算法的基本思想
- 格式:ppt
- 大小:3.26 MB
- 文档页数:32
梯度下降法的定义和基本思想随着人工智能的兴起和深度学习的广泛应用,梯度下降法(Gradient Descent)成为了最常用的优化算法之一。
本文将从定义和基本思想两个方面介绍梯度下降法。
一、梯度下降法的定义梯度下降法是一种在机器学习和深度学习中常用的优化算法,其用于最小化损失函数(Loss Function)或最大化效用函数(Utility Function)。
在深度学习中,损失函数通常是一个高维多元函数,梯度下降法可以求出这个函数的最小值点。
具体来讲,梯度下降法是一种迭代的优化算法,每次迭代通过计算梯度来更新模型的参数,以使得损失函数不断减小,直到达到收敛条件为止。
在每个迭代步骤中,算法会沿着梯度负方向更新模型参数,使得下一步的预测结果更接近真实值,同时不断减小损失函数的值,以达到最优化的目标。
二、梯度下降法的基本思想梯度下降法的基本思想可以用一个简单的例子来描述。
假设有一个人想要从山上走到山下的村庄,但他不知道具体的路线,只能通过场地的坡度来判断行走的方向。
在初始位置时,他不知道应该向哪边走才能到达山下,但他可以判断出自己脚下的坡度高低。
假设他能根据现在所在的位置和坡度来确定下一步的走向,他可以通过下山的过程不断向着更低的点走去,最终到达山下村庄。
其实,梯度下降法的基本思想就是利用梯度信息确定优化方向,在目标函数上不断移动,以达到最优化的目的。
在机器学习中,我们通常会将损失函数视为目标函数,利用梯度下降法来求解最小化这个函数的模型参数。
对于一个函数f(x),梯度下降法的基本思想是从一个初始点x0开始,计算函数在该点处的梯度g(x),并将其乘以一个学习率α,得到一个新的点x1 = x0 - αg(x0)。
然后,重复这个过程,更新x2、x3...,一直迭代到目标函数的收敛点。
需要注意的是,梯度下降法的更新过程是一步一步进行的,每一步都只考虑梯度的负方向,并沿着这个方向更新模型参数。
此外,学习率α是一个非常重要的参数,它控制着更新步长的大小,过大会导致震荡,过小会导致收敛速度慢。
fastica算法原理
FastICA算法是一种独立成分分析算法,它可以将多个信号分离成独立的成分。
该算法的原理是基于统计学的方法,通过最大化非高斯性来实现信号的分离。
FastICA算法的基本思想是:假设有n个信号源,每个信号源可以表示为一个n维向量,将这些向量组成一个n×m的矩阵X,其中m表示信号源的数量。
FastICA算法的目标是找到一个n×n的矩阵W,使得W*X的每一列都是独立的信号成分。
FastICA算法的实现过程如下:
1. 对原始信号进行中心化处理,即将每个信号的均值设为0。
2. 随机初始化一个n×n的矩阵W。
3. 对W进行正交化处理,使得W的每一列都是单位向量。
4. 通过最大化非高斯性来更新W,即使得W*X的每一列都是非高斯分布的。
这一步可以通过对W进行旋转来实现,旋转的角度可以通过最大化Kurtosis来确定。
5. 重复步骤4,直到W的每一列都是独立的信号成分。
FastICA算法的优点是可以处理非高斯分布的信号,而且不需要对信号进行任何假设。
它在信号处理、图像处理、语音识别等领域都有广泛的应用。
总之,FastICA算法是一种非常有效的独立成分分析算法,它可以将多个信号分离成独立的成分。
该算法的原理是基于统计学的方法,通过最大化非高斯性来实现信号的分离。
FastICA算法在信号处理、图像处理、语音识别等领域都有广泛的应用。
佛洛伊德算法
佛洛伊德算法(Floyd算法)是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。
该算法的基本思想是通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入一个矩阵S,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离。
