′60″,再与35°35′35″相减较为
方便,也可以将35°35′35″的余角再加上90°就是35°35′35″的补角.)
(4) 如图,点O为直线AB上一点,∠AOC = Rt∠,OD是∠BOC内的一条射线。
图中有哪些角互补?有哪些角互余?说明你的理由。
画一画 想一想
如图:已知∠AOC,作出它的余角和补角.
(只要满足条件的角都可以)
问:从中发现了什么?(进行小组讨论)
A O B
C D
O
C A O C
A
师生共同总结出:同角的余角相等.同理可推出:同角的补角相等
再问:如果两个角相等,那么它们的余角和补角有什么关系?
由此得到补角和余角的性质:同角或等角的余角相等.同角或等角的补角相等.
注意:学生往往对“同角”、“等角”的认识不太清楚,在“同角”的情况时说
“等角”,在“等角”的情况时说“同角”,因此要对学生强调指出:“等角是
相等的角”,而“同角是同一个角”.另外,这个性质在目前的应用还不太多,
但今后的应用是非常广泛的.
应用举例
——运用代数方法(列方程)解决几何问题.
例: 已知一个角的补角是这个角的余角的4倍,求这个角的度数。
解:设这个角为x°,则它的余角为(90-x)°,它的补角为(180-x)°.
由题意,得 180 – x = 4( 90 – x ) ,
解方程,得 x= 60º
答:这个角的度数为60°.
追问:求这个角的余角的度数。
1.直接求出:90°— 60°= 30°
2.还可以怎样设未知数?(此题也可以设这个角的余角为x°,它的补角为
(90+x)°,列出方程为:
90 + x = 4x
x = 30°
3. 这两种设未知数的方法各有什么好处?(第一种方法是习惯方法,先求
出这个角,然后再求出它的余角.第二种方法是,问什么设什么,直接求
出此题的结果.第一种方法是间接假设,第二种方法是直接假设.)
小结:(1)这例题是利用代数方法解决几何问题,关键是正确设出未知数,
正确列出方程,求出未知数的值.在设未知数的过程中,可以有不只
一种设法.
(2)注意题目中的隐含条件,若一个角为x时,它的余角为90-x,它的补角
为180-x.
(3)在设未知数的过程中,要注意写单位,但在列方程时,可以不带单位.
课内练习(课本第184页)
谈谈收获
布置作业:
1.课本上的作业题 2.作业本