高数曲线积分与曲面积分总结
- 格式:ppt
- 大小:943.00 KB
- 文档页数:22
曲线积分与曲面积分常见题型攻略以心同学整理一、计算第一类曲线积分步骤:(一)平面曲线积分t t g y t x L ,)()(:1.化简(1)代入化简【常用在k t g t f )](),([ (常数)的情形】Lds y x f ),(Lds t g t f )](),([ kskds L其中s 为积分曲线L 的长度。
(2)利用奇偶对称性化简①若积分曲线L 关于坐标轴y 轴对称,则有Lds y x f ),(1),(,),(2),(0L x y x f ds y x f x y x f 的偶函数是的奇函数是,其中1L 为y 轴右边部分。
②若积分曲线段L 关于坐标轴x 轴对称,则有Lds y x f ),(1),(,),(2),(0L y y x f ds y x f y y x f 的偶函数是的奇函数是,其中1L 为x 轴上边部分。
(3)利用轮换对称性化简若积分曲线L 中把x 与y 互换,积分曲线不变,则有Lds y x f ),( Ldsx y f ),(2.确定积分曲线L 的参数式方程t t g y t x L ,)()(:注:积分曲线一般以)(x f y 或)(y g x 的形式出现,此时参数式为:b x a x f y x x L,)(:,dy c y y y g x L,)(:3.套公式(一代二换三定限)化为定积分Lds y x f ),(dtt g t t g t f )()()](),([22注意:上限 大于下限 4.计算定积分例1【2017-2018期末】设L 是直线)40(1243 x y x 的一段,则Lds y x )43(60;解:Lds y x )43( Lds12代入化简6012 s 。
例2【2018-2019期末】计算Lds x y)(2,其中L 为圆周422 y x .解:法一:L 的参数方程为sin 2cos 2y x ( 20 ),d d ds 2)cos 2()sin 2(22 ,于是Lds x y )(22022)cos 2sin 4(d 0sin 8202d822148 .法二:由对称性有Lds y 2 Lds x 2(轮换对称),0 Lxds (奇偶对称)所以Lds x y )(2 Lds y 2L ds y x )(2122 Lds 421(代入化简)8422 Lds .例3【2019-2020期末】计算曲线积分Lds y xy x )(22,其中L 为平面区域}0,1|),{(22 y y x y x D 的边界曲线。
曲线积分与曲面积分一、 知识要点 1、定义、定理(1)定理1(格林公式):设分段光滑的有向闭曲线L 为有界闭区域D 的正向边界,函数P(x,y),Q(x,y)在D 上具有一阶连续偏导数,则有:⎰⎰⎰+=∂∂-∂∂L DQdy Pdx dxdy yPx Q )((2) 定理2(曲线积分与路径无关的充要条件) :设G 为平面单连通开区域,函数),(y x P ,),(y x Q 在G 内具有连续的一阶偏导数,那么曲线积分⎰+LQdy Pdx 与路径无关xQ yP ∂∂≡∂∂⇔在G 内成立。
(3) 定理3 :设函数),(),,(y x Q y x P 在开区域G 内具有一阶连续偏导,则曲线积分()()dy y x Q dx y x P ,,+ 在G内为某一函数()y x u ,的全微分的充要条件是等式()()x y x Q y y x P ∂∂=∂∂,,在G 内恒成立。
(4)定理4(高斯公式):设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数()z y x P ,,、()z y x Q ,,、()z y x R ,,在Ω上具有一阶连续偏导数,则有⎰⎰⎰⎰⎰Ω∑++=∂∂+∂∂+∂∂Rdxdy Qdxdz Pdydz dv z Ry P x Q )(或()⎰⎰⎰⎰⎰Ω∑++=∂∂+∂∂+∂∂dS R Q P dv z R y P x Q γβαcos cos cos )(,其中,γβαcos ,cos ,cos 为外法向量的方向余弦。
(5)定理4(斯托克斯公式):设L 为分段光滑的空间有向闭曲线,∑是以L 为边界的分片光滑的有向曲面,L 的正向与∑的侧符合右手规则,函数()()()z y x R z y x Q z y x P ,,,,,,、、在包含∑在内的一个空间区域内具有一阶连续偏导数,则有⎰⎰⎰++=∂∂∂∂∂∂∑L Rdz Qdy Pdx R Q P z y x dxdy dzdx dydz ,或⎰⎰⎰++=∂∂∂∂∂∂∑L Rdz Qdy Pdx dS RQ P z y x γβαcos cos cos 2、 公式(1)对弧长的曲线积分的计算公式:(ψϕ,在相应区间上具有一阶连续导数)①若)( )()(:βαψϕ≤≤⎩⎨⎧==t t y t x L ,则dt t t t t f ds y x f L ⎰⎰'+'=βαψϕψϕ)()()](),([),(22 )(βα<②若)( )(:b x a x y L ≤≤=ϕ,则⎰⎰'+=b aL dx x x x f ds y x f )(1)](,[),(2ϕϕ)(b a < ③若)( )(:d y c y x L ≤≤=ψ,则⎰⎰+'=d cL dy x y y f ds y x f 1)()]),([),(2ψψ )(d c <(2)对坐标的曲线积分的计算公式:(ψϕ,在相应区间上具有一阶连续导数)①若):( )()(:βαψϕ→⎩⎨⎧==∧t t y t x AB ,则dt t t t Q t t t P dy y x Q dx y x P AB⎰⎰'+'=+∧βαψψϕϕψϕ)}()](),([)()](),([{),(),( ②若):( )(:b a x x y AB →=∧ϕ,则⎰∧+ABdy y x Q dx y x P ),(),(⎰'+=ba dx x x x Q x x P )}()](,[)](,[{ϕϕϕ ③若):( )(:d c y y x AB →=∧ψ,则⎰∧+ABdy y x Q dx y x P ),(),(()()⎰+'=dcdy y y Q y y y P ]},[)(],[{ψψψ(3)两类曲线积分的转换公式:①()⎰⎰+=+LLds Q P dy y x Q dx y x P βαcos cos ),(),(,其中,()()y x y x ,,βα、为有向曲线弧L 上点()y x ,处的切线向量的方向角。
第十一章:曲线积分与曲面积分一、对弧长的曲线积分⎰⎰+=LLy d x d y x f ds y x f 22),(),(若 ⎩⎨⎧==)()(:t y y t x x L βα≤≤t则 原式=dt t y t x t y t xf ⎰'+'βα)()())(),((22对弧长的曲线积分(,,)((),(),(LLf x y z ds f x t y t z t =⎰⎰若 ():()()x x t L y y t z z t =⎧⎪=⎨⎪=⎩βα≤≤t则 原式=((),(),(f x t y t z t βα⎰常见的参数方程为:特别的:22222.2x y LLLeds e ds e ds e π+===⎰⎰⎰22=2(0)L x y y +≥为上半圆周二、对坐标的曲线积分⎰+Ldy y x q dx y x p ),(),(计算方法一: 若 ⎩⎨⎧==)()(:t y y t x x L 起点处α=t ,终点处β=t 则原式=dt t y t y t x q dt t x t y t x p )())(),(()())(),(('+'⎰βα对坐标的曲线积分(,,)(,,)(,,)LP x y z dx Q x y z dy R x y z dz ++⎰():()()x x t L y y t z z t =⎧⎪=⎨⎪=⎩起点处α=t ,终点处β=t 则原式=((),(),())()((),(),())()((),(),())()P x t y t z t x t dt Q x t y t z t y t dt R x t y t z t z t dt βα'''++⎰计算方法二:在计算曲线积分时,通过适当的添加线段或曲线,是之变成一个封闭曲线上的曲线积分与所添加线段或曲线上的曲线积分之差,从而对前者利用格林公式,后者利用参数方程。
11(,)(,)(,)(,)L L L p x y dx q x y dy p x y dx q x y dy ++-+⎰⎰1()(,)(,)L Dq pdxdy p x y dx q x y dy x y∂∂=±--+∂∂⎰⎰⎰如图:三、格林公式⎰⎰=∂∂-∂∂Ddxdy ypx q )(⎰+Ldy y x q dx y x p ),(),( 其中L 为D 的正向边界特别地:当yp x q ∂∂=∂∂时,积分与路径无关, 且⎰⎰⎰+=+21212211),(),(),(),(21),(),(y y x x y x y x dy y x q dx y x p dy y x q dx y x p(,)(,)(,)P x y dx Q x y dy dU x y +=是某个函数的全微分Q Px y∂∂⇔=∂∂ 注:在计算曲线积分时,通过适当的添加线段或曲线,是之变成一个封闭曲线上的曲线积分与所添加线段或曲线上的曲线积分之差,从而对前者利用格林公式。
曲线积分与曲面积分总结笔记曲线积分和曲面积分是微积分中重要的概念,它们在物理学、工程学和数学中都有广泛的应用。
下面对曲线积分和曲面积分进行总结和拓展。
一、曲线积分曲线积分是对曲线上的函数进行积分运算。
根据曲线的参数方程给出曲线积分的计算公式。
曲线积分分为第一类曲线积分和第二类曲线积分。
1. 第一类曲线积分:对标量函数进行积分,求曲线上的标量场沿曲线的积分值。
它主要应用于测量曲线长度、质量等问题。
2. 第二类曲线积分:对矢量函数进行积分,求曲线上的矢量场沿曲线的积分值。