具体步骤如下:
1.初始化S。
矩阵S中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞。
实际上,就是将图的原始矩阵复制到S中。
2.以顶点A(第1个顶点)为中介点,若a[i][j]>a[i][0]+a[0][j],则设置a[i][j]=a[i][0]+a[0][j]。
请注意,在具体使用中,可能需要根据问题的具体情况对该算法进行适当的调整。
贪心算法的基本原理贪心算法(Greedy Algorithm)是一种常用的算法思想,它在求解最优化问题时通常能够得到较好的近似解。
贪心算法的基本原理是:每一步都选择当前状态下的最优解,从而希望最终能够得到全局最优解。
在实际应用中,贪心算法常常用于解决一些最优化问题,如最小生成树、最短路径、任务调度等。
一、贪心算法的特点贪心算法具有以下特点:1. 简单:贪心算法通常比较简单,易于实现和理解。
2. 高效:贪心算法的时间复杂度通常较低,能够在较短的时间内得到结果。
3. 局部最优:每一步都选择当前状态下的最优解,但不能保证最终能够得到全局最优解。
4. 适用范围:贪心算法适用于一些特定类型的问题,如无后效性、最优子结构等。
二、贪心算法的基本原理贪心算法的基本原理可以概括为以下几个步骤:1. 初始状态:确定问题的初始状态,定义问题的输入和输出。
2. 状态转移:根据当前状态,选择局部最优解,并更新状态。
3. 筛选解:判断当前状态下是否满足问题的约束条件,若满足则保留该解,否则舍弃。
4. 终止条件:重复以上步骤,直至满足终止条件,得到最终解。
三、贪心算法的应用举例1. 找零钱:假设有 25、10、5、1 四种面额的硬币,需要找零 41 元,如何使得找零的硬币数量最少?贪心算法可以先选择面额最大的硬币,然后逐步选择面额较小的硬币,直至找零完毕。
2. 区间调度:给定一组区间,如何选择最多的互不重叠的区间?贪心算法可以先按照区间的结束时间排序,然后依次选择结束时间最早的区间,直至所有区间都被覆盖。
3. 最小生成树:在一个连通的带权无向图中,如何选择边使得生成树的权值最小?贪心算法可以按照边的权值从小到大排序,然后依次选择权值最小且不构成环的边,直至所有顶点都被连接。
四、贪心算法的优缺点1. 优点:贪心算法简单高效,适用于一些特定类型的问题,能够在较短的时间内得到近似最优解。
2. 缺点:贪心算法不能保证一定能够得到全局最优解,可能会出现局部最优解不是全局最优解的情况。
gmm算法理解
GMM算法,即高斯混合模型算法,是一种常用的聚类算法,用于将数据点划分为不同的组或类别。
它的基本思想是使用多个高斯分布来描述数据的统计特性,每个高斯分布代表一个类别。
通过估计每个高斯分布的参数,可以确定数据点属于哪个类别。
在GMM算法中,每个高斯分布由均值向量和协方差矩阵描述。
均值向量表示数据的中心位置,而协方差矩阵表示数据的形状和方向。
算法的目标是找到最优的均值向量和协方差矩阵,以最大化数据的似然性。
为了实现这个目标,GMM算法使用EM算法(期望最大化算法)进行迭代优化。
EM算法包括两个步骤:E步骤和M步骤。
在E步骤中,根据当前的参数估计,计算每个数据点属于每个类别的概率。
然后,在M步骤中,使用这些数据点的概率来更新每个类别的均值向量和协方差矩阵。
通过不断迭代这两个步骤,GMM算法可以逐渐优化参数,直到收敛。
GMM算法的优点是可以处理任意形状的数据分布,并且能够自动确定类别的数量。
它还可以通过调整高斯分布的
数量和参数来控制模型的复杂性。
然而,GMM算法也存在一些缺点,例如对初始参数的敏感性和计算复杂性较高。
在实际应用中,GMM算法常用于图像分割、语音识别、异常检测等领域。
通过合理地选择高斯分布的数量和参数,GMM算法可以有效地对数据进行聚类和分析,提取出有用的信息。
