第一章染色体的形态结构
- 格式:ppt
- 大小:5.29 MB
- 文档页数:75
(一)染色体的形态结构体细胞的染色体是46个,23个,其中22对是常染色体,一对是性染色体。
男性一对XY,女性为XX。
染色体的形态随着细胞周期的不同而有所改变,在光学显微镜下所看到的染色体是细胞分裂中期染色体(metaphase chromsome)。
每个染色体含有两条染色单体,呈赤道状彼此分离,只有着丝粒处相连。
根据着丝粒的位置分为三种类型,中部着丝粒型,亚中部着丝粒和端着丝粒型(图21-1)。
图21-1正常人体细胞的三种染色体1.中部着丝点染色体;2.近中部着丝点染色体;3.近端部着丝点染色体1.非显带染色体特征分为七组A组(1~3):为最大的具中部着丝粒染色体,这组染色体相互间很易区别。
第1号和第2号染色体大小相似,唯第2号染色体为近中部着丝粒染色体。
第3号染色体较1、2号染色体小,为中部着丝粒染色体。
B组(4~5):为大的具中部着丝粒染色体。
2对染色体之间在形态和长度上较难区别。
C组(6~12号和X):为中等大小的具中部或近中部着丝粒染色体。
这组染色体较难区分,其中第6、7、11号和X染色体为中部着丝粒染色体,第8、9、10和12号染色体为近中部着丝粒染色体。
女性为2个X染色体。
男性只有1个X染色体。
D组(13~15号):为中等大小的具近端着丝粒染色体。
在其短臂上有随体。
与他组染色体有明显区别。
但3对染色体之间较难区别。
E组(16~18号):为小的具中部或近中部着丝粒染色体。
第16号染色体为中部着丝粒染色体,第17号和18号染色体为近中部着丝粒染色体。
不过,着丝粒位置第18号较第17号染色体更近端部。
F组(19~20号):为更小的中部着丝粒染色体。
2对染色体之间,形态上很难区别。
G组(21~22号和Y):为最小的近端着丝粒染色体。
第21号和22号染色体大小相似,且短臂上常连有随体。
Y染色体常比第21和22号染色体大、染色深。
且无随体。
Y染色体长臂2个染色单体比较靠拢,长臂末端也较模糊。
2.G带染色体的特征第1号染色体:识别并不困难,但初学者易把长短臂颠倒。
生物工程专业《遗传学》教学大纲(课程编码081801032)一、课程说明1.课程学时、学分及分配课程总学时90,总学分5,开课学期第5学期。
2.课程类别专业主干课。
3.课程教学目标与要求遗传学是现代生物学中进展最迅速、与其它自然科学、社会科学与技术科学交叉最多的学科之一,是新技术革命的动力学科。
本课程内容涉及知识面广、实验性强、学习难度大。
教学要突出重点,明确难点、疑点,精简适当。
注重理论的同时强化实验环节,提高学生综合能力。
通过本门课程的学习,使学生在有限的时间内,系统地熟悉遗传学的基本知识,掌握基本理论与基本技能,触摸到本学科进展动态的前沿,认识到遗传学在生物学领域中的重要位置,为将来习惯本质工作及科研的需要奠定坚实的基础。
4.参考教材与参考书目参考教材:普通遗传学(面向21世纪课程教材)杨业华高等教育出版社2000.8参考书目:遗传学(第二版上下)刘祖洞高等教育出版社 1999.6 遗传学王亚馥戴灼华高等教育出版社 2000.7新编遗传学教程李惟基中国农业大学出版社 2002.1现代遗传学赵寿元乔守怡高等教育出版社 2001.8 5.课程教学重点与难点标注*为重点内容,难点是交换值的计算、真菌类的遗传分析、噬菌体的遗传及重组的分子基础、遗传工程等内容。
6.课程教学方法与手段注重理论与实验密切配合,强化实验环节,采取灵活多样的教学方式,利用现代化教学手段,开发遗传学的CAI课件,使学生真正成为教学过程的主体。
7.课程考核方法与要求平常成绩(包含作业、测验等)与期中考试占成绩30%,期末考试成绩占70%。
8.实践性教学内容安排本课程的实践教学内容,由遗传学实验课独立完成,全面内容见《遗传学实验课》教学大纲。
9.先修课程与后续课程本课程与生物化学、微生物学、植物生理学与动、植物学、细胞生物学、胚胎学课程均有联系,特别是与生物化学、微生物学与细胞生物学的联系更为密切。
细胞的形态、结构、分裂等内容需要细胞生物学或者者是植物学、动物学中全面讲授;而DNA、RNA与蛋白质的合成、DNA损伤与修复由生物化学讲授;微生物的形态结构及生活史由微生物学讲授。