它主要应用于计算曲线上的力的做功、电流的环路积分等问题。
二、曲面积分曲面积分是对曲面上的函数进行积分运算。
曲面积分也有两类:第一类曲面积分和第二类曲面积分。
1. 第一类曲面积分:对标量函数进行积分,求曲面上的标量场通过曲面的积分值。
它主要应用于计算场的通量、质量通量等问题。
2. 第二类曲面积分:对矢量函数进行积分,求曲面上的矢量场通过曲面的积分值。
它主要应用于计算磁通量、电通量等问题。
曲线积分和曲面积分的计算方法有很多,常用的方法包括参数化、格林公式、斯托克斯定理和高斯定理等。
对于一些简单的曲线和曲面,也可以通过直接计算来求解。
此外,曲线积分和曲面积分还与梯度、散度和旋度等概念密切相关。
这些概念可以帮助我们理解和计算曲线和曲面上的积分值。
总之,曲线积分和曲面积分是微积分中的重要概念,它们在物理学和工程学中有广泛应用。
通过对曲线和曲面上的函数进行积分,我们可以得到一些重要的物理量和场量。
掌握曲线积分和曲面积分的计算方法和应用可以帮助我们解决实际问题。
曲线积分与曲面积分曲线积分和曲面积分是微积分中两个重要的概念。
曲线积分是对曲线上的函数进行积分运算,而曲面积分是对曲面上的函数进行积分运算。
本文将详细介绍曲线积分和曲面积分的概念、计算方法以及应用。
一、曲线积分曲线积分是对曲线上的函数进行积分运算。
通常将曲线积分分为第一类曲线积分和第二类曲线积分。
1. 第一类曲线积分第一类曲线积分用于计算曲线上的标量场函数。
对于参数化曲线C:r(t)=(x(t), y(t), z(t)),其中a≤t≤b,函数f(x,y,z)在C上可微分,则第一类曲线积分的计算公式为:∫_[C]f(x,y,z)ds=∫_a^bf(x(t),y(t),z(t))∥r'(t)∥dt其中,ds表示曲线上的微元弧长,∥r'(t)∥表示曲线C的切向量的长度。
2. 第二类曲线积分第二类曲线积分用于计算曲线上的矢量场函数。
对于参数化曲线C:r(t)=(x(t), y(t), z(t)),其中a≤t≤b,函数F(x,y,z)在C上连续,则第二类曲线积分的计算公式为:∫_[C]F(x,y,z)·dr=∫_a^bF(x(t),y(t),z(t))·r'(t)dt其中,·表示矢量的点乘运算,dr表示曲线上的微元矢量。
二、曲面积分曲面积分是对曲面上的函数进行积分运算。
同样,曲面积分也分为第一类曲面积分和第二类曲面积分。
1. 第一类曲面积分第一类曲面积分用于计算曲面上的标量场函数。
对于参数化曲面S:r(u,v)=(x(u,v), y(u,v), z(u,v)),其中(u,v)属于区域D,函数f(x,y,z)在S上可微分,则第一类曲面积分的计算公式为:∬_[S]f(x,y,z)dS=∬_Df(x(u,v),y(u,v),z(u,v))∥r_u×r_v∥dudv其中,dS表示曲面上的微元面积,r_u和r_v表示曲面S的参数方程关于u和v的偏导数,r_u×r_v表示两个偏导数的叉乘,∥r_u×r_v∥表示其长度。
高数考研备战曲线积分与曲面积分的关系与转化曲线积分和曲面积分是数学中的重要概念,在高数考研备战中也是必不可少的知识点。
曲线积分主要用于计算曲线上某个物理量的总量,而曲面积分则用于计算曲面上某个物理量的总量。
两者之间存在一定的关系和转化方法,下面我们将详细介绍。
一、曲线积分的概念和计算方法曲线积分是用来计算曲线上某个物理量的总量。
在数学上通常将曲线积分分为第一类曲线积分和第二类曲线积分。
1. 第一类曲线积分第一类曲线积分是指对曲线上函数的积分运算。
根据曲线的参数方程表示,第一类曲线积分可以表示为:∫ [a, b] f(x(t), y(t)) ds其中,f(x, y)是定义在曲线上的函数,x(t)和y(t)是曲线的参数方程,ds是曲线上的弧长元素。
2. 第二类曲线积分第二类曲线积分是指对曲线上向量场的积分运算。
根据曲线的参数方程表示,第二类曲线积分可以表示为:∫ [a, b] F(x(t), y(t)) · dr其中,F(x, y)是定义在曲线上的向量场,x(t)和y(t)是曲线的参数方程,dr是曲线上的切向量元素。
二、曲面积分的概念和计算方法曲面积分是用来计算曲面上某个物理量的总量。
曲面积分同样分为第一类曲面积分和第二类曲面积分。
1. 第一类曲面积分第一类曲面积分是指对曲面上函数的积分运算。
根据曲面的参数方程表示,第一类曲面积分可以表示为:∫∫ Ω f(x, y, z) dS其中,f(x, y, z)是定义在曲面上的函数,Ω是曲面的投影区域,dS 是曲面上的面积元素。
2. 第二类曲面积分第二类曲面积分是指对曲面上向量场的积分运算。
根据曲面的参数方程表示,第二类曲面积分可以表示为:∫∫ Ω F(x, y, z) · dS其中,F(x, y, z)是定义在曲面上的向量场,Ω是曲面的投影区域,dS是曲面上的面积元素。
三、曲线积分与曲面积分的关系与转化在某些情况下,曲线积分和曲面积分之间存在一定的联系与转化方法。