启发式算法详细讲解
启发式算法(Heuristic Algorithm)也被称为启发算法或者近似算法,是一种通过启发式搜索的方式来解决问题的算法。
启发式算法与精确算法不同,它不保证最优解,但通常能够在合理的时间内找到较好的解。
启发式算法的基本思想是根据问题的特性和经验,使用一些启发式的规则或策略来指导搜索过程,以此来引导算法在搜索空间中找到可能更接近最优解的解。
具体来说,启发式算法通常包含以下步骤:
1. 初始解生成:通过某种方法生成一个初始解,可以是随机生成、基于经验的启发式规则生成等。
2. 邻域搜索:在当前解的周围搜索邻域解,通过一系列的局部搜索操作,如交换、插入、删除等,来生成新的解。
3. 评估函数:对新生成的解进行评估,评估函数用来衡量解的好坏程度,可以是目标函数值、代价函数值、质量评估值等。
4. 更新解:根据评估函数的结果,更新当前解为评估值更好的解。
5. 终止条件:根据预设的终止条件,判断是否终止搜索过程。
终止条件可以是找到满足要求的解或达到最大迭代次数等。
启发式算法的性能依赖于初始解的生成和邻域搜索操作的设计,以及评估函数的准确性。
在实际应用中,针对不同的问题,可以使用不同的启发式算法。
常见的启发式算法有贪婪算法、模拟退火算法、遗传算法、禁忌搜索等。
需要注意的是,启发式算法不能保证找到全局最优解,但可以在合理的时间内找到接近最优解的解。
启发式算法常常应用于那些NP难问题或解空间很大的问题中,可以在较短的时间内找到近似最优解,是一种非常实用的算法设计思想。
6种基本算法递归递归是一种重要的算法思想,它在计算机科学中得到广泛应用。
本文将介绍六种基本的递归算法,并对其原理和应用进行讲解。
一、递归的基本概念递归是指一个函数在其定义中调用自身的过程。
递归算法通过将一个大问题划分为一个或多个相同或相似的子问题,然后通过解决子问题来解决原始问题。
递归算法具有简洁、优雅以及可读性强的特点,但同时也需要注意递归的停止条件,以避免无限递归的发生。
二、阶乘算法阶乘算法是递归算法中最经典的例子之一。
它的定义如下:```n! = n * (n-1) * (n-2) * ... * 1```其中,n为一个非负整数。
阶乘算法可以通过递归的方式实现,即:```fact(n) = n * fact(n-1)```其中,停止条件为`n=0`时,返回1。
三、斐波那契数列算法斐波那契数列是一个无限序列,其定义如下:```F(0) = 0F(1) = 1F(n) = F(n-1) + F(n-2) (n>1)```斐波那契数列算法可以通过递归的方式实现,即:```fib(n) = fib(n-1) + fib(n-2)```其中,停止条件为`n=0`或`n=1`时,返回相应的值。
四、二分查找算法二分查找算法是一种高效的查找算法,它的基本原理是将已排序的数组分成两部分,然后判断目标值在哪一部分,并继续在该部分中进行查找,直到找到目标值或者查找范围为空。
二分查找算法可以通过递归的方式实现,即:```binarySearch(arr, target, start, end) = binarySearch(arr, target, start, mid-1) (target < arr[mid])= binarySearch(arr, target, mid+1, end) (target > arr[mid])= mid (target = arr[mid])```其中,`arr`为已排序的数组,`target`为目标值,`start`和`end`为查找范围的起始和结束位置。
分治算法思想分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。
求出子问题的解,就可得到原问题的解。
即一种分目标完成程序算法,简单问题可用二分法完成。