染⾊体的形态和结构第⼆章染⾊体的形态和结构第⼀节原核细胞和真核细胞⼀.原核⽣物和真核⽣物的概念真核⽣物的遗传物质集中在有核膜包围的细胞核中,并与特定的蛋⽩质相结合,经过⼀定的等级结构形成染⾊体。
原核⽣物的遗传物质只以裸露的核酸分⼦⽅式存在,虽与少量的蛋⽩质结合,但是没有真核⽣物染⾊体那样的等级结构。
习惯上,原核⽣物的核酸分⼦也称为染⾊体。
⼆、原核细胞与真核细胞的区别在⽣物界中,从细胞结构来看,可分为两⼤类:1.为真核体。
真核体包括:⾼等动植物、原⽣动物、真菌,以及⼀些藻类。
2.为原核体。
原核体包括:细菌、病毒以及蓝藻等。
两细胞系的区别如下:①⼀个典型的真核细胞体积(10um)⽐⼀个原核细胞体积(1-10um)⼤约⼗⼏倍甚⾄上万倍,因此在化学组分的总量上不同,真核细胞总量远远⾼于原核细胞总量。
②在真核细胞中,有⼀个由核膜所包围的细胞核。
在核中含有由DNA、蛋⽩质、RNA组成的多条染⾊体③原核体的染⾊体具有单个的DNA或RNA分⼦并在不同的有机体中表现不同。
④原核体细胞DNA的总量⽐真核体细胞的DNA总量少得多。
但是就单个DNA分⼦长度与该细胞⼤⼩相⽐却长得多。
⑤在遗传物质的交换与重组⽅⾯,真核⽣物通过雌雄配⼦融合形成合⼦并通过细胞分裂来完成遗传物质的交换与重组,⽽原核⽣物只是通过质粒介导来实现单向的遗传物质的交换。
⑥原核细胞mRNA的合成在许多重要⽅⾯不同于真核细胞。
⑦原核细胞mRNA常常在它的翻译刚开始之后,就开始从5’---端开始降解,即使它的合成还没有完成。
⑧细胞分裂⽅式不同,在原核细胞周期中,DNA复制后,紧接着便是细胞分裂,⽽真核细胞的细胞周期可分为⼏个不同的时期。
⑨由于原核细胞⽆溶菌体,因此不能通过吞噬和胞饮作⽤来进⾏异物的消化作⽤,原核细胞的电⼦传递部位在细胞膜,⽽真核细胞的电⼦传递部位在线粒体膜。
上述差异只是原核细胞与真核细胞在细胞⽔平上的差异,在分⼦上⽔平,原核细胞与真核细胞还具有明显的不同,如基因的序列组织、遗传物质的复制以及基因结构、表达⽅式、产物修饰、调控等⽅⾯均各有特点。
生物进化知识:进化与染色体进化——染色体形态和数量的变化染色体是所有细胞共有的结构,它们携带着生物个体的遗传物质,是进化简史中的重要成分。
染色体的形态和数量在进化过程中发生着变化,这一过程被称为染色体进化。
本文就染色体进化中染色体形态和数量的变化进行探讨和总结。
一、染色体形态的变化染色体形态的变化主要体现在染色体大小和形状的改变上。
1.染色体大小的改变在进化过程中,染色体的大小可以上升或下降。
例如,在某些基因组中,小染色体的数量随着时间推移而减少,大染色体的数量则逐渐增多。
这种现象被称为染色体重构。
染色体重构的原因包括基因重组、基因转移和等位基因的剔除等。
2.染色体形状的改变染色体形状的改变是染色体进化中的另一种重要变化。
这种变化主要包括染色体端部的变形,染色体的着色体区域的变形以及整个染色体形状的变化等。
例如,某些物种的染色体端部具有特殊结构,称为端粒,端粒在染色体的复制和分离过程中扮演重要角色。
染色体端粒的长度和形状在不同物种、不同时期有着显著的差异,表明在进化中染色体端粒也在发生着变化。
此外,染色体着色体区域的形态也容易发生变化。
在一些进化早期的物种,着色体区域相对较短,随着物种的进化和繁衍,染色体着色体区域的长度随着染色体重组的发生而变异,这种变异也是染色体进化中的重要形态变化。
二、染色体数量的变化除了染色体形态的变化外,染色体数量的变化也是染色体进化中的重要一环。
染色体数量的变化主要体现在以下三个方面:1.染色体数目的高倍化染色体数目的高倍化指染色体数量发生翻倍。
在生物进化史上,染色体数目的高倍化现象表现得尤为突出。
染色体数目的高倍化一般发生在某些特殊条件下,如自然突变、染色体不分离等过程中。
例如,在某些昆虫中,染色体高倍化是一个常见的进化现象,昆虫在繁殖过程中会出现多倍体或异倍体现象,这种现象被认为是昆虫进化过程中染色体数量的快速增加的一种表现形式。
2.染色体的融合和裂解染色体的融合和裂解也是染色体进化的重要形态变化。