当我们求解某些问题时,由于这些问题要处理的数据相当多,或求解过程相当复杂,使得直接求解法在时间上相当长,或者根本无法直接求出。
对于这类问题,我们往往先把它分解成几个子问题,找到求出这几个子问题的解法后,再找到合适的方法,把它们组合成求整个问题的解法。
具体介绍:规模为n的原问题的解无法直接求出,进行问题规模缩减,划分子问题。
如果子问题的规模仍然不够小,再进行子问题划分,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止,最后求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原问题的解。
适用条件有:原问题的规模缩小到一定的程度就可以很容易地解决。
原问题可以分解为若干个规模较小的相同问题,即原问题具有最优子结构性质。
利用原问题分解出的子问题的解可以合并为原问题的解。
原问题分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题(这条特征涉及到分治法的效率,如果各个子问题不独立,也就是子问题划分有重合部分,则分治法要重复的求解1公共子问题的解,此时虽然也可用分治法,但采用动态规划更好)。
特点介绍:原问题可以分解为多个子问题。
这些子问题与原问题相比,只是问题的规模有所降低,其结构和求解方法与原问题相同或相似。
原问题在分解过程中,递归地求解子问题。
由于递归都必须有一个终止条件,因此,当分解后的子问题规模足够小时,应能够直接求解。
在求解并得到各个子问题的解后。
应能够采用某种方式、方法合并或构造出原问题的解。
不难发现,在分治策略中,由于子问题与原问题在结构和解法上的相似性,用分治方法解决的问题,大都采用了递归的形式。
在各种排序方法中,如归并排序、堆排序、快速排序等,都存在有分治的思想。
马尔可夫算法
马尔可夫算法是一种基于统计的生成模型,用于对文本进行预测
和生成。
它的基本思想是,通过对已有文本的频率分析,从中获取规律,并用这些规律来生成新的文本。
在马尔可夫算法中,每一个词都有一个概率分布,表示它在文本
中出现的概率。
通过分析词之间的关系,可以得到一个状态转移矩阵,它表示了在给定一个词的情况下,下一个词出现的概率分布。
根据这
个矩阵,就可以通过一个简单的随机过程来生成新的文本。
马尔可夫算法有很多应用,比如自然语言处理、文本分析、机器
翻译等。
在自然语言处理领域,它可以用来生成新闻报道、评论、推
文等,大大提高了文本生成的效率和准确性。
然而,马尔可夫算法也存在一些局限性。
比如,它只能基于已有
的文本来生成新的语句,不能根据上下文来生成具有情感色彩的文本;它也存在词汇歧义和语法误用等问题,需要通过对生成结果进行筛选
和修正。
综上所述,马尔可夫算法虽然存在一定的局限性,但是在处理大
规模文本数据和生成基础语言文本方面具有重要的意义。
更多的研究
和应用可以进一步拓展其在自然语言处理领域中的应用。
随机游走算法
随机游走算法的基本思想是:
从一个或一系列顶点开始遍历一张图。
在任意一个顶点,遍历者将以概率1-a游走到这个顶点的邻居顶点,以概率a随机跳跃到图中的任何一个顶点,称a为跳转发生概率,每次游走后得出一个概率分布,该概率分布刻画了图中每一个顶点被访问到的概率。
用这个概率分布作为下一次游走的输入并反复迭代这一过程。
当满足一定前提条件时,这个概率分布会趋于收敛。
收敛后,即可以得到一个平稳的概率分布。
拓展资料
随机游走(RandomWalk,缩写为RW),又称随机游动或随机漫步,是一种数学统计模型,它是一连串的轨迹所组成,其中每一次都是随机的。
它能用来表示不规则的变动形式,如同一个人酒后乱步,所形成的随机过程记录。
因此,它是记录随机活动的基本统计模型。
RandomWalk是随机过程(StochasticProcess)的一个重要组成部分,通常描述的是最简单的一维RandomWalk过程。
下面给出一个例子来说明:考虑在数轴原点处有一只蚂蚁,它从当前位置(记为x (t))出发,在下一个时刻(x(t+1))以来概率向前走一步(即x(t+1)=x(t)+1),或者以来概率向后走一步(即x(t+1)=x(t)-1),这样蚂蚁每个时刻到达的点序列就构成一个一维随机游走过程。
本质上RandomWalk是一种随机化的方法,在实际上生活中,例
如醉汉行走的轨迹、花粉的布朗运动、证券的涨跌等都与RandomWalk 有密不可分的关系。
RandomWalk已经被成功地应用到数学,物理,化学,经济等各种领域。
高斯-勒让德算法
高斯—勒让德算法是互联网上最重要的技术之一。
它被广泛应用于图像处理、
语音识别和机器学习领域中,为处理数据分类、聚类和模型估计提供了一种可行的数学模型。
高斯—勒让德算法的基本思想是对给定的一组数据,采用高斯分布模
型对其进行拟合,以估计出其可能的数据来源和参数,其精髓是使用极大似然法最小化误差范数,以实现数据最优拟合。
高斯—勒让德算法最大的优势在于数值稳
定性,因为其利用有限的数据拟合出满足要求的模型,可以获得更加有效的参数估计和更好的数据可视化效果。
此外,它还具有易于实施、算法简单快捷和计算代价低的优点。
相比于其他传统的数据处理技术,高斯—勒让德算法的拟合能力更加精确准确,适合不断变化的数据情况,在互联网行业有着广泛的应用前景。
总之,高斯—勒让德算法为大量数据处理技术提供了一种可行的数学模型,被
广泛应用于互联网行业,可以有效的进行数据的聚类、分类和各类数值的估计,具有易于实施、算法简单快捷和计算代价低的特点,因此在未来的应用前景非常可观。
knn算法原理KNN(K近邻算法)是一种基于实例的机器学习算法,是机器学习领域中非常常见的算法。
KNN法的基本思想是:如果一个样本在特征空间中的k个最相近的样本中的大多数属于某一个类别,则该样本也属于该类别。
KNN法中,所选择的邻居都是已经正确分类的对象。
KNN法的基本原理是:在给定一个未知类别的对象(样本数据)时,根据其特征属性和它最接近的K个已经知道分类的样本,对这个对象进行分类。
KNN法就是从训练集中找出这K个“邻居”,根据这K 个“邻居”的类别,来确定当前未知类别的对象的分类。
KNN法的基本流程如下:1. 从训练集中计算测试实例与每个训练集实例之间的距离;2.据距离选择K个最近邻;3.据K个邻居的类别,通过投票或者加权求和,确定测试实例的类别。
KNN法使用数据中“靠近”的训练实例来预测未知实例,因此,KNN法是一种基于实例的学习算法。
KNN法的实质是在训练集中查找与当前输入实例最在的 K 个实例,并将它们的“类标记”作为对应的输入实例的预测。
KNN法的优点是:1. KNN法的思想简单,实现容易,它不需要学习过程,也不需要假设数据的分布,只需要保存所有数据实例;2.实际数据建模时,可以有效地处理属性间关系比较复杂和数据不平衡的情况;3. KNN法可以灵活地处理不同的数据类型。
KNN法也存在一些缺点:1. KNN法需要大量的计算,当训练数据集特别大的时候,搜索K 个最近邻计算量就比较大,可能会耗费较多的时间;2. KNN法的效果依赖于k的值,但是k的值没有一个理论上的确定方法,只能选取不同的k值进行实验;3. KNN法不能很好地处理类别不平衡问题,因为它采用的算法是加权求和,类别不平衡的情况下,加权求和会倾向于那些比较多的类别;4. KNN法的思想是当前的数据点的类别取决于它的K个邻居,而这里的K个邻居都是已经被正确分类的,即每个邻居都是“正确”的,这种认为是不合理的,因为它假定K个邻居的类别都被正确分类了,而这并不一定是真的。
六年级信息科技二分算法摘要:一、算法简介1.二分算法的概念2.二分算法的应用领域二、二分算法的原理1.基本思想2.实现步骤3.算法的时间复杂度三、二分算法的实际应用1.搜索问题2.排序问题3.其他应用场景四、如何教授二分算法1.针对学生的认知水平进行讲解2.结合实际问题进行教学3.引导学生进行实践操作正文:一、算法简介二分算法,又称折半查找法,是一种在有序数组中查找某一特定元素的搜索算法。
这种算法每次将待查找的区间缩小一半,直到找到目标元素或查找区间为空。
二分算法广泛应用于计算机科学、信息科技等领域。
二、二分算法的原理1.基本思想:二分算法的基本思想是将待查找的区间不断缩小,从而降低搜索的复杂度。
算法从数组的中间元素开始,如果中间元素正好是要查找的元素,则查找成功;如果中间元素小于或大于要查找的元素,则在小于或大于中间元素的那一半区间内进行查找,依次类推,直到找到目标元素或查找区间为空。
2.实现步骤:a.确定待查找区间,初始化左右边界。
b.计算区间的中间元素。
c.判断中间元素与目标元素的大小关系。
d.根据判断结果,更新左右边界。
e.重复步骤2-4,直到找到目标元素或区间为空。
3.算法的时间复杂度:二分算法的时间复杂度为O(log n),其中n 为数组的长度。
三、二分算法的实际应用1.搜索问题:二分算法可以用于在有序数组中查找特定元素,如搜索引擎、文件查找等场景。
2.排序问题:二分算法可以用于快速排序、归并排序等排序算法中,提高排序效率。
3.其他应用场景:二分算法还可以应用于图论、动态规划等领域,帮助解决复杂问题。
四、如何教授二分算法1.针对学生的认知水平进行讲解:教师需要了解学生的认知水平,用简单易懂的语言和例子进行讲解,使学生更容易理解二分算法的原理。
2.结合实际问题进行教学:通过具体的应用问题,引导学生学习二分算法,让学生了解算法在实际问题中的应用,提高学生的学习兴趣。
分布鲁棒优化求解算法摘要:一、分布鲁棒优化求解算法简介1.分布鲁棒优化问题的提出2.求解算法的研究意义二、算法原理与方法1.分布鲁棒优化求解算法的基本思想2.算法模型构建3.算法求解步骤三、算法性能分析与实验验证1.算法性能评价指标2.实验环境和数据集3.实验结果与分析四、应用场景与展望1.应用场景2.算法的局限性与改进方向3.未来发展趋势正文:分布鲁棒优化求解算法是一种针对不确定性优化问题的求解方法。
随着不确定性因素的增加,传统优化问题在实际应用中面临着很大的挑战。
分布鲁棒优化问题考虑了不确定性因素的分布情况,能够更好地适应实际问题。
然而,由于问题的复杂性,求解分布鲁棒优化问题具有很大的难度。
为了解决这一问题,研究者们提出了分布鲁棒优化求解算法。
该算法基于分布鲁棒优化问题的特点,采用分阶段、迭代的方法进行求解。
首先,根据问题的特点构建合适的模型;然后,通过迭代更新模型参数,逐步逼近最优解。
为了评估算法的性能,我们进行了大量的实验验证。
实验环境和数据集涵盖了多种应用场景,包括图像处理、信号处理和机器学习等领域。
实验结果表明,所提出的算法在解决分布鲁棒优化问题上具有较高的准确性和有效性。
分布鲁棒优化求解算法在许多应用场景中发挥着重要作用。
例如,在图像处理中,可以用于处理噪声图像;在信号处理中,可以用于滤波器设计;在机器学习中,可以用于处理具有不确定性的数据。
然而,该算法还存在一些局限性,如求解速度较慢、模型构建复杂等。
未来,我们将继续研究改进算法,提高其性能和效率,拓展其在更多领域的应用。
总之,分布鲁棒优化求解算法为解决不确定性优化问题提供了一种有效的手段。
通过对算法的原理、方法、性能分析和实验验证进行研究,我们对其有了更深入的理解。
分支定界算法
分支定界算法是一种全局最优解的搜索算法,它通过对搜索空间的分割和剪枝来求解最优解。
它是一种分支限定法,可以在多种优化问题中应用,用于求解最优解,如最大化目标函数、最小化目标函数等。
分支定界算法的基本思想是:在搜索空间中选择一个基本变量(未知变量),然后根据某种启发式规则,将它分成两个子空间,从而有效地减少搜索空间。
接着,对子空间中的每一个变量尝试求解,最终求得一个最优解。
分支定界法的优点在于可以有效地缩小搜索空间,提高求解效率;同时,它也可以解决多种优化问题,具有很强的适用性。
分支定界法常用于解决复杂的优化问题,如最优路径搜索、最优调度等。
它可以有效地缩小搜索空间,提高求解效率;同时,它也可以解决多种优化问题,具有很强的适用性。
虽然分支定界法可以有效地解决复杂的优化问题,但它也存在一定的局限性。
首先,搜索空间的大小会影响求解的效率,如果搜索空间太大,分支定界法就不能有效地求解最优解;其次,分支定界法要求基本变量的取值范围可以被明确定义,否则难以进行搜索;最后,分支定界法对于高维变量的搜索也不太友好。
分支定界法是一种有效的搜索算法,可以有效地缩小搜索空间,提高求解效率,广泛应用于多种优化问题中,而且它还有一定的局限性。
常用的算法算法〔Algorithm〕:计算机解题的根本思想方法和步骤。
算法的描绘:是对要解决一个问题或要完成一项任务所采取的方法和步骤的描绘,包括需要什么数据〔输入什么数据、输出什么结果〕、采用什么构造、使用什么语句以及如何安排这些语句等。
通常使用自然语言、构造化流程图、伪代码等来描绘算法。
一、计数、求和、求阶乘等简单算法此类问题都要使用循环,要注意根据问题确定循环变量的初值、终值或完毕条件,更要注意用来表示计数、和、阶乘的变量的初值。
例:用随机函数产生100个[0,99]范围内的随机整数,统计个位上的数字分别为1,2,3,4,5,6,7,8,9,0的数的个数并打印出来。
此题使用数组来处理,用数组a[100]存放产生确实100个随机整数,数组x[10]来存放个位上的数字分别为1,2,3,4,5,6,7,8,9, 0的数的个数。
即个位是1的个数存放在x[1]中,个位是2的个数存放在x[2]中,……个位是0的个数存放在x[10]。
void main(){ int a[101],x[11],i,p;for(i=0;i<11;i++)x[i]=0;for(i=1;i<=100;i++){ a[i]=rand()%100;printf("%4d",a[i]);if(i%10==0)printf("\n");}for(i=1;i<=100;i++){ p=a[i]%10;if(p==0) p=10;x[p]=x[p]+1;}for(i=1;i<=10;i++){ p=i;if(i==10) p=0;printf("%d,%d\n",p,x);)printf("\n");}二、求两个整数的最大公约数、最小公倍数分析:求最大公约数的算法思想:(最小公倍数=两个整数之积/最大公约数)(1) 对于两数m,n,使得m>n;(2) m除以n得余数r;(3) 假设r=0,那么n为求得的最大公约数,算法完毕;否那么执行(4);(4) m←n,n←r,再重复执行(2)。
dijkstra算法介绍
Dijkstra算法是一种贪心算法,用于解决带权重的有向图或无向图中的单源最短路径问题。
所谓单源最短路径问题,就是从图中的一个固定顶点(称为源点)出发,找到到达图中其它顶点的最短路径。
Dijkstra算法的基本思想是,利用一个距离数组或者优先队列来记录从源点到各个顶点的最短距离,并不断更新这个数组或队列直到找到源点到目标顶点的最短路径。
具体的算法流程如下:
1. 初始化:将源点的距离置为0,其余点的距离均设为无穷大。
2. 选择未标记节点中距离目前路径最短的节点X(第一次为源点),并将该节点标记为已访问。
3. 更新从X出发能到达的未标记节点的距离:若当前源点到节点Y的距离加上节点Y到节点Z的距离小于源点到节点Z的距离,则更新节点Z的距离。
4. 重复执行第2和第3步,直到所有节点都被标记或无法再标记为止。
5. 最后得到的距离数组中,每个元素表示源点到目标节点的最短距离。
Dijkstra算法的时间复杂度为O(ElogV),其中V为节点数,E为边数。
该算法
具有贪心的性质,每次选择当前距离最短的节点往前推进,因此可以得到最优解。
但算法的前提条件是图上不存在负权边,否则可能出现计算出错的情